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We co~ider. an i~teraction Lagrangian consisting of renormalizable and nonrenormalizable terms. 
~ft~r a bnef discussIOn of t~e vertex function and the boundary conditions determining the renormal­
lzatlOn ~o?-s~ant corre.spondmg to ~ pseudoscalar bound state, we derive an explicit expression for the 
nonrelatlVlstic S-matnx for scattermg by the potential l/r'. These results are then used to evaluate Z. 
The explicit expressions obtained contain a strong cut-off dependence which cannot be factorized out. 
How~ver,. a specific.value of the cut-off reduces the equation to a well-known eigenvalue problem, so 
that lfl this case a discrete spectrum of bound states may be obtained. 

I. INTRODUCTION 

CONSIDERABLE interest has recently been de­
voted to the study of singular potentials at small 

distances, since the infinities appearing in non­
renormalizable quantum field theory are believed to 
have some analogy with those arising in the perturba­
tion expansion for nonrelativistic scattering by highly 
singular potentials. The Bethe-Salpeter equation, 
which gives a covariant description of the relativistic 
two-body problem, has also been widely discussed in 
this context; in fact, as Bastai et aJ.! have pointed out, 
there is a marked similarity between the behavior of 
the solutions of the BS equation near the origin and 
those of the radial Schrodinger equation. It is clear, 
therefore, that a more detailed knowledge of the 
characteristic features of nonrelativistic scattering by 
highly singular potentials could shed some light on 
the difficulties encountered in relativistic scattering 
theory. 

1 A. Bastai, L. Bertocchi, S. Fubini, G. Furlan, and M. Tonin 
Nuovo Cimento 30,1512, 1532 (1963). ' 

Various authors! have pointed out that the Jost 
function in potential theory is the nonrelativistic 
analog of the constant Z which renormalizes the 
vertex between elementary and composite particles in 
a field-theoretical Lagrangian. The vanishing of this 
constant Z is equivalent to the condition of the bound 
state, thus yielding a relationship between the masses 
of the interacting particles and their coupling con­
stants. Several classes of interactions have recently 
been considered by Furlan and Mahoux3 in order to 
examine the characteristics of the resulting eigenvalue 
equations. In particu~ar, they have shown that, for 
super-renormalizable and renormalizable interactions, 
the Zl = 0 condition is found to be either independent 
of a cut-off or else the cut-off can be factorized out. 
However, in the case of nonrenormalizable inter­
actions, the situation is not as clear. 

In the present paper, we consider an interaction 

2 For a list of references, see W. Giittinger, Nuovo Cimento 36, 
968 (1965); L. Bertocchi, M. McMillan, E. Predazzi, and M. Tonin, 
ibid. 31, 1352 (1964). 

• G. Furlan and G. Mahoux, Nuovo Cimento 36, 215 (1965). 
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Lagrangian consisting of renormalizable and non­
renormalizable terms. In Sec. II, we briefly discuss 
the vertex function and obtain the boundary con­
ditions determining the renormalization constant 
corresponding to a pseudoscalar bound state. In 
Sec. III, we derive an explicit expression for the 
nonrelativistic S-matrix for scattering by the potential 
,.-4. In Sec. IV, we use these results to evaluate the 
renormalization constant Z. The explicit expressions 
obtained contain a strong cut-off dependence which 
cannot be factorized out. Finally, we discuss the 
physical significance of this cut-off. 

II. RENORMALIZABLE AND 
NONRENORMALIZABLE INTERACTIONS 

We consider the following mixture of a renormal­
izable and a nonrenormaHzable interaction as an 
example illustrating interactions which, in non­
relativistic potential theory, correspond to highly 
singular potentials: 

1::1 = g'ip(Y6, l)ljJcp + gip(Y6' l)ljJcp2. (2.1) 

Here, the ljJ'S represent spin-l fields (mass m) and 
the cp's represent massless bosons. The two couplings 
(Y6' I) represent Dirac matrices for pseudo scalar 
and scalar interactions, respectively. The first of the 
interactions (2.1) is renormalizable, whereas the second 
is not. We now want to discuss the case, where the 
spinors 1jJ form a pseudoscalar bound state of mass 
zero by the exchange of one or two of the bosons cpo 
Then in ladder approximation, the integral equation 
for the renormalized vertex function r(p) = Y6r(p2) 
is represented by the diagram shown in Fig. I, where 
p = I(Ft - pJ is the relative 4-momentum of the 
two spin-l particles, and where, for convenience, 
we have set q = Ft + PI = O. Thus, the mass of the 
composite particle (taken on the mass shell) is fixed, 
and quantization yields a relationship between g, g', 
and a quantum number n, say (and a cut-off, as 
we see later). The scalar and pseudoscalar inter­
actions (1, Y5) in (2.1) may be termed as attractive 
and repulsive, respectively, since they correspond to 
attractive and repulsive potentials. r{p2), the scalar 
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FIG. 1. Diagrammatic representation of Eq. (2.2). 

part of the vertex function, is easily seen to satisfy the 
integral equation 

r{p2) == Z - ~ f d'p'r(p'~ 
(211-)' (p,S + m~{p _ p')2 

AE f d'p'r(p'S) f d'k 
- (21T)' (p,1 + m2) kl(k + p' _ p)2' 

(2.2) 
where Z is the vertex renormalization constant, 
A = g2/(21T)4m2, A' = g'l/ml, and E = ± 1 correspond­
ing to the (Y6' 1) coupling. 

Now, except in the case of scalar-particle in~r­
actions, the solution of (2.2) does not decrease 
sufficiently rapidly at high energies due to an essential 
singularity at infinity, so that the introduction of a 
cut-off in the integration becomes inevitable. These 
difficulties have been discussed by various authors,2-4 
and arguments have been suggested to justify the 
following procedure. 

We perform a Fourier transformation of Eq. (2.2) 
[divided by (p2 + m2») and use the Wick rotation6 of 
the time component of x so that we finally work in 
terms of a pure Euclidean metric. Furthermore, we 
use the integrals 

f(e;qQJ/ql) dq = (21T/X)2, 

f· ei
7>IICOB II sin2 oc doc = (1T/ipy)I1(ipy), (2.3) 

f ei7>11 d'p 
I ~ = (41T2/y)mK1(my), 

{p + m 
where 11 and Kl are modified Bessel functions 
(the volume element d4p being given by 

p3 sin2 oc sin ffJ dp doc dffJ dO 

in four-dimensional spherical co-ordinates) and ex­
pand K1(m Iy - xl)/m Iy - xl in terms ofGegenbauer 
polynomials.6 The orthogonality properties of these 
polynomials then yield the following integral equation: 

ljJ{y) = ZmK1(my) - fooodXe: + A~C:)1jJ{X) 
x [O(y - x)K1{my)I1(mx) 

+ O(x - y)K1(mx)I1(my»), (2.4) 
where 

'F. T. Hadjioannou, Nuovo Cimento 35, 570 (1965). 
• G. C. Wick, Phys. Rev. 96, 1124 (1954). 

(2.5) 

8 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Higher Transcendental Functions (McGraw-Hili Book Co., Inc., 
New York, 1955), Vols. I. II. 
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Differentiating (2.4) (and using well-known prop­
erties of the modified Bessel functions, such as their 
recurrence relations and asymptotic behavior), we 
obtain a differential equation and two boundary 
conditions: 

(2.6) 

(2.7) 
lim y[y(djdy)1p(Y) - tp(y)] = -2Z. 
1/-+0 

This Z is not to be confused with the argument z of 
Sec. III below. 

Since, in effect, the vertex function represents the 
bound-state wavefunction of the composite particle,2 
the interactions (2.1) may be regarded as being 
equivalent to potentials of the form y-2, y-4 in the 
nonrelativistic Schrodinger equation. The first of these 
leads to a renormalizable interaction as discussed by 
Furlan and Mahoux.8 Due to the mathematical 
complexity of the solutions, however, the potential 
y-4 has only recently been studied in some detail. 7 

In the following section, we show that, at least in 
the interesting case of reasonably high energies, these 
difficulties are only apparent, and a simple expression 
for the S-matrix may be derived. 

ill. SCATTERING BY THE POTENTIAL ,-4 

For convenience, we consider the radial Schrodinger 
equation for all partial waves / and a repulsive 
potential, i.e., 

cp"(r) + [k2 - /(/ + 1)/r2 - y2/r4]cp(r) = O. (3.1) 

We next introduce the substitutions 

cp(r) = r l 1p(r), A = (/ + l)2, 
(3.2) 

x = r/ra = ez', z' = z + 1i1r. 
Then, 1p(r) satisfies a differential equation identical 
with (3.1), except for an additional term ,-l(d1p/dr). 
We also choose the parameter r" such that 

and set (3.3) 
k2r! = y2/r! = g2,) 

h2 == ig2. 

Then, 1p(z) satisfies the modified Mathieu equation 

d21p/dz2 - [A - 2h2 cosh 2z]1p(z) = O. (3.4) 

We observe that this equation is invariant under the 
interchanges 

h--±h, 

h -- ±ih, z -- -z 1= 1i7r, 

z---z, 
. , , 
I.e., z -- -z. 

(3.5a) 

(3.5b) 

7 R. M. Spector, J. Math. Phys. 5, 1185 (1964); L. Bertocchi, 
S. Fubini, and G. Furlan, Nuovo Cimento 35, 633 (1965); H. H. Aly 
and H. J. W. Miiller. J. Math. Phys. 7, 1 (1966). 

The corresponding invariant points are (a) z = 0, 
(b) z = 1=li7r, z' = O. 

Now, in an earlier investigationS it was shown that, 
for large values of h2, two linearly independent 
solutions of Eq. (3.4) may be written as 

1po(z, h) = A_(z) exp (-2ih sinh z),} 

1fo(z, h) = A(z) exp (+2ih sinh z), 
(3.6) 

where A(z), A(z) are known functions of z. The 
following asymptotic behavior of these solutions is 
easily verified [cf. (3.2)] 

exp [=F2ihsinh z]~exp [=Fg/x] = exp [=Fyjr], 
",-+0 (3.7) 

exp [=F2ih sinh z] ~ exp [=F igx] = exp [=F ikr]. 

Clearly by (3.5) and (3.6), we also have the following 
pair of solutions 

1p::rJz; h) = 1po{ -z - 1i7T; ±ih) (3.8) 

with the property 

1p::rJz; h) ~ e'fikr. (3.9) 
r--+<Xl 

The S-matrix may then be derived as follows. 
Writing 

(rl)1p(z; h) = A{1p_(z; h) - S(h)1p+(z; h)}(rl) (3.10) 

and taking the limit r -- 00, we see that (3.10) is the 
standard definition of the S-matrix. The solution 
regular at r = 0 (i.e., x = 0) is 

(rl)1p{z ; h) = B1po(z; h Xr1). (3.11) 

Thus, to obtain the S-matrix, all we need is the 
analytic continuation of (3.11) to (3.1O), i.e., [cf. (3.5)] 
at Zo = -li7T. Hence, equating (3.1O), (3.11), and 
their derivatives at this point, we have 

"PoCz; hXdjdz)1p_{z; h) 
S{h) = - vdz; hXd/dz)",iz; h) 

1po{z; hXdjdz)V'+{z; h) 
- 1piZ ; hXd/dz)1pJ..z; h) so 

1pJ..y; hXd/dy)1pJ..y; +ih) 
+ 1piy; +ihXd/dy)1po{y; h) 

= 
1po{y; h)(djdy)tpo(Y; -ih) 

+ 1po(y; -ihXd/dy)1po(y; h) u~li" 

(d/dz)[1po{z; h)1po(z; +ih)] I 
= (d/dz)[1po{z; h)1po{z; -ih)] z=-li,,' 

(3.12) 

8 R. B. Dingle and H. J. W. Miiller. J. Reine Angew. Math. 211, 
11 (1962). 
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It is now necessary to specify the function A{z) in 
solution (3.6); this function is given by8 

A{z; h) = Aiz) + {27h)-I{P1{l)Aq+4 + P1{ -1)Aa_4} 

+ {27h)-2{P2{2)Aa+8 + P2(1)Aq+4 

+ P2{ -1)Aa-4 + P2( -2)Aa_s} + ... 
00 v 

= I I (27h)-VPv{q;j)Aq+4iz), 
v=Oi=-1' 

(j ¢. 0 for p > 0), (3.13) 

where q is related to the Floquet parameter of the 
Mathieu equation.s The coefficients Pare known9 or 
can easily be calculated. They depend on q. The 
functions Aa are given by 

cos!(a+4i-I)(!7T - liz) 
Aq+4lz) = !(q+4i+1)(1 +.1')' (3.14) 

cos "47T 2lZ 

It is readily seen that Aiz) has the following limits: 

for r---+O: Aa(z) "'-'2(r/ra)!exp [-ti7T(q + t)], 
for r ---+ 00: Aq(z) "'-' 2(ra/r)! exp (tj7T(q + i)]. 

(3.15) 

This yields precisely the behavior to be expected of 
the solution q; of (3.1). Now, in calculating S, it is 
incorrect to substitute the full solution (3.13) into 
(3.6) and thence into (3.12), since the phase shift is 
determined by the asymptotic behavior of the solu­
tions, i.e., by their behavior for r ---+ 00, or in the 
present case [due to the symmetry properties (3.8)] 
by their behavior for r ---+ O. Thus, S is obtained by 
substituting into (3.12) the dominant terms of ?Po for 
r ---+ 0 and then setting Z = -ti7T, i.e., z' = 0 or 
r = r a' So we set 

00 l' 

1pO<z, h) ~ e-r/rI I' Piq(h);j)/(27e!iUg)1'2(r/ra)! 
v=Oi=-1' 

X e-!iU[q(h) + 4j + t] (r ---+ 0), (3.16) 

where the dash on the sum implies j ¢. 0 for p > O. 
We have also included an h-dependence in q, since q 
has to be determined from the secular equation of 
the Mathieu equation, i.e., as the solution of a 
function F(A, q, h) = O. We now have 

1po(z; h)1po<z; ±ih)/4e-!iU[q(h) + q(±ih) + 1] 
00 :PI co 1>2 

~ (r/ra)e-(r/r)(l±i) I I' I I' (_1)Mi2 
Vl=O it=-1'l 1'2=0 i2=-V2 

P vJq(h); jl]P V2[q(± ih); j2] 
X (27e!iUg)Vl(=F27e-!iug)V2 

00 

= (r/ra)e-(r/r)(l±i) I (27 g)-iQ~±)[q(h)], (3.17) 
i=O 

8 K. M. Case, Phys. Rev. 80, 797 (1950). 

where 

Q~±)[q(h)) = f i' 1~ (_1)h+i2 P m[q~~)~jt1 
m=O h=-m 12=m-i (e! ) 

and 

Clearly, 

(d/dz)[1po(z; h)1po(z; ±ih)].=_!iU 

4e-!iU[q(h) + q(±ih) + 1] 

= ra .!!:.-[!.... e-(r/r)(l±i)~Q~±)~q(7)]J 
dr ra 3=0 (2 g) r=r. 

= e-g (l±il[1 + g{l ± i)r~Q~±)[q(h)]. (3.19) 
i=O (27 g)3 

Now, the S-matrix assumes the simple form 

x exp (-ti7T)[q(+ih) - q(-ih»). (3.20) 

We have already remarked that q is a function of h; 
in fact, our solutions 1p are solutions of the modified 
Mathieu equation only if als08 •10 

A(h2) = -2h2 + 2hq - 1(q2 + 1) + O(1/h), 

[h = + (h2)!]. (3.21) 

This equation determines the (as yet) unknown 
parameter q. For nonintegral values of q, the pa­
rameter h in (3.21) has to be taken as the positive 
square root of h2,n It then follows that, if we solve 
(3.21) for q, q is also a function of h2; in fact, 

q(h2) = 4h[2 ± J3) + O(1/h), 

q( +h) = q( -h), h = + (h2)!. 
(3.22) 

[Note: A of Eq. (3.21) is the A of both solutions 
proportional to exp (±2hi sinh z)]. Since q(±ih) is to 
be understood as q(h) with h replaced by ±ih, it 
follows that these two functions must also be identical. 
So their exponentials in (3.20) give no contribution. 

Unfortunately, an expansion of q [cf. (3.22)] in 
falling powers of h does not appear to be given in the 
literature, whereas expansions in rising powers of h2 

are well known.10 Also, the unitarity of the quotient 

10 J. Meixner and F. W. Schlifke, Mathieusche Funktionen und 
Sphiiroidfunktionen (Springer-Verlag, Berlin, 1954). 

11 See Ref. 10, pp. 133, 139. 
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of sums in (3.20) cannot be easily seen. However, 
substitution of (3.22) into the coefficients8 

P1(q, 1) = (q + 1)(q + 3), 

P1(q, -1) = -(q - 1)(q - 3) 

shows that to 0(1) the terms in the numerator are the 
same as those in the denominator and are real (so 
these terms "preserve" unitarity and do not con­
tribute to the phase shift). 

Equation (3.21) exhibits the characteristic difference 
between the behavior of the phase shift b for potentials 
of centrifugal or Coulomb type and that for the 
singular potentials. We observe that, in the limit 
k -+ 00 (i.e., g -+ 00) 

S "'-' e-2iU(1 + i)/(1 - i) = eti1T-2ia, (3.23) 

so that the phase shift b has the behavior 

b = i1T - g + O(1/g) f"Oo.J t1T - (yk)! (k2 > 0). 

(3.24) 

This behavior is completely different from that of the 
regular potentials, where the phase shift decreases to 
zero as k -+ 00. Furthermore, in the case of the 
regular potentials, high energies imply small coupling 
parameters, so that the Born expansion leads to the 
correct high-energy behavior. However, in the case of 
our singular potential, we see from Eq. (3.3) that 
high energies correspond to large coupling constants, 
so even from this point of view one would expect the 
Born expansion to diverge; this is in fact the case, as 
is well known. The result (3.24) agrees with that of 
Bertocchi et aU 

IV. THE Z = 0 CONDITION FOR 
COMPOSITE SYSTEMS 

We first calculate Z by the conditions (2.7). Which 
is the solution tp(y) we have to use? Since m2 = _k2, 
we have m = ik, and (3.9) shows that 

1/9'(r; h) "'-' e'fmr. (4.1) 
r .... oo 

Clearly, tp+ is ruled out by the first of the condi­
tions (2.7). We now want to know the behavior of 
r[rtp'(r) - tp(r)] for r -+ 0, so we have to re-express 
tp_(y; h) as a linear combination of regular and 
irregular solutions at y = O. The regular solution is 
again tpo(z; h); the irregular solution may be written 
tpo(z; -h). Thus, the two solutions to be matched at 
the point Z = -ti1T are (choosing an appropriate 
normalization) 

tp(Z; h) = tp_(z; h) } 

tp(z; h) = tpo(z; h) + ctpo(z; -h) 
(4.2) 

Then, proceeding as in Sec. III, we obtain 

~ [tpo(z; +ih)tpo(z; h)] 
dz 

c = - ---:::..::.....-------

where 

~ l[tpo(Z; +ih)tpo(z; -h)] 
dz 

; m i-m 
Q~±)[q(h)] = I I' I' 

m=O h=-m i2=m-i 

x (- )h+i.p m[q(±h); jl]Pi-m[q( + ih);j2) 
(±eti1T)m( _e-tilT);-m 

X (27g)-;. 

We also have [cf. (3.6), (3.7), (3.13), and (3.14)] 

00 1> 

tpo(Z; ±h) = e'f2ihSlnhz 2: I (±27hr1> 

where 

Then 

1>=0;=-1> 

X P1>[q(±h);j]A~~4;(Z) 
......, (r)*e'fy/r A±, 
r .... O 

tp(z; h) "'-' (r)t[A+e-y/r + CA_e+y/r) 
r .... O 

(4.4) 

"'-' CA_(r)*e+y/r, (4.6) 

and Z becomes (for the repulsive case) 

Z = lim lCA_[y + tr)(r)*e+y/r. (4.7) 
r .... O 

In order to obtain the corresponding results for the 
attractive case, i.e., an attractive potential llr4, we 
replace y in (3.1) by iy and g2 by iyk. 
Then 

tpo(z; ±h) "'-' (r)!e'fiy/rB±, (4.8) 
r .... O 

where 

B± = 2[m/y]te-tilT[a<±ihl+tJ 

X 
~ ~ (-I);P1>[q(±ih);j] 
£. £. (4.9) 

1>=0 ;=-1> [±27e!i1T(ym)t)1> 
Then 

tp(z; h)......, (r)![B+e-iy/r + CB_-e+ i1 /
r) (4.10) 

r .... O 
and Z becomes 

Z = lim -tcr)![(tr + iy)B+e-iy/r 

r .... O 
+ (tr - iy)CB_ei1

/
r). (4.11) 
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These results reaffirm the conclusions of Furlan 
and Mahoux.3 These conclusions state that, in the 
case of nonrenormalizable interactions, the cut-off is 
a built-in parameter of the Z = 0 condition, and, 
in general, there is no way to factorize it out. This 
implies, of course, that the compositeness condition 
gives a continuous bound-state spectrum, which is 
unphysical. The same difficulty would arise if we 
tried to calculate the S-matrix-which we cannot do 
with the above results, since the energy was taken to 
be zero (cf. Sec. II, where q was taken equal to zero); 
it would also be strongly cut-off dependent. 

However, Case9 pointed out that the main difference 
between regular and singular potentials (i.e., potentials 
of the form r-n for n < 2 or n > 2, respectively) is 
that the latter require the introduction of some other 
parameter, in addition to the potential parameters, in 
order to ensure orthogonality of the eigenfunctions, 
which would otherwise be too numerous and hence 
overcomplete. 

But, representing an actual scattering process by a 
two-point system with an interaction which becomes 
infinite as the separation approaches zero, means 
necessarily an oversimplification. Thus, even for the 
proton which is expected to have a finite radius, the 
interaction with an electron is not strictly of Coulomb­
type at r = O. However, the eigenvalues are still 
correctly given by those obtained from the vanishing 
of the wavefunction with r = 0 as a boundary 
condition. In other words, the eigenvalues are essenti­
ally independent of exactly when or how the Coulomb 
law breaks down near r = O. 

Now, since the above results are unphysical for 
arbitrary values or r, one could ask which specific 

value of the cut-off r would yield a normal eigenvalue 
equation involving a quantum number describing the 
various states of the system. The potential discussed 
in Sec. II does indicate a possible answer. It is easily 
seen that several transformations reduce the corre­
sponding radial SchrOdinger equation to the proper 
periodic Mathieu equation, for which the eigenvalues 
are well known. These eigenvalues, however, are 
determined by the condition that the eigensolutions 
be periodic functions of the independent variable. So 
the question is under what conditions would these 
eigenvalues also be eigenvalues of the original 
SchrOdinger equation. Clearly, the condition is that 
'P(iZ) must satisfy the same periodicity condition. 
This, in particular, implies that 'P vanish at a point, 
where iZ = p(h, q), say or 

r - r e-i:l'(h,(/) r - (ylk)! - a 'a - , (4.12) 

p being a complex function of h. A value of r such as 
this is related to the extra parameter introduced by 
Case.9 It implies essentially a hard-core boundary 
condition. We see, therefore, that if we choose the 
cut-off as a particular function of k and y, th.en the 
equation yields a discrete eigenvalue spectrum, and 
the difficulties of the continuum are removed. 

Of course, the singular nature of the potential 
would have been avoided. Still we. see that r satisfies 
very plausible limiting conditions, i.e., 

lim r = 0; lim r = O. 
Ikl-+oc 111-+0 

In other words, at extremely high energies or for very 
weak coupling, the cut off vanishes and the scattering 
particles approach the actual scattering center. 
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Non-Usual Topologies on Space-Time and High-Energy Scattering 

D. ATKINSON AND M. B. HALPERN 

Department of Physics, University of California, Berkeley, California 

(Received 21 June 1966) 

Motivated by recently observed deviations from quantum electrodynamical theory, we study the 
possibility that our notions of space-time may need revision at small distances. In this work, we wish 
to call attention to certain techniques which are available for studying different space-time structures 
within the framework of topology. Our main effort is in the consideration of a non-usual topology on 
space-time in which is embedded an elementary length. By working separately in each n-particle 
subspace, the embedding is done in an inhomogeneous Lorentz invariant way, and we avoid any lattice 
structure in space-time. Particles in this topology are in general extended structures, .and we find the 
surprising feature that, at high energies, the topology enhances backward and large-angle scattering. 
From these preliminary investigations, we are not as yet able to make more than qualitative comparison 
with experiment. Along the way, we have the opportunity to remark on ways of embedding an intrinsic 
breakdown of certain invariances (e.g., parity) in the topology of space-time. 

INTRODUCTION 

I T has often been suspected that our common notions 
concerning the structure of space-time may break 

down for extremely small intervals. Indeed, it would 
be a priori surprising if these notions were correct 
at all distances. A recent large-angle pair-production 
experimentl in electrodynamics has raised the possi­
bility that, even at presently available energies, we may 
in fact be entering into such a regime of breakdown. 
This disturbing notion finds indirect support, perhaps, 
in the various unsuccessful ad hoc modifications of 
quantum electrodynamics2 (stimulated by the pair­
production experiment), within the framework of a 
usual space-time structure. Although one may still 
hope to find an explanation of the data in essentially 
conventional terms, we have been motivated by the 
present situation to look into possible ways of changing 
the structure of space-time. 

The structure of a space is most naturally studied 
through its topology.3 We have in mind here the use of 
topology to describe the local or microscopic structure 
of a space,' rather than its global properties5 (such as 
torsion, macroscopic connectedness, etc.). 

1 R. B. Blumenthal, D. C. Ehn, W. L. Faissler, P. M. Joseph, 
L. J. Lanzerotti, F. M. Pipkin, and D. G. Stairs, Phys. Rev. 144, 
1199 (1966). A momentum-transfer of 6 BeV/c corresponds to a 
Compton wavelength of 3 X 10-16 cm for the internal electron. If 
we believe that this experiment is just beginning to show the effects 
of the non-usual topology, then we might take this wavelength as a 
very rough indication (more likely an upper limit) for the elementary 
distance).. 

IF. E. Low, Phys. Rev. Letters 14, 238 (1965); N. M. Kroll, 
CERN Preprint (1966); E. L. Lomon, CERN Preprint (1966). 

• J. L. Kelley, General Topology (D. Van Nostrand Company, 
Inc., Princeton, New Jersey, 1955); N. Bourbaki, Elements de 
mathematique (Hermann & Cie, Paris, 1948), Vol. III, Pt. I, Chap. 
8; see especially Chap. 9 for a discussion of the pseudo-metrization 
of topological spaces. 

• E. C. Zeeman [J. Math. Phys. 5, 490 (1964); Cambridge 
University Preprint (1965)] has already considered a non-usual 
topology for space-time. [See, also in this connection, D. B. Wolf, 
Preprint, Computer Associates, London (1965).] Zeeman's and our 
approaches are basically different, but a marriage between them can 
be contrived, as briefly noted in the text. 

II See, for example, D. Finkelstein and C. W. Misner, Ann. Phys. 
(N.Y.) 6, 230 (1959); U. Enz, Phys. Rev. 131, 1392 (1963). 

A serious difficulty, encountered when a non-usual 
topology is taken for a space, lies in setting up a 
dynamics. In particular, analytic procedures with 
which the physicist is familiar have been defined on the 
usual topology, and any change of topology necessi­
tates a new set of operators, function theory, etc. As 
physicists, this seriously constrains our ability to con­
struct dynamics on any but the simplest non-usual 
topologies. Our theories are by no means as complete 
as the usual theory: we content ourselves with simple 
dynamical statements on some relatively straightfor­
ward non-usual topologies. Even then, we probably 
raise more questions than we can answer. Nonetheless, 
we hope that our considerations at least call attention 
to the fact that there is a well-defined framework 
(topology) within which to consider changing the 
presumed structure of space-time; and we hope that 
our ideas, even if (a) incorrect or (b) premature (or 
both) may lead to more satisfactory ones in the future. 

Among the many simple topologies one might 
study, we, for definiteness, set ourselves the task of 
building one in which there is embedded an elementary 
length, A, but whose open-set structure is invariant 
under the full inhomogeneous Lorentz group.6 Pre­
vious attempts7 at the incorporation of an elementary 
length in space-time have involved a lattice structure 
for the manifold, and a consequent loss of translation, 
rotation, and Lorentz invariance. We avoid this lattice 
structure by prescribing (different) non-usual topolo­
gies on each n-particle subspace (n ~ 2). Most of our 
discussion concerns the two-particle subspace. In this 
case, we introduce the elementary length by taking a 
coarse8 topology only on the space of the difference 
of the two particle coordinates. This means that we 

• In principle, of course, one would be willing to tolerate a break­
down of Lorentz invariance to order )., if). were small enough. 

7 Three recent papers by A. Das [1. Math. Phys. 7, 45, 52, 61 
(1966)] give an adequate referencing of existing theories with an 
elementary length. 

8 A coarse topology is one that contains fewer than the usual open 
sets, while a fine topology contains more. 
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are, in some sense, giving up the ability to specify the 
relative coordinate of the two particles beyond a 
certain accuracy. However, the topology induced on 
either one-particle subspace is strictly finer than usual. 

Following Zeeman,4 we define a trajectory to be a 
continuous map from some parameter space into our 
topological space. In this sense, all ordinary trajec­
tories are excluded by the topology, and various 
interesting alternate possibilities arise. We find that, 
generally speaking, these trajectories imply that the 
two particles are extended in space over a minimum 
distance A.. 

At the dynamical level, our job is to find equations 
of motion in the two-particle subspace. The difficulty 
involved in setting up operators on the space is the 
following: In one direction in our two-particle space 
the natural "derivative" is a difference operator, while 
in a perpendicular direction it is the usual differential 
operator. The operators along some intermediate ray 
are some unfamiliar "combination" of these two 
familiar operators. We avoid some of these problems 
by making the simple assumption that the equations 
of motion are separable between the sum and difference 
coordinate variables. In this way, the equations involve 
only differential and difference operators. It should 
be emphasized, however, that this procedure picks out 
only one from a large class of possible dynamics on 
the topology. These other dynamics would involve the 
use of the "fine" operators along an arbitrary ray; we do 
not have a great deal to say about them in this work. 

We confine our considerations of classical mechanics 
on the new topologies to an analysis of the possible 
trajectories; then we proceed directly to quantum 
mechanics. In a simple momentum, energy, and prob­
ability conserving formalism, we infer the high-energy 
scattering of the theory. The surprising result is that 
at high energies the topology induces an extra effective 
"potential" between the interacting particles, which 
serves to enhance backward and high-energy scatter­
ing! This is certainly suggestive of the results of 
Blumenthal et al.; but we have not yet calculated this 
effect quantitatively enough to allow more than a qual­
itative comparison with the data. Another interesting 
and surprising feature of the high-energy scattering is 
the presence of very high mass, but long-lived reso­
nances. In fact, the higher the mass, the narrower the 
resonance. Certainly, there would be no mechanism in 
ordinary field theory or S-matrix theory to generate 
such particles. 

We mention that the presence of the elementary 
lengtlit (and the corresponding damped high-energy 
behavior of the transformation functions to be dis­
cussed below) allows, in principle, the elimination of 
ultra-violet divergences in the theory. The detailed 

discussion of such a problem would require the choice 
of a particular theory on the topology (analogous to 
a choice of a particular Lagrangian in the usual 
topology); but we are content here in general with the 
deduction of what seems to be the high-energy behav­
ior of any theory on the topology. By the same token, 
we do not discuss "intermediate energy" scattering 
on the topology, as this would also be "theory­
dependent. " 

Along the way in our discussion, we have the 
opportunity to present various other topologies in 
which are embedded intrinsic violations of certain 
discrete symmetries, e.g., time reversal and/or parity 
invariance. In particular, we mention a topology in 
which, at a pre-dynamical level, some particles violate 
parity, and others do not. These topologies may be of 
some interest in their own right with regard to em­
bedding certain features of the weak interactions in 
space-time itself. 

The order of our presentation is as follows: In 
Sec. A, we consider a non-usual topology, and the 
possible particle trajectories, first in one spatial di­
mension, where we take care to retain translational 
invariance, then in three dimensions, where we must 
also keep rotational invariance, and finally in 1 + 3 
space-time, where we complete the embedding of the 
elementary length in an inhomogeneous Lorentz in­
variant manner. By building up in stages, we have 
illustrated the difficulties involved in incorporating 
an elementary length in more and more complicated 
spaces, and with progressively more stringent sym­
metry requirements. In Sec. B, we develop the simple 
separable dynamics, again in first one, then three, and 
finally in four dimensions. At the end of Sec. B, we 
discuss very briefly some of the problems involved in 
formulating a full field theory, allowing for the crea­
tion and destruction of particles. 

A. TOPOLOGIES AND TRAJECTORIES ON 
THE TWO-PARTICLE SUBSPACE 

For the purposes of orientation and simplicity, we 
first discuss intrinsically nonrelativistic topologies, 
taking a non-usual topology only on space, and leaving 
the usual topology on time. Things are in fact much 
simpler in one spatial dimension, and we can learn 
much in this simple case, which we accordingly discuss 
before going on to three dimensions. After that, we 
turn to a relativistic topologization, in which time and 
space are kept on an equal footing. 

1. Nonrelativistic One-Dimensional Motion 

Consider the space of two identical particles, 
located somewhere on a line, with coordinates Xl and 
X2. Ordinarily one assumes the usual (Euclidean) 
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topology on the two-dimensional space Xl ® X 2 , and 
on a time parameter, t. In this section, we want to 
study another topology for this space, one which 
contains an elementary length, A, but which in no 
way implies an unaesthetic lattice structure on the line 
itself. In particular, the topology is completely trans­
lationally invariant. 

We define the non-usual topology by the base9 : 

B~~)~)<"2 = {X,x:a < X <b,nA ~ x < (n + l)A}, (Ai) 

where X = (Xl + x2)/2, X = Xl - X2' a and b are any 
real numbers, and n is any positive or negative integer. 
As we have already indicated, A is to be the elementary 
length in the theory. In words, we are taking, as the 
topology of Xl ® X2 , the product of the usual topology 
on the sum variable X, and an apparently coarse 
topology (actually one that is strictly incomparable 
with the usual topology) on the difference variable x. 
We refer to this topological space as (Xl ® X2, A)(1), 

the superscript indicating that the individual particle 
spaces are one-dimensional. We can only separate 
two points (in the Hausdorff sense) if we can cover 
each of them with disjoint open sets. The coarseness 
of the X topology indicates that we are giving up, in 
some sense to be discussed below, the ability to specify 
the distance between the particles more accurately 
than A. 

A question of paramount importance is of course 
the induced topologylO on the space of an individual 
particle. (This is the topology that should be com­
pared with the usual situation.) One sees immediately 
that a base for the induced topology on, for example, 
the Xl space, for fixed X 2 , is 

B~~)("'2) = {xl:a < Xl < b, X2 + nA ~ Xl < b}, (A2) 

where a, b, and n are defined as in Eq. (AI). We call this 
topological space (Xl' A; X2)(1). This notation empha­
sizes that the induced topology on Xl is parametrized 
by X2' indicating a pre-dynamical linkage between the 
two particles. Note that this topology is strictly finer 
(contains more open sets) than the usual topology. 
Despite the fact that, for fixed X 2 , there is a set of 
"preferred" points-in that an open setH extending 
to the right (or to the left, for that matter) from such 
a point mayor may not contain the point-this 
topology is translationally invariant. This is because, 
in any translation, both particles are moved by the 

• A subset B of a topology 7 is a base for 7 if each member of 7 

is the union of members of B. 
10 By the induced topology on (say) Xl' we mean the relative topol­

ogy on the space Xl with respect to (Xl ® X. ,A)(l). The topology on 
a subset Y of X relative to the topological space (X, 7) is defined 
to be the family of all intersections of members of 7 with Y (see 
Ref. 3). 

11 An alternate base for (Xl' A; X.)(l) would be the usual open 
intervals, plus the points Xa + nA. 

o A 2A 3A 4A 

FIG. 1. Continuous functions in (Xl' A; 0)(1). 

same amount, so that the preferred points in the Xl 
space move also. 

The fineness ofthe (Xl' A; X2)(1) topology is mirrored 
in the enlarged set of continuous functions12 on 
(Xl' A; X2)<1) into a space with the usual topology. 
Some single-valued continuous functions on (Xl' A; 0)<1) 
into {f(xl ), U} are shown in Fig. 1. This set is greater 
than the usual set of continuous functions, since it 
includes functions which may have arbitrary discon­
tinuities (in the usual topology) at the preferred 
points nA. 

Note that (Xl ® X2, A)(l) is complicated from the 
topologist's point of view because, although it is 
normal and regular, it is non-Hausdorff,li} and is 
not even To! A space with an elementary length is 
non-Hausdorff in general (because in a Hausdorff 
space one can "distinguish" between any two points 
by means of disjoint open sets). By the same token, 
the space is not metrizable; but, as we see below, it is 
pseudo-metrizable. On the other hand, the topologies 
induced on the single particle spaces are Hausdorff 
and metrizable. 

Possible Classical Trajectories in (Xl ® X2' A)(1) 

Following Zeeman, we take, as a natural definition 
of a trajectory in the topological space, a continuous 
map of a finite interval in (7', U) into (Xl ® X2, A)(l), 
where 7' is some invariant parameter and U is the 
usual topology. For these nonrelativistic topologies, 
the ordinary time will suffice as the parameter. (We 
discuss more restrictive definitions of trajectories 
below.) Note that this is the inverse ofthe prescription 

12 A continuous function of one space into another is a mapping 
of the first (or domain) space into the second (or range) space such 
that the inverse map of any open set in the range space is open in 
the domain space. 

13 (Xl ® x., A)(l) is the topological product of the Hausdorff 
(X, U) and the non-Hausdorff (x, A), so that our "informatiouloss" 
is in the distance between the two particles. 
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FIG. 2. Trajectories in (Xl ® X2. A)(l). 

x 

giving the continuous functions on (Xl ® X 2 , A)(l) into 
a function space with the usual topology. 

In general, one can find trajectories in any direction 
in the Xl ® X2 plane. Various of these are shown in 
Fig. 2. Trajectory (1) corresponds to both particles' 
moving with equal velocity, keeping at a constant 
distance from one another. Trajectories of this sort, 
in which the particles never change their relative 
distance "see" the usual topology (on X), and the 
particle motion appears quite ordinary. Trajectory 
(2) corresponds to two particles viewed in their 
center-of-mass system, with the coordinate origin 
midway between the particles. The topology "seen" 
by these trajectories is coarse. Trajectory (3) corre­
sponds to the second particle's remaining fixed while 
the first particle moves. The topology seen by the 
moving particle is fine. The topology seen on a tra­
jectory like (4}-with both particles moving-is in 
general fine. Note that, except for peculiar cases like 
(1), trajectories see non-usual induced topologies. 

A representative sampling of the kinds of possible 
trajectories [corresponding to (3) in Fig. 2} in Xl' for 
fixed X2, is given in Fig. 3. Trajectories like that shown 
in Fig. 3(i) correspond to particle two's remaining 
fixed while particle one jumps forward over each 
preferred line. In another frame, related by a Galilean 

Xl 

(.1.1/ 

I 
! o~ ________________________ ~ 

FIG. 3. Trajectories in (Xl. A; 0)(1). 

transformation, particle 2 would move quite normally. 
(The topology allows one particle to move in an 
ordinary fashion, but not both.) Such a trajectory 
could be excluded by the requirement that the con­
tinuous map into (Xl ® X2' A)(l) have an inverse in 
its range. That is, one would want to be able to tell 
at what time (or times) any particular position was 
occupied. With this requirement, we immediately 
exclude any one-to-one map: That is, the particles 
automatically have an extent in space. For example, 
"barb" trajectories like (ii) (iii) do have an inverse 
and are perhaps of some interest. 

Trajectory (ii) corresponds to particle one's moving 
from left to right (while particle two remains fixed 
at the origin). As it approaches a preferred point, 
an image of the particle suddenly appears at the pre­
ferred point, and remains there while the particle 
itself passes through the point. The image survives 
after this for some time, and then it dies. Actually the 
images can live as long as one likes, but presumably 
the longer-lived ones would be less physical, and one 
would therefore want the dynamics to keep the image 
lifetimes short (i.e., to pick only such a sub-set of the 
trajectories). Trajectory (iii) is the time or parity 
reversed counterpart of (ii). Since any barb trajectory 
does have a time and/or parity reversed counterpart, 
it is evident that, unless the dynamics further limits 
the set of trajectories, the theory of a particle which 
moves (barb-like) past a fixed particle would be time 
reversal and parity invariant. (This applies also, of 
course, to all Galilean transformed configurations.) 
We see pelow that there also exist trajectories on this 
space with no mirror image and hence an intrinsic 
parity violation. 

Other interesting barb-like trajectories can be found 
by mapping directly into X, X. Some representative 
~aps into (x, A)(1) are shown in Fig. 4. Trajectory (i) 
IS the analog of the barbs in xl-except that this time 
the trajectory corresponds to two particles moving 
toward one another. Whenever x = nA, an image of 
each particle is suddenly created, and the two images 
persist for some time, after which they die simulta­
neously. Trajectory (ii) also involves barb-like motion 
on the part of both particles. In this case, when the 
distance between the two particles approaches nA, an 
image appears ahead of each particle and moves back­
wards, passing through the parent particle when the 
relative coordinate is nA, a short time after which each 
image dies. Note that all this is taking place in a 
momentum-conserving manner (since the images 
always co-exist and move in opposite directions with 
the same speed). In general, we find momentum­
conserving trajectories most easily by mapping into 
x,X. 
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T 

FIG. 4. Trajectories in (x, A)(l). 

However, barb trajectories are not bicontinuous 
between (x, A)<1) and (T, U)-bicontinuity meaning con­
tinuity in either direction between the two topological 
spaces. If we had the usual topology on x (instead of 
the A-topology), then "ordinary" trajectories would 
be bicontinuous. One might therefore consider bicon­
tinuity to be a reasonable further requirement on a 
physical trajectory, thus excluding these barbs [note, 
however, that the barbs on Xl for fixed X2 are in fact 
bicontinuous between (Xl' A; X2)(l) and (T, U)]. Bicon­
tinuous trajectories on (x, A)(l) are of the form shown 
in Fig. 4(iii). The horizontal line-segments which are 
marked C must be taken to include the points that 
the line designates, while all other boundary lines do 
not do so. Note that bicontinuity has eliminated even 
l:n mappings into (x, A)(l) (where n is a finite number, 
or even No). The bicontinuous mappings are 1: Nl in 
both directions (where NI is the continuum infinity). 
Thus each time, T, maps into an interval, and the 
trajectories correspond to two particles, each of which 
has a minimum spatial extent of tAo The innermost 
edges of the two particles are always nA apart, for 
some integer n. For the two particles to move at all 
(say toward one another) each must simultaneously 
extend a "pseudo-pod" of length tn' A toward the 
other. Then each particle pulls its "tail" (again 
simultaneously) into the region occupied by its 
pseudo-pod. Thus the motion is amoeba-like past the 
preferred points. 

Note that the space (x, A)(l) is inherently parity 
breaking [due to the one-sided::;; in Eq. (AI), open 
sets do not map into open sets under parity reversal]. 
This fact is apparent in the twin amoeba trajectories: 
when particle one is to the left of particle two, then 
the left boundary of the former and right boundary 
of the latter are included in the respective particles. 
The mirror image of this configuration would be with 
particle two to the left of particle one, while the former 
includes its left and the latter its right boundary-but 

this configuration is not allowed! The reason for this 
is that particle one must always include its left 
boundary, and particle two its right boundary. Thus 
a theory of these particles would be intrinsically 
parity-breaking. Such trajectories may be of interest 
if one wished to embed some of the features of the 
weak interactions directly in space-time. It is curious 
to note that, contrary to the case for the twin amoeba 
trajectories, parity need not be violated for amoeba­
like trajectories in Xl' with X 2 constant. This is because 
these amoeba-like particles can be built to include 
their boundaries on either side. In three and four 
dimensions, we want to preserve rotational and Lorentz 
invariance, and we only consider a parity-invariant 
topological space. 

It is worth mentioning in passing, however, that an 
intrinsic parity violation can be built into space-time, 
without any elementary length. For example, if one 
takes, on a one-particle subspace, the topology defined 
by the base 

B = {x:a ::;; x < b} (A3) 

for all real a, b, then one finds that the trajectories 
are of necessity extended in space, although the ex­
tension can be made as small as one pleases. If one 
picks the subset of trajyctories that are bicontinuous, 
then the particles always include their left-hand, but 
not their right-hand boundaries. These trajectories 
then have no allowed mirror images. One might 
imagine that a theory could be set up in which 
neutrino trajectories, for example, were required to 
be bicontinuous between a parameter space and the 
topological space defined by Eq. (A3), while this 
requirement was not made for particles which inter­
act strongly or electromagnetically. The way to break 
time-reversal invariance would be, of course, to take 
one of these one-sided topologies on the time-axis. 

Finally, we mention that our topology implies an 
"action at a distance." For example, imagine two 
(twin) amoeboid particles, at rest, on opposite sides of 
the galaxy. By moving one particle a small distance, 
by means of conventional forces, during which it 
periodically emits and retracts pseudopods, we can 
cause the "fixed" particle to emit pseudopods simul­
taneously. (The "motion" of this particle never 
carries its center more than tA from its initial position.) 
Action at a distance is not surprising in a nonrelativis­
tic theory. We see below, however, that this charac­
teristic can be preserved in a fully relativistic treatment. 

2. Nonrelativistic Three-Dimensional Motion 

The problem in three-dimensional motion is to 
propose a topology that contains an elementary length 
but is, at the same time, consistent with both transla­
tional and rotational invariance. The topology we 
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wish to study is a natural generalization of the A­
topology on the one-dimensional Xl ® X 2 • It is defined 
by the base: 

B(3) = {X X' a < IXI < b Xl®Z2 ,. 

and all usual open cones in X, 

n). :::;; Ixi < (n + I»), 
and all usual open cones in x}, (A4) 

where we have kept the same definitions of X, x in 
terms of Xl' X2 as in Eq. (AI), and where a, b are any 
positive real numbers, n any positive integer. Note 
particularly that in the relative topology of X, the 
point X = ° is open. 

We denote this (six-dimensional) topological space 
by (Xl ® X 2 , A)(3). As before, the space is not 
Hausdorff, nor To. The reasons for this pathology 
are similar to those for (Xl ® X2, A)(1), namely that, in 
taking a non-Hausdorff topology on x, we are giving 
up some ability to distinguish distances between the 
particles. Again we find that the space is only pseudo­
metrizable. In that the coarsening is radial about 
either particle, the topology is rotationally invariant, 
and, of course, translationally invariant also. 

The topology induced on the three-dimensional 
subspace of one particle is again strictly finer than 
the usual three-dimensional Euclidean topology. We 
can specify it by means of a base. For fixed X2' a base 
for the relative topology on Xl is the set of usual open 
E-spheres, centered about any point in the Xl space, 
together with each point Xl that satisfies IXI - x2 1 = nA, 
n = 0, 1,2, .... Hence this induced topology is the 
usual topology, plus a set of "preferred points," just 
as in the one-dimensional case. In fact, the induced 
topology on any straight line, in the Xl plane, running 
out of the point Xl = X2 is the topology of the positive 
Xl axis in the one-dimensional example. 

The (enlarged) set of continuous functions on 
(Xl ® X 2 ; A)(3) into (T, U) is easily seen to contain, in 
addition to the usual U-continuous functions func­
tions which may be U-discontinuous across the 
"preferred" spheres IXI - x2 1 = nA. 

Trajectories in (Xl ® X 2 , A)(3) 

Again we take Zeeman's definition of a trajectory, 
as given above. A representative sampling of allowed 
trajectories that have inverses in their range is shown 
in Fig. 5. As in (Xl' A; x2)(1), so here the usual tra­
jectories are in general excluded. Trajectory (i) is in 
fact usual: so long as a particle does not cross a 
preferred sphere, its trajectory is entirely ordinary. 
Note that, in another frame, particle two, originally 
at rest, will also appear to move normally. Trajectory 
(ii) is a normal barb trajectory, with images appearing 
on the preferred spheres. In another frame, particle 

FIG. 5. Trajectories in (Xl' A; X2)(3). 

two would move normally, while particle one would 
be barbed. The only situations in which both particles 
move normally are those in which the separation is 
never equal to an integral number of elementary 
lengths. Note also that the Xl trajectories cannot be 
U-discontinuous in the angular variables about X2 • 

In this topology, the barbed trajectories do not 
intrinsically violate parity invariance. In fact, we have 
not been able to find a rotationally invariant way of 
incorporating parity violation into a topology. More­
over, since the topology on the time-axis is still usual, 
there is no intrinsic violation of time-reversal 
invariance. 

As in one dimension, the requirement of bicon­
tinuity between the parameter space and (Xl ® X2' A)(3) 
excludes all the barbed trajectories. Bicontinuous 
trajectories are easily generated by mapping into X 

and X. These have the general form shown in Fig. 6 
(in X space). The trajectories correspond to a pair of 
amoeboid particles with a minimal radial spread 
(along their line of centers) of tA each. The angular 
extent of one particle about another can be made as 
small as one pleases. Motion along the line of centers 

FIG. 6. A bicontinuous trajectory in (x, A)(3). 
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is accomplished by means of simultaneous, radial 
pseudo-pods, much as in the one~dimensional case. 
The angular motion of one particle about the other 
is entirely normal. 

3. Four~Dimensional Relativistic Motion 

The problem in four dimensions is to embed the 
elementary length in a way consistent with full 
inhomogeneous Lorentz invariance. This involves 
changing the topology along the time as well as the 
space axes. This enables one to break time-reversal 
invariance; but we choose not to do this: our topology 
is parity and time~reversal invariant. 

We specify the non~Hausdorff space (Xl @ X 2 , A)14) 
by the base 

B(4)"" = {x x: all usual open €~spheres in X, 
~1'O'X2 ' 

(
X2 ~ 0, nA ~ x2 < (n + 1)1. ) 
x2 ~ 0, nA ~ _X2 < (n + 1)1. 

and all usual } (AS) 
open hyperbolic cones in x . 

Here we use the quadratic form X2 = (XO)2 - (XI)2 -
(X2)2 - (X3)2. As before, n is any positive integer. With 
this topology, we are sacrificing some knowledge of 
the interval between two particle "observations." It 
is clear that we have retained explicit Lorentz invari­
ance in our choice of open sets. 

Suppose we fixx~ and consider the induced topology in 
Xli space. A base consists in all the usual open €-spheres, 
t~gether with all the points lying on the "preferred 
hyperboloids" (Xl - X2)2 = nA, n = -I, 0, 1,2, .... 

Note that, as it stands, the induced topology on the 
light cone (X2 = 0) is very coarse. In particular, in a 
1 + 1 subspace, the only nontrivial open sets on the 
light cone would be the four quadrants of the light 
cone and the point Xl = X 2 • This means that one 
could not separate points on a light ray sent between 
observers at Xl and X 2 • In the full four-dimensional 
space, however, it is easily seen that Xl can distinguish 
(by open sets) the direction of a light ray to X 2 , but 
cannot distinguish points on a given ray. The induced 
topology on the rest of the topological space 
(Xl' A; x2)(4l-that is, away from the light cone X2 = 0 
is strictly finer than usual, so that in particular, a light 
ray from any point Xl aimed away from X2 travels over 
a very fine topology. This is also the case for general 
particle trajectories. 

Actually, it is a simple matter to refine the topology 
on the light cone as far as one wishes, without essen­
tially changing the induced topology on ~ther sub­
spaces.14 In this paper, we leave the questIOn of the 

14 Although if the light cone topology were so fine as to be ~is­
crete this would add certain single point open sets to the relative 
topoiogies on lines in Xl @ xa that intersect (Xl - xa)a = o. 

desirability of refining the light-cone topology as an 
open question. ... 

The induced topology of most phySIcal Interest IS 
on any subspace xiO) = x~O) (i.e., the two particles ~re 
usually considered at the same time). One sees easIly 
that this subspace is, for all times t = xiO) = x~O), 
simply (Xl @ X 2 , 1.)(3). Thus we have succeeded in 
embedding our three-dimensional topological space 
in space-time in a relativistically invariant way. 

It is clear from the base B~~~"'2 that we have em­
bedded into the space some information about light­
cone structure. If one wished to complete the job of 
embedding the light-cone structure into space-time, 
one would need to consider the ideas of Zeeman, 
according to which the topology is refined as far as 
is possible, consistent with the requirement that the 
relative topology on any time or space axis is usual. 
There seems no reason why this thoroughgoing re­
finement could not be combined with our notion of 
embedding an elementary length in a two-particle 
subspace. One would simply define the topology on 
Xl @ X 2 to be the finest consistent with the usual 
topology on X and an interval-coarsened topology on 
X, considered along any space or time axis. We do 
not consider this idea any further here. 

Relativistic Trajectories 

For simplicity, we limit ourselves to mapping 
functions that are bicontinuous between the space 
(Xl @ X 2 , A)(4) and (-T, U), where T is some invariant 
parameter, for example, the pr~per time ~f one of t.he 
two particles. This means that In the varIable X, wIth 
ti - t2 = 0, the trajectories are amoeba-like, just as 
we found above in (Xl @ X2 , A)<3). For identical par­
ticles, one would want to require the spread of each 
particle along the line connecting t~em to be the s~~e 
in the center-of-mass frame. IS In thIs frame, the mlm­
mum radial spread of each particle is lA.I6 It follows 
that the minimum radial spread of one particle, in its 
rest frame, is tAy, where y = (I - v2jc2)-l > I, and 
v is the velocity of the center-of-mass frame relative 
to this rest frame. Hence the spread of, say, the target 
particle in its rest frame increases (without bound) 
as the momentum of the incident particle increases. 
Again we see that the topology is coupling the par­
ticles at a pre-dynamical level. 

Consider now particle one (say) in its rest frame. 
Suppose we attach synchronized clocks to different 

15 As in the one- and three-dimensional cases, one can find 
trajectories for which one particle is !lot. extended in space, while 
the other is. This situation would persist 10 any Lorentz frame. 

16 The angular spread of one particle about another can be made 
as small as one pleases. Note that the existence of ~ r~dial, but no~ 
an angUlar, spread in one frame ensures the same thmg !n allfra~es. 
in special relativity, straight lines always transform Into straight 
lines. 
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parts of the (extended) particle. Then, in a moving 
frame we find that the particle is Lorentz contracted, 
and also that the leading edge is younger (earlier 
proper time) than the trailing edge. Of course, this 
must happen in any relativistic theory of extended 
particles. For example, it is presumably true for the 
dressed particles of ordinary field theory, but it is 
to be noted that in our case, even the bare particles 
in a field theory would in general be extended. 

Note that, as mentioned in the one-dimensional 
nonrelativistic case, we still have action-at-a-distance 
(in the same sense as above), even though the open 
set structure is completely Lorentz invariant. Cer­
tainly, as we see in the section on dynamics, we can 
write equations of motion on the topology which are 
explicitly frame-independent. In this connection, it is 
important to remember that there is no contradiction 
between the Lorentz group and information transfer 
faster than light. Indeed, the Lorentz group admits of 
spacelike representationY Given (say) any "particle" 
of spacelike mass, one can always find Lorentz frames 
in which its velocity is infinite. (In our case these 
frames are the center-of-mass frames.) This of course 
is action-at-a-distance. Although causality is broken 
in our theory, the violation is in general only over 
intervals of order A. 

Finally, we note that the topological space 
(Xl @ X2 , A)(4) is explicitly time-reversal and parity 
invariant (in the sense that open sets map into open 
sets under these transformations). This can be phrased, 
as above, in terms of trajectories and mirror trajec­
tories, etc. An example of a relativisitic topology 
which would intrinsically break time-reversal invari­
ance can be de1ined by the base 

[I>, = {X, x: usual open E-spheres in X, 
usual open E-spheres in X for X2 < 0, 

and for X2 ~ 0, 
nA S X2 < (n + I)A, xo> 0, 

nA < X2 S (n + I)A, Xo < 0, 
together with usual open hyperbolic cones}. (A6) 

In this space, the trajectories involving spatial extent 
for both particles would violate time-reversal invari­
ance, while the trajectories for which one particle was 
a point particle would always go over into allowed 
time-reversed trajectories. [This is much like the 
situation with parity in (Xl @ X2, A)(1).} 

B. QUANTUM DYNAMICS ON THE 
NON·USUAL TOPOLOGIES 

Our order of presentation in this section parallels 
that of Sec. A. After a brief discussion of the 

11 E. Wigner, (Lecture) Seminar on Theoretical Physics (Trieste, 
1962), p. 64. 

concept of metrization (explicitly only for the one­
dimensional case), we discuss dynamics first in the 
one spatial dimensional case, then in higher dimen­
sions. The metrization for each higher dimensional case 
is left to the corresponding section on dynamics. 

1. Metrization 

To study the dynamics of the particles on these 
topologies one must first seek a metric (or pseudo­
metric) on the spaces. In general, each of the spaces 
discussed above is in fact only pseudometrizable­
that is, if d(x, y) is the "best distance function" 
available on the space (compatible with its topology),18 
then it is always necessary that for some distinct 
points x, y, d(x, y) = 0. As in Sec. A, we discuss first 
the one-dimensional motion and then work up to 
more dimensions. 

What is a metric for (Xl' A; X2)(1l? Since this topo­
logical space contains the continuum of points Xl' the 
ordinary Euclidean metric is certainly a metric. It is 
not, however, the metric which metrizes the space, 
because the metric topology would be the usual 
topology, whereas (Xl' A; x 2)(1l is strictly finer than 
usual. [The metric topology associated with a metric 
d(x, y) is that topology defined by the base of open 
E-spheres d(x, y) < E.] We want to use a metric which 
metrizes the space, because this metric corresponds 
to making maximal use of our open sets. III An E­
parametrized class of metrics with this property is 

(E > 0) (I -I'f . h -Xl - Xl I nelt er Xl nor Xl 

equals nA + X2 , 

d(Xl' Xl) = IXI - XII + E if either Xl or Xl 
equals nA + X 2 , 

o whenever Xl = Xl' (Bl) 

To see what this class of metrics means physically, 
imagine the following thought experiment: An ob­
server riding on the first particle (Xl) watches the 
second particle (at point x2) as he approaches it. 
Because X2 is a preferred point, the observer sees the 
particle at a distance IXI - x21 + E. As Xl approaches 
X2' the observer sees the distance decreasing to E, 
then the distance changes abruptly to zero, and then 
to E in the other direction, again abruptly. That is, 
the observer finds it impossible to approach the second 
particle smoothly.20 This is, of course, essentially the 
statement that the continuous functions on the space 
into (t, U) may have U-discontinuities at the preferred 
points. In general the induced topology along any 

18 That is, the (pseudo-) metric topology should be the ).-topology. 
19 Since (Xl @ xs, ).)(1) is a Tl-space, we are guaranteed that it is 

metrizable. 
20 This emphasizes the difference between finitely curving a space 

(with the usual topology), and changing the topology. 
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direction in Xl @ X2 except (1) and (2) of Fig. 2 is 
fine and can be metrized in a similar fashion. 

The space (x, A)(l) cannot be metrized. However, 
a pseudo-metric which pseudo-metrizes the space is2l 

d(x, x) = A[X/A] - A[X/A], (B2) 

where [x] is the number theory function meaning the 
largest integer not greater than x. In particular, the 
pseudo-metric distance between two points that lie 
within the same preferred interval, say nA ~ x < 
(n + I)A, is zero. However, the triangular inequality 
is never violated, and d(x, x) is truly a pseudo-metric. 

We find it convenient to set up a dynamics which is 
separable (in a sense to be explained below) in x, X, 
since adequate operators are to hand (difference and 
differential operators, respectively). This is only a 
very simple way to proceed, but we envisage that a 
more thorough-going dynamics, freed from any such 
artificial separability constraint, would in general use 
some unfamiliar "combination" of differential and 
difference operators (such as, e.g., a V-discontinuity 
operator, which, when operating on continuous func­
tions, would be different from the null operator in 
most directions). We do not discuss a classical me­
chanics on the topology, but, rather, go directly to a 
quantum mechanics. At this level we verify that our 
simple dynamics seems to describe quantized amoeboid 
trajectories. 

2. One-Dimensional Quantum Mechanical Motion 

We want to build a quantum mechanical description 
of the scattering of two particles of momentum and 
energy (El' PI) and (E2, P2), respectively, on the topo­
logical space (Xl @ x 2 , A)<l). The easiest way to do 
this is to suppose that the wavefunction can be written 
as the product 

"P(X l X2 ,t; PI P2) = 'l"(X}'p(x)exp {(i/n)(El + E2)t}. (B3) 

As ordinarily, we demand that the wavefunctions be 
continuous on their respective topologies into the 
usual topology. That is, 'l"(X) can be taken in the 
usual form 

'l"(X) = exp {-(i/n)P X}, P == PI + P2, (B4) 

whereas "P(x) is a block-type function. 
Our job now is to set up a dynamics on x. First we 

must seek a suitable momentum operator on the space. 

11 The pseudo-metric function (BI) is not bicontinuous between 
its range and domain spaces. (The Euclidean metric is bicontinuous 
on the usual topology.) If one wanted to define a distance function, 
J(x, x), (on the usual topology) that was bicontinuous between the 
range and domain spaces, one would in fact be forced to use a 
multi-valued function, which is essentially an amoeboid trajectory 
(see Fig. 4) turned on its side. Jtx, x) is not a metric or pseudometric 
(since, for example, the triangular inequality cannot be unambig­
uously satisfied-although the violation is always only of order J.). 
It is curious to note also that had we taken the base for x slightly 
differently, e.g., (n - I)J. ~ x ~ nJ., then the space would not even 
be pseudo-metrizable. 

With the pseudo-metric discussed above, we clearly 
cannot define an ordinary differential operator. The 
closest analog to the usual correspondence P ~ 
-in(d/dx) that we can define on the space is P ~ -in<J), 
where <J) is the symmetric difference operator, such 
that for any continuous function/(x) 

<J)/(x) = (j(x + A) - /(x - A)]/2A. (BS) 
This momentum is Hermitian with respect to the 
inner product 

("Pa'0"Pb) = L:oo "P*(x)O(x)"P(x) dx 
00 

= A ! "P*(nA)O(nA)1p(nA). (B6) 
n=-oo 

Note that, with this inner product, the right and left 
difference operators are not Hermitian. 

If we define a position operator, q, with the diagonal 

representation q = A[x/A], (B7) 

then we find the following Lie algebra involving P 
and q . 2 

[q, p] = ina, [a, q] = ~ p, [p, a] = 0, (BS) n 
where a, proportional to the commutator of P and q, 
is an Hermitian averaging operator. It is defined in 
the q-diagonal representation by 

a/ex) = U/(x + A) + /(x - A)]. (B9) 
Note that, as A ~ 0, a ~ I (unity) and we recover the 
usual relations of quantum mechanics. In that the 
operators P, a are nonlocal (they couple functional 
values over a range 21.), one expects the particles to 
be spread in a way that involves both n/rn and 1..22 

Suppose that Iq') is an eigenket of q with the eigen­
vahie q', and Ip') a ket in the dual (momentum) space 
with eigenvalue p'. Then it is easy to show that 

(p'l q') = g(p') exp {i~' sin-1 e:')), (BIOa) 

where 

g(p') = ?Tie: - p,2t
1 

. (BlOb) 

is a normalization function which guarantees the 
unitarity of this transformation function: 

(l() 

(p' I p") = ! (p' I nA)(nA I p") = b(p' - p"),(Blla) 
n=-CX) 

(rnA InA) = L: (rnA I p) dp(p InA) = bmn · (Bllb) 

The cut structure of (p' I q') and the evaluation of 
these sums are discussed in the Appendix. 

One can guarantee that (p' I q') is also the wave­
function of a freely moving particle of energy23 

22 Raising and lowering operators for q are s± = a =F iJ.p/h which 
generate the eigenvalues nJ., n = ... -I, 0, + I, 2, ... starting from 
q = O. These are closely related to the right and left difference 
operators. With s±' one sees immediately that the Lie algebra 
(BS) is reducible. In fact, [q, s±l = ±J.s±, [s+s_l = o. 

23 We are using the relative coordinate language; remember that 
p = l<Pl - PI)' 
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FiG. 7. Two-particle scattering above the critical energy. 

E = p'2/2m, m being the reduced mass, by taking as 
the Schrodinger equation 

(p2/2m)1p = -(1i2/2m)'J)2tp = Etp. (BI2) 
If one adds the time-dependence appropriate to the 
difference variable, it is easily seen that, with (essen­
tially) usual assumptions at x = ± 00, there is overall 
probability conservation. 

:t L: dx Itp(t, xW = O. (B13) 

This also holds if a time-independent potential is 
added to the Schrodinger equation (BI2). 

However, it is not possible to define a probability 
current that is meaningful to distances of order A.24 
That is, although there is never any probability loss 
or gain for regions large compared with A, one cannot 
watch the probability flux too carefully. 

We turn now to a discussion of the potential-free 
motion of the two particles, in particular to a discus­
sion of the function (p' I q') = tp,iq'). For all momenta 
IP'I < Ii/A = Pc the particles move past one another 
freely, as in the usual topology. Above the critical 
energy Ee = p~/2m. tp,iq') has an exponential growth 
or decay in q'. To keep probability conservation, 
we retain only the decay (in regions allowing arbi­
trarily large q'). For example, imagine two acceler­
ators, at a distance Xo from each other, directing beams 
of particles of equal energy at one another (we choose 
this center-of-mass experiment purely for simplicity). 
For clarity, suppose that all ordinary interactions 
between the particles are negligible (this is actually 
a high-energy approximation). At energies E < Ee , 

the particles move past one another freely, so the 
transmission coefficient is unity. For E> Ee , one 
finds backward scattering! In fact, the reflection and 
transmission coefficients depend on the location of 
the accelerators and detection apparatus (assumed 
located at the accelerators). The wavefunctions of the 
two beams25 are shown in Fig. 7. (The continuous 
curves of the figure should of course be the step-type 
functions appropriate to x. For simplicity we forget 

2& This sort of difficulty is common to any nonlocal theory. See, 
for example, P. Kristenson and C. M"ner, Dan. Mat. Fys. Medd. 
27, (1952), and C. Bloch, ibid., 27, (1952). 

26 We assume for clarity that the particles of each accelerator are 
distinguishable, so that we can talk of individual wavefunctions. 

this in the subsequent figures.) The absence of expo­
nential tails outside -txo < x < txo is the boundary 
condition that the detecting apparatus stops any 
particle which reaches it. That is, the wavefunction 
of each beam decays exponentially after it leaves its 
accelerator. This is strikingly analogous to barrier 
penetration in ordinary quantum mechanics. Our 
situation is like having a strong repulsive potential 
of magnitude 

V = 2~ [p2 + {1 sinh-
l eX) rJ > E (B14) 

between the two particles. (Actually this "topological 
potential" fills the whole of space.) Thus, holding Xo 

constant but increasing the beam momentum, one 
finds fewer and fewer particles from accelerator 1 
reaching accelerator 2, and vice versa. The same 
thing happens for constant P as the distance of separa­
tion (xo) increases. Thus, in this topology, experiments 
at very high energy become "configuration dependent" 
-observers close to the scattering region may observe 
different scattering patterns than more distant ob­
servers. All this is probability conserving, just as in 
the case of barrier penetration; that is, any particle 
from accelerator 1 not reaching accelerator 2 is 
found in the reflected beam detected at 1. Also, be­
cause the "barrier" is a function only of IXI - x21, 
the scattering is momentum conserving, just as in 
ordinary quantum mechanics. Note, however, that at 
supercritical energies the back-scattering will take 
place independent of the distance of separation of the 
two particles. (The topology is effectively propagating 
information at infinity velocity.) This is action-at-a­
distance again, just as discussed in Sec. A. 

We can say a few things qualitatively about scat­
tering in the presence of an ordinary potential [to be 
added to Eq. (B12)]. We do not study any particular 
potentials (although the SchrOdinger difference equa­
tion is in general no more difficult to solve than the 
corresponding differential equation), but it is inter­
esting to note the qualitative effect of attractive and 
repulsive potentials on the "topological scattering." 
Consider a scattering in which the free wave ap­
proaches an attractive potential step with a somewhat 
sub-critical momentum; on the far side of the step the 
momentum P = [2m(E - V)]! is larger than on the 
near side. If it exceeds Pc, the effect is repulsion, 
or, more accurately, backward scattering of the attrac­
tive step. This occurs for a small step in ordinary 
potential theory, but in our topology, the repulsive 
effect is enhanced by taking the attraction stronger! 
On the other hand, in the vicinity of a repulsive 
potential, the topological scattering is not set in until 
E = p~/2m + V > p~/2m. 
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We also note that our quantum mechanics does 
indeed seem to describe quantized amoeboid trajec­
tories (rather than quantized barbs or quantized 
discrete trajectories). To see this, one tries to construct 
the tightest possible wave packets. Clearly, these 
cannot be tightened below A, regardless of how large 
a momentum spread is allowed. Moreover, re­
attaching the correct time dependence, we see that 
the "particle" is always present (i.e., does not dis­
appear and reappear rapidly, as it would for a 
discrete trajectory). 

Finally, we mention that the wave equation (BI2), 
taken together with (B3) and (B4), does not allow the 
calculation of a one-particle wavefunction or wave 
equation (say, for Xl independent of X2)' The topology 
has inextricably interwoven the two particles. This 
peculiarity will carryover into four dimensions. 

3. Three-Dimensional Quantum Mechanical Motion 

In the three-dimensional case, we again separate off 
the (ordinary) dynamics in X as above, and pseudo­
metrize the difference variable x in analogy with the 
one-dimensional situation: 

d(x, x') = [(Xl - x~l + (X2 - X~)2 + (xa - X~)2]!, 
Xl = A[rIA] sin e cos qJ) (r, e, qJ) are the 
X2 = A[rIA] sin e sin qJ spherical polar 
Xa = A[rIA] cos e coordinates of x, 

(BI5) 
and similarly for the primed quantities. 

It turns out that it is not possible to find a set of 
three commuting momenta in this space. For example, 
define 

p"" == ~[cos e~. -! sin e ~], -t == A[!:.]' (BI6) 
I -t ae A 

where ~. is the symmetric difference operator 

{

[f(-t + A, e, qJ) - f(-t - A, e, qJ)]/2A 

~J(-t, e, qJ) = -t ;ii 0, 
[f(-t + A, e, qJ) - f(-t, e, qJ)]/A 

-t=0 
(B17) 

(and similarly for P"'lP"" taking alar -4-~. in the usual 
spherical polar expressions). Although these operators 
are Hermitian with respect to the usual inner product, 
they do not commute. Physically, this is because they 
are not really generators of orthogonal translations. 
(This in turn is because the r translation cannot be 
infinitesimal.) On the other hand these "momenta" 
commute for very large r and can be thus used to 
classify "plane" waves26 according to a momentum 
vector p, at least very far away from the target. 

One can build parallel translation operators on the 
space in the following manner: Define D"", the trans-

.6 We see the form these take below. 

'2 
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FIG. 8. Noncommutativitr .of DZl ' Dz •• p' is Dz.Dz,(P), while 
P IS DXlDz.(P). 

lation operator in Xl, as that operator which, having 
changed r by A, readjusts e, qJ so that X2, Xa are in the 
end unchanged.27 One finds that D", depends on X2 

and X a , which means that it fails to commute with 
D",., D.,. (defined in a similar way). Physically, this 
means that, for example, a translation in Xl followed 
by a translation in X 2 is not equivalent to the opera­
tions in the opposite order-i.e., the difference space 
X is curved. The noncommutativity of D", ,D", is 
illustrated in Fig. 8. 1 2 

We take, as the coarsened form of the free 
Schrodinger equation on the difference variable 

(p = lik), 

~2 _1_ i sin e aX 1 ~ e-
4X + 2 • e Ge ae + 2 • 2 e a 2 x + x - 0, 

-t sm -t sm qJ (BI8) 

where X = -t'IjJ. Note that, although the energy E = 
p2/2m is well defined, the solutions are not (except at 
very large r) eigenfunctions of p",,' Thus, although we 
can classify each wave according to its (asymptotic) 
momentum, we cannot, in the interaction region, 
resolve E accurately into the sum of the squares of 
any momenta. This is a general feature of spaces 
with noncommuting momenta. There are of course 
other ways of coarsening the Schrodinger equation, 
but the qualitative results we extract from the dy­
namics are independent of the particular dynamics 
we choose. With essentially the usual boundary con­
ditions on the wavefunction, one can show that overall 
probability is conserved with this wave equation. 

We turn now to solutions of the wave equation. It is 
easy to find spherical waves in the topology. The waves 

X(-t) = exp {± i sin-l (P:)}, E = J~ (BI9) 

are exact solutions of (BI8). Thus, for super-critical 
'7 These operators do not in general approach the usual transla­

tion operators for large r. That is, for example, far out on the Xs 

axis, the only allowed translations in Xl are very large. Moreover, 
these operators are not Hermitian. 
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FIG. 9. Bending of flux-lines in the three-dimensional topological 
potential. 

momenta, waves trying to approach the scattering 
center will tend to be reflected, and waves attempting 
to radiate from the center will tend to be reflected back 
towards the center.28 

Of more physical interest are the analogs of plane 
waves on the topology. These are much more difficult 
to obtain. Towards this end, we guess a solution to 
Eq. (BI9) of the form . 

X(-t.,O, rp) = -t exp {i sin-1 [APf(O)]}. (B20) 

This function solves Eq. (BI8) up to terms of order 
(AM with the proviso that 

[(dldO)/(O)]2 = (1 -/2)(1 - A2k 2f2). (B2I) 

Thus/is an inverse elliptic function. We content our­
selves with a discussion of/ in certain energy ranges. 

To second order in Ak, one finds 

lp(r, 0, rp) ~ exp {!! sin-1 (Ak cos e)}, (B22) 
rpA A 

which becomes more and more like a plane wave as 
Ak tends to zero. If we loosely define a current29 as 

proportional to tp*Vtp - tpVtp*, where V is a coar­
sened gradient in spherical coordinates [as in Eq. 
(BI6)], then one finds that the flux lines corresponding 
to the almost plane-wave solution (B22) bend into 
the scattering center as shown in Fig. 9, but straighten 
out again as usual for very large r. Physically, this is 
like having a potential which is attractive for large Ixl 
and repulsive for small lxi, balanced in such a way 
that there is no scattering in the absence of a real 
potential. In the presence of such an ordinary poten­
tial, it is clear that scattering would be enhanced in 
the lower partial waves30 (since the effective impact 
parameter of each flux line is reduced by the 
"topological potential"). 

28 This latter situation is reminiscent of a bound-state wave­
function-the binding being done by the topological potential. 

20 Recall that probability currents cannot be believed over 
distances of order 1. 

80 As we see below, the breakup into partial waves is essentially 
normal. 

At supercritical energies the solution (B22) is also 
valid so long as (J is in the cone 10 - 7T1 « I/Ak. In 
this range the sin-1 is imaginary and we find damping 
in this cone. That is, part of the incoming beam is 
back-scattered through the angles in this cone. Pre­
sumably this cone of backward (and large angle) 
scattering first appears at the critical energy with zero 
solid angle along the backward z axis, the solid angle 
of the back-scattering increasing as the energy in­
creases. We have not yet been able to calculate the 
exact dependence of the solid angle on energy. Finally 
we note that, as the energy goes to infinity, the space 
becomes more and more opaque to the scattering wave, 
which is back-scattered completely-just as in the 
one-dimensional case. 

At this point in our discussion, it is worth consider­
ing a variant of the present model. In particular, 
suppose our non-usual topology extended only out to 
a radius (say) b in x space. (This could roughly simu­
late an elementary length which decreased to zero for 

-*'"---\._----
-----, ~ 

'" FIG. 10. Scattering off an embedded, non-usual topological sphere. 

larger particle separations.) In terms of the topological 
potential, we would be chopping off most or all of 
its long-range attraction, leaving only the repulsive 
core. In this case, there would be scattering in the 
absence of an ordinary potential; the scattering would 
be like that from a soft repulsive sphere of radius b 
and hardness proportional to (Ak)2.31 The overall 
scattering effect ,is shown in Fig. 10. We have in mind 
a smooth joining of flux tangents at the sphere 
boundary, but we do not go into the difficult questions 
associated with a rigorous embedding of the non­
usual sphere in the usual topology. 

As the scattering energy increases further, the 
bending effect becomes more pronounced, until finally, 
at the critical energy, a cone of large angle scattering 
opens up. (The cone begins purely backward as above, 
but subtends a larger solid angle with increasing 
energy.) At still higher energies, the embedded sphere 

• 31 We. learn. more about the s~ructure of this topological potential 
m the diSCUSSion below on partial wave analysis. 
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CENTRIFUGAL BARRIER 

(ro) 
1 

b 

FIG. 11. High-energy scattering off the centrifugal barrier in the 
lth partial-wave. 

becomes totally opaque, large angle-scattering 
everything that hits it. As usual for hard-sphere 
scattering, there will be a forward diffraction peak 
as well at high energies. 

We can discuss some other interesting properties of 
this model in terms of the individual partial waves. 
Because our coarsening of the space is spherically 
symmetric, and the angular part of the Schrodinger 
equation is unchanged, we can expand the wavefunc­
tion in the usual Legendre polynomials: 

<1:) 

'IjJ(r, 0) = ! (21 + l)PI(cos O)'ljJtCr). (B23) 
1=0 

The (free) partial wave equation for XI(<t) = -t'IjJlt) is 

~~xl<t) + [k2 
- l(l + 1)/-t2]xl-t) = O. (B24) 

If we keep the topology throughout all -t, the asymp­
totic solutions for large -t are 

X/(-t) "" exp {±(i-tjA) sin-l (Ak)}. (B2S) 
..... 00 

The partial wave equation is very much like the one­
dimensional wave equation discussed above-but this 
time with a repulsive centrifugal barrier. It is inter­
esting to discuss the interplay of this barrier with the 
topology. For this it is convenient to go to the em­
bedded case. At super-critical energies, the free solu­
tions will look much as in Fig. 11. That is, the wave 
(of energy E> Ee) propagates freely inward to b, at 
which point it senses a repulsive thick spherical shell. 
This shell extends into roughly 

(-to)1 = [1(1 + 1)/i2j2m(E - Eo)]! (B26) 

at which point the momentum P becomes again less 
than critical and the wave propagates freely (again) 
until it hits the centrifugal barrier itself-after this it 
decays into the barrier as usual. As the energy in­
creases at fixed I, the spherical shell becomes thicker 
and higher, the height growing with E essentially as 
in Eq. (B14). At fixed energy, the shell is thicker for 
smaller 1. Thus this effective potential induced on the 
topology is both energy-dependent and nonlocal. 32 

A very curious feature of the shell is its hollow 

31 In the sense that the partial waves are decoupled. the induced 
potential is still central. 

center, in which resonances (of energy) can easily be 
trapped. (Actually, they are trapped between the 
inside of the topological potential barrier and the 
centrifugal barrier.) The really peculiar thing about 
these topological resonances is their long lifetime: 
Because the shell is thicker and tougher at higher 
energies, the higher mass a resonance has, the longer 
it lives! Certainly there is no mechanism in ordinary 
dynamics which could produce such a particle. 

4. Relativistic Quantum Mechanical Motion 

Analogously to the one- and three-dimensional 
cases, we pseudo-metrize the difference variable x, in 
such a way that the interval X2 is discretized. More­
over, we for the most part content ourselves with 
checking that the equations in a 1 + 1 space (one 
space and one time dimension) still yield the back­
scattering effect. 

A serious difficulty in a naive time quantization is 
always that probability may leak in time. For example, 
if one quantizes a single particle's time (t) with the 
"SchrOdinger" equation 

i/i~t'IjJ = E'IjJ, (B27) 

then one finds the solutions decaying in time for 
E > Ee. This is highly undesirable, and we want to 
check that it is not occurring in our "difference­
interval" quantization. 

We study the scattering of two free bosons of mass 
I-' on (Xl ® X 2 , A)<2). To get a suitable wave equation, 
we first factor the solution of the Klein-Gordon 
equation~3 on the usual topology 

(D~ + D~ + 21-'2)q;(Xl' x2) = 0 (B28) 
into a product of a center-of-mass factor exp {iP • X} 
and a solution of the equation in the relative co­
ordinate: 

(D~ + 1-'2 - Is)q;(x) = 0, (B29) 

where s = (PI + P2)2. Our main interest is in the 
system as it appears to some observer whose time is 
10 , i.e., 11 = t2 = to and 11 - 12 = O. Thus we specialize 
for the moment to X2 spacelike. In particular, for 
spatial X positive, the equation in the difference vari­
able can be written 

1 0 oq;( 0',0) 1 02 2 
- -0' - - - q;eO', 0) + Cis - I-' )q;(0', 0) = 0, 
0' 00' 00' 0'2002 

(B30) 
where 0' = (_X2)! and 0 = tanh-1 (XO/Xl)' We can 
separate off the angular dependence by the "partial 
wave analysis" 

1 100 

q;(O',O) =! dn e-nI8IRn(0'); R~(O') 
0' 0 

+ [(IS - 1-'2) - n20'~ i]Rn(O') = 0, (B31) 

33 Our quadratic form is pi = p: - Ipl2 = ",-. 
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where a "prime" means differentiation with respect 
to a. With this form in mind, we are in a position to 
write a suitable generalization of the 2 particle Klein­
Gordon equation on our space. We define CP(X1X2) as 
the product of exp {iPX} and cp(a, 0) as shown in 
(B30), but this time with Rn satisfying 

'l>!Rn(a) + [(is - p,2) - (n2 + t)/a2]Rn(a) = O. (B32) 

This is of the form of the coarsened partial wave 
SchrOdinger equations (B24) in three dimensions­
but with 

we have in mind the same procedure for each of the 
other three orbits about the light cone; that is, coarsen 
only the "partial wave" equations. 

As in the three-dimensional case, we find that there 
is a critical point in Eq. (B32) for increasing s. In fact 
(ignoring for the moment the "centrifugal barrier"), 
the propagation is no longer free for energies s greater 
than (B33) 

Physically, this means that the aforementioned ob­
server sees at any time to a system wavefunction 
like Fig. 7-i.e., the particles are back-scattering off 
each other's topological potential-just as in the non­
relativistic cases. This is not surprising-as we pointed 
out in Sec. A, the topology induced on this observer's 
subspace at any time is exactly (Xl ® X 2 , Ji)(3). In 
particular, the "bounce" of the two particles is sim­
ultaneous in the center-of-mass frame. In this frame 
then the "forces of topological repulsion" propagate 
at infinite velocity (although in other frames there is 
in general a time lag between the bounce of one 
and the bounce of the other). As mentioned in Sec. A, 
there is no contradiction between the Lorentz group 
and action-at-a-distance. Of course, the "centrifugal 
barrier" introduces the same qualitative features dis­
cussed in the three-dimensional section. Note that the 
behavior of the system with to is entirely independent 
of 11 - t 2 • Thus, our coarsening of the difference 
variable has avoided any loss of probability with to. 34 

5. Many Free Particles and Interactions 

Thus far we have treated only the two-particle 
subspace with our non-usual topology. The analog of 
our relativistic topology on the n-particle subspace 

34 It is curious to note that in the analogous partial-wave equations 
inside the light cone, the energy· term (is - fl2) appears with the 
opposite sign. In that the effective "energy" is always negative, there 
is no critical point in this region. If there had been a critical energy, 
it would have meant that, above this point, the appearance of a 
particle in some small spatial region would herald the rapid appear­
ance of the second particle in that region-i.e., the topology would 
have simulated some sort of powerful attractive force that drags 
one particle after the other. This, however, is not what happens. 

would be to coarsen the topology on some subset of 
difference variables. Requiring that all tn(n - 1) dif­
ference variables are coarse would be too restrictive: 
For large n, there would be in general only one 
available configuration for the particles (collinear) 
even at low energies. This precludes a coarsening that 
puts all n particles on an equal footing. 

In electrodynamics one could certainly, for example, 
coarsen the topology between every electron and posi­
tron that were created together. In this way, every 
electron (or positron) would have a "memory"­
showing up only when the relative momentum of the 
pair was supercritical: If one could obtain, say, the 
electron of a pair created on the other side of 
the galaxy, then, by raising the electron's momentum 
above critical (relative to the positron), one could 
affect the positron. (For example, firing the electron 
towards the positron, they would scatter off one 
another at a large angle.) In this way, one could trans­
fer information over large distances instantaneously. 
Notice that these long distance effects could be avoided 
by cutting off the topology at a relativistic radius 
analogous to b in the three-dimensional case. 

In the case of the recent pair production experiments, 
one would obtain enhancement of large angle produc­
tion due to the "topological repulsion" between the 
electron and the positron. On the other hand, there 
would be no effect on ordinary electron-positron 
scattering (unless they were originally created to­
gether). Putting the new topology only between e+e­
and not between p,+p,- could distingui.sh between these 
two situations, leaving the p, case normal. 

Because the new topology is always on a two­
particle subspace, and one-particle wave equations 
(say, for Xl independent of x 2) cannot be found, it 
does not seem possible to formulate a one-particle­
equation-of-motion type of field theory, or for that 
matter, to write down a Lagrangian in any simple 
sense. It seems to us that the simplest way to con­
struct a Lorentz-invariant theory allowing for particle 
creation would be in terms of the generalized unitarity 
equations of axiomatic field theory.3s For example, 
consider the equations for the retarded functions. 
These equations are ordinarily written in terms of 
difference variables. One could then use the coarsened 
Klein-Gordon operators (discussed above) in the 
(appropriate electron-positron) difference variables. 
For A+(u - v) one would want to lise the solution to 
our coarsened difference Klein-Gordon equation 

(B34) 

35 See, for example, K. Nishijima, Phys. Rev. 119, 485 (1960); 
122,298 (1961); 124, 255 (1961). 
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where c~ is a counterclockwise circle about ko = 
+(k2 + ,u2)t for Xo > 0, and a clockwise circle 
about ko = -(k2 + ,u2)! for Xo < O-with the pro­
viso that when a pole meets a branch point of CPk(X), 
it moves onto that side of the cut with exponentially 
decreasing behavior. Thus one can begin the usual 
iterative solution of these equations. Of course there 
will be the usual equal-time ambiguities at each order­
which can be used as usual to specify the "inter­
action." To obtain the scattering amplitudes from the 
retarded functions, one would want to use the usual 
formulas, only this time replacing appropriate pairs 
of Fourier transform factors by solutions of our 
coarsened Klein-Gordon equation. Detailed dis­
cussion of such a program is beyond the scope of the 
present work. However, it should be emphasized that, 
whatever the interaction chosen, at ultra-high energies 
the elastic back-scattering will dominate, in that it will 
in general prevent the particles from reaching the 
interaction region. 
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APPENDIX 
The transformation function from configuration to 

momentum space [Eq. (BlOa)], can be written 

( InA) = {(I - A2p2jIl2)! + i(Apj)ll}n 
p 7T!(h2j 1..2 _ p2)t 

This function is defined to be cut for (- 00 < p ~ 
-Il/A) and (Il/A ~ P < 00), and the first ("physical") 
sheet is specified by 

-7T < arg {(I - A2p2/1l2)! + i(Ap)jll} < 7T. 

It can be seen easily that, for n > 0, (p I nA> tends to 
zero as p ~ ± 00 + ie, € > 0, while it is unbounded 
as p ~ ± 00 - ie. For n < 0, the same statements 
hold if the sign of € is changed. Hence we make the 
rule that, whenever, an integral over - 00 < p < 00 

of an integrand involving (p I nA> has to be performed, 
we take the integration contour just above/below the 
cuts in the p-plane for n> / <0. With this prescription 
it is easy to demonstrate Eqs. (Bll). 
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The Ehrenfest model has been used to explain the "irreversibility" of thermodynamics -and statistical 
mechanics. The modification described in this paper aJlows transitions to occur in both directions between 
the two "boxes" at each step of the model procedure. The equilibrium probability distribution is given in 
the form of a finite product, or in an iterated form particularly suitable for machine calculation. The 
analysis is illustrated by a simple model of an ionization-recombination process. 

THE Ehrenfest model1 of heat exchange between 
two bodies has been used successfully by Kac2 in 

discussing the relationship between "irreversibility" 
of thermodynamic laws and statistical mechanics. In 
this model two boxes represent two bodies in thermal 
contact, and their temperatures are represented by a 
number of balls contained in each box. At successive 
intervals of time, a single ball moves from one box to 
the other' according to a probabilistic law: the 
probability of transition is simply the ratio of the 
present number of balls in the box to the total number 
of balls in both boxes. Since the sum of these two 

1 P. Ehrenfest and T. Ehrenfest, Z. Physik 8, 311 (1907). 
2 M. Kac, Am. Math. Mon., 54, 369 (1947). 

ratios is unity, there is always exactly one transition 
at each step of the model procedure. 

This note is concerned with a slightly more 
complicated set of transition probabilities in which 
transitions occur both ways between the two boxes at 
each step of the model procedure. Furthermore, the 
transition probabilities are not necessarily the ratios 
of the number of balls in each box. To illustrate, let 
P12(k) be the probability of a ball going from box 1 to 
box 2 at a given step of the procedure when there are 
exactly k balls in box 1 prior to the transfer. Similarly, 
let P21(k) be the probability of a ball going from box 2 
to box I at a given step of the procedure when there 
are exactly k balls in box 1 (not box 2) prior to the 
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transfer. Thus, box can exhibit a net increase of 
m balls (m = -1,0,1) after the transfer. Let P(m; k) 
be the probability of a net increase of m balls in box 1 
when there were exactly k balls in box 1 prior to the 
transfer. By simple enumeration, it is found that 

P( -1; k) = PuCk) • [1 - hl(k)], 
P(O; k) = PuCk) . PuCk) 

+ [1 - PuCk)] . [1 - Pu(k)1, 
P(l; k) = P21(k) . [1 - PuCk)]. (1) 

Now, let U(k; n) be the probability that box 1 
contains exactly k balls after n steps of the model 
procedure. Again, by simple enumeration, it is found 
that U(k; n) must satisfy the recurrence relationship 

U(k; n + 1) = P(I; k)· U(k - 1; n) + P(O; k) 

. U(k; n) + PC-I; k)· U(k + 1; n). (2) 

The appearance of this equation is improved through 
the substitution k 

U(k; n) = W(k; n) IT P21(j - 1) 
1=1 

. [1 - P12(j - 1)]/Pl2(j) . [1 - P21(j)], (3) 
whence Eq. (2) becomes 

[W(k; n + 1) - W(k; n)] = PuCk) 
. [1 - P21(k)][W(k - 1; n) - W(k; n)] + h1(k) 

. [1 - P12(k)][W(k + 1; n) - W(k; n)]. (4) 

A general solution of Eq. (4) has not yet been 
found; however, in the limit as n ~ ex) (leading to a 
steady-state solution), it is clear that W(k; n) ~ Wo 
is a solution. This implies that the steady-state 
probability of k balls in box 1 is given by 

k 

U(k) = IT P21(j - 1) . [1 - P12(j - 1)] 
i=1 . WO!P12(j) • [1 - P21(j)J. (5) 

[The dependence upon n is omitted since U(k) is the 
steady-state solution.] The constant Wo must be 
chosen so that the sum of the U(k)'s is unity. Notice 
also that Eq. (5) can be rewritten as 

U(k) = P21(k - 1) . [1 - Pl2(k - 1)] 

. U(k - 1)/P12(k) . [I - P21(k)]. (6) 

This form of the solution is particularly suited to 
machine evaluation; in this case the constant Wo is 
determined through the initial value U(O) necessary 
to make the sum of the U(k)'s equal unity. 

Finally, as a simple although somewhat artificial 
example which leads to an analytic solution consider 
the following: let N atoms be contained in a vessel, 
and let them be subjected to ionizing radiation. The 
probability of ionization in a small time interval 
is proportional to the number of un-ionized atoms in 
existence at that time; at the same time, however, 

recombinations are occurring, and the probability of 
a recombination depends upon the number of ions 
existing at that time. In general the ionization and 
recombination rates are not the same. To relate 
this example to the mathematical model, let box 1 
represent the ions and let box 2 represent the un-ion­
ized atoms. Now, assume that recombinations occur 
faster than ionizations, so that if M < N ions exist at 
a given time, it is certain that a recombination 
occurs in the previously defined short-time interval. 
Clearly, this implies that 

Pl2(k) = kIM, P21(k) = 1 - kIN. (7) 

(Remember that k refers to the number of ions in 
both definitions.) 

Upon substitution of Eqs. (7) into Eq. (5), it is 
found that k 

U(k) = Wo' IT (N + 1 - j)(M + 1 - j)ll 
;=1 

(8) 

In addition, it is found that the moment generating 
function3 is given by 

ct) 

G(t) = Wo' ~ U(k)' tk = Wo' SFl(-M, N; 1; t), (9) 
k=O 

where 2Fl( , ; ; ) is the hypergeometric function'; 

but, by a well-known formula concerning these 
functions, it is found that 

(
M+N) G(l) = Wo N = 1. (10) 

[This last equality follows from the fact that G(l) is 
the sum of all the individual probabilities and thus 
unity.] Therefore, 

G(t) = 2F1( -M, -N; 1; t) / (N t M). (11) 

Again, by well-known formulas, it is easy to find the 
mean and variance of k as 

k = MN/(M + N), 

a; = N 2M2j[(N + M)2(N + M - 1)]. (12) 

Notice that if M « N these formulas indicate that the 
number of ions is concentrated at the maximum 
possible number, M, with very little dispersion. On 
the other hand, if N = M, the mean number of ions 
and un-ionized atoms are identical; the dispersion 
about this mean is inversely proportional to the 
number of atoms, N. 

• H. Cramer, Mathematical Methods of Statistics (Princeton 
University Press, Princeton, New Jersey, 1946). 

4 E. T. Whittaker and G. N. Watson, A Course in Modern Analysis 
(The Macmillan Company, New York, 1944). 
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The equilibrium statistical mechanics of the Bardeen-Cooper-Schrieffer model of superconduc­
tivity, as well as that of a wide class of similar models, can be evaluated exactly by the "thermodynami­
cally equivalent Hamiltonian" method of Bogoliubov, Zubarev, Tserkovnikov, and Wentzel. It has 
been pointed out by Wentzel that this method can be extended to certain weakly nonequilibrium 
situations. It is shown here that the method al10ws an exact evaluation of the nonequilibrium statistical 
mechanics of the following situations: (a) temporal evolution of the statistical expectation value of an 
observable O(r) whose initial deviation from equilibrium is spatially localized, but not necessarily 
small; (b) temporal evolution of the statistical expectation value of an observable 0 due to a per­
turbation V which is spatially localized, but not necessarily small. 

1. INTRODUCTION 

I T was shown long ago by Bogoliubov, Zubarev, and 
Tserkovnikov1 that, for the model Hamiltonian 

of the BCS theory2 of superconductivity, the equilib­
rium thermodynamic functions can be evaluated 
exactly in the thermodynamic (infinite-system) limit. 
Their method was subsequently extended by WentzeP 
to a wide class of model Hamiltonians of the general 
structure 

H = ~ (Ek).bk). + E:).bt..) + 0-1 ~ Jk)..n,bt).bk·).·. 
k). k)'.k').' (1) 

Here 0 is the volume of the system (which even­
tually ---+- 00), k refers to linear momentum as in 
the BCS Hamiltonian, each bk ). is bilinear in Fermi 
or Bose annihilation and creation operators, and A 
takes on a finite (volume-independent) set of values. 
It is assumed that 

Ek). = 0(1), Jk)'.k').' = 0(1), (2) 

where 0(1) denotes a volume-independent quantity. 
We briefly review the method of BZT and Wentzel 

here, in order to provide a foundation for its general­
ization to nonequilibrium statistical mechanics. The 
method relies on a linearization of the interaction 
terms br).bk ,).. through the identity 

bt).bk·).· = (bZ). - 'YJ:).)(bk,).· - 'YJk').') 

+ ('YJ:).bk,).· + 'YJn·bi).) - 'YJ:).'YJk')." (3) 

1 N. N. Bogoliubov. D. N. Zubarev, and Yu. A. Tserkovnikov, 
Dokl. Akad. Nauk SSSR 117, 788 (1957) [English trans!.: Soviet 
Phys.-Doklady 2, 535 (1957)]; this paper is referred to as BZT 
herein. 

2 J. Bardeen. L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 
1175 (1957). 

8 O. Wentzel, Phys. Rev. 120, 1572 (1960). 

where the 'YJu are c-number parameters to be deter­
mined. In this way, H is separated into a Hamiltonian 
Ho quadratic in annihilation and creation operators, 
plus a residual Hamiltonian H': 

H= Ho+H', 

Ho = U + ~ (Gk).bk). + G:).bk).), k). 

U = _0-1 ~ Jk)..k').''YJ:).'fJk').'' 
k)' k·).' 

Gk). = Ek). + 0-I~Jk'). •. k)''YJ:').'' (5) 
k').· 

The exact thermodynamic potential4 of the system 
described by H is 

(6) 

One now observes that, since Ho is only bilinear in 
single-particle annihilation and creation operators5 

ak and at (each bk ). or bt;. is bilinear in the a and at 
operators), Ho can be brought into diagonal form 

(7) 

by a linear6 canonical transformation to new Fermi 
or Bose operators IXk , IXr, which have the physical 
significance of quasiparticle annihilation and creation· 
operators. It is assumed that the bilinear operators 
bk).' bi). are constructed from the ak , ai operators in 

• The term -fAN is included in H, and the trace in (6) runs over 
states belonging to all eigenvalues of the total particle-number N. 
Thus F here is the grand potential. 

• In the Fermi case the ak and ar also carry spin indices; these 
are suppressed since they do not enter the argument in any essential 
way. 

S Hence tractable. 

389 
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such a way that when transformed into the quasi­
particle representation, they have the general structure? 

b"A = CkA + L L (dkA.k'k"IX!,lXk" 
k'ESk k"Elh 

+ ekA..k'k"lXk,lXk" + fkA.k'k"IX~'lXt,,), (8) 

where the coefficients c, d, e, f are all volume­
independent, and where, for each fixed k, Sk is a set 
of a finite, volume-independent number of wave 
veGtors; e.g., for the BCS Hamiltonian Sk = {k, -k}. 
Then, applying statistical-mechanical perturbation 
theory to the evaluation of the trace (6) in powers of 
the perturbation H', BZT and Wentzel showed that 
the contribution of H' to the thermodynamic potential 
F is only 0(1) (finite in the thermodynamic limit 
0-+ 00 with p fixed) to all orders in H' provided that 
'Y/kA in (3)-(5) is chosen as the thermal averageS of b kA 

in the ensemble of Ho: 

(9) 

Here 
(10) 

Then 
F = -fJ-1 In Tr e-PHo + 0(1). (11) 

The term 0(1) is completely negligible in the thermo­
dynamic limit since -fJ-1 1n Tr e-fiHo , the thermo­
dynamic potential of Ho , is proportional to the volume 
0; for this reason, Wentzel calls Ho the "thermo­
dynamically equivalent Hamiltonian". The reason for 
the negligibility of the contributions of H' is that with 
the choice (9), H' becomes bilinear in fluctuations 
b kA - (bkA)o; these fluctuations are negligible under 
the conditions (2), (8).9 Since Ho represents a system 
of noninteracting (but temperature-dependent) quasi­
particles, all quasiparticle interactions are contained 
in H'. Thus, another way of stating the results is that 
quasiparticle interactions are negligible in the thermo­
dynamic limit to all orders in H' provided that the 
quasi particles are defined properly [so that (9) is 
satisfied]. 

The exact thermodynamic equivalence of Ho and H 
does not extend to arbitrary nonequilibrium situations, 
nor is there any reason to expect it to. Nevertheless, 
since H' is completely negligible in equilibrium, an 
obvious continuity argument indicates that the 
effects of H' should be small near equilibrium. This 

1 This form of the requirements on the bu is somewhat more 
general than that employed by BZT and Wentzel and is more 
convenient for our subsequent analysis. 

8 Since Ho is diagonal in the oc, oct representation one has 
t t t ' (OCk'OCk")O = (OCk,ll(k')O = 0, (OCk,OCk')O = Ok'k"(exp{J£k' ± 1)-1. 

• 9 We do not give further details of the BZT -Wentzel proof here, 
Since they are clear from the generalization carried out in Sec. 3. 

was first pointed out by Wentzel,IO who showed that 
quasiparticle interactions could be ignored in a 
first-order calculation of the momentum transferred 
to the system by a weak force center dragged through 
the system with constant velocity. 

In Sees. 2-4 we consider the slightly different 
problem of the time evolution of the statistical 
expectation value, (O(r, t», of a position-dependent 
observable O(r) due to an initial spatially localized 
deviation from equilibrium, (O(r, 0» - (O(r, O»eq, 
in the absence of any external driving force. We 
prove that in evaluating (O(r, t», all effeets of H' are 
negligible [0(0-1) as 0 -+ 00]. This result is proved to 
all orders in H' and to all orders in the departure from 
equilibrium. The conclusion thus goes beyond the 
continuity argument which led us to expect the result 
to hold for small departures from equilibrium. The 
physical reasons for the more general result are not 
clearly understood at present, but we emphasize that 
the proof only goes through for localized deviations 
from equilibrium. 

In Sec. 5 we study the temporal evolution of the 
statistical expectation value, (0(1», of an observable ° due to a spatially localized perturbation V, given 
that the system was in equilibrium before Vwas turned 
on. It is again found that H' is negligible in the 
thermodynamic limit, to all orders in H' and in the 
perturbation V. It is emphasized that the spatial 
localization of the deviation from equilibrium or of 
the external perturbation is quite essential in the 
proofs. Also, the operator ° in Sec. 5 must not have 
any delta-function singularities in its matrix elements 
in momentum space. This restriction rules out the 
total linear momentum but not the momentum 
density; this somewhat paradoxical distinction is 
discussed with reference to the orders of noncom­
muting limits. 

In Sec. 6 we comment briefly on the dangers of 
a perturbation-theoretic proof "to all orders," and in 
Sec. 7 applications and unsolved problems are 
suggested. 

Before proceeding with the analysis, we wish to 
say a few words concerning motivation. It might be 
objected that, since our results only apply to Hamil­
tonians of generalized BCS type, they are not 
applicable to real physical systems. It is certainly 
true that such Hamiltonians are highly simplified 
relative to real physical systems. Nevertheless, since 
exactly soluble models are even rarer in nonequilib­
rium statistical mechanics than in the equilibrium 

10 G. Wentzel, in Werner Heisenberg und die Physik unserer Zeit 
(Friederick Vieweg und Sohn, Braunschweig, Germany, 1961), 
p. 189. . 
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case, we feel that the solubility of localized non­
equilibrium problems for such Hamiltonians may 
prove illuminating. In this connection, it should be 
noted that the operator OCr) whose time evolution is 
investigated in Secs. 2-4, or the external perturbation 
V and observable 0 in Sec. 5, need not have the 
simplified pairing structure typical of the interaction 
terms of the generalized BCS Hamiltonian. Further­
more, the validity of our method does not rest on any 
assumption of small distortion of the equilibrium 
ensemble. We find, instead, that problems involving 
large local distortions of the ensemble can be dealt 
with by the method of the thermodynamically 
equivalent Hamiltonian. 

2. INITIAL-VALUE PROBLEM IN 
NONEQUILffiRIUM STATISTICAL MECHANICS 

We employ Jaynes' formulationll of non equilibrium 
statistical mechanics. Suppose that at time t = 0 not 
only the mean energy, but also the statistical average 
values of certain other observables Fj , are known. 
Then the statistical expectation value, at time t, of 
any observable 0 is given byll 

Tr [o(t)exp (-PH - ~A;Fj)J 
(O(t) = '(12) 

Tr exp ( -PH - t AjF;) 

where OCt) is the Heisenberg operator 

OCt) = eitHOe-itH (13) 

and the Lagrange multipliers Aj and P are determined 
by the known initial statistical expectation values 
(F,(O» and (H(O». We are interested in the case that 
the only initial data consist of the values of the total 
Hamiltonian H and of a position-dependent operator 
OCr) = O{r,O) at all positions r. Then the expectation 
value of OCr) at any other time t is given byl2 

Tr{O(r,t)exp [-pH -I d3rlAo(r/)0(r/)]} 

(O(r, t» = I 
Tr exp [ -PH - d3rlAo(r/)0(r/)] 

(14) 

In order to evaluate (14), it is convenient to define 

11 E. T. Jaynes, Phys. Rev. 106, 620 (1957); Phys. Rev. 108, 171 
(1957); in Statistical Physics: Vol. 3. Brandeis Summer Institute, 1962 
(W. A. Benjamin, Inc., New York, 1963). Also unpublished work 
of E. T. Jaynes presented in an informal seminar at the University 
of Oregon. 

11 The extension to the case where more than one such observable 
O(r) is known initially, or O(r) is a vector or tensor instead of a 
scalar, is obvious (just extend the meaning of r) and is not treated 
explicitly. 

a nonequilibrium partition function S and thermo­
dynamic potential W by 

S == e-fJW == Tr exp [-pH -L: dt I d3rA{r, t)O(r, t) ] . 

(15) 

Then (O(r, t» can be expressed as a functional 
derivative: 

(O(r, t» = [!5(PW)/!5A(r, t»);.(r,tl=).o(rM<tl, (16) 

where the subscript denotes that A(r, t) is to be set 
equal to Ao{r)!5(t) after the differentiation. The multi­
pliersl3 P and Ao{r) are determined from the known 
initial data (H(O» and (O(r,O»: 

[o(PW)/oP);'(r,tl=).o(rla<tl = (H(O», 

[!5(PW)/!5A(r, O»);'(r,tl=).o(rM(tl = (O(r,O». 
(17) 

We next apply a standard form of statistical me­
chanical perturbation theory to the evaluation of the 
trace in (I5), obtaining 

8 = (Tr e-fJH)[1 + I( -l);foo .. ·Idtl ... dt; 
;=1 -00 

X r ' J d3rl ' .. d3rjA(rl , tl)· .. A(r;, tj) 

X LldslL'ldS2 .. 'L'HdSj 

X (O(rl , tl - iPSl)'" OCr;, t; - iPS;»eq]. 

(18) 

where ( )eq denotes a thermal-equilibrium average: 

(O)eq == Tr (Oe-fJH)/Tr e-fJH . (19) 

With the use of (13) and cyclic invariance of the trace, 
one finds 

S = Seq(l + ~l + ~2 + ... ) (20) 
with 

(21) 
and 

~l = - L: dt I d3rA(r, t) (O(r, O»eq, 

X II d3rl d3r2A(rl, tl )A(r2, t2) 

X (O(rl , O)0(r2 , t2 - it + ips) )eq. (22) 

13 fJ reduces to l/kT in the equilibrium limit Ao(r) ~ 0, but does 
not, strictly speaking, have that significance when Ao #- o. 
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The definition (15) of W then gives 

W = Wo + WI + W2 + .. " Wo = - p-Iln Eeq , 

WI = - p-If).l , W 2 = - {J-l( f).2 - if).D, 

(23) 

Finally, evaluation of the functional derivative in (16) 
gives 

(O(r, t» = (O(r,O»eq 

- ~ LIdS I d3rlAo(rI)[ (O(r, O)O(r, t + i{Js»eq 

+ (O(r, t - i{Js)O(rt, O»eq] 

+ (O(r, O»eqI d 3r tAo(rt) (O(rt ,0) )eq + O(~), 
(24) 

where O(A~) denotes terms bilinear in Ao. Since 
(0) -- (O)eq as Ao -- 0, the neglected terms in (24) are 
of second and higher orders in the departure from 
equilibrium, i.e., in (0) - (O)eq. 

Defining a kernel 

K(r, t; r t , 0) = (O(r, O»eq (O(rt, 0) )eq 

- ! fIds[(O(rt , O)O(r, t + i{Js»eq 
2 Jo 

+ (O(r, t - i{Js)O(rt, 0) )eq], (25) 

we see that (24) can be written as 

(O(r, t» = (O(r,O»eq 

+ I K(r, t; r t , O)AO(rI) d3rt + O(~). (26) 

The function Ao(rt) is to be determined by inversion 
of the integral transform 

I K(r, 0; rt, O)Ao(rt) d3rt = (O(r, 0» - (O(r,O»eq, 

(27) 

given the initial (in general nonequilibrium) statistical 
expectation value (O(r, 0» of the observable O(r). 

The second term in the expression for K [the only 
term if the mean value of O(r) vanishes in equilibrium] 
is a space-time correlation function of a type already 
familiar in the theory of transport.14 Actually, the 
transport kernel can be expressed purely in terms of 
the true correlation function even in the case that O(r) 
has nonzero mean value in thermal equilibrium. 

l( See, e.g., R. Zwanzig, in Annual Reviews of Physical Chemistry 
(Annual Reviews, Inc., Palo Alto, 1965), Vol. 16, pp. 67 ff. 

Defining a true correlation function ( )~~rr by sub­
tracting off the uncorrelated part: 

(O(r, t)O(r', t'»~grr = (O(r, t)O(r', t'»eq 

- (O(r, t»eq(O(r', t')eq (28) 

and noting that (O(r, t»eq = (O(r,O»eq by cyclic 
invariance of the trace, one can rewrite (25) in the 
form 

K(r, t; r I , 0) = - ! (tds[ (O(rt, O)O(r, t + i{Js»~grr 
2 Jo 

+ (O(r, t - i{Js)O(rI' O»~grr]. (29) 

In conclusion, we note that the expansions (20), (23), 
(24) are only useful if the initial deviation from 
equilibrium is spatially localized, i.e., of finite (0-
independent) range. Only in that case can one expectI5 

Ao(r) to be of finite range. On the other hand, if 
(O(r, 0» - (O(r,O»eq were appreciable throughout 
the volume of the system, one expects that the same 
would be true of Ao(r). Then the integral over rt would 
be proportional to the volume, t6 the term O(A~) 

proportional to 0 2, etc. In such a case the expansion 
would be useless; to obtain meaningful results one 
would have to replace the expansion (20) 9f the 
partition function by a linked-cluster expansion for 
the thermodynamic potential W. The analysis then 
becomes much more involved; we therefore do not 
consider nonlocalized deviations from equilibrium 
here. 

3. THERMODYNAMIC EQUlV ALENCE OF Ho 
FOR LINEAR TRANSPORT OF 
ONE-PARTICLE OBSERV ABLES 

We now assume that O(r) is a one-particle operator 
of the general structure 

O(r) = o-t.2 O"".(r)aka", (30) 
kk' 

with volume-independent matrix elements O"",(r). 
We furthermore assume that the canonical trans­
formation from the a, at representation to the IX, :x.t 
representation [in which Ho of Eq. (7) is diagonal] is 
of the form 

ak = .2 (Ukk,lXk' + vkk,1X1,), (31) 
k'ES t 

where Sk is the same as in (8), and the Ukk, and Vkk' are 
volume-independent. We show that, subject to the 

16 It is easy to show by Fourier transformation of (27) that A.(r) 
will be of finite range if (O(r, 0» - (O(r, 0»." is, provided that K 
is translationally invariant, i.e., K(r, 0; r', 0) = K.(r - r'). This 
restriction on K can probably be weakened without affecting the 
conclusion. 

16 Since the systems for which the thermodynamically-equivalent 
Hamiltonian is useful (e.g., superconductors, superfluids, and 
ferromagnets) have long-range order in equilibrium, the kernel K 
will in general not vanish as Ir - rll-+ 00. 
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assumptions (2), (8), and (31), the contributions of H' 
to the transport kernel K [Eq. (25)], evaluated to all 
orders in H', are only 0(0-1), hence negligible in the 
thermodynamic limit 0 -- 00. In other words, Ho is 
also a thermodynamically equivalent Hamiltonian for 
linear transport theory. In order to show this, one 
must go beyond the original BZP-Wentzel3 argument, 
since that argument only applies to the equilibrium 
thermodynamic potential. In evaluating the transport 
kernel (25), H' enters in two ways: in the factor 
e-fJH = e-fJ(Ho+H') occurring in the definition of the 
equilibrium average ( )eq, and in the evaluation of 
the Heisenberg operators (13). On the other hand, 
in the BZT-Wentzel proof for the equilibrium case, 
H' only enters in the factor e-fJH • 

We consider first the term (O(r, O»eq(O(rI' O»eq in 
K; in this term the Heisenberg operators are evaluated 
at t = 0, so that H' enters only through e-fJH • Our 
proof for this term will thus be only a minor extension 
of the BZT-Wentzel proof. Using the perturbation 
expansion 

e-fJH = e-fJHo [1 + I( _i);f- ifJ 
dtlj

h
dt2' .. 

;=1 0 0 

X fO
tl
-

1 

dt;H'(O)(tJ .•. H'(0)(t;)] , (32) 

where 
(33) 

the definition (19) of < )eq, and cyclic invariance of 
the trace, one findsI7 

X tl-dt;(HI(0)(t1)··· H'(O)(t;)O(O)(r,o»o] 

X [1 + I( -i); r-ifJ 
dtI .•• rtl

-
1 

;=1 Jo Jo 
X dt;(H'(O)(t1)··· H'(O)(t;) )oJ-1

, 

(34) 

where (0)0 is defined by (10). Since Ho is bilinear in 
single-particle annihilation and creation operators, 
one can apply Matsubara's theoremI8 to decompose 
the averages ( )0 into sums of products of contractions, 
each such contraction being the average ( )0 of an 
operator bilinear in single-particle annihilation and 

17 By (13) and (33), O(r,O) = O(O)(r,O) = O(r). Nevertheless, 
the notation 0(0) has been employed in order to make the generali­
zation to the case t ;0£ 0 more transparent. 

18 T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955). 
A complete proof of the theorem, in the form which we employ, is 
given by C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 (1958). 

creation operators. In this way one sees that 

(H'(O)(t
I
)· .. HI(O)(t;)O(O)(r, 0»0 

= (H'(O)(t I ) ... H'(O)(t;»o(O(O)(r, 0»0 

+ (H'(O)(t I ) •.. H'(O)(t;)O(O)(r, O»~, (35) 

where the prime on ( )~ implies the omission of all 
terms in which O(O)(r, 0) is self-contracted, such terms 
being already included in ( )o( )0' 

The expression ( )~ can be further reduced by 
noting that, according to (8) and (9), 

bk).. - 'YJkA = 2 2 [dkA.k'k"(a.t,a.k,, - !5k'k,,(a.1,a.k,)0) 
k'e8k k"e8k 

But since 
+ ekA.k'k"a.k,.a.k" + 1kA.k'k"a.1,a.1,,]. (36) 

(a.1,a.k,,)0 = !5k'k" (a.k,a.k,)o, (a.k'a.k,,)O = (a.l,a.l,,)o = 0 

(37) 

by (7), it follows on application of Matsubara's 
theorem that, for any two operators A and B, 

(38) 
Here 

and the subscript "cross" on ( )0 implies omission 
of all terms in which b~A is self-contracted in the 
expansion of (Ab~AB)o according to Matsubara's 
theorem. Introducing the definitions (4) and (30) of 
H' and O(r), and applying the lemma (38) and its 
Hermitian conjugate repeatedly, one finds that 

(H'(0)(t1) ... H'(O)(t;)O(O'(r, O»~ = 0-(1+11 

X 2 2 2 0kk.(r)Jk1Al>kOl' ••• 
kk' klAl'" klAj kl' AI' .•. k/ As' 

X J (b t 1(0)(t )b'(O) (t)··· b t ,(0) kIAI,kl'A/ klAI 1 kl'Al' 1 klAI 

X (t;)b~~~l/t;)aZak');' (40) 

where the double prime implies omission of all terms 
in which either the operator aiak , or any of the b'(O) 
or bt'(O) operators is self-contracted. 

Finally, noting (39) and (31) and recalling that 8k , 

for each k, is afinite (volume-independent) set of wave 
vectors, we see that each expression ( )~ in (40) 
vanishes unless not more than j of the (2j + 2) vectors 
kl ... k; , k~ ... k~, kk' are independent; the complete 
proof is given in the Appendix. Thus, on converting 
k-sums to integrals by the prescription 
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one obtains only j factors of the volume 0 from the 
summations, so that19 

(Ht{01(t
1

) ••• H,(ol(t;)O(Ol(r, O»~ = 0(0-1
). (41) 

Finally, substituting (41) into (35) and (35) into (34), 
one finds that20 

(O(r, O»eq = (O(Ol(r, 0»0 + 0(0-1
), (42) 

from which it follows that no error in evaluating the 
term (O(r, O»eq(O(rl , O»eq in K [Eq. (25)] is made 
in the thermodynamic limit if one replaces H by Ho. 

The proof for the more complicated correlation­
function terms in K can now be constructed by 
analogy. By (13), (19), and the cyclic invariance of 
the trace, one has 

(O(r, t - i{3s)O(rl> O»eq 

= (O(r, O)O(rl' - t + i{3s»eq. (43) 

Thus it is sufficient to consider correlation functions 
of the form (O(r, O)O(r', t»eq in evaluating (25). 
Making use of the formulas 

e-it<Ho+H'l = e-itHo exP+[ -iSotdt' Ht(Ol(t')], 

(44) 

where exp+ and exp_ are the positively (ordinary) and 
negatively time-ordered exponentials, one finds 21 with 
(19), (l3), (33), and (32), and cyclic invariance of the 
trace 

(O(r, O)O(r', t»eq 

= [ f (- i);f-i
P 
dt

l 
... rti-ldt; (H,(Ol(tI)' .. H,(Ol(t;) 

;=0 0 Jo 
X O(Ol(r, 0) U _(t)O(Ol(r', t) U +( 1»oJ 

X [~( - i);f-i
P 
dtl ... rti-ldt;(H,(Ol(tI)'" H'(O)(t;»oJ -1, 

,=0 0 Jo 
(45) 

where 

U_(t) = exp_[{tdt'H'(O)(t')]. 

U+(t) = exP+[ -ifdt'Ht{O)(t')J. (46) 

19 This result fails in the exceptional case of a system of bosons 
below the Bose-Einstein condensation temperature, since contrac­
tions involving the zero-momentum single-particle state then give 
additional factors of the volume. In order to apply the formalism 
to such a system, the zero-momentum mode would have to be 
eliminated first by methods which are well known, but will not 
be discussed here. 

20 Note that the denominator of (34) is only 0(1) by the BZT­
Wentzel proof, which involves essentially the same arguments as 
ours. 

21 Thej = 0 term is the denominator of (45) is 1, and that in the 
numerator is (O(O)(r, O)U_(t)O(O)(r', t)U+(t»o' 

As in (35), upon applying Matsubara's theorem and 
noting that 

(47) 
one finds that 

(Ht{O)(t
l

) .•• H'(Ol(t;)O(Ol(r, O)U_(t)O(Ol(r', t)U+(t»o 

= (Ht{Ol(t
l

) ..• H'(Ol(t;»o(O(ol(r, O)O(O)(r', t)o 

+ (Ht{01(t
1

) ••• H'(Ol(t;)O(Ol(r, O)U_(t) 

X O(Ol(r', t)U+(t»~, (48) 

where the prime on ( )~ now implies omission of all 
terms in which neither O(O)(r, 0) nor O(Ol(r', t) is 
connected to operators in U_, U+, or any of the H'(Ol 

factors by one or more contractions. When U _ and 
U + are expanded, the expression ( )~ in (48) becomes a 
sum of expressions of the form 

(H'(Ol(t
l

) ••. H'(Ol(t;)O(Ol(r, O)H'(O)(t;) ... 

X H'(ol(t~)O(Ol(r', t)H,(Ol(tD ... H,(Ol(t';,.»f. (49) 

By a derivation paralleling that of (40) one then finds 

(49) = O-(i+l+m
+2) l' . '1 [0(1)](bt:l~lb~~~t,··· 

X bt,(Olb'(Ol ata btt{Olbt(Ol ... 
kiAi k/Al k k' PIll' p,'",' 

X btdOlbt(Ol ,at a ,bt'(Olbt(~l, ... 
1'11'1 211'1'1 2J 'J} 01}'1 al "1 

(50) 

where 1"'! denotes summation over all (2j + 
2/ + 2m + 4) k-vectors appearing in ( )~, [0(1)] is a 
product of factors 0kk,(r), 0 pp,(r'), and J's, all of 
which are volume-independent, and the inessential 
time arguments (which lead only to phase factors) have 
been omitted. The double prime on ( )~ now implies 
omission of all terms in which any b'(O) or bt'(Ol is 
self-contracted, as well as the omissions implied by 
the single prime in (48). 

A further reduction can be made by noting that 
contractions in which either aZak, or a!ap ' is self­
contracted are included in (50); on the other hand, 
contractions in which both aZak, and a!ap ' are self­
contracted are excluded by the definition of ( )~ in 
(48), being already included in (O(ol(r, O)O(ol(r', 1))0' 
Suppose, e.g., that a!ap ' is self-contracted. Then the 
remaining factor (which excludes self-contraction of 
aZak,) is of the same general structure as (40) with j 
replaced by j + / + m. Hence by the previous argu­
ment, it vanishes unless not more than (j + 1+ m) of 
the (2j + 2/ + 2m + 2) vectors kl ... k;, k~ ... k~, 
PI" 'P!' p~ .. 'P;, ql" 'qm' q~" 'q~, kk' are 
independent. Furthermore, (aZak,)o vanishes unless Sk 
and Sk' overlap, so that k and k' are not independent. 
One thus has (j + 1+ m + 1) free k-summations, 
giving a factor Q;H+mH, When pre-multiplied by the 
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factor O-(iH+m+2) in (48), one obtains a negligible 
contribution 0(0-1). 

The only contributions remaining are of the form 
( );, where the triple prime denotes omission of 
terms in which any b'(O) or bt'(O), or either of a!a

k
, or 

a;a:p' , is self-contracted, as well as omission of terms 
in which a!ak , is contracted with a;a:p' leaving no 
connection to the other factors in (50). By topological 
analysis similar to that employed in proving (41), one 
then shows that all expressions ( )~ are O(Oi+!+m+l) 
or smaller, so that (49), and hence the term ( )~ in (48), 
are 0(0-1). The structures of all contributions to 
( )~' of O(Oi+!+m+l) are shown in Fig. 5 in the 
Appendix; all other contributions are still smaller. 
One thus concludes by (48) and (45) that 

(O(r, O)O(r', t»eq = (O(O)(r, O)O(O)(r', t»o + 0(0-1). 

(51) 

Substitution of (51), (43), and (42) into the expres­
sion (25) for the transport kernel K gives 

K(r, t; r1 , 0) = (O(O)(r, 0»0(0(0)(r1 , 0»0 

_1 f1 ds[(O(O)(rl, O)O(O)(r, t + i{3s»o 
2 0 

+ (O(O)(r, t - i{3s)0(0)(r1 , 0»0] 

+ 0(0-1
). (52) 

Thus, no error is made in the transport kernel K in 
the thermodynamic limit (0 -+ (0) if H is replaced by 
Ho in evaluating K. This is what we wished to prove: 
the quasiparticle interaction Hamiltonian H' has no 
effect on linear transport in the thermodynamic limit. 

4. GENERALIZATION TO NONLINEAR 
TRANSPORT AND TWO-PARTICLE 

OBSERVABLES 

The terms beyond A2 in the expansion (20) lead to 
terms in (O(r, t» which depend in a nonlinear way on 
the initial value (O(r,O» - (O(r,O»eq; they become 
important when the initial deviation from equilibrium 
is not small. Extending (20), (22), and (23) to the next 
order, one finds 

with 

-rt) 

x III d3r1 d3r2 d3r3A(r1, t1)A(r2, t2)A(ra, t3) 

X (0(r1 , 0)0(r2' t2 - t1 + i{3s) 

X O(rs, ts - t1 + i{3s') )eq. (54) 

Applying (16) to (23), one finds, with (53) and (54), 

(O(r, t) = (O(r, O»eq + (O(r, t»1 + (O(r, t»2 + ... , 
(55) 

where ( )1 is the linear term of Secs. 2 and 3: 

and ( )2 is the first nonlinear22 correction: 

(O(r, t»2 = -t(o(r,O»eqfdS 

X If d3r1 d3r2Ao(rl)Ao(r2)(0(rl, 0)0(r2 , i{3S»eq 

- (O(r, t)1 I d3r1Ao(rl)(0(rl, O»eq 

+ 1 f
1
dsf1 ds,ffd3rl d3r2Ao(rl)Ao(r2) 

3 0 1-8 

X [(O(r, t)0(r1 , i{3s)0(r2' i{3s') )eq 

+ (0(r1 , O)O(r, t + i{3s)0(r2, i{3s'»eq 

+ (0(r1 , 0)0(r2, i{3s)O(r, t + i{3s') )eq]. (57) 

It has already been shown in Sec. 3 that only errors of 
order 0-1 are introduced in evaluating (O(r, O)eq, 
(O(r, t)O(r', t'»eq, and (O(r, t»1 if H is replaced by 
Ho; hence it only remains to be shown that the same is 
true of the triple correlation functions (OOO)eq. The 
reasoning in Sec. 3 and the Appendix is easily extended 
to show that this is, indeed, true. In fact, the reasoning 
is easily extended to the general term (O(r, t»n-l in 
(55), for any finite n; such a term involves n-fold 
correlation functions, i.e., n factors of O. Noting that 
the product of nO-operators must contain at least 
two linkages to H' factors [cf. Fig. 5], one finds that 
if all chains23 are of minimum possible length, then 
there will be exactly nO-chains and (m - 1) H'­
chains, where n is the number of factors of 0, m the 
number of factors of H', an O-chain is one terminated 
by labeled sets Sk, Sk' , as in Figs. 1-5, and an H' -chain 
contains no such labeled sets. One thus has (n + m - 1) 
free k-summations, giving a factor on+m-l. When 
pre-multiplied by the factor 0-( n+m) coming from the 
explicit 0-1 in each 0 and H' factor, one obtains a 
contribution of 0(0-1). Thus, to all finite orders in Ao 
(i.e., in the departure from equilibrium) and in H', one 
concludes that only errors of order 0-1 are made in 
evaluating (O(r, t» [Eq. (16)] if H is replaced by Ho 

•• Being quadratic in Ao, ( ). is quadratic in the departure from 
equilibrium. 

'3 Our terminology and reasoning should be clear from referenc.e 
to the Appendix; the details of the proof are left to the reader. 
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and O(r, t) by O(Ol(r, t) in (15), provided that the 
initial deviation from equilibrium, 

(O(r, 0» - (O(r,O»eq, 

is spatially localized. 
We have so far taken O(r) to be a single-particle 

operator [Eq. (30)]. There are, however, physically 
interesting operators which, though labeled by a single 
position variable r, are nevertheless two-particle or 
several-particle operators, or at least contain portions 
which are. One example is the energy (Hamiltonian) 
density operator Je(r), which is important in heat 
transport. Let 'U'(r) be the two-particle interaction­
density operator, i.e., the contribution of two-particle 
interactions to Je(r). Then CO'(r) has the general struc­
ture 

CO'(r) = Q-2 .2 CO'klkBksk.(r)a:lak.aktakS (58) 
klk.ksk, 

with volume-independent matrix elements CO'k k k k (r). 
1 2 3 4 

It is easy to see that our proofs still go through for 
such an operator; CO'(r) behaves as the product of two 
one-particle operators (30). Thus the only essential 
property of O(r) is its locality, together with the 
spatial localization of (O(r, 0» - (O(r, O»eq. 

5. TRANSPORT DUE TO EXTERNAL FIELDS 

Our analysis has thus far been restricted to cases in 
which the temporal evolution of (O(t» is due not to 
any external field absent in thermal equilibrium, but 
instead is a result of the noncommutativity of 0 ~ith 
H together with an initial localized deviation, 
(0(0» - (O(O»eq, from equilibrium. An equally 
interesting case is that in which the temporal evolution 
of (O(t» is due to the presence of some perturbation 
Hamiltonian V not contained in H. We call V the 
"external field", although in applications it might be 
entirely due to internal influences, e.g., fixed impurity 
centers in a superconductor. Thus "external" means 
merely "not contained in H." A time-independent 
external field will be of the general form 

V = Q-I.2 fd3rvu.(r)akak" (59) 
kk' 

where Vkk'(r) is volume-independent. 
Let us consider, in particular, the case that V is not 

present for t < 0, and is turned on instantaneously at 
t = O. Then for t ~ 0, the statistical expectation value 
(O(t» of any observable 0 is given by 

(O(t» = Tr [p(O)O(t)], (60) 

where p(O) corresponds to thermal equilibrium in the 
absence of V: 

(61) 

and 0 is propagated for t > 0 with the full Hamiltonian 
H+ V: 

O(t) = eit(H+VlOe-it(H+V). (62) 

Let us make a perturbation expansion of (O(t» in 
powers of V: 

(O(t» = (exp_ [{tdt'Veq(t')JOeq(t) 

x exp+ [ -ifdt'Veq(t')J)eq 

= (O(O»eq + (O(t»1 + ... , (63) 
where 

(O(t»1 = ifdt'([Veq(t' - t),O])eq, (64) 

( )eq is defined by (I9), and 

Oeq(t) = eitHOe-itR. (65) 

A further expansion in powers of H', as in (45), gives 

([Veq(t' - t), O])eq 

= [! ( _ i)' r-
iP 

dtl ... r tl_l dt, (Ht{Ol( t1) ... 
'=0 Jo Jo 

x H,(Ol(t,)[U_(t' - t)V(O)(t' - t)U+(t' - t), O])oJ 
x [!(_i),r-i8dtl" .rtl-Idt, 

'=0 Jo Jo 
x (Ht{Ol(t1)··· H'(Ol(t;»oT

1

, (66) 

where all quantities are defined as in (45). Application 
of Matsubara's theorem as in (48) gives 

([Veq(t' - t), O])eq - ([V(Ol(t' - t),0])0 

= [!( -i)' r-
iP 

dt
1

• • • f tl-Idt; (H,(0)(t
1

) ••• 

;=0 Jo 0 

x Ht{O)(tj)[U_(t' - t)V(O)(t' - t)U+(t' - t),O])~J 

x [!( _i);!-i8 dt
l 

• • • fti-Idt, 
'=0 Jo 0 

X (H,(Ol(t1)· •• H'(Ol(t,»o} (67) 

where the prime on ( )~ implies omission of all terms 
in which none of the annihilation and creation 
operators in 0, U_, U+, or VWl are contracted with 
those in any of the factors H'(Ol(tl ) ••• H'(Ol(t,). 

In order to proceed with the analysis, it is now 
necessary to make definite assumptions about the 
form of the operator 0 whose time evolution is being 
investigated. Let us first suppose that 0 is a single­
particle operator of the same general structure as V, 
i.e., 

(68) 
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with volume-independent Okk" Then by an analysis 
almost identical with that used in proving (51), one 
finds that the right-hand side of (67) is 0(0-1) 

provided that the perturbation V is localized in the 
sense that Vkk,(r) in (59) has finite (O-independent) 
range with respect to some fixed center or with respect 
to a finite24 (O-independent) set of such centers. On 
the other hand, it is easy to see25 that, subject to the 
same conditions 

([V(Ol(t' - t), 0])0 = 0(1) (69) 

the analysis can be extended to all orders in V, just as 
that in Sec. 4 was extended to all orders in Ao. One 
thus concludes that, for localized perturbations V, 
(O(t» can be evaluated with negligible error in the 
thermodynamic limit by replacing H by Ho in (60)­
(63). The analysis can be generalized to show that the 
conclusion is also true for two-particle operators of 
the general structure of (58) (with the r dependence 
omitted). 

On the other hand, our formalism is not easily 
extended to the case of nonlocalized perturbations V, 
i.e., cases in which Vkk,(r) in (59) is of infinite range with 
respect to a finite (O-independent) set of centers or of 
finite range with respect to a volume-proportional set 
of scattering centers.26 In such a case, the expansion 
(63) becomes useless since successive terms involve 
higher and higher powers of O. To treat such a 
situation one would have to use linked-cluster 
perturbation theory for the generalized thermodynamic 
potential, rather than perturbation theory for the 
trace. It is almost certainly not true that for non­
localized perturbations V, the quasiparticle-interaction 
(H') effects on the evolution of 0 are negligible to all 
orders in V. On the other hand, a continuity argument 
suggests that the effects of H' might be small for a V 
which, though nonlocalized, is "small" in some sense. 
However, we cannot draw any definite conclusions 
about such a case here. 

Even for localized V, the effects of H' on the 
evolution of all observables 0 is certainly not 
negligible. Consider, e.g., the case 

(70) 

where Ok is volume-independent. Although this is 
formally of the form (68) with Okk' = O!5kk, , we 
assumed in (68) that Ow is O-independent; thus (70) 
is not of the form assumed before, and requires 

U Note that this rules out the case of a nonzero density of 
scatterers. 

so Self-contractions of 0 cancel due to the commutator; otherwise 
the left-hand side of (69) would be O(il). 

• 1 This would be the case for a nonzero density of scatterers. 

separate investigation. One in fact finds that, for 0 
of the form (70), the right-hand side of (67) is 0(1) for 
localized perturbations V. On the other hand, it is 
easy to see that (69) still holds with 0 of the form 
(70).25 Thus in this case, the contributions of H' to 
the time evolution of (O(t» are of the same order as 
those of Ho, i.e., the thermodynamically equivalent 
Hamiltonian method fails. 

An illuminating example is provided by taking 0 in 
(68) to be the momentum-density operator 

per) = 1pt(r)(Vji)"P(r) = 0-1! k'e-t(k-nrakak' (71) 
kk' 

in a free-particle representation. Then one can cal­
culate the temporal evolution of per) due to a scattering 
center27 V exactly in the thermodynamic limit 
(0 --+- (0) by ignoring the quasiparticle interactions 
H'. As expected physically, the effect of Von per) is 
0(1) (O-independent), whereas that of H' is only 
0(0-1). Suppose, on the other hand, we try to 
calculate the temporal evolution of the total momentum 

P = I d3rP(r) = t karak • (72) 

Then the effect of H' on (P(t» is not negligible, being 
0(1) just as is the main contribution (the effect of V 
via Ho). This seems somewhat paradoxical, since the 
evolution (P(t» can be calculated indirectly by first 
calculating (P(r, t» and then integrating over r; H'is 
negligible in evaluating (P(r, t». Note, however, that 
these two different methods of calculating (P(t» 
differ in the order of performing the limit 0 --+- 00 and 
the r-integration. Apparently these two operations 
may not be interchanged with impunity. If the exact 
(P(r, t» - (P(r, 0» is known to have finite range with 
respect to the center of V, then the right answer for 
(P(t» must be obtained by first calculating (P(r, t» 
with neglect of H' in the limit 0 --+- 00, and then 
integrating over r, since the integral of the 0(0-1) 

contribution of H' over a finite range is still 0(0-1). 

6. INADEQUACIES OF A PROOF 
"TO ALL ORDERS" 

Just as is the case for all proofs "to all orders," our 
proofs are not rigorous since the following possi­
bilities have not been excluded: (a) the series in the 
numerator or denominator of (34), (45), or (66) might 
fail to converge, or (b) the effect of H' might be 
nonanalytic and hence not admit any such series 
expansion. It is, however, reassuring that Bogoliubov 
has presented an intricate, but apparently rigorous, 

27 This is essentially the case considered by Wentzel (Ref. 10) . 
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proof28 which confirms the conclusions of the original 
BZT proof! "to all orders." Since our proof is almost 
identical with the latter, it seems not unreasonable to 
expect that its conclusion is also correct. 

7. DISCUSSION; SUGGESTED APPLICATIONS; 
UNSOLVED PROBLEMS 

We have shown that the BZT -Wentzel method of the 
"thermodynamically equivalent Hamiltonian" can be 
extended to the following nonequilibrium situations: 
(a) temporal evolution of the statistical expectation 
value, (O(r, t), of an observable OCr) due to 
an initial deviation from equilibrium, (O(r, t) -
(O(r, 0), which is spatially localized but not necessarily 
small ; (b) temporal evolution of the statistical 
expectation value, (O(t), of an observable ° due to a 
perturbation V which is spatially localized, but not 
necessarily small. In order that the proofs go through, 
it is necessary that OCr) and ° are "well-behaved" in 
the sense that their matrix elements do not contain 
delta functions in momentum space. It is noted that 
this requirement excludes, e.g., the case that ° is the 
total linear momentum, but does not exclude the 
momentum density. 

There are a number of interesting problems which 
can be investigated with this formalism. Examples 
which come to mind immediately are transport of spin, 
energy, and current in superconductors and ferro­
magnets. We hope to report on such investigations in 
the future. 

The more difficult question of the influence of 
quasiparticle interactions on noniocalized transport 
ought to be investigated, in view of its importance to 
problems of thermal and electrical conductivity. Such 
investigations require linked-cluster perturbation ex­
pansions or their equivalent. 
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APPENDIX 

We wish to show that each expression ( )~ in 
(40) vanishes unless not more than j of the 2j + 2 
vectors k1 '" k j' k~'" k~, kk' are summed over 
independently. 

Note first that according to (39), (33), and (7), 
b~<J)(t) differs from b~;, only by phase factors; thus the 
time argument can be ignored in discussing the 

28 N. N. Bogoliubov, Physica. Supp!. 26, 1 (1960). A nonrigorous 
proof different from that of Ref. 1 was given by N. N. Bogoliubov. 
D. N. Zubarev, and Yu. A. Terserkovnikov. Zh. Eksperim. i Teor. 
Fiz. 39, 120 (1960) [English trans!.: Soviet Phys.-JETP 12, 88 
(1961»). 

FIG. 1. Topology of nonzero contrac-~ 
tions for the casej = 1. ~ 
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CD 
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CD 

FIG. 3. Topology 
of nonzero contrac­
tions in which at and 
ak' are contracted 
with the same btl or 
b' factor. 

FIG. 2. Topology of non­
zero contractions in which 
at and a

k
, are contracted 

with different btl or b' 
factors. 

CD ~-i!pairs 

CD 

CD ~-4pairs 
FIG. 4. An example 

of a contraction with 
chains of longer than 
optimal length. 

topology of contractions. Now, consider the simplest 
case j = 1. If ar and ak , are both contracted with b~r;'1 
or both with b~l' AI" we get no contribution since the 
remaining factor b~I' AI' or btAI is not allowed to be 
self-contracted according to the definition of ( )~. 
If ar is contracted with, e.g., br:AI and ak , with b~I' A' 1 ' 

then we only get a contribution when Sk overlaps SkI 
and Sk' overlaps SkI' . But then SkI must overlap SkI' in 
order to get a nonzero contraction of the remaining 
two Cf,. and Cf,.t operators. This situation is illustrated 
schematically in Fig. 1; Sk and SkI are labeled by k 
and k', whereas Sk and Sk ' are unlabeled. It is clear 

1 1 

that only one free k-summation remains, giving a 
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FIG. 5. Topology of 
aU contributions to 
( )~ of order QJ+I+ .. +1. 

The labels k .. k', p, p' 
may be permuted sub­
ject to the restrictions 
that 8t and 8t , may not 
overlap, and 8" and 8" 
may not overlap. 

single factor O. Thus, because of the explicit factor 
0-(1+1) in (40), we get a net 0(0-1) contribution. 

The terms with j > 1 in which a! and ak , are con­
tracted with different bt' or b' operators have a similar 
structure, denoted by Fig. 2. They differ from Fig. 1 

JOURNAL OF MATHEMATICAL PHYSICS 

only in that the remaining (2j - 2) btl and b' 
operators are paired in order to avoid self-contractions. 
The dashed line connecting the two members of each 
such pair denotes one contraction between a p 
operator in one bt' or b' and a pt operator in the other; 
the other contraction is implied by the overlap of the 
circles. There are also nonzero terms with j > 1 in 
which at and ak , are contracted with the same bt' or 
b' factor; in order to .avoid self-contractions of bt' 
or b' factors, these will have the structure shown in 
Fig. 3. It is clear that both Fig. 2 and Fig. 3 have j 
free k-summations, giving a factor Oi. When pre­
multiplied by the explicit factor O-(i+1) in (40), they 
give net contributions of 0(0-1). 

Finally, there are nonzero contractions for j > 2 in 
which there are some chains of longer than optimal 
length. All such contractions have fewer than j free 
k-summations, and hence give contributions to (40) 
which are even smaller than the already-negligible 
contributions 0(0-1) already considered. An example 
is given in Fig. 4. 

The topology of all contributions to < )~' [see Eq. 
(50) and subsequent discussion] of O(OiH+m+1) is 
shown in Fig. 5. All other contributions are O(OiH+m) 
or smaller, due to the presence of chains of greater 
than optimal length. 
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A group G of local weights is constructed which assigns to closed paths in the square lattice the 
enclosed area and the number of turns of the tangent vector (mod 2) to the path. Special cases of this 
group have been used previously in explicit evaluations of the partition function for the Ising model in 
2-dimensions. Properties of G are examined to cast light on the combinatorial approach to the Ising 
problem developed by Kac and Ward, Feynman, and Sherman. It is shown that their method breaks 
down in the general case. 

1. INTRODUCTION 

L ET C denote the two-dimensional square lattice in 
the plane with vertices (m, n), where m and n are 

integers, and with unit-long-segment edges con­
necting vertices in the horizontal and vertical direc­
tions. By a path, we mean a well-defined sequence of 
directed edges in C touching terminal to initial such 
that two consecutive edges are not the same. This 

means that a path can never reverse direction at a 
point. It can back up, however, provided only that 
the initial point of the first edge touches the terminal 
point of the second edge (see Fig. 1). 

In a recent paper on the Ising model by the author,l 
there was constructed a group G of "local" weights for 
C which assigned to a closed path in C a weight from 

1 Glen Baxter, J. Math. Phys. 6, 1015 (1965). 
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1 Glen Baxter, J. Math. Phys. 6, 1015 (1965). 
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j 
(i) (ii) 

L 
(iiI) 

FIG. 1. The three path configu­
rations at a lattice point. 

which one could determine the change in the argument 
of the tangent vector (mod 2) in one traversal of the 
path and the number of enclosed squares (mod 2). 
These weights were used to evaluate explicitly the 
partition function for the two-dimensional Ising model 
with a certain imaginary external magnetic field. In 
order to evaluate the partition function for the two­
dimensional Ising model with arbitrary external mag­
netic field, one would have to determine for closed 
paths the number of enclosed squares in general and 
not just mod 2. This raises the question: Can we 
construct a weight group G of local weights which 
assigns to a path a weight (an element of G) from 
which we can recapture the exact number of enclosed 
squares? In other words, is area a "global" property 
which allows itself to be analyzed "locally?" Our goal 
here is to show that it is. 

The area enclosed inside a simple closed noninter­
secting path is very easy to describe. But what is the 
area of a path which intersects itself? In Fig. 2, we 
have drawn two paths which "enclose" the same two 
squares. At first glance it seems clear that any group G 
of local weights must assign area weight 2 to both 
paths. However, we see in Sec. 2 that, necessarily, the 
possible groups G assign area weight 2 to path (a) and 
area weight 0 to path (b). That is, the group G which 
we construct assigns a positive area weight to a simple 
closed path with a clockwise sense and an equal 
negative area weight to the same path traversed in the 
opposite sense. Figure-eight paths like path (b) of 
Fig. 2 are assigned weights which come from the 
difference of the "clockwise" and "counterclockwise" 
pOrtions of the path. Only in the case of area (mod 2) 
is the area assigned to path (a) the same as that 
assigned to path (b) in Fig. 2. 

The comments of the preceding paragraph indicate 
difficulty in using the more general weight groups G 
to solve the Ising model with nonzero external mag­
netic field. The combinatorial approach to the Ising 
problem is based on a "figure-eight" cancellation. 
However, since it is not true that the assigned areas 
are the same for paths (a) and (b) of Fig. 2, the weights 

cPcP 
(0) (b) 

FIG. 2. Two closed paths enclosing 
the same lattice squares. 

do not cancel as desired. In Sec. 4, we discuss the 
Ising model with an eye toward understanding the 
difficulty just mentioned. As yet, we have been un­
able to find any specific information on the two­
dimensional Ising model with arbitrary external 
magnetic field using our general area groups G. 

In Sec. 2, we construct the group G of local weights 
which assigns to a simple closed path traversed in a 
clockwise sense the enclosed area [or enclosed area 
(mod r)] and which also assigns to any closed path 
the change of the argument of the tangent vector 
(mod 2). Properties of this group are examined in 
Sec. 3, where we also look at specific examples with 
r = 1, 2,3. We show that the area (mod r) groups Gr 

are all finite, and that they have the order 8r3. As we 
said earlier, some combinatorial aspects of the Ising 
problem are discussed in Sec. 4. 

2. CONSTRUCTION OF THE GROUP G 

Let r be the lattice as described in Sec. 1. For any 
path which does not double back on itself at a vertex, 
there are three path configurations that are possible 
as illustrated in Fig. 1 We assign a local weight &, p, IX 

to the one-step motion along the direction shown for 
the configurations (i), (ii), (iii), respectively. The 
weights for backing up are assigned the inverses of 
weights for the forward motion. For any path we 
assign a weight as follows: 

Let VI, ••• , Vn be the vertices of the path and let 
lXI' ••• , IXn be the corresponding weights assigned 
to the path configurat~n at these vertices according 
to the above. The weight of the path is then 
W = IXIIX2 ••• IXn' 

The question which we posed in the introduction can 
now be re-phrased. Can we find a group G (resp. Gr ) 

generated by &, p, and IX such that the weight assigned 
to any simple closed path traversed in a clockwise 
sense gives the enclosed area Crespo area (mod r)] and 
the change of the argument of the tangent vector 
(mod 2) to the path? To describe the area, we use an 
element b (an element of G, if it exists) and to describe 
the "twist" of the tangent vector we use an element a 
(again an element of G, if it exists). That is, for a 
simple closed path the weight assigned should have 
the form abi, where j is the number of enclosed units 
of area. Since any closed path can be described in a 
variety of manners using different directed edges as 

FIG. 3. Two closed paths which 
differ only by inclusion or non­
inclusion of sides from a particular 
square. 

• • 
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• 
5 4 

• 6 • • 3 • 
FIG. 4. The seven positions for 

the directed edge of the closed path 
as the path leaves the central square. 

• 7 

l~ 
• 2 • 

• 

the start, it follows that a and b must lie in the center 
of G. Also a2 = I, but as yet b has no finite order. If 
we want simply the enclosed area (mod r) we would 
require that br = l. We propose to find necessary 
conditions for the groups G and Gr. From these we 
find that groups G and Gr do actually exist. 

Let us look at Fig. 3. There we have shown two 
paths which differ only in the fact that one of them, 
namely the second, contains one more area unit than 
does the other. If there is a group G of weights, then 
we can cancel out the common weight associated with 
that part of both paths lying between U1 and Uo and 
deduce the relation bIX2 = PIX2P. Actually, there are 
seven relations like this one which can be deduced, 
one for each of seven different path pairs correspond­
ing to different positions of U1 as shown in Fig. 4. 
Adding the obvious condition IX4 = ab to the others, 
we get a list of eight conditions 

(a) bIX2 = PIX2P, (e) bIXOC2IX = {l2, 

(b) bIXP = PIX2OC, (f) bIXOC2P = poc, 

(c) bIXocIX = PIXP, 
(d) bIXocP = PIXOC, 

(g) bIXOC3 IX = OC, 
(h) IX4 = abo (1) 

These conditions can be simplified to the following 
four: 

(i) IX-1P = P-1oc, 

(ii) oc-1P-1OC = IX-1j3IX, 

(iii) bIX2 = j3IX2j3, 

(iv) (1,.4 = abo (2) 

In fact, (i) follows from (a) and (b). From (b) and (c), 
it follows that P-1OCIX = OC-1IX-1P, and from (i) we get 
(ii). It is also true that (a)-(h) follow from (i)-(iv). In 
fact, (a) and (b) follow from (iii) and (i). Reversing the 
steps just above shows that (i), (ii), and (b) implies 
(c). Then, (c) and (i) implies (d), etc. Conditions (b) 
are thus necessary for the existence of the group G. 
The additional relation 

(v) pr = I (3) 

will be added to the conditions necessary for the 
existence of Gr. 

Theorem: There exists a group G containing ele­
ments IX, p, oc such that (2) is satisfied. If Kr = {pr, br} 

~~", ... LL 
::IC'-2 ... LL 

FIG. 5. The possible positions for 
the ending vector for simple paths 0 1 ,-2 ... 1 
~hose weights will be different # f* 
III Gr' 1 ••• 

0'" 

given 
vector 

is the subgroup of G generated by j3r and br, we take 
Gr = G/Kr • 

Proof" A heuristic discussion aids in understanding 
the next argument. We are going to think of writing 
every element of G in the form (possibly non-uniquely) 
of a multiple ailJi of 

pk • IXP-l • pm • PIX-I. (IXP-1)S == (k, m, s). (4) 

The element in (4) has a geometric interpretation. The 
term IXP-1 amounts to a rotation of a vector clockwise 
about a point through an angle of 90°. The term pk 

amounts to a translation of k units along the direction 
of the directed edge or vector. Thus, (k, m, s) geo­
metrically amounts to a motion from a starting vertex 
with a given direction to a new vertex displaced k 
units along the original direction, displaced m units 
to the right (looking along the original direction), 
and rotating by s 90° turns clockwise. Thus, we are 
going to identify elements of G with multiples aib; of 
weights for simple paths starting with a given vector 
(directed edge) and ending with another vector. In 
the case of GT with condition (v) in addition to (b), 
the elements are identified with multiples aW of 
weights for simple paths starting with a given vector 
and ending with a vector lying in a square of size r 
adjacent the original vector (see Fig. 5). The ending 
vector of the path occupies one of extreme most line 
segments of this square as pictured in Fig. 5 only if 
the direction of the ending vector is toward the 
central square. There are 4r2 ending vectors and 2r 
multiples aW so that we find for Gr a group that has 
8r 3 elements. 

Let us continue with the heuristics for a moment 
longer. Suppose we want the product 

(5) 

where for simplification we have taken the case where 
Sl = O. In Fig. 6(a), we have drawn two paths which 
represent the combined parts of the two "motions" 
(k1 , m1 , 0) and (k2' m2' S2)' We have also shown in 
Fig. 6(b) a path given by a single term (ka, m3 , sJ, 
which would have the same starting and ending vector. 
The path in Fig. 6(b) contains mlka more area units 
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(For the illustrations S. = 2) 

'-'1~.J 'i 
--c(! --cj k2 

(0) I (b) 

FIG. 6. The composite of two motions along the lattice and a 
single motion with the same terminal vector. 

than does the path in Fig. 6(a). Thus, we would 
expect a relation 

(kl' m1 , O)(ka, ma, sa) = b-mlkg(kl + k a• ml + ma, sa)· 

(6) 

By a completely analogous procedure, we can write 
three other relations depending on the particular 
value of SI. 

(kl' m1 , 1)(ka, ma, sJ 

= bmlma+mlkg(kl r- ma, m1 + ka, 1 + sa), 

(kl' m1 , 2)(ka, ma, sa) 

= bm1ka(kl - ka, m1 - ma, 2 + sJ, 

(kl' m1 , 3)(ka, ma, sa) 
= b-mlms+maka(kl + ma, m1 - ka, 3 + sa). (7) 

Finally, we would expect that 

(k, m, s) = a(k, m, s - 4). (8) 

We now drop the heuristics and define a set of 
elements GO: ailJi(k, m, s) which have a multiplication 
defined by (6), (7), and (8), and 

ai11Ji1(kl' m1 , sl)aislJit (ka, ma , sa) 

= ail+ialJil+ia(kl' ml' sl)(ka, ma, sa). (9) 

We intend to show that GO is a group. According to 
(8), we can always reduce the consideration of values 
of s between ° and 3. We have first 

and 
1= (0,0,0) 

(k, m, 0)-1 = b-mk( -k, -m, 0), 

(k, m, 1)-1 = (-m, k, -1), 

(k, m, 2)-1 = b-mk(k, m, -2), 

(10) 

(k, m, 3)-1 = (m, -k, -3). (11) 

Finally, we must show associativity. There are exactly 
16 different cases to consider according to the values 
of SI and Sa in the product 

(k1 , ml' sl)(ka, ma, sa)(ks, ma, S3)· (12) 

We consider just one such case and leave the remain­
ing 15 to the interested reader. First, (12) can be 

written in the form 
bt( . .. , ... , SI + Sa + sa) (13) 

in perhaps two different ways according to the different 
ways of forming the product in (12). There is no diffi­
culty.in seeing that the k and m terms of (13) are the 
same in either case. This is because the general 
relations (6), (7), and (8) show with a = b = 1 that 
(k, m, s) can be identified with a geometrical motion 
from (0, 0) with direction "up" to (m, k) with a direc­
tion s 900 turns clockwise. Thus, the k and m com­
ponents of (k, m, s) combine in products just as they 
would if (k, m, s) were identified with a geometrical 
motion or transformation, and transformations are 
associative. Thus, we need consider only the two 
possible values for tin (13). 

Consider for SI = Sa = 1 

[(kl' m1 , I)(ka, ma, 1)](ks, ma, sa)· (14) 

One can compute (14) to show that it has the form 
bmlma+m2k2bks(ml+k2)( . .. , ... , 2 + sa). (15) 

Also 
(kl' m1 , I)[(ka, ma, I)(ka, ma, sa)] 

can be shown to be equal to 
bmams+mskabmdm2+ks)+(ma+ks)(k2-mS)( ••• , ••• , 2 + sa). 

(16) 

Comparing the exponents t in (15) and (16) shows that 
they are the same. Thus, the associativity condition 
is satisfied in this case. In a similar manner, the 
associativity condition can be verified in the other 
15 cases. We have thus shown that GO is a group. 

Next, we show that our desired weight group G can 
be taken to be GO. We use the fact that (2) is satisfied 
for the terms 

IX = (0, 1, 1), 
& = (0, -1, -1), 
(J = (1,0,0). 

To assist in the computation, we note that 
IX-I = (-1, 0, -1), 

&-1 = (-1,0,1), 

(J-l = C--l, 0, 0). 
We have 

(17) 

(i) IX-1{J = (-1,0, -1)(1,0,0) = (-1, -1, -1) 
= (-1,0,0)(0, -1, -1) = {J-l&, 

(ii) &-I{J-l& = (-1,0, 1)(-1,0,0)(0, -1, -1) 

= b(O, -1,0) 

= (-1,0, -1)(1,0,0)(0, 1, 1) = IX-1{JIX, 

(iii) boca = b(O, 1, 1)(0, 1, 1) = be-I, 1,2) 

= (1,0,0)(-1, 1,2)(1,0,0) = {Joc2{J, 

(iv) oc4 = (0, 1, 1)4 = b2( -1, 1, 2)2 = b(O, 0, 4) 

= abo (18) 
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This completes the proof that G can be taken to be GO. 
Now, if br = I, then f3f' = I is consistent with bf' = I 
according to (6), (7), and (8). Thus, we can take 
Gf' = Gf{f3r, br

}, which is a group of order 8r 3. 

3. PROPERTIES OF G AND OF Gf' 

Let N be the subgroup of G of elements of the form 
aW, i = 0, 1, j integral, and let Nr = N/{bf'}. Some 
facts are stated below assuming that the weight 
group is G. Analogous results hold if G is replaced by 
Grand N is replaced by Nr • 

Fact 1: All closed paths in C are assigned weights 
from N. Simple closed paths traversed in a clockwise 
sense have a weight abk

, where k is the enclosed area. 

Proof: Any closed path with no backward steps can 
be generated out of a path surrounding a single square 
by successively adding some or all of the edges of 
another single square (in general, with the removal of 
others). But relations (1) were established so that the 
alteration just described would change the interpreta­
tion of the "enclosed" area in just the right way so 
that an element of N would result for the weight of the 
new path if the old path had a weight which is an 
element of N. Of course, the second statement of the 
theorem follows in a similar way. To be precise, we 
would need to check that the two paths pictured in 
Fig. 7 have weights which differ by ab2, and even 
more importantly to show that a list of eight conditions 
(plus another like that implied by Fig. 7) analogous 
to (1) with oc replacing &, & replacing oc (and b-1 re­
placing b) are valid. These latter relations would 
arise out of considering counterclockwise motions 
around simple closed paths just as we consider clock­
wise motions in Figs. 3 and 4 to establish (1). The 
fact that b is replaced by b-1 in these counterclockwise 
relations follows from the fact that all of the desired 
relations are implied by the assumed (i)-(iv). For 
example, we can show that from (i) we have f3oc-1 = 
&f3-t, and premultiplying boc2 = f3oc2f3 by this we get 
bf30c = &oc2f3. This latter equality is the counterpart 
of (f) in (1). The other counterparts can. be obtained 
by more or less the same argument. 

By means of a rather messy argument, we can now 
remove the condition that the closed path have no 
backward steps. Basically, we need to show that Fact 1 
is valid for closed paths which contain no area. More 

(a) (b) 

FIG. 7. Two pairs of path segments 
which differ only in their motion 
around the central square. 

FIG. 8. A path of one step. 
traced out in both directions with 
two rotations of 1800

• ...... __ ~ .. W .. 3_4_" 

2 

simply even, it reduces to showing the following. Let 
P be a path with no backward steps assumed to be 
not closed, and let Q be a path formed from P by 
tracing out P, rotating 180°, tracing out P in reverse, 
and rotating 180° again. Rotating through 180° in­
volves two forward and one backward steps and can 
be carried out in 6 different ways. We must show that 
Q has a weight from N. Having shown this, we can 
then replace the "backward segments" of a closed 
path by the same segment traced in reverse (forward 
sense) and alter the weight only by a factor from N. 
By an inductive argument, we can reduce the problem 
further to the case where P contains only one step. 
Even so there are 36 cases to consider. In Fig. 8 we 
have illustrated one case. The weight assigned to the 
path 1-2-3-4-5-6--1 is {J&oc-1{Joc&-1, which according to 
(ii) of (2) is the identity. The other 35 cases as well 
as the filling in of details is left to the reader. 

For the next fact, we start with the assumption that 
directions are labeled as in Fig. 9, and that our path 
begins at (0, 0) in direction 0 with the terminal point 
of the directed edge at (0,0). We wish to show the 
following. 

Fact 2: All paths which start at a given directed 
edge and end at another given directed edge have 
weights which are elements of the same coset of N in G. 

We remark that it is not really significant that the 
path begins in direction state 0, since our weights are 
not direction oriented, so we stated Fact 2 quite 
generally. Fact 2 sheds some light on the definition of 
(k, m, s) given in (4) since (k, m, s) is defined there to be 
the weight of one of the more convenient paths from 
one given directed edge to another. 

Proof: For the proof of the Fact 2, let A,....., B, where 
A and B are elements from G, meaning that A = aibi B 
for some i, j. We know from Fact 1 that the weight 
w of a closed path which is in C satisfies w,....., I. Let 
P and Q be two paths starting and ending with the 

FIG. 9. The labelings of directions at 
a point. 

2 

---4--.... 3 

o 
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,----­
I 

P I P.--------+- FIG. 10. Two paths starting and 
ending with the same directed edges. 

, , 

r----·------------ Q 

same directed edges with weights p and q, respectively 
(see Fig. 10). If we reverse the path P, we get a new 
path whose weight is denoted by ft. Similarly, the 
reverse of the path Q has a weight denoted by q. We 
take into consideration two closed paths. First, we 
take P, then rotate clockwise 180° (a three step pro­
cedure involving a right turn, a step back, and a 
right turn), then reverse the path P, and finally rotate 
clockwise 180°. For the second path, we take Q, 
rotate clockwise 180°, reverse the path P, and finally 
rotate clockwise 180°. The weights of these two closed 
paths are 

p . rx.{3-1rx. • ft . rx.{3-1rx. I"'-.J I, 

q . rx.{3-1rx. • ft . rx.{3-1rx. I"'-.J I. (I 9) 

The fact that p I"'-.J q is immediate from the fact that 
I"'-.J is an equivalence relation. This proves the fact. 

Fact 3: Every element of Gr/Nr can be identified 
with a class of paths starting at (0, 0) with direction 
state 0 and ending at (m, k), 0 ~ m, k ~ r - 1, in 
direction state s, 0 ~ s ~ 3. 

We now turn our attention to some explicit cases. 

Examples: 

n = 1. In this case {3 = I, b = I and, according to 
(2), ci = rx.-1 and rx.4 = a. In this case G1 is a cyclic 
group of order 8. This is the weight group which 
is useful in the combinatorial method for evaluating 
the partition function of the two-dimensional Ising 
model with zero external magnetic field. 2 G1 assigns 
the "index" ± 1 to any closed path. 

n = 2. In this case {32 = b2 = I, and the group 
G2/N2 is according to Fact 3 a group of order 16. G2 

is a group of order 64 whose defining relations are 

f32 = 1= rx.{3ci{3, rx.2ci2 = b, rx.ci = cirx., rx.4 = abo 

(20) 

The author1 used this group to evaluate the partition 
function for the Ising model in two dimensions with 
a particular external magnetic field. The method in­
volves finding via G2 the enclosed area (tnod 2) of a 
closed path. There is figure-eight cancellation in this 
case, typified by weights assigned to paths in Fig. 2(a) 
and 2(b) which differ only by a factor of a. 

I M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952). 

n = 3. In this case G3/N3 has 36 elements associated 
with the four directions at each of the nine points in 
the diagram of Fig. 5. These elements have the form 

(3krx.{3-1{3m{3rx.-1(rx.{3-1)", 0 ~ k, m ~ 2, 0 ~ s ~ 3. 

The group G3 is of order 216. As yet we have not been 
able to connect this group with the two-dimensional 
Ising model. In any case, use of the weights in G3 

would lead to a "modified" enclosed area (mod 3) for 
any closed path. Reversing the direction of the path 
would give the inverse weighting and hence the nega­
tive area. Figure-eight cancellation, typified by G3 

assigning weights to the paths in Fig. 2(a) and 2(b) 
which differ only by a factor of a, is absent in this case. 
Path 2(a) is assigned weight ab2, while Path 2(b) is 
assigned weight I. Unfortunately, the combinatorial 
approach to the Ising problem is based in part on 
figure-eight cancellation. There are also other diffi­
culties encountered in trying to use the weights in G3 

in a combinatorial approach to the Ising problem. 
These difficulties are discussed in the next section. 

We remark in passing that we have been able to use 
the above ideas in evaluating the partition function 
for the Kagome lattice for a particular external mag­
netic field. In the computation one uses the weight 
group G4 for the triangular lattice. Explicit results will 
be presented elsewhere. 

4. STRONG COMBINATORIAL IDENTITIES 
AND THE ISING MODEL 

Beginning with a determinantal identity by Kac 
and Ward,2 the combinatorial approach to the Ising 
problem has been based on what we call a "strong" 
combinatorial identity. The best way to describe the 
situation is to repeat the identity of Sherman.3 A 
graph K of n vertices is given in the plane with no 
intersecting edges in which every vertex has an even 
number of edges touching it. Loops are allowed, and 
they are counted twice at the vertex in question in 
calculating the number of touching edges. To each 
edge i there is assigned an indeterminant d i particular 
to that one given edge i. An admissible subgraph Ko 
of K is a subgraph of K which also has an even number 
of edges touching each vertex. To each admissible 
subgraph, we assign a product XK 0 of the indeter­
minants di associated with the edges in Ko. A closed 
path (p) in the graph K is a sequence of directed 
connected edges touching terminal to initial in which 
no two successive edges are the same and such that 
the last edge touches the first edge terminal to initial. 
We do not allow backing up. That is, at each vertex 
the path continues in the direction of the directed edge 

a S. Sherman, J. Math. Phys. 1,202 (1960). 
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going out of the vertex along another edge. The other 
edge must exist by the fact that the graph K is ad­
missible. To each closed path (p) we assign a weight 

nIp) 

W(p) = (-I)k(p)IIdi ., 

8=1 

where 2rrk(p) is the change in the argument of the 
tangent vector to the path (p), where n(p) is the number 
of edges in the path (p), and where the di are the 
indeterminants associated with the successive edges 
of the path (p). The Feynman-Sherman identity states 
that 

! XK = exp - - ! - , ( 
1 W(P») 

KoCK 0 2 (p) n(p) 
(21) 

where the summation on the right extends over all 
closed paths (p) in K and where the summation on the 
left extends over all admissible subgraphs of K. When 
L = r. and di = x (independent of i), the left-hand 
side of (21) can be identified with a constant multiple 
of the partition function for the Ising model with zero 
external magnetic field. 

We note how "strong" must be the combinatorial 
cancellation in this formula, since we have assigned a 
different indeterminant to each edge. Cancellation on 
the right can occur only among paths which in total 
have the same edges. Thus, for example, if we are 
dealing with the lattice of the previous sections, then 
paths of the type pictured in Fig. 11, which appear 
on the right of (21) but not on the left, must cancel 
out on the right. Note that the paths in Fig. 11 cannot 
be subdivided into more basic closed paths. The only 
possibility for cancellation is that the four paths in 
Fig. 11 have weights which cancel in (21). This is 
actually the case as is easily seen, since 1 j2rr times the 
change in the argument of the tangent vector k(p) is 
1,0, 1,0, respectively, for all the paths (p) in Fig. 11. 

For computing the partition function in the case 
of nonzero external magnetic field what is needed is 
an analog of (21) which gives on the left the enclosed 
"area" of the graph Ko in addition to the weighting 
XKo' If there were an analog of (21) for the lattice r. 
using the weight group of the previous sections, i.e., 
a strong combinatorial result, then once again the 

cw llL~r 1 
(a) Ce) 

l1JJ[ll] 
(b) Cd) 

FIG. 11. Four closed paths enclosing the same two lattice squares. 

cancellation of the paths in Fig. 11 would be required. 
Now, according to the weight group G,the paths in 
(a), (b), (c), and (d) are assigned weights Xd, times 
-b2, I, _b-2, I, respectively. Only the cases b = I and 
b2 = I give the desired "strong" cancellation. One 
might ask, why not change the group G so that the 
desired cancellation takes place? But a simple closed 
path in r. with clockwise motion would have to be 
assigned the weight (-1 )bAreaIIdi in any case, and 
only this was used to construct G. Thus, we cannot 
find in general an analog of (21) giving strong cancel­
lation and providing us with a formula for computing 
the partition function of the two-dimension Ising 
model with nonzero external magnetic field. 

Having disproved the strong combinatorial nature 
of the general problem, we may now inquire as to how 
to proceed. Certainly functional-analytical techniques 
will be required. Assuming that the weight groups 
constructed in this paper play a role in the solution 
we can point out one additional feature. Recall that 
the evaluation of the partition function for the lattice 
r. with nonzero external magnetic field can, for low 
temperatures, be reduced to the evaluation of the 
generating function 

Z(,t) =! g(n; m)xn,tm 
n,m 

for the number g(n; m) of closed graphs in r. of n 
sides and having m units of enclosed area. The enclosed 
area of a closed graph is defined to be the minimal 
area contained inside a set of simple closed paths 
whose union is the graph and no two of which have 
a side in common. The problem is to evaluate 2(,t) 
for ,t on the unit circle. If the weight groups G 
constructed here play a role in the evaluation, then 
one has to evaluate a function which is sym­
metric in ,t and l This is ,because the group G disting­
uishes between areas circnmscribed clockwise and 
those circumscribed counterclockwise, assigning nu­
merically equal areas with opposite sign to the two 
senses of traversal. Thus, ,tm and ,t-m = ,tm should 
appear symmetrically in the problem. We suspect that 
one should try to evaluate /2(,t)l2. Note that this is 
exactly what Kac and Ward evaluated by their method 
in the case that ,t = 1. Also, the Feynman-Sherman 
identity can be rewritten so as to give 2(1)2 simply 
by removing the factor t in the exponent on the 
right-hand side. Of course, if one can evaluate /2(,t)12, 
then 2(,t) can~ be determined from a Wiener-Hopf 
factorization. 
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An elementary derivation of the system of phase factors defining the ray representations (those faithful 
to within a phase factor) of the Galilei group is presented. The proof employs the group elements 
themselves. In particular, the operation of conjugation (which corresponds to coordinate transformation) 
is used extensively to effect the desired result, i.e., in the notation of Levy-Leblond, 

U(b', a', v', R')U(b, a, v, R) 

= ±exp [i(lm)(a' • R'v - v' • R'a + by' • R'v)] x U(b' + b, a' + R'a + bY', v' + R'v, R'R). 

I N a classic mathematical paper dealing with arbi­
trary Li~ groups, Bargmannl has shown that the 

ray representations of the Galilei group are not all 
equivalent to vector representations. In addition, 
only those representations which are nol equivalent 
to vector representations are capable of physical 
interpretation.2.3 Furthermore, a superselection rule 
occurs, requiring a well-defined mass for states in 
nonrelativistic quantum mechanics.' This paper' pre­
sents an elementary derivation of Bargmann's result. 
Hopefully, the interested physicist will find it easier 
to follow than the previous works since the use of 
the group elements themselves (instead of their 
infinitesimal generators) makes the physical content 
more apparent. This approach was originally used by 
Wigner in his work on the Poincare group.5 In the 
interest of brevity and simplicity, mathematical rigor 
has occasionally been sacrificed, particularly in the 
continuity arguments. The interested reader may 
easily supply additional rigor, by arguments similar 
to those presented in Wigner's paper. 5 

To state the desired result we adopt the notation 
of Levy-Leblond.3 An element of the Galilei group is 
denoted 

G = (b, a, v, R), (1) 

where b is the time displacement, a the space trans­
lation, v the pure Galilean transformation, and R 
the rotation. The element G transforms x and I 

(a point in space and a time) into x' = Rx + vt + a 
and I' = 1+ b. The ray representations obey 

U(G')U(G) = w(G', G)U(G'G) 
= exp [i~(G', G)]U(G'G), (2) 

1 V. Bargmann, Ann. Math. 59,1 (1954). 
a E. Inonu and E. P. Wigner, Nuovo Cimento 9, 70S (1952); 

M. Hammermesh, Ann. Phys. (N.Y.) 9, 518 (1960). 
8 J.-M. Levy-Leblond, J. Math. Phys. 4, 776 (1963). 
, This is the "Bargmann superselcction rule" IA. S. Wightman, 

in Les Houches 1960 Summer School Proceedings (Hermann & Cie., 
Paris, 1960), pp. 159-226]. 

6 E. P. Wigner, Ann. Math. 40, 149 (1939). 

where U(G) is the unitary operator representing G; 
w(G', G) is the phase factor in question; and ;(G', G) 
is a real, continuous function of the parameters 
specifying G and G'. We show that for any real 
number m, a representation of the covering group of 
the Galilei group exists such that 

;(G, G') = (tm)(a' • R'v - v' • R'a + bY' • R'v). (3) 

[The covering group is simply connected, two-to-one 
homomorphic to the GaliIei group, and is obtained 
by replacing the rotation subgroup with SU(2).] 
Except for a possible additional sign ambiguity in 
w(G', G), the result for the Galilei group is the same 
as that for the covering group. 

Although the desired result [Eq. (3)] follows directly 
from the laws of multiplication of the "vector" oper­
ators. (accelerations and translations), our proof 
requires tht we first know their transformation 
properties under rotation. Any standard work on 
group theory demonstrates that every ray representa­
tion of SU(2) is equivalent to a vector representation. I •6 

Thus, if Rand Q are pure rotations [or, more ac­
curately, pure SU(2) transformations in the covering 
group], no phase factor is required in the equation 

U(R)U(Q) = U(RQ). (4) 

The operators of translation must now be adjoined 
to this subgroup. 

Let us choose translations in one direction, for 
example, that of the i axis. Rotations about the i axis 
leave these translations invariant. But multiplication 
in a ray representation could introduce a phase factor 
w so we must write 

U(oc, i)U(ai)U-I(oc, i) = w(oc, a)U(ai), (5) 

where U( oc, i) represents a rotation about i through 
an angle oc and U(ai) a translation by ai. Conjugating 

8 See, for example, E. P. Wigner, Group Theory (Academic Press 
Inc., New York, 1959), Chap. 14. 
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Eq. (5) with a rotation (P, z) through p rad about the 
z axis, and using Eq. (4), we have 

ro(oc, a)ro(p, a) = ro(oc + p, a). (6) 

The solution of (6) is ro(O, a) = exp [ix(a)O], where X 
is a function of a, the length of the translation vector. 
The representative of a rotation through 21T rad 
(about any axis) is ±I, so x(a) must be an integer for 
all values of a. 

Since translations along the z axis are a one­
parameter subgroup, any representation is equivalent 
to a vector representation. l We therefore have 

U(oc, z)U(az)U-l(oc, z) 

= U(oc, z)U(taz)U-l(oc, z)U(oc, z)U(taz)U-l(oc, z), (7) 

which implies xeta) + xeta) = x(a). But xeta) must 
be an integer as well as x(a); therefore, x(a) must be 
even. The argument may be repeated any number of 
times; since the only number which remains integral 
when repeatedly halved is zero, we conclude that 
x(a) = 0, or ro(oc, a) = 1. 

With this result in hand, all translations are un­
ambiguously defined by conjugating the operators of 
z axis translations with the appropriate rotation. Thus, 
we define 

U(aRZ) == U(R)U(az)U-l(R), (8) 

where R is any rotation. If there is another rotation 
Q such that RZ = Qz, then Q-lRZ = z and Eq. (5), 
with ro = 1, gives 

U(Q-lR)U(az)U-l(Q-lR) = U(az). 

Repeated use of Eq. (4) shows 

U(R)U(af)U-l(R) = U(Q) U(az) U-l(Q). (9) 

The operator U(aRZ) is therefore well defined. Further­
more, the operators U(aRZ) form a vector representa­
tion of the one-parameter subgroup of translations 
along RZ, since the translations along z form such 
a representation. 

Obviously, everything that has been said of trans­
lations applies equally well to the other subgroup of 
"vector" group elements, the pure Galilean trans­
formations. In other words, 

U(R) U(a) U-l(R) = U(Ra), U(R)U(V)U-l(R) = U(Rv), 

(10) 

for any rotation R and any translation (a) or 
acceleration (v). 

We have arrived at the crux of the derivation, 
determining the phase factors for the products of 
translation and acceleration operators. It is conven­
ient to deal with group elements specified by perpen­
dicular vectors first. Let 

U(a)U(v)U-l(a) = exp [icP 1. (a, v)]U(v), (11) 

where a and v are mutually perpendicular and each 
may represent either a pure Galilean transformation 
or a spatial translation. Conjugation of this equation 
by U(R), where R is a rotation about a through 1T rad, 
gives 

U(a)U( _v)U-l(a) = exp [icP 1.(a, v)]U( -v), (12) 

by Eq. (10). Multiplying Eqs. (12) and (11), we find 

1= exp [2icP 1. (a, v)]. 

Of the two roots of this equation, cP 1. (a, v) = 1T is 
ruled out by the continuity of cP 1. in a and the value 
cP 1.(0, v) = O. Thus cP 1. = 0, and any two operators 
which are specified by perpendicular vectors commute. 

Two operators specified by parallel vectors of the 
same type also commute, for they are members of a 
one-parameter subgroup. On the other hand, a phase 
factor might occur in the mixed product; indeed the 
determination of this phase factor is the essence of 
the proof. Let 

U(a) U(v) U( -a) = exp [icPlI(a, v)]U(v), (13) 

where a and v are now parallel; a is a translation and 
v an acceleration. Clearly, we may "rotate" this 
equation to the z axis by conjugation with the appro­
priate rotation operator. Then 

U(az)U(vz)U( -az) = exp [icPlI(a, v)]U(vz), (14) 

where a and v are the lengths of the corresponding 
vectors. Therefore cPli is a function of the lengths of 
a and v only; cPlI(a, v) = I(a, v). Substituting I for 
cPli and conjugating Eq. (14) with a translation along 
the z axis, U(bz), yields (after equating exponents) 

I(a, v) + I(b, v) = I[(a + b), v]. (15) 

The solution of Eq. (15) is lea, v) = k(v)a, where 
k(v) is a real function of v. 

By a similar argument k(v) must also be linear. 
Multiplying Eq. (14) on the right by U(az)U( -vz) and 
conjugating the resulting equation with the accelera­
tion U(uz) and substituting k(v)a for I(v, a) results in 

k(v)a + k(u)a = k(v + u)a. (16) 

The solution of Eq. (16) is k(v) = mv, where m is any 
real number. Thus Eq. (13) becomes 

U(aii)U(vii) = exp [im(a' v)]U(vii)U(aii) (17) 

for any unit vector ii. 
The general mixed product may now be constructed 

by analyzing the multiplicand operator into perpen­
dicular and parallel components. The result is the 
desired one, 

U(a)U(v) = exp [im(a. v)]U(v)U(a). (18) 

To arrive at the complete result, Eq. (3), we must 
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introduce the time displacement operators. It is clear 
that a vector representation can be chosen so that if 
(b) and (b' ) are elements of the time displacement 
subgroup, then 

U(b)U(b' ) = U(b + b'), (19) 

because this is a one-parameter group. The conjuga­
tion of a time displacement by a rotation must now 
be shown to be devoid of a phase factor. 

Let 

U(IX, ii)U(b)U-l(lX, Ii) = exp [i<fo{IX, ii, b)) . U(b), (20) 

where (IX, Ii) stands for a rotation through angle IX 

about the unit vector Ii. Conjugation of this equation 
by a rotation through fJ about ii leads to 

<fo(rt., ii, b) + <fo(fJ, ii, b) = <fo(rt. + fJ, Ii, b). 

Again the solution is linear, 

<fo(rt., Ii, b) = g(li, b)rt.. (21) 

Using this substitution in Eq. (20) and multiplying by 
a similar equation in which b' has replaced b, gives 
(after equating exponents) 

g(li, b)rt. + g(li, b')IX = g(ii, b + b')rx. (22) 

where U(v) is again an acceleration, U(vb) a transla­
tion, and U(b, vb, 0, I) is a combined time and space 
translation. Rotating through 17 rad, this time about 
an axis perpendicular to v, we have 

U( -v) U(b) U(v) = exp [i<fo(v, b)]U(b)U( -vb). (29) 

Sufficient manipulation of the last two equations 
produces 

exp [2i<fo(v, b)]U(v)U(b) = U( -vb)U(v)U(vb)U(b). 

(30) 

Here the connection with the previous results [Eq. 
(18)] becomes apparent. Substituting into the right­
hand side of Eq. (30), we have 

exp [2i<fo(v, b)]U(v)U(b) = exp [fm( -vb· v)]U(v)U(b). 

(31) 
Again continuity allows only one solution for <fo, 

<fo(v, b) = (!m)( -vb· v), (32) 

U(v)U(b) = exp [-i(!m)(vb· v)]U(b)U(bv)U(v). 

Together with Eq. (18), this suggests defining the 
operator U(a, v), which corresponds to the group 
element (0, a, v, J), as 

U(a, v) = exp [-i(tm)(a· v)]U(a)U(v) 

= exp [i(!m)(a. v)]U(v)U(a). (33) 

Thus g(li, b) = h(li)b, and <fo(rt., ii, b) = h(ii)brx. But, as 
noted above, U(ii,217) = ±J, so <fo(ii, 217, b) = 217k, 
where k is an integer. Again, this forces h(li) = 0, so 

U(R)U(b)U-l(R) = U(b) 
Thus, Eq. (31) takes the simple form 

(23) 
U(v)U(b) = U(b)U(bv, v). (34) 

for all time displacements b and rotations R. 
Using the trick of conjugation by rotation (through 

17 rad about an axis perpendicular to a) on the equation 

U(a) U(b) U( -a) = exp [i<fo(a, b)]U(b), (24) 

where a is any translation, produces 

U( -a)U(b)U(a) = exp [i<fo(a, b)JU(b). (25) 

Multiplying Eq. (24) on the right and Eq. (25) on the 
left by U(a) yields 

U(a)U(b) = exp [i<fo(a, b)]U(b)U(a), 

U(b)U(a) = exp [i<fo(a, b)]U(a)U(b). (26) 

Comparison of the above equations shows that 
exp [i<fo] = exp [- i<fo], and the continuity of <fo allows 
only the solution <Pea, b) = O. This permits us to 
define a representative for the combined operations 
of space and time translations, 

U(a)U(b) = U(b)U(a) = U(O), (27) 

where G = (b, a, 0, I). 
For the conjugation of a time displacement by an 

acceleration, the group law gives 

U(v)U(b)U( -v) = exp [i<fo(v, b)]U(b, vb, 0, J) 

= exp [i<fo(v, b)]U(b)U(vb), (28) 

The final result is now at hand. Defining 

U(b, a, v, R) = U(b)U(a, v)U(R), 

we may easily check that the desired limits of 

U(b, 0, 0, J) = U(b), U(O, a, 0, J) = U(a), 

(35) 

U(O, 0, v, J) = U(v), U(O, 0, 0, R) = U(R), (36) 

all occur. Thus, the definition is consistent, and all the 
multiplications occurring in the definition are free 
from phase factors. The product of two operators, 
U(b', ai, v', R') and U(b, a, v, R), may be easily shown 
to be 

U(b', a', v', R')U(b, a, v, R) 

= exp [i(tm)(a' • R'v - Vi • R'a + bv' • R'V)] 

x U(b + b', a' + v'b + R'a, R'v + v', R'R). (37) 
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T~e elect~omagnet~c ra~iation ~manating .from ~ source immersed in a linear, homogeneous, con­
ductIng medIUm movIng with a umform velocity v with respect to the rest frame of the source distribution 
is investi~ated .. It i~ shown that in the nonrelativistic limit, that is for vIc. and vIc,. « 1,where c. is 
the velocity of hght In free space and Cm denotes the phase velocity of a wave in the medium considered 
at rest~ the electromagnetic field intensities can be expressed in terms of a pair of scalar and vector 
p<;>tentlals by specifying a modified Lorentz condition. The time-dependent Green's function associated 
with the hyperbolic partial differential equations satisfied by these potentials is determined explicitly. 

I. INTRODUCTION 

I N view of its relevance to astrophysical and spatial 
studies, there has recently been a renewal of 

interest in the subject of electrodynamics of moving 
material media. Critically reviewed and reformulated 
by Tai,1.2 the fundamental work of Minkowski3 and 
Sommerfeld4 has been used to examine the problem of 
electromagnetic radiation in a homogeneous, isotropic 
moving medium in the nonrelativistic approximation 
case.5 •6 The same problem, but without restrictions 
as to the velocity of the medium, was approached by 
TaP from an operational point of view introduced 
originally by Levine and Schwinger,S whereas Lee 
and Papas9 followed a four-vector covariant formula­
tion. More recently, Tajlo examined the first-order 
theory of the electro magnetics of moving anisotropic 
media, and Lee and Loll solved for the radiation in a 
moving uniaxially anisotropic medium. The afore­
mentioned investigations are restricted to lossless 
media and time-harmonic variations of the source 
distribution. Collier and Tai,12.13 however, have 
presented a brief discussion of plane-wave propagation 

t Present Address: Bell Telephone Laboratories Inc., Whippany, 
N.J. 

1 C. T. Tai, Proc. IEEE, 52, 685 (1964). 
2 c. T. Tai, University of Michigan, Radiation Laboratory Report 

No. RL-310 (1965). 
• H. Minkowski, Nachr. kg!. Ges. Wiss. Gtittingen 1, 53 (1908). 
4 A. Sommerfeld, Electrodynamics (Academic Press Inc., New 

York, 1964), pp. 280-290. 
5 R. T. Compton, Jr., and C. T. Tai, Ohio State University, 

Antenna Laboratory Report No. 1691-3 (1964). 
6 R. T. Compton, Jr., and C. T. Tai, Trans. IEEE Antennas 

Propagation, API3, 574 (1965). 
, c. T. Tai, Trans. IEEE Antennas Propagation, AP13, 322 (1965). 
8 H. Levine and J. Schwinger, in Symposium on the Theory of 

Electromagnetic Waves (Interscience Publishers, Inc., New York, 
1951), pp. 355-391. 

• K. S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1668 (1964). 
10 C. T. Tai, Radio Sci. 69D, 407 (1965). 
11 S. W. Lee and Y. T. Lo, Radio Sci. 1, 313 (1966). 
12 J. R. Collier and C. T. Tai, Trans. IEEE Antennas Propagation, 

API2, 375 (1965). 
13 J. R. Collier and C. T. Tai, Trans. IEEE Microwave Theory 

and Techniques, MTT13, 441 (1965). 

in lossy media. Lastly, Compton14 has determined the 
time-dependent Green's function for a lossless, 
isotropic medium. 

The purpose of this paper is to examine the electro­
magnetic radiation resulting from sources of arbitrary 
time dependence in a homogeneous, isotropic, 
conducting medium of infinite extent. The material is 
assumed to be moving at a uniform velocity v with 
respect to the rest frame of the source distribution. 

Because no solution of this problem could be found 
in the literature, it was thought worthwhile to find 
the modification of the character of the radiation due 
to the presence of conductivity. To avoid excessive 
difficulties in the ensuing development, only the 
nonrelativistic approximation situation is considered. 

It is determined first that the electromagnetic field 
intensities referred to the laboratory coordinate 
system are expressible in terms of a pair of scalar 
and vector potential functions satisfying symmetric 
hyperbolic partial differential equations of the second 
order with respect to time and the space coordinates. 
This is made possible by invoking a generalized 
Helmholtz theorem, and specifying a new type of 
Lorentz gauge. 

Ordinarily, one would solve for the time-dependent 
Green's function associated with the potential 
equations by using both time and space Fourier 
transformations. Instead of following this classical 
approach, however, we introduce an alternative method 
which is based on the fact that there exists a relation 
between the fundamental solution of a radiation 
problem and that of a corresponding Cauchy initial­
value problem. In addition to its being ideally suited 
for bona fide initial-value problems, it is believed that 
this technique is "operationally" easier to apply, 
especially when dealing with simple, single partial 
differential equations, or small systems of partial 

14 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966). 
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differential equations of the first order with respect 
to time. 

II. THE MAXWELL-MINKOWSKI EQUATIONS 
FOR A CONDUCTING MEDIUM 

Let K and K' denote two inertial systems in relative 
motion. We identify the primed coordinate system as 
being at rest with respect to a homogeneous, isotropic, 
conducting medium of infinite extent which moves 
with a uniform velocity v relative to the laboratory 
system K. 

As measured by an observer in the laboratory 
system, the electromagnetic fields must satisfy 
Maxwell's equations 

V x E = -oB/ot, (Ia) 

V x H = oD/ot + J, + J, (lb) 

V·D = p, + p, 

V·B = 0, 

(Ic) 

(ld) 

where E, H signify, respectively, the electric and 
magnetic field intensities, D, B the electric and 
magnetic displacements, p" J, the free charge and 
current densities and, finally, p, J the externally 
applied charge and current distribution densities, all 
referred to the mks system of units. 

Due to the invariance of the fundamental laws of 
physics in the light of the special theory of relativity, 
Maxwell's equations in the K' frame can be written 
down as follows: 

V' x E' = oB'/ot', 
V' x H' = oD'/ot' + J; + J', 

V' • D' = p; + p', 
V'·B'=O. 

(2a) 

(2b) 

(2c) 

(2d) 

It is assumed that the constitutive relations in K' are 
given by 

D' =E'E', 

B' = ,u'H', 

(3a) 

(3b) 

J; = a'E'. (3c) 

The electric and magnetic permittivities and the 
conductivity are taken to be independent of time and 
the space coordinates. 

If v is small compared with the speed of light, the 
following first-order relativistic transformations apply: 

E' = E + v x B, 

D' = D + c-2y x H, 

H' =H-v xD, 

B' = B - c-2v X E, 

J; = Jf - PIV, 

p; = p, - c-2y. J,. 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

(4f) 

In view of the brevity of the relaxation time, it may be 
assumed that the free charge density P; is zero inside 
the conducting medium. Bearing this restriction in 
mind, by substituting Eqs. (4a)-(4f) into Eqs. (3a)-(3c) 
and neglecting terms of the order of v/cv•m , we 
obtain the constitutive relationships 

D = e'E + A x H, (5a) 

B = ,u'H - A x E, (5b) 

J, = a'(E + ,u'v x H), (5c) 

p, = c-2v • J" (5d) 

where A = (,u' e' - ,uOEO)V, EO, ,uo being, respectively, 
the electric and magnetic permittivities of free space. 

Maxwell's equations in K assume now the "definite" 
form 

V x E = -(%t)(,u'H - A x E), (6a) 

V x H = (%t)(E'E + A x H) + a'(E + ,u'v x H) + J, 

(6b) 

V • (e'E + A x H) = a' c-2v • (E + ,u'v x H) + p, 

(6c) 

V • (,u'H - A x E) = 0. (6d) 

These expressions, commonly known as the Maxwe/l­
Minkowski equations, may be rearranged into the 
following more convenient form: 

Do x E = -(%t),u'H, (7a) 

Do x H = (%t)e'E + a'E + a'p/v x H + J, 
(7b) 

Do' (e'E) = E',u'a'v· E + p + A· J, (7c) 

Do • (,u'H) = 0, (7d) 

in which Do represents the differential operator 
V - A(%t). 

m. SCALAR AND VECTOR POTENTIALS 

It is shown in this section that the electromagnetic 
field intensities can be given in terms of appropriately 
defined scalar and vector potentials satisfying a 
generalized Lorentz condition. 

In view of the identities 

Do' Do x F = 0, 

Do x Dorp = 0, 

(8a) 

(8b) 

which hOld for all twice differentiable scalar and 
vector functions rp and F, a generalized Helmholtz 
theorem can be formulated such that for any vector 
field C, there exists a scalar field rp and a vector field 
F, satisfying the equationl4 

C = Dorp + Do x F. (9) 
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On the basis of Eq. (7d) and the above remarks, a 
vector potential A is defined by 

H = (1/",')Do x A. (10) 

This result, in conjunction with Eq. (7a), suggests that 

E = ~Dotp - oAlot, (11) 

where tp is a suitably chosen scalar potential function. 
Substituting these expressions for E and H into the 
second of the Maxwell-Minkowski equations, one 
finds that 

D~ - ",'€'(02A/ot2) -""(J"(oA/ot) 

= Do(Do' A) -""(J"v x (Do x A) 

+ ",'€'(%t)(Dotp) + ""(J"Dotp -",'J. (12) 

However, since 

v x (Do x A) = Do(v, A) - (v. Do)A - (A. Do)v 

- A x (Do x v) ~ Do(v, A) - V· VA 
and 

D~ ~ [V2 - 2(0/ot)A • V]A 

to first order in v/cv•m , it follows that 

[V2 - 2(a/at) A • V - ",' €' (a2/ot2) - ",' (J" (a/at) 

- !"'(J"v· V]A = Do[Do' A + !"'€' (otp/ot) 

+ ""(J"tp + !"'(J"v· A] - ",'J. (13) 

Similarly, from Eqs. (7c) and (11), it can be shown that 

D~tp - ""(J"v. (Dotp) + (Do -""(J"v). (oA/ot) 

= -(p + A • J)/€' (14) 
or, since 

D~ ~ [V2 - 2(0/at)A • V] 

and, furthermore, 

v· (Dotp) ~ V· Vtp 

to order (v/cv•m)2, 

[V2 - 2(0/ot)A • V - ",' (J"v • V]tp + (a/at) 

x (Do' A - ""(J"v. A) = -(p + A· J)/€'. (15) 

If A and tp are chosen to satisfy the generalized 
Lorentz condition 

Do' A + ",' E'Otp/ot + ",' (J"tp - ",' (J"v • A = 0, (16) 

it is seen immediately that the potential functions 
obey the following partial differential equations: 

[V2 - 2(0/ot) A • V - ",' E'(02/ot2) - ",' (J"(%t) 

-""(J"v. V]A = -",'J, (17a) 

[V2 - 2(0/ot) A • V - ",' E'(02/ot2) - !'" (J"(%t) 

- ""(J"v. V]tp = -(I/E')(p + A. J). (17b) 

Let us for convenience assume that v = VCI •• This 

condition does not constitute a serious restriction, 
since a coordinate transformation of the final result 
can be used to treat the more general case. To solve 
for the potentials under this assumption, it is custom­
ary to define the time-dependent Green's function 
G(r, t/r', t') as the solution of the equation 

[V2 - E' ",'(02/ot2) - ",' (J"(%t) - 2A(02/otoZ) 

- ""(J"v(%z)]G(r, t/r', t') = b(r - r')b(t - t'), 

t ~ t'; A = IAI. (18) 

The Green's function should satisfy the causality 
condition; namely, G = 0 for t < t'. The electro­
magnetic potentials are given in terms of G in the 
following fashion15 : 

A(r, t) = -",' r J(r', t')G(r, t/r', t') dr' dt', (19a) 
JEe 

tp(r, t) = - ~ r [per', t') + A· J(r', t')] 
E JE& 

x G(r, t/r', t') dr' dt'. (19b) 

It has already been established that E and H can be 
derived from the potentials [cf. Eqs. (10) and (II)]. 

IV. RELATION BETWEEN RADIATION AND 
INITIAL-VALUE PROBLEMS 

Ordinarily, when dealing with a radiation problem, 
one determines the time-dependent Green's function 
using a combination of temporal and threefold 
spatial Fourier transformations and residue theory. 
It is .shown here, however, that in certain cases it is 
simpler to examine first the associated Cauchy 
initial-value problem. This alternative technique is 
described briefly in the following two subsections and 
is illustrated in Sec. V by exhibiting a solution to the 
radiation problem (18). 

A. The Riemann Matrix 

An elementary solution to the partial differential 
equation 

Ltp(r, t) = fer, t) (20) 

is the time-dependent Green's function G(r, t/r', t') 
satisfying the equation 

LG(r, t/r', t') = b(r - r')b(t - t') (21) 

and the causality condition, as pointed out in the 
previous section. On the other hand, if L is considered 
to be a second-order partial differential operator with 
respect to time, the fundamental solution of the 

15 The integration in Eq. (19b) extends over a four-dimensional 
Euclidean space containing the space coordinates and time. 
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Cauchy initial-value problem 

L<I>(r, t) = 0, 

<I>(r, t)]t=t' = 0, 

(%t)<I>(r, t)]t=t' = g(r, t), 

is defined for t ~ t' by the equation 

LH(r, tlr', t') = ° 
with H satisfying the initial conditions 

H]t=t' = 0, 

oHlot]t=t' = b(r - r'). 

G is related to H as followsI6 : 

G(r, tlr', t f
) = {

o , t < t', 
H(r, t/r', t'), t ~ t'. 

(22a) 

(22b) 

(22c) 

(23a) 

(23b) 

(23c) 

(24) 

It is essential for the development of the new 
approach to the solution of the radiation problem that 
we formulate the associated Cauchy initial-value 
problem as a system of partial differential equations 
of the first order with respect to time. Let us therefore 
write 

(olot)u(r, t) = Pu(r, t), (25a) 

where, in general, u(r, t) is the (column) matrix 
representation of an n-component vector function, 
and P is an n X n matrix whose entries are poly­
nomials in the differential operators with respect to 
the spatial coordinatesY With this problem we 
associate the initial condition 

u(r, t)]t=t' = uo(r, t'). (25b) 

It is our intent here to determine a solution u(r, t) 
which satisfies the initial conditions and depends 
continuously on the initial data for t ~ t'. It is 
assumed that the Cauchy problem is well posed so 
that the solution is unique and sufficiently differenti­
able.Is 

The n-fold spatial Fourier transforms are introduced 
next: 

F • u(r, t) == w(s, t) = r e-ir··u(r, t) dr, (26a) 
JEn 

p-l. w(s, t) = u(r, t) = _1_ r eir··w(s, t) ds. (26b) 
(27T)n JEn 

The integration is over an n-dimensional Euclidean 

18 I. M. Gel'fand and G. E. Shilov, Generalized Functions, trans­
lated by E. Saletan (Academic Press Inc., New York, 1964), Vol. 
I, pp. 204-205. 

17 In general, P = P(ojox., x.' t), In the subsequent work, how­
ever, we shall restrict the discussion to homogeneous, linear media 
whose characteristic parameters are independent of time. 

18 V. M. Borok, Am. Math. Soc. Transl. 2,285 (1957). 

space. Taking the Fourier transform of the system we. 
obtain 

(olot)w(s, t) = P(S)w(s, t). (27a) 

Note that the Fourier-transformed initial condition 
becomes 

F· uo(r, t') == woes, t'). (27b) 

We remark here that the problem of the correctness 
of the Cauchy problem (22) is equivalent to the 
correctness of the problem (27). On the basis of this 
remark, a unique solution exists for t ~ t' and can be 
written in the form 

w(s, t) = Q(s, t, t')wo(s, t'), (28) 
where 

Q(s, t, t') = exp [P(s)(t - t')]. (29) 

A solution of this type is written down by analogy to 
the scalar case. The matrix exponential in Eq. (29) is 
defined by means of the infinite series 

ef.t = I + Pt + ... + 1. pntn + . . . . (30) 
n! 

This matrix series exists for all P for any fixed value 
of t, and for all t for any fixed value of P.I9 

Operating with the inverse Fourier transform on 
both sides of Eq. (28), we arrive at 

u(r, t) = F-1 
• w(s, t) 

= [p-l. Q(s, t, t')] * [F_l • woes, t')] 

= r R(r, tlr',t')uo(r', t') dr'. (31) 
JEn 

The matrix function 

R(r, tlr', t') 

= _1_ r exp [i(r - r') • sl + P(s)(t - t')] ds 
(27T)n JEn 

(32) 
is known as the Riemann matrix of the initial-value 
problem. Its connection with the scalar fundamental 
solution H(r, tlr', t') introduced earlier in this section 
is given in Sec. V. The Riemann matrix satisfies the 
system 

oR/ot = PR 

with the initial condition 

R]t=t' = b(r - r')1. 

Both of these statements are easily verifiable. 

B. Sylvester's Interpolation Formula 

(33a) 

(33b) 

It is clear from the preceding subsection that a 
significant task for the determination of the Riemann 

19 R. Bellman, Introduction to Matrix Analysis (McGraw-Hill 
Book Company, Inc., New York, 1960), pp. 159-169. 
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matrix is to expand the matrix exponential 

Q(s, t, t') = exp [P(s)(t - t')] 

in a simple form. Towards this goal we now state a 
basic property of functions of matrices. 

Let P be an n X n matrix which can be diagonalized 
by means of a similarity transformation, namely, 

D = SPS-l. (34) 

Furthermore, it is assumed that the eigenvalues 
Aj ,j = 1, 2, ... , n, of P are distinct. Although these 
are serious restrictions, the following result is suffi­
cient for the illustration to be given in the next 
section. 

If f(A) and f(P) denote corresponding analytic 
scalar and matrix functions, it can be proven that 

" f(P) = L f(Aj)A j . (35) 
j=1 

The constituent idempotent matrices A; are defined 
by the expression 

(36) 

in which Ej; is obtained from an n X n null matrix by 
replacing the (jj) entry with 1. 

One usually needs the eigenvectors of P in order to 
find the matrices A;. This is because the A;'s are 
defined in terms of S, the matrix whose columns are 
the eigenvectors of P. Nevertheless, it is possible to 
determine the constituent idempotents directly as 
polynomials in P, without knowing the eigenvectors. 
Specifically, we have 

Ak = qiP). (37) 

The interpolatory polynomial qiA) of degree n - I 
in A is given by20 

qiA) = IT A - A; . 
;=1 Ak - A; 
;#k 

(38) 

Finally, by virtue of Eqs. (35) and (37), we obtain 
Sylvester's interpolation formula 

" f(P) = L f(Ak)qiP). (39) 
k=1 

In particular, we write 

Q(s, t, t') = i e;·'[iI p(s)(t - t') - A;IJ. (40) 
k=1 ;=1 Ak - Aj 

Nk 

If the characteristic roots of P are not distinct, or P 
cannot be diagonalized by a collineatory trans­
formation, the above result no longer applies. For a 

20 J. S. -Frame, IEEE Spectrum 1, 102 (1964). 

complete discussion of the general case the reader 
should consult Refs. 18 and 21. 

V. THE SOLUTION FOR THE TIME-DEPENDENT 
GREEN'S FUNCTION 

Consider the Cauchy problem 

[V'2 - e'ft'(o2jot2) - ft'a'(ojot) - 2A(02jozot) 

- ft' a'(%z)]"P (r, t) = 0, (41a) 

"P(r, t)]I=t' = 0, (41b) 

(%t)"P(r, t)]t=t' = g(r, t'). (41c) 

Its solution can be simplified considerably by the 
substitution 

lI>(r, t) = ?per, t) exp (ClZ + (3t). 

If the scalars Cl, (3 are chosen so that 

and 

0: = _1{ 'a'v) + ft'a'A(l + vA) 
2 p, 2(p,'e' + N) 

(3 = p,'a'(l + vA) 
2(p,'e' + A2) , 

lI>(r, t) satisfies the "semicanonical" equation22 

(42) 

[V'2 - e'ft'(o2jot2) - 2A(02jotoZ) + q2]II>(r, t) = 0 

(43 a) 
with the modified initial conditions 

lI>(r, t)]t=t' = 0, (43b) 

(ojot)lI>(r, t)]t=I' = g(r, t') exp (ClZ + (3t') == her, t'). 

In Eq. (43a), q2 == p,'e'(32 + 2ACl(3 - 0:2• 

(43c) 

We now apply the notions and results of the 
previous section to the Cauchy problem for the 
scalar function lI>(r, t). First, we convert it into a 
system of two first-order partial differential equations 
with respect to time by defining 

U1 = 11>, U2 = oll>jot, u = [::l (44) 

We may therefore write 

(%t)u(r, t) = Pu(r, t), (45) 
where 

[ 

0 
p-

(V'2 + q2)/p,' e' -(2A/P,~ e')(%Z)]' 

21 F. R. Gantmacher, The Theory of Matrices, translated by 
K. A. Hirsch (Chelsea Publishing Company, New York, 1959), 
VoL I, pp. 89-129 . 

•• The second-order partial differential equation would be in the 
"canonical" form if the term involving the mixed derivatives with 
respect to z and t were absent. See R. Courant and D. Hilbert, 
Methods of Mathematical Physics (Interscience Publishers, Inc., 
New York, 1962), VoL II, pp. 180-184. 
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A threefold spatial Fourier transformation yields the 
relation 

(iJliJt)w(s, t) = P(s)w(s, t) (46) 
in which 

pes) = [( _S2 : q2)lp le' -(2A;plel)isJ; 

S2 = s; + s: + s;. 

A solution of the characteristic equation 

det [pes)! - AI] = 0 (47) 
results in 

(48) 
where 

Wo = (Alp'e')is., 

WI = (p'e')-![s! + s: + s!(1 + Nlp'e') _ q2]! 

for the eigenvalues of pes)!. The interpolatory poly­
nomial is given by 

q(A) = A - 1.2 ell + A - Al eA. 

Al - 1.2 1.2 - Al 

-co t(1 sin wIt + sin W1t+ t) = e 0 II. -- Wo -- cos WI . 
WIt WI 

Hence, by Eq. (40), 

[
sin W T Q'(S, t, t') = e-COoT __ 1 pes) 

WI 

(49) 

+ (Wo sinw~IT + cos WIT) I] (50) 

in which T = ! - t '. 
By reason of the definitions in Eq. (44) and the fact 

that we are involved with a second-order differential 
equation [cf. Eq. (43)] in this particular discussion, we 
need only be concerned with the (12) entry of Q', viz., 

(Q)12 = e-WOT(sin WIT/WI)' (51) 

The corresponding term in the Riemann matrix is 
found by taking the inverse Fourier transform. 
Thus,2a 

(R')12 = p-1 • (Q')12 

=-- e e --- s 1 i is'(r-r') ( -COOT sin WIT) d 
(217)3 Ea WI 

or, more explicitly, 

(R')12 = (2~)3 fEa eis'R 

(52a) 

. -f 2 + 2 + 21b2 2)! 
X e • s ( 

-iA"I. T SIn u,\so: Sv S. - q ) d 
u(s; + s! + s:lb2 _ q2)! ' 

(52b) 

18 Q' and R' are used in connection with the scalar function 
<lI(r, t). The corresponding unprimed quantities are referred to 
tp(r, t). 

where the following abbreviations are used: 

u = (p'e',!, b = (1 + A 2Ip'e')-!, R = r - r'. 

Let sand R undergo the following linear trans­
formation: 

so=A·s, 

Ro = A-1·R, 

(53a) 

(53b) 

where the matrix representation of A is given by 

and 

A=[~ ~ ~] 
o 0 lib 

3 

So = 1sjaj , 
j=l 

We should recall at this stage the general equivalence 
relation 

( R') = _1_ r eis'RF(s) ds 
12 (217)3 JEs 

= _1_ r eiso'Ro F(A-1 • s )(det A)-l ds (54) 
(217)3 JEa 0 0, 

which is easily shown to hold for the above linear 
transformation.s4 As a consequence of these results 
we have 

(R') _ _ b_ r iso·RI sin UT (s~ - q2)! d (55) 
12 - (217)3 JEs e u(s~ _ q~! So' 

In this equation, R1 = X1a1 + x 2a2 + (xa - yT)aa, 
y = u2bA. This integral can be brought into a more 
manageable form by considering a spherical coordi­
nate system and choosing the polar axis in the R1 
direction. Then, 

24 G. Birkhoff and S. MacLane, A Brief Survey of Modern Algebra 
(The Macmillan Company, New York, 1962), pp. 212-254. 
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or,n sinc" the integrand is an even function of SO' 

J(R ) - .! fa> i'oRl sin u7{s~ - q2)! d 
l' 7' - e 1. So 

2 -a> U(S~ _ q2)"W 

= ! Jo[q(R~ - U27'2)!] 
2 

x for [c5(Rl + U7") + c5(Rl - U7")] d7". (58) 

By direct differentiation, it follows from Eqs. (56) and 
(58) that26 

(R')12 = J!..-1.. c5(Rl - U7') 
41TU R1 

+ 2 1 2 2 ! J1[q(R~ - U27'2)!] 
41T(Rl - U 7') 

X 1+(Rl - U7"), (59) 

1+(x) designates the Heaviside unit step function 
defined as 

{
O, x < 0, 

1+(x) = 
1, x 2 0. 

As a result of Eqs. (31), (41), (43), and (44) we may 
write 

$(r, t) = (R')12 * her, t') 

= r [R'(r, tlr', t')]12 (hp(r', t)] 
JE3 at t=t' 

X exp (IXZ' + (Jt') dr'. (60) 

On the other hand, we recall that 

1j1(r, t) = exp (-IXZ - (Jt)$(r, t) 

=I exp [-IX(Z - z') - (J(t - t')] 
E. 

X [R'(r, tjr', t')]12 otp(r', t)] dr' 
at t=t' 

=f [R(r, tjr', t')]12 otp(r', t)] dr'. (61) 
E3 at t=t' 

This yields immediately the relationship 

(R)12 = exp [-IX(Z - z') -(J(t - t')](R')12' (62) 

On the basis of Eqs. (24), (59), and (62), we finally 
assert that 

G(r, tjr', t') = ° (63a) 

26 G. F. D. Duff and D. Naylor, Differential Equations 0/ Applied 
Mathematics (John Wiley & Sons, Inc., New York, 1966), p. 412. 

21 Since the following solution applies only for t ~ t', there is no 
contribution from the term involving the Dirac delta function 
t5(R 1 + ItT). 

for t < t', and 

G(r, tlr', t') = u2(R)12 = u2 exp [-<x(z - z') - {J7"] 

X - - c5(Rl - U7") - - ------;0 ( 
bib 1 

41TU R1 41T (R~ - U27'2)! 

X J1[q(Ri - U27'2)!]1+(R1 - U7"») (63b) 

for t 2 t'. In this equation, 

Rl = {(x - X')2 + (y - y')2 + b2 

X [(z - z') - (y/b)(t - t')]2}!. (64) 

Before an attempt is made to give an interpretation 
of the above solution, we consider the following 
interesting special cases: 

(1) If v = ° and (1' -:F 0, 

G(r, tjr', t') = u2 exp (- ~ 7") 
2E' 

X - - c5(R - U7") - - -----; ( 
1 1 1 1 

41TU R 41T (R2 - U27"2)l 

X J1[}(1'(,u' /E')!(R 2 - U27'2)l] l+(R - U7"») (65) 

is the solution of the problem 

[V2 - ,u'E'(02jot2) - ,u'a'(%t)] G(r, tjr', t') 

= <5(r - r')<5(t - t'), t 2 t'. (66) 

It is also very interesting to note here that if the 
factor exp [-«(1' 7" )/(2E')] were absent in Eq. (65), the 
remaining expression would correspond to the time­
dependent Green's function for the three-dimensional 
Klein-Gordon equation of relativistic quantum 
mechanics, viz., 

[va - ,u' E'(02jot2) + q2] G(r, tjr', t') 

= <5(r - r')<5(t - t'), t 2 t'. (67) 

A solution to this equation has been obtained by 
means of contour integration in the Ref. 27. 

(2) If v -:F 0 and (1' = 0, 

G(r, tlr', t') = (buI41T)R!1 <5(Rl - U7") (68) 

satisfies the equation 

[V2 - ,u' E'(02jot2) - 2A(02/otoZ)] G(r, tjr', t') 

= <5(r - r')<5(t - 1'), t 2 t', (69) 

which is the nonrelativistic approximation of 
Compton's result (cf. Ref. 14). The reader is also 
referred to a recent communication by Unz and 
Chawla.28 

27 P. M. Morse and H. Feshbach, Methods a/Theoretical Physics 
(McGraw-Hill Book Company, Inc., New YorK, 1953), Vol. I, 
pp. 854-857. 

28 B. R. Chawla and H. Unz, Proc. IEEE 54, 307 (1966). 
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(3) Lastly, if v = 0 (or 1" E' = I'oEO) and (I' = 0, 

G(r, I/r', I') = (U/47T) R-l (J(R - UT) (70) 

is the well-known solution of the simple wave 
equation 

[V2 - U-2(02/012)] G(r, I/r', t') 

= (J(r - r')(J(1 - t'), I ~ I'. (71) 

VI. CONCLUSIONS 

The part of the Green's function G(r, I/r', I') [cf. 
Eq. (63b)] containing the Dirac (J function can be 
interpreted as an expanding wavefront which arrives 
at Rl = UT diminished by the geometrical factor I/R1 

and modified by the exponential term 

exp [- oc(z - z') - ,8T]. 

R1 , as given in Eq. (64), can be taken as the "radial" 
distance between the point (x',y', z' + YT/b) and the 
observation point rex, y, z) with a scaling of the 
z axis dimensions by the factor b2 which, in turn, is 
associated with the Lorentz contraction along this 
axis. 

Whereas for a "stationary" medium (v = 0 or 
E'I" = Eol'O) the expanding wavefronts are spheres 
centered at the spatial position of the source, in the 
more general problem under consideration here, apart 
from the multiplicative factors l/Rl and 

exp [-oc(z - z') - ,8T], 

the wavefronts obey the equation 

Rl = UT. (72) 

It is quite easy to show that, for constant T, the 
wavefronts are spheroidal surfaces with semiaxes UT, 
UT, and uT/b along the directions of the x, y, and z 
axes, respectively. Since b > 1, it is seen that UT / b < aT; 

hence the wavefronts are oblate spheroids with 
respect to the z direction. 29 The wavefront center 
(x',y', z' + YT/b) moves along the z direction with 
a speed y/b. Inasmuch as y = u2bA, it follows that 

y/b = u2A = (1 - n-2)v < v; n = (I"E'/I'oEO)!' 

Thus, the center of the spheroid cannot keep up with 
the medium. Furthermore, since uT/b> YT/b for the 
nonrelativistic approximation case, the wavefronts 
enclose the source point; that is the source radiates in 
all directions. This excludes the important phenom­
enon of Cerenkov radiation which takes place in the 
arbitrary-velocity case if nv/c > 1 (cf. Ref. 14). 

The effect of a pulse at a distance Rl and at a time 
T after its onset vanishes for Rl > UT, that is as long 
as the wave initiated by the pulse has not had sufficient 
time to reach the observation point r. At Rl = UT, 
the original pulse arrives, diminished by the geo­
metrical factor I/R1 . The wave then leaves in its wake 
a residue or tail which persists for an infinite time at 
points which have been traversed by the wavefronts. 
This contribution is represented by the second part of 
G(r, I/r', I') in Eq. (63b). The entire solution is, of 
course, attenuated exponentially in the z direction. 
Furthermore, it subsides exponentially with respect to 
time. 
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A li~ear r~presentation of spinors in n-dimensional space by tensors is proposed. In particular, in 
th~ee-dID1e~lSI<:>nal spa~ a se.t composed by a scalar and a. vector is associated to any two-component 
spmor, whIle m four-dimensional space the set corresponding to a four-component spinor is composed 
by a scalar, a pseudoscalar, a vector, a pseudovector, and an antisymmetrical tensor of second order. 
The r~sulting formalism is then applied to Schrodinger's and Dirac's equations. In three-dimensional 
space It t~lfns out tha~ the proposed procedure automatically assigns an intrinsic magnetic moment to an 
el.ectro~ In a magnetIc field ,:",ithout i.ntroducin.g a~y relativistic ideas or ad hoc assumptions. In four­
dimensIOnal sp~ce we can WrIte the Dirac equatIon I~ a generally covariant fashion, without introducing 
new con~pts with ~e~pect to th~ usual tensor ~nalysls. The zero-mass Dirac equation splits into two sets 
of equatIOns, descrIbing ~espectlVe1y the neutrIno and the photon. The possible bearing of the proposed 
approach upon the theOrIes of elementary particles is briefly discussed. 

1. INTRODUCTION 

I T is well known that one of the strongest objections 
which can be raised against the theories which aim 

to describe quantum phenomena in the frame of a 
classical space-time geometry consists in the difficulty 
of deriving the concept of spinor out of the concept 
of tensor.1.2 As a matter of fact, the inverse pro­
cedure of deriving vectors and tensors out of spinor 
fields3- s has been sometimes suggested. 

It is also well known that tensor quantities can be 
constructed by means of spinors. However, these 
tensors are quadratic in the spinor components and 
the tensor equations equivalent to the Dirac equation 
lose the important property of linearity, at least 
explicitly. The quadratic character of the mentioned 
tensors also suggested the idea of spinor as "square 
root" of a vector.2 

The aim of this paper is to exhibit a systematic 
procedure to transcribe any (linear) spinor equation 
in pure tensor terms. The advantages of this tran­
scription are not merely formal (among other things 
the resulting equations are generally covariant), but 
could turn out to be essential for (1) the above­
mentioned unitary theories; (2) any theory, where the 
linear equations of quantum mechanics are assumed 
to be an approximation (which ceases to hold at small 
distances) of a nonlinear theory.7.s In fact, in such 

1 W. Pauli, Teoria della Relativita (Boringhieri, Torino, Italy, 
1958), p. 317. 

• J. A. Wheeler, Geometrodynamics (Academic Press Inc., New 
York, 1962), p. 89. 

3 P. Jordan, Ergeb. Exakt. Naturw. 7,158 (1928); Z. Physik. 105, 
229 (1937). 

• P. Jordan and R. de L. Kronig, Z. Physik., 100, 569 (1936). 
• R. de L. Kronig, Physica 3,1120 (1936). 
• L. de Broglie, W. Heisenberg, and H. A. Kramers, in L. de 

Broglie, Physicien et Penseur (Paris, 1953). 
7 L. de Broglie, Introduction to the Vigier Theory of Elementary 

Particles (Elsevier Publishing Company, Amsterdam, 1963). 
8 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957). 

a case the spinor and tensor descriptions could no 
longer be equivalent, and neglecting one of them 
could mean discarding useful alternatives. 

The problem of a tensor transcription of spinor 
equations has been recently considered by Klauder.9 
In our opinion, however, the solution given by 
Klauder is not satisfactory, because arbitrary tensors 
devoid of any physical significance appear in his 
tensor equations. The choice of these tensors is 
equivalent to the choice of an explicit representation 
of the Dirac matrices in the usual spinor description; 
here we propose circumventing this particular diffi­
culty that Klauder encountered by introducing a 
formalism which appears to be interesting. To be 
precise we exhibit a method which leads to tensor 
equations free of any quantity to be chosen arbi­
trarily. In Sec. 2 we describe the simple rule to 
transcribe an arbitrary spinor equation in a n-dimen­
sional space into a system of tensor equations. In 
Sec. 3 an application to the three-dimensional case 
(Schrodinger-Pauli equation) is made; in Sec. 4 the 
much more interesting case of space-time is considered. 
Finally, in Sec. 5 the possible objections to the 
abandonment of the usual description in favor of the 
presently proposed one are discussed. 

2. FUNDAMENTAL RULES 

The spinor equations in a n-dimensional space 
make use of square matrices of order 2N, i.e., with 
22N elements, where N is determined by n; it is well 
known that N = 1 for n = 3, N = 2 for n = 4. The 
algebra of these matrices is a Clifford algebra, which 
can be thought of as generated by n elements (this is 
not the only possible choice of the generators, but is 
convenient from our standpoint). We denote such 

• J. R. Klauder, J. Math. Phys. 5,.1 (1964). 
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generators by Y i' They are assumed to satisfy the 
anticommutation rules 

Yiy i + yiYi = b/ (i = j = 1,2, ... , n), (1) 

where the upper index is are related to the lower 
index ones by means of the fundamental tensor gij 

according to the following relations: 

yi = giiyi ; Yi = gily i (i, j = 1, 2, ... ,n). (2) 

The above matrices are assumed to operate either 
on one-column matrices at their right or on one-row 
matrices at their left: these four elements matrices are 
usually referred to as spinors,lo once a precise trans­
formation rule when going from a Cartesian reference 
system to another is associated with them. Usually 
only orthogonal Cartesian coordinates are adopted 
and the y's are treated as invariants. However, if 
general coordinates are considered, it is more con­
venient to treat "spinors" as invariants and the four 
matrices Yi as components of a vector [see Ref. 11 
for a general review of the literature]. 

In any case, in a given reference frame, a linear 
spinor equation can be written as follows: 

bp = 0, (3) 

where L is a square matrix whose elements are 
operators (e.g., differential operators) operating on 
the components of the one-column matrix "1'. Of 
course, a row-by-column product between L and "I' is 
understood. 

The matrix L can be written as a linear combination 
of those elements of the Clifford algebra which 
generate the whole algebra additively. These elements 
are the y's and suitable combinations of multiple 
products of the y's. The products are chosen in such 
a way as to form a linearly independent set together 
with the is. Under this respect the algebra is treated 
as a 22N-dimensional space, S2tN. 

In the three-dimensional case the mentioned 
elements are simply the y's and the identity 1 of the 
algebra, while in the case of space-time we have to 
consider a set of 16 elements, which are conveniently 
individuated as follows: 

J, 

Y'P 
y"P = try"yp - ypy,,], 

y"py = UY"YJ/y + YpYya + y.,Y"p], 
Yapy6 = Hy"yp.,6 - YpYy6a + YfYhJ/ - Y,YaJ/y] 

(lX, p, Y, b = 0, 1,2,3). (4) 

It is evident that each element endowed with two or 

10 From the standpoint of the theory of the algebras, a spinor can 
be described as an ideal o[ the considered Clifford algebra. (M. 
Riesz, Lund University Math Seminar .2,241 (l954).) 

11 w. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953). 

more indexes is completely antisymmetric in these 
indexes; therefore it is easily verified that we have 
exactly 24 = 16 linearly independent elements. 

If Yll is assumed to transform as the lXth component 
of a vector, Yap transforms as an antisymmetric 
tensor of second order, Y"Pr as an antisymmetric 
tensor of third order (i.e., as a pseudovector in 
space-time) and YaJly' as an antisymmetric tensor of 
fourth order (Le., as a pseudo scalar). 

Generally speaking, in a n-dimensional space Y J 

denotes anyone of the above-mentioned generators; 
accordingly a capital letter as an index denotes a set 
of different indexes of the previous kind (lower case 
letters). Such capital letters can in turn be considered 
as numerical indexes, varying from 1 to 22N, provided 
that an arbitrary numeration of the above sets of 
indexes is introduced. 

Therefore L can be written as follows: 
L=L Y (J-l ... 22N) J J -, , , (5) 

where by L J we denote scalar operators (e.g., differ­
ential operators) of the same kind as the components 
of the matrix L. 

Let us note now that also the spinor tp can be con­
sidered as an element of the Clifford algebra; it suffices, 
e.g., to write in place of the original one-column matrix 
a square matrix having 2N - 1 columns of zeros and 
the remaining column equal to the column which 
constituted the original spinor. In such a way we can 
also write 

"I' = tpJY J (J = 1,2, ... ,22N). (6) 
As a consequence, Eq. (3) can be written as follows: 

(Ltp)JY J = 0, (7) 

where the quantities (Ltp)J are linear combinations of 
the quantities LZtpK, which can be determined 
through the multiplication table of the algebra. 
Thanks to the linear independence of the Y J, Eq. (7) 
immediately gives 

(8) 

Now, if the generators of the vector space S2IN , Y J> 

have been chosen in such a way as to have tensor 
properties in the n-dimensional space (this is always 
possible), the above equations are grouped immedi­
ately to give tensor equations. This important result 
seems to be partially overshadowed by the circum­
stance that the number of the required components 
is to be increased (from 2N to 22N) and the new 
components, though more numerous, can be expressed 
as linear combinations of the old ones. 

3. THE CASE OFn = 3 

In this section we consider in some detail the 
transcription of the Schrodinger-Pauli equation, 
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which regulates the quantum mechanics of a non­
relativistic electron in a magnetic field. In three­
dimensional space we conform to the usual notations 
and write ai in place of Y.' 

As we have already noticed, in the three-dimensional 
case any element of the Clifford algebra can be 
written as follows: 

(9) 

where, if the whole expression is treated as an 
invariant and the a's as the components of a vector, 
ao is a scalar and a == (a1, a2, a3) is a vector. 

The translation of the usual SchrOdinger-Pauli 
equation in the new language is straightforward and 
is not effected explicitly here. Instead, we give a direct 
derivation of this equation from classical mechanics 
through the usual rules of correspondence between 
classical observables and quantum operators. This 
derivation is very interesting, since it shows that an 
accurate use of the quantum-classical analogy leads 
one to automatically foresee the existence of spin, 
which is usually considered as an ad hoc assumption 
or a consequence of introducing relativistic invariance. 

We note that the classical Hamiltonian is character­
ized by the presence of the square of a vector (the 
momentum p in absence of magnetic field, p - eA/c 
in the general case). Therefore we need a definition of 
the square of a vector when its components are not 
c numbers, but q numbers. This gives no trouble if 
the components of the vector commute. However, 
the rule that the square of a vector is the sum of the 
squares of its orthogonal Cartesian components is 
usually given even in the case of noncommuting 
components. This rule does not appear to be con­
sistent with the vector concept, which is primarily 
synthetic and only subordinately analytic. Such 
conception of vectors is not correctly appreciated even 
in the ordinary vector calculus, which is only formally 
synthetic. On the contrary, the concept of vector as a 
whole is completely expressed in the concepts of 
quaternion algebra, according to the views of 
R. W. Hamilton, or, alternatively, of the Clifford 
algebra corresponding to n = 3, which is isomorphic 
to the quaternion algebra (on the complex field). 
Classically we can write a vector in the following 
form: 

(10) 

Then, according to the multiplication rules of the 
a's and taking into account that the components of y 

commute, the square of y is given by 

yll = (a'v,)(ajvi) = aiajvivl 
= !(a.a:l + aiai)viv:l 
- dVVi-VV' - Vi:l - i , (11) 

i.e., it is the same as obtained by operating on the 
components according to usual rules. But, if the 
vector components are noncommuting operators, we 
get 

y2 = aiajvivi 

= l(aiaj + ajai)v.v:l + !(aia; - ajai)v.vi 

= ~;v.vl + iE.~kakViVi 
. i -ok == v.v'+ -Eiik[V., vj}u-. 

2 
(12) 

Here we have taken into account that the follOWing 
relation holds (n = 3): 

!(aia, - alai) = iE~ika1c, (13) 

where E~;k is the completely antisymmetric tensor 
of Ricci and Levi-Civita. In Eq. (12) [Vi' Vi} denotes, 
as usual, the commutator between Vi and Vj. 

It appears that the result given by Eq. (13) is not 
only different from the result which can be obtained 
by operating on the components, but is not even a 
scalar, being a more general quaternion or element 
of the considered Clifford algebra. 

In the case of interest, where y = p -eAlc with 
p = -iii grad, we have 

2 • a . e oAt 
-Ii 112 + 2llieAi - + JIi - -Ox, cox. 

+ e: All _ eli H,.ak. (14) 
c c 

Here H" = !Eij,,(oA;!oxi - oA./ox;) is the magnetic 
field corresponding to the vector potential A. It 
follows that the Hamiltonian operator vi/2m + U is 
given by 

1i2 
A ilie A a ilie oAt --ua+- .-+----

2m maXi 2mc ox. 
+ -.!L Ai _ eli Hka'" + U. (15) 

2mc2 2mc 

It is easily verified that Eq. (15) gives just the 
operator which could be obtained from the usual 
Pauli-Schrodinger equation by means of the rules 
given in Sec. 2. Therefore the present procedure turns 
out to automatically ascribe a magnetic moment 
Po = eli/2mc to a nonrelativistic particle of charge e 
and mass m, as a mere consequence of the commu­
tation rules. 

In order to clarify the procedure. let us write the 
SchrOdinger equation separating the scalar and the 
vector parts of the quaternion equation. If .leo 
denotes the scalar part of the Hamiltonian given by 
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Eq. (15),12 we easily find 

Jeo1po - ,uoH. t¥ = ili(01po/ot), (16a) 

Jeot¥ - ,uoH1po - i,uoH x t¥ = ili(ot¥/ot), (16b) 

where "1'0 is the scalar part of the quaternion wave­
function and t¥ its vector part. In the above equations 
a dot denotes the ordinary scalar product, x the 
ordinary vector product. 

From Eqs. (16) we can easily obtain well-known 
results in the case of an uniform magnetic field. In 
such a case, in fact, if we assume that t¥ is not parallel 
to H, the component of Eq. (16b) along the normal 
to the plane individuated by Hand t¥ gives 

H x t¥ = 0, (17) 
i.e., against our assumption, t¥ is parallel to H. Then, 
if we put t¥ = HfPo/H, where H denotes the absolute 
value of the magnetic field, we easily get 

Je1po - ,uoHfPo = ili(01po/ot), 

JeofPo - ,uoH1po = ili(ofP% t ). 

(18a) 

(I8b) 

lt follows that fPo and "1'0 are proportional to each 
other: fPo = A1po and, in order that Eqs. (18a) and 
(18b) can be contemporarily satisfied, A = ± 1. Then 
"1'0 satisfies 

Jeo1po ± ,uoH1po = ili(01po/ol). (19) 

Hence the well-known result of the splitting of energy 
levels follows. We note that this result has been 
obtained immediately in a form which is valid in any 
reference frame without using the single components. 
The above treatment is open to criticism; as a 
matter of fact, it seems puzzling that a magnetic 
moment ,uo = eli/2mc is ascribed to a nonrelativistic 
particle of charge e and mass m, while, e.g., the 
charged 7t meson has zero spin. Different answers can 
be given to this objection. Firstly we note that the 
known charged particles with spin different from i 
can be hardly regarded as nonrelativistic. Secondly, 
since the properties of the particles should depend on 
the fields with which they can interact, the exclusion 
of the nuclear field could be of vital importance for 
the result we have found. Finally, since we have 
replaced the ordinary unit vectors of rectangular 
coordinates by the a/s and this is not a strict con­
sequence of the discussion on vectors given at the 
beginning of this section, one could suggest13 that 
this replacement is a matter of experiment, i.e., the 
fact that the procedure works is an a posteriori proof 
that the algebra of the a/s underlies the theory of 
nonrelativistic electrons. 

12 This scalar part of the Hamiltonian coincides with the Hamil­
tonian which is obtained according 'to the usual rules without 
introducing spin with an ad hoc assumption. 

13 Thi~ opinion was expressed by. an anonymous referee, whose 
observatIons suggested the present dIscussion. 

4. THE CASE " = 4 

In this section we consider in some detail the 
transcription of the Dirac equation which regulates 
the quantum relativistic mechanics of an electron. 
We neglect the electromagnetic fields, since the 
extension of the equation in absence of fields to the 
equation in presence of fields is trivial, following from 
well-known rules based on the principle of gauge 
invariance. 

The mentioned transcription is easily effected, 
provided that the following multiplication table is 
taken into account: 

yllyp = b;; + Y!'P' 
y"YaP = y.~p + ypb: - y"y3, 

yllYaPr = y~PY + Y "P~~ + YP1~: + Y ra;~;; , 
y"YaPro = Y pyoY: - Y yoa15;; + Y iiap15;; - Y"'Pr 15;; 

(oc, p, y, ~ = 0, 1, 2, 3). 
We obtain 

1piJ/p = iA1p, 
1p/p + 21p"P/" = O.1pP, 

H~/" - 1palPJ + 31p"'PIi/" = iA1pa.P, 

if 1p"PIIi + 1ppola. + 1pOa.IPJ + 41p"'P"ii/" = O,1p°a.p, 

i[1pO:PYII' _ 1pPY"Ia. + 1py"a.IP - 1p1l<xPIr] = iA1p"aPr 

(oc, p, y, b,,u = 0, 1,2,3), 
where A = me/Ii. 

(20) 

(21) 

lt is to be noted that the above equations are 
automatically covariant with respect to general 
coordinate transformations. After a careful review of 
the literature, we have found that the above tensor 
transcription of the Dirac equation had already been 
found by Lanczos as early as 1929,14 as a con­
sequence of a quaternion treatment of the Dirac 
equation. However, it turns out that this work 
remained unnoticed in the subsequent papers dealing 
with the covariant form of the Dirac equation. 

Now two cases are to be distinguished, according 
to whether A is equal to or different from zero. In 
the second case, we can express "1', 1po:p, 1pahd in terms 
of "1'(1. and 1po:Pr through the first, third, and fifth 
equations of system (21), and eliminating the former 
quantities from the second and fourth equation gives 

D1pa + A21pa. = 0; D1po:PY + A21pa.py = 0, (22) 

i.e., the vector 1p(f. and the pseudovector 1paPr satisfy a 
Proca-Yukawa equation. Equations (22) are the 
only restrictions on "1'0: and 1paPr' Alternatively, we 
can eliminate "Po: and "PO:Pr in favor of "1', 1pap, 1p"iJy6 
and find 

D.1t + A2
11J = 0,' 0./) +'2 ° T T Tap 1\ 1po:p = ; 

D-rp"iJY + A21p(l.py = 0, (23) 

U C. Lanczos, Z. Physik. 57, 447, 474, 484 (1929). 
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while "P" and "P"Pr are given by the second and fourth 
equations of system (21). 

If A = 0, then the first, third, and fifth equations of 
system (21) decouple completely from the second and 
fourth ones. The latter become 

"P"Pj" + f"P IP = 0, 
"P"m + "PP~/" + "P~"IP + 12"P"pr~jr = 0 

(a, p, y, 15 = 0, 1, 2, 3), (24) 
and are therefore a generalization of the Maxwell 
system (which can be obtained by putting "P = 0, 
"P"Py~ = 0). The remaining equations can in turn be 
written as follows: 

"PP/p = 0; il"PP'''' - "P"IP] + 3"P"Plljll = 0. 
"PI%PYIIl - "PPYIlI" + "Prlll%IP - "P1l"PIY = ° 

(a, p, y, ft = 0, 1,2,3). (25) 
It is easily seen that the system of Eqs. (25) is equiv­
alent to the Pauli-Yang-Lee equation for the 
neutrino. In fact, the second equation of system (25) 
can be written as follows: 

3q;~1l"/" + i( q;1l1~ - q;0/1l) = 0 
(a, 15, ft = 0, 1,2,3), (26) 

where 
q;~Il" = (ij6)E~Ill%P"PP; q;1l = iE"prll"P"PY. 

Here Ebll"P is the four-dimensional Ricci-Levi-Civita 
tensor with components 0, ±( _g)! (g = det Ilgik!\). 

We see that the q;'s and the "P's satisfy the same 
equations; accordingly they can be assumed to be 
proportional as follows: 

"P1l = Cq;1l = iCE",pYIl"P"p~ 

"P~Il" = Cq;~Il" = liCE~Il"p"PP. 
But substituting Eq. (27b) into Eq. (27a) gives 

"P1l = - iC2EI%prIlE"PYb"P~ = iC26b!"P~ = C2"P1l, 

i.e., 
C= ±l, 

and consequently 

(27a) 

(27b) 

(28) 

(29) 

"P1l = ±iE"PYIl"P"PY; "P~Il" = ±iiE~Il"p"Pll. (30) 
The equations satisfied by "P1l dm now be written as 
follows: 

"P"j" = 0, vii" - "P"IP + iE"IlY~"PO/y = 0, (31) 
where the first equation is the transcription of the 
first and third equations of system (25), which now 
coincide because of Eq. (30). Only the upper sign of 
Eq. (30) has been retained, since if "P"" solves system 
(31), ip"" clearly solves the analogous system corre­
sponding to the alternative choice. Here the bar 
denotes complex conjugation. 

In order to show that system (31) is equivalent to 
the Pauli-Yang-Lee equation for neutrino and 

antineutrino, we note that the latter can be written15 

by equating to zero the result of operating on a 
spin or with the operator 

(ajaxo) + ak (ajaxk). (32) 

Introducing the vector transcription discussed in 
Sec. 3 gives 

[(ajaxo) + ak(ajaxk)]("P° + ar"Pr) = 0. (33) 

By means of the multiplication table of the a's and in 
particular Eq. (13), Eq. (33) can be rewritten as 
follows: 

"P% + "Pkjk = 0, "POlk + "Pkjo + iErsk"Prls = ° 
(r, k, s = 1, 2, 3). (34) 

These equations have tensor character in three­
dimensional space, but can be immediately rewritten 
in the four-dimensional formalism by introducing a 
vector "P" == ("PO, "PI, "P2 , "P3). The result coincides with 
system (31) provided we take into account that the 
second equation of this system, if verified for the 
values a = 1, 2, 3, P = ° of the indexes, is true for 
any couple of values of a and p, thanks to its duality 
invariance. 

We note also that the second equation of system 
(31) is invariant under the gauge transformation 

"P" -+ "P" + q;/",; (35) 
accordingly the first equation of system (31) appears 
as a gauge normalization condition. 

Finally we mention that system (21) can be obviously 
considered as the consequence of a stationary action 
principle with the following Lagrangian density: 

L = ~i {J! (ipll"PIIl - ipP"P1P) + 2! (ip"p"PIl/I% - "P"pipPII1.) 

+ 3! (ip"Pr"P"'PIY - "P",Pyip"m) 

+ 4' (i" 'IIPY~/'" _'11 .iill r~/") . T"'PY~ T T"llr~T 

- A(ip"P + 1! ipP"P1l + 2! ip"Il"P"'P 

+ 3! ip"py"P"PY + 4! ipl%llr~"P"PY~)}. (36) 

In particular, if A = 0, systems (24) and (25), though 
decoupled, can be deduced from a joint variational 
principle. 

5. DISCUSSION 

The procedure which has been introduced and 
illustrated in the previous sections can meet with 
many objections which are presently examined. 

A first objection concerns the considerable in­
creasing of the number of components to be intro­
duced. On the other hand, this circumstance is 
counterbalanced by the properties that the equations 

15 T. D. Lee and C. N. Yang. Phys. Rev. 104,254 (1956); 105, 
1119(L) (1957). 
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are symmetrical with respect to all the space-time 
coordinates (this is not true if one writes the com­
ponents of a spinor equation) and are automatically 
covariant without introducing any new concept with 
respect to the usual tensor analysis (in particular the 
Christoffel symbols are enough to introduce covariant 
differentiation, without any need for the Fock­
Ivanenko matrices or equivalent devices). 

In connection with the increased number of 
unknowns, the question can be raised whether the 
number of possible solutions for a given problem can 
increase. The answer is negative, if only completely 
defined problems are considered. This means that if 
we have only one solution in the original spinor 
formulation, we can have possibly more than one 
solution in the tensor version, but all these have the 
same eigenvalues, give the same quadratic quantities, 
etc. Therefore it appears that this larger arbitrariness 
plays, in a certain sense, the same role as the 
indeterminacy in the explicit representation of the 
y's in the usual spinor formulation. This does not 
mean that the multiplicity depends on some explicit 
representation of the y J. On the contrary, the origin 
of the multiplicity clearly lies in the lack of uniqueness 
of the decomposition of the spinor field 'Ip into a 
superposition of y J [Eq. (6)]. In fact, the representa­
tion of a spinor as a single column of a square 
matrix is not the only acceptable one. We could have 
taken any square matrix 'Ip such that it satisfies the 
matrix equation 

'lp2 - 'Ip(Sp"p) = 0, (37) 

where Sp 'P denotes the spur of 'P. This equation in 
turn implies a quadratic relation between the tensor 
components associated with the spinor individuated 
by the matrix 'P. The discussion of these quadratic 
relations leads us into another subject, which is not 
pursued further here. In fact, this matter seems to be 
especially important in the study of interacting 
particles, for which the present formalism could turn 
out to be very helpful. 

In the frame of the matter considered in this paper, 
the advantage of the proposed point of view consists 
in the possibility of exploiting the undeniably more 
intuitive concepts of vector and tensor in place of 
spinors, in order to choose, among the possible 
equivalent solutions, that one endowed with the 
symmetry features of the physical system under 
investigation. This circumstance was exploited, e.g., 

in the three-dimensional case (Sec. 3), where the 
vector '-!J was treated as it had a real unit vector, 
although '-!J itself has complex components. In such a 
way we singled out a solution where the mentioned 
unit vector coincides with the unit vector of the 
magnetic field. But one can be easily convinced that 
there are infinitely many solutions with anonreal 
"unit vector." These solutions are destitute of any 
significant symmetry, but are essentially equivalent 
to the explicitly found solution. 

Another advantage of the proposed approach is 
that it appears to be the only consistent realization 
of the standpoint that the y's transform as vector 
components, without encountering the objection that 
this standpoint violates the spirit if not the letter of 
the relativity idea,u This objection arises in the usual 
theory with a smaller number of components since 
the Dirac equation, when written in full, is not the 
same in all Lorentz frames. 

A second objection which immediately arises is 
suggested by the connection between the tensor 
character of a field and the spin of the associated 
particle. Of course, a precise description of this 
question requires to study the field not free but 
interacting with other fields. We restrict ourselves 
merely to note that inconsistencies cannot arise on 
this point since the present description is just a 
transcription of the usual theory in different terms; 
therefore differences in physically significant results 
cannot be present, provided that the definitions of the 
different physical quantities are consistently tran­
scribed. 

Concerning the suggestions that the present 
treatment can give for subsequent developments, we 
note the noticeable fact that, from a single Dirac 
equation with zero mass (and a single action principle), 
one obtains the wave equations of the two known 
massless particles, i.e., photon and neutrino. This fact 
suggests the possibility that from a single equation 
(with a nonlinear self-interaction term) one can 
derive the wave equations of both massive and mass­
less particles. Of course, this is not a new idea; how­
ever, the present formalism seems able to suggest a 
limited number of possible choices for the nonlinear 
term. In this frame the multiplication of the number 
of required components could be important in order 
to explain the existence of particles very similar but 
distinguishable as electron and muon or 'V. and 'lip 

neutrinos. 
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The stability problem of a system of charged point particles is discussed, and a number of relevant 
t~eorems ar; proven. The total energy of a system of N particles has a negative lower bound propor­
tIOnal to Na when no ass~mption. is made on the stati~tics of the particles. When all particles belong 
to a fixed number of fermIOn species, a lower bound eXists proportional to N. 

1. INTRODUCTION 

I N a recent paper, Fisher and Ruellel raised the 
question: Is a quantum-mechanical system of 

electrical point charges stable? By stability they mean: 
There exists a lower bound for the total energy 
proportional to the total number of particles. In this 
and a following paper we address ourselves to this 
problem, by proving with rigorous analysis a number 
of theorems which are relevant to it. 

The question of why matter is stable was very much 
the center of attention of physicists during the years 
after the .discovery by Rutherford that matter consists 
of positive and negative point particles interacting by 
Coulomb forces, and before the establishment of wave 
mechanics. The origin of quantum theory, starting 
with Planck's work, is intimately bound up with this 
question. Planck's quantization of the radiation 
oscillators and Bohr's quantization of orbits in atoms 
served to stop the energy in matter from disappearing 
into the bottomless sink of the classical radiation 
field. In 1925 wave mechanics provided a quantitative 
solution to this problem. It became clear that an atom 
with a nuclear charge Ze and Z electrons of charge -e 
could not have an energy state lower than -Z3Ry, 
where Ry = me4/21i2 is the natural atomic energy 
unit, the Rydberg, formed from the fundamental 
constants m, e, and Ii. 

This solved the problem of stability for single 
atoms. However, matter in bulk consists of a very 
large number of particles, positively and negatively 
charged, attracting and repelling each other by the 
Coulomb force. The effects of the Coulomb force are 
manifold and subtle, and often cooperative. They 
include such diverse phenomena as chemical binding, 
Illetallic cohesion, Van der Waals forces, super­
conductivity, superftuidity, and (in all likelihood) 

• On leave of absence from the Plasma Physics Laboratory, 
Princeton University, Princeton, New Jersey. Present address: 
Department of Mathematics, lJIdiana University, Bloomington, 
Indiana. 

1 M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966). 

biology. The stability problem for matter in bulk is 
not a simple one. We need to understand why all these 
subtle effects have in common a saturation property, 
so that the binding energy per particle remains 
always bounded. 

The empirical stability of matter does not depend 
on non-Coulombian forces (nuclear forces, magnetic 
dipole interactions, retardation and relativistic effects, 
radiative corrections). These contribute very small 
corrections to the binding energies of atoms and 
molecules. We are therefore justified in adopting the 
point of view that "matter" is a collection of point 
charges, interacting only through Coulomb forces, and 
subject to the laws of nonrelativistic quantum me­
chanics. If stability for this mathematical model is 
understood, stability for real matter is understood 
too. 

We now give a formal definition of stability. Let 
the Hamiltonian operator of N 2 2 charged particles 
be 

HN=f(-~~;) + LL eie; . (1.1) 
;~l 2m; l:Si<;:SN Ir; - r;1 

Here we use the standard notation; the charges ej may 
have either sign. We write 

Emin (N, e, m) = Inf ('p, H N 1p), (1.2) 

where the infimum is taken with respect to all N­
particle wavefunctions 1p = "P(rl , r2 , ••• ,rN) nor­
malized according to ("P,1p) = 1, all values of the 
masses satisfying 

0< mj ~ m, 

and all values of the charges satisfying 

-e ~ e; ~ e. 

(1.3) 

(1.4) 

If there is a numerical constant A such that for all N 

Emin> -AN Ry, (Ry = me4/21i2), (1.5) 

we say that the system is stable. 
In this definition, we have not mentioned the 

423 
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statistics of the particles. Fisher and Ruelle in their 
paperl conjecture stability "with perhaps the re­
striction that either the positive or the negative 
particles obey Fermi statistics." The complete state­
ment of stability or instability therefore involves a 
specification of the statistics of the particles. In that 
case the constant A may depend on the number and 
kind (in the sense of statistics) of different particle 
species. 

The recent consideration of the stability probleml 
arose in connection with the need to establish a 
mathematically rigorous basis for statistical mechanics. 
Statistical mechanics makes physical sense only if 
thermodynamic quaritities such as the energy, entropy, 
etc. are extensive, i.e., proportional (asymptotically 
for a large system) to the number of particles. Thus, 
stability in the sense (1.5) is necessary for the 
definition of a finite free energy per particle. The 
investigations of Ruelle2 and Fisher3 were restricted to 
models with short-range forces only. Thus, our 
investigation of the stability problem for Coulomb 
systems may be regarded as a necessary first step in 
establishing a rigorous statistical mechanics based on 
Coulomb forces alone, a challenging and difficult 
task. 

2. STATEMENT OF RESULTS 

Quite simple arguments suffice to give lower 
bounds for the energy of a system of charged particles, 
provided we do not require these bounds to be good 
for large N. We begin by stating two theorems of this 
nature. They are superseded by later theorems, and 
are only interesting because of the simplicity of their 
proofs. 

Theorem 1: Under the hypotheses (1.3) and (1.4) 
we have 

Emin ~ -iN'I{N - 1) Ry. (2.1) 

This is the result of Fisher and Ruelle.1 For the sake 
of completeness, we reproduce their proof. 

The following theorem, whose proof is slightly more 
difficult, is a refinement of Theorem 1 for N > 5, and 
it holds under the same hypotheses. 

Theorem 2: 

Emin> -[N(N - 1)/J2] Ry. (2.2) 

Both of these theorems give lower bounds which 
are far too low (except for small values of N). Our 
first nontrivial result is a further improvement which 
comes much closer to the truth. 

2 D. Ruelle, Helv. Phys. Acta. 36, 183; 36, 789 (1963). 
8 M. E. Fisher, Arch. Rat!. Mech. Anal. 17, 377 (1964). 

Theorem 3: 
Emln > -ANt Ry, 

where A < 52 is an absolute constant. 

(2.3) 

Again, we assume inequalities (1.3) and (1.4) of the 
Introduction, but no assumption is made on particle 
statistics. 

In connection with these theorems the question 
arises, what is the best possible result of this type? 
We believe that it is 

(2.4) 

To prove that the exponent t cannot be decreased it 
is sufficient to exhibit states 1jJN of N particles such 
that for some constant A' 

(1jJN, HN1jJN) < -A'Ni-Ry. (2.5) 

Because the inequality (2.5) states an upper bound 
for the energy, conventional variational techniques 
are adequate for proving it. The result (2.5) is suggested 
by both a simple heuristic argument and by a detailed 
calculation based on the work of Foldy4 and others.s 
Since we are interested in lower bounds for which new 
techniques must be used, we do not discuss the 
derivation of (2.5) in this paper but refer the interested 
reader to the lectures one of us held at the Summer 
Physics Institute of Brandeis University in 1966.6 We 
find later that an improvement from (2.3) to (2.4) 
would necessitate going in an essential way beyond 
the techniques of the present work. 

While (2.5) indicates that a Coulomb system 
without any restriction on particle statistics is unstable, 
the following result shows the importance of the 
exclusion principle for stability. 

Theorem 4: Suppose that N particles whose masses 
and charges satisfy (1.3) and (1.4) belong to q ~ 1 
distinct species of fermions. Then 

Emin> _AqfNRy, (2.6) 

where A < 500 is an absolute constant. Briefly, a 
system whose particles belong to a fixed number of 
Fermion species is stable. 

In counting the number of species, each spin state of 
a type of particle must be counted separately, for the 
anti symmetry of the spatial wavefunction holds only 

4 L. L. Foldy, Phys. Rev. 124,649 (1961). 
S M. Girardeau and G. Arnowitt, Phys. Rev. 113, 755 (1959); 

M. Girardeau, ibid. 127, 1809 (1962); J. M. Stephen, Proc. Phys. 
Soc. (London) 79, 994 (1962); W. H. Bassichis and L. L. Foldy, 
Phys. Rev. 133, A935 (1964); W. H. Bassichis, ibid. 134, A543 (1964). 
Another paper concerned with the stability problem, with a point 
of view closer to ours is: E. Teller, Rev. Mod. Phys. 34,627 (1962). 

6 F. J. Dyson (to be published). 
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between particles of the same type and spin quantum 
number. Note that the constants A appearing in (2.3), 
(2.4), (2.6), and (2.7) below are not the same. 

Theorem 4 falls short in two ways of what we need 
in a theorem establishing the stability of matter. 
First, it ought not require that all particles be 
fermions. The statistics of the nuclei are irrelevant to 
stability. Therefore the hypothesis that only particles 
of one sign of charge ( say negative) are fermions should 
be suffiCient. Second, it is an empirical fact that all 
chemical binding and cohesive energies are determined 
by the Rydberg constant Ry = me4 j21i2 formed with 
the electron mass and not the nuclear mass. Stability 
should be independent of the nuclear mass and should 
persist even if the nuclear mass is taken infinite. Both 
of these defects are removed in our final theorem. 

Theorem 5: Let N negatively charged particles 
belong to q different fermion species. Let their masses 
and charges be subject to (1.3) and (1.4), respectively. 
Let an arbitrary number of positively charged particles 
be subject to the sole restriction (1.4) on their charges, 
their statistics and their masses being arbitrary. Then 

Emin > -AqiN Ry, (2.7) 

where A is an absolute constant. 

In this theorem there are no unnecessary hypotheses. 
However, its proof is longer and more difficult than 
those of the others. In this paper we prove only 
Theorems 1-4 and delay Theorem 5 to a separate 
paper. It turns out that the proof of Theorem 5 
requires all the preliminary results needed for the 
proofs of the earlier theorems, and a number of 
additional ones besides. Because of its fundamental 
significance, it would be desirable to simplify the 
proof of Theorem 5. We hope that this is possible by 
using ideas different from ours. 

We may remark that the dependence of Theorems 4 
and 5 on the number q of fermion species is probably 
not the best possible. The results stated should hold 
with the exponent i replaced by i. For some 
discussion of this point the reader is referred to 
Ref. 6. 

3. PROOFS OF THEOREMS 1 AND 2 

The following simple argument is due to Fisher 
and Ruelle. 1 Write the Hamiltonian (1.1) in the form 

HN=!! - Ili [ 
1i2 

1~,< i~N 2m,(N - 1) 

_ liZ Il. + eie i ] 

2m;(N - 1)' Ir; - r;1 

= !! H ii · 
l~i<i~N 

(3.1) 

The operator Hi; is the Hamiltonian of a two-particle 
system with charges ei , ej and masses mieN - 1), 
miN - 1). We have then 

EmiD = Inf (tp, H Ntp);;::: !! Inf (tp, Hiitp), (3.2) 
l~i<;~N 

{

_ (N - 1)mi m j e~e~ ( 0) 
2 eiei < , 

Inf(tp, Hijtp) = m, + m; 2h 

o (eie; ;;::: 0). 

(3.3) 

Among the pairs (i,j) there are at most iN2 for 
which eie; < 0, and for these 

(N - l)mm. e2e2 (N - 1)me4 N - 1 '-----'----"-, .-;' -'-' < = --R. (3 4) 
m

i 
+ m; 2h2 - 4h2 2 Y . 

This proves Theorem 1. 
The proof of Theorem 2 is slightly more com­

plicated. We now write 

(3.5) 
where 

liZ 1i2 
Hii = - Ili - . Ili 

2mi(N - 1) 2mj(N - 1) 

+ e,e j e-It1r,-ril (3.6) 
Iri - ril 

and 
H;; = (eiei/lri - r;/)(l - e-It!r;-ril ), (3.7) 

and fJ is a positive number. We need a lemma which 
asserts that a particle in a Yukawa potential cannot 
have negative energy if the range of the potential is 
short enough. 

Lemma 1: The one-particle Hamiltonian 

H = -(h2j2m)1l - (e2/r)e- IlT (3.8) 

is nonnegative if 
(3.9) 

Thus if we choose 
fJ = (N - l)me2/.J2h2 (3.10) 

all Hi} are nonnegative operators. For the second 
sum in (3.5) we write 

I NN 
22 H;i = - 2 2 eiej 

l~i< i~N 2i=1 i=1 Iri - ril 
N 

x (1 - e-It1r;-r;l) - tfJ 2 e~. (3.11) 
;=1 

By Fourier transformation the double sum may be 
written in the manifestly positive form 

_1 fd3k (1_ 1 ) 1 fe;eik
'
r; 12> O. (3 . .12) 

27T2 k2 k 2 + fJ2 ;=1 
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Hence we have from (3.10) 

EOlin> -lflNe2 = -[N(N - 1)/~2] Ry. (3.13) 

It remains to prove Lemma 1. We write the energy 
in momentum representation 

(1p, H1p) = !f. fd3kk211ji(k)12 
2m 

_ L fd3kfd3k l 1ji*(k)1ji(k') (3.14) 
21T2 fl2 + Ik - k '12 ' 

where 1ji(k) is the Fourier transform of the wave­
function. By the Schwarz inequality we have 

I f d3kfd3kl 1ji*(k)1ji(k') I <fd3kk211ji(k)12 J! 
fl2 + Ik - k '12 

-

(3.15) 

Therefore, 

(1p, H1p) ~ (!f _ e2
2 J!)fd3kk211ji(k)12 

2m 21T 

~ 0, (3.17) 

when the condition 

(3.18) 

which is the same as (3.9), is fulfilled. This proves 
Lemma 1 and Theorem 2. 

4. A THEOREM OF ELECTROSTATICS 

We begin to work toward the proof of Theorems 3-5 
by a simple consideration of electrostatics. We obtain 
a lower bound on the Coulomb energy of an arbitrary 
finite system of point charges. The resulting inequality 
is one of the essential tools for all that follows. 

Let r i (i = 1, 2, ... , N) be points in space at which 
there are charges ei • Let ai be arbitrary positive 
numbers and let Si be the spheres Ir - ril = ai • 

Suppose that each of the charges ei is distributed 
uniformly over the corresponding surface Si' This 
results in a surface distribution of charges, where the 
element of surface da carries the charge eida/41Ta~ if 
da is on Si' If E = E(x) is the electric field at the 
point x, produced by this charge distribution, we have 
for the total energy 

..!.. fd 3
X IEI2 = .! i ~ r da., 

81T 2t=141Ta i JSI 
N e; L 1 X! -2 dall --. (4.1) 

;-1 41Ta i Sf Ix - yl 

The double surface integral depends only on the 
distances Iri - ril between the centers of the spheres 
Si and Sj' and on their radii at and aj . For two 
spheres Sa and Sb' of radii a and b, respectively, whose 
centers are at a distance r, we write 

r da., J dall _1_ = ! _ ~(r, a, b). (4.2) 
Js. 41Ta2 

Sb 41Th2 Ix - yl r 

This defines the function ~. One finds 

! - min (.!.!-) 
r a b 

~(r, a, b) = (a + b - r)2 

4abr 

o 

(0 < r ~ la - bl), 

(la -bl ~ r ~ a + b), 

(a + b ~ r). (4.3) 

~ is positive and monotone decreasing with r in the 
interval (0, a + b), zero beyond it. 

Let us write 

Theorem 6: W(r, e) > U(r, e, a). 

The proof consists in merely observing that the 
total electrostatic field energy (4.1) is positive, and 
then rewriting the right-hand side in terms of the 
notation (4.2). Note that whenever 

ai + aj ~ Iri - ril (1 ~ i <j ~ N), (4.6) 

we have 
N e~ 

U(r, e, a) = -! -, (4.7) 
j=l 2a; 

and the inequality W > U is specially simple. The 
inequality in this form was used by Onsager in a 
little known paper7 in which he established an additive 
lower bound for the Coulomb energy of a system in 
which the particles are assumed to possess hard cores. 
Indeed, if it is required that 

Iri-ril~2a (l~i<j~N) (4.8) 

for some fixed positive a, one has 

W> -N(e2/2a) (e = max leil). (4.9) 

This observation was also made by Fisher and 
Ruelle.1 

In our work where there are no a priori given hard 

7 L. Onsager, J. Phys. Chern. 43, 189 (1939). 
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cores it is essential to keep the aj variable. Indeed, the 
power of Theorem 6 lies largely in the freedom with 
which the aj may be chosen. 

One useful choice is aj = tR j , where 

R j = min Ifi - fjl . (4.10) 
(l~i~N.i# il 

Then evidently (4.6) is fulfilled. Thus we have 

Theorem 7: 

(4.11) 

In this paper we use Theorem 6 only in the form of 
Theorem 7. The right-hand side of (4.11) may be 
interpreted physically as the potential energy of a 
fictitious system in which each particle is attracted by 
a Coulomb force to its nearest neighbor alone. The 
fictitious system always has a potential energy lower 
than the real Coulomb system, and-what is most 
essential-the number of terms out of which this 
fictitious potential energy is made up is N and not of 
the order of N2 as for the true energy. 

5. PROOF OF THEOREM 3 

Let fl' f2,' .. , fN be N distinct points in space. 
For a fixed) we write RjI, Rj2' .• " RiN- I for the 
N - 1 distances If} - fll, Ifj - f21, .•. , If} - fNI 
arranged in increasing order. Thus Ril [the same as 
R j defined by (4.10) above] is the distance between fi 
and its nearest neighbor among the other points, R}2 
is the distance between it and its second nearest 
neighbor, and so on. Conventionally we define 
RjI = 00 for I ~ N. The Rj! are well-defined functions 
of the N variable points Rj! = RjI(fl> f2' ... , fN)' 

Suppose we consider a quantum-mechanical system 
of N particles in a state described by the wavefunction 
"P = "P(fl , f2' ... , fN) normalized in the usual way 

("P, "P) =f· J d3Nr 1"P12 = 1. (5.1) 

Let us introduce the following quantities: 

Kl = ! f· . ·fd3Nr 1"P12 fRill (l = 1,2, ... ). (5.2) 
N }=l 

By definition of the Rj! we have 

KI ~ K2 ~ Ks ~ ... ~ 0, (5.3) 

and Kl = 0 for I ~ N. The Kl have the dimension of 
an inverse distance; K;l is a measure of the typical 
linear dimension of regions which contain I + 1 (but 
no more) particles. 

The quantity KI is particularly important in 
connection with the inequality (4.11). From it we 

immediately see the following fact: If the charges of a 
finite system of particles satisfy (1.4), then the total 
Coulomb energy satisfies the inequality 

(5.4) 

On the other hand, if the masses satisfy (1.3) we 
have for the kinetic energy 

("P, T"P) = ~ ~ f·· ·fd3Nr IV j"P1 2 ~ N.!t.... t, (5.5) 
~12m} 2m 

where 

t = 1. f f· . ·fdSN r IV j"P12• (5.6) 
N j=1 

Thus the total energy satisfies 

("P, HN"P) > N[(/i2j2m)t - e2Kl]' (5.7) 

Our aim is to derive an inequality involving both t 
and Kl which allows the establishment of a lower 
bound on the right-hand side of (5.7) independent of 
both. 

We begin by deriving an upper bound on the 
cumulative sUm 

k 

!Kl (5.8) 
1=1 

in terms of Kk-t-l and t. By definition, the sum (5.8) 
may be written out in detail as follows: 

1-f f fd Sri fd
3r i ! r d3rll!'" 

N i=1 j=1 P Jin 
j#i 

r d3r r d3r ... 
Jin Ilk Jout PI 

f 3 k 1"P12 
d rpN_2_k ! . 

out 1=1 Irll! - ril 
(5.9) 

P is a partition of the set of N - 2 integers {I, 2, ... , 
i-I, i + 1,' .. ,) - 1,) + 1,' .. , N} into two sets 
{lXI' ••• , IXk} and {PI' ... ,f3N-2-k}' one containing k 
integers, the other N - 2 - k integers (k being fixed). 
The sum over P runs over all such partitions. The 
phrase "in" under the integration signs means that 
the domain of integration is 

Ifill - fil < Ifs - fil (I = 1,2,' .. ,k), (5.10) 

while "out" means the opposite 

If PI - fil ~ Ifj - fil (I = 1, 2, ... , N - 2 - k). 
(5.11) 

In other words: fj is the (k + l)st nearest neighbor, 
and fll , fll " •• ,fll are (in some order) the first, 

I I k h . 
second, ... , (k)th nearest neighbors of t e pomt f i . 

We now make use of the following. 
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Lemma 2: For any positive A, and any complex 
valued function 'Y(r), having continuous derivatives 
and defined in the sphere n: Irl ~ b, 

f d3r 1'Y12 < (! +~) f d3r 1'Y12 + ~ f d3r 1V'Y12. 
In Irl A 2b In 4 In 

(5.12) 

The proof of Lemma 2 is given later. The inequality 
(5.12) is applied to the integration over the variable 
r"z (to be carried out first). The sphere n is given by 
(5.10), with the radius b = Ir, - ril and center ri . It 
follows that an upper bound for (5.8) is obtained if we 
replace the integrand in (5.9) by 

I 12(! ~ 1 ) ~ IV 12 (5 13) "P A + 21rj _ ril + 4 ","P. . 

For the first two terms the sum over I in (5.9) gives 
merely k equal integrals, so that for these one obtains 

(k/)') + IkKk+l' (5.14) 

The gradient term may be rewritten 

.l.1 J .. . JdSNr II IV,,"P1 2
, (5.15) 

4Ni=1 " 
where the prime on the summation sign indicates that 
only those values of (X are to be included in the sum 
for which r" is the (I)th nearest neighbor of r i with 
1 ~ I ~ k. (The set of these values of ex is a function 
of the integration variables r1 , ••• ,rN' of course.) 
This, in turn, may be written 

4~ Jl r . J dSNrM"k IV"tpI2, (5.16) 

where Mak = Ma.k(rl , ••• , rN) is the number of those 
r i to which ra is the (l)th nearest neighbor with 
1 ~ I ~ k. 

Lemma 3: For any finite set of points {rlo r2 ,' •• , 

r N} and (X = 1, 2, ... , N, 

Ma < (41T/W)k < 15k, (5.17) 
where 

For k = N - lone has to set KN = 0 (the proof 
makes use of Lemma 2 with n all space and b = 00). 

Lemma 4: Let the sequence of nonnegative numbers 
Xl , X 2 , ••• satisfy 

k 

I XI < akxk+l + bk (k = 1,2, ... ), (5.21) 
1=1 

where the coefficients ak and bk are nonnegative. Then 

Xl ~ AkXk-tl + Bk (k = 1,2, ... ), (5.22) 
where 

(5.23) 

and 
k-l b 1-1 k-l 

Bk = I _1- II -.!!.L. + bk II -.!!.L.. (5.24) 
!=11 + al 1=1 1 + ai i=1 1 + a j 

In the last two equations empty sums are interpreted 
as zero and empty products as unity. The proof is 
given later . 

We use Lemma 4 to eliminate K2 , Ks , ... , Kk from 
(5.20) and obtain a single inequality which involves 
only K1 , Kk+l' and t. Indeed, (5.20) is precisely of the 
form (5.21) with 

(5.25) 
and 

bk = (k/)') + Vt min {N - 1, (41T/W)k}. (5.26) 

We have then 

Ak = IT ~ = k! rei) . (5.27) 
}=l 3j - 1 r(k + i) 

A simple upper bound on Ak is obtained by noting 

[3j/(3j - 1)}S < (3j + 1)/(3j - 2), (5.28) 
so that 

In particular 
Ak < (3k + 1)i. 

AN _ 1 < (3N)i. 

(5.29) 

(5.30) 

W = 21T(1 - cos i1T) = 1T(2 - .J3) (5.18) The computation of Bk is more complicated due to 
is the solid angle inside a circular cone of half-angle iTT. the two different analytic expressions involved in 

(5.26). We temporarily ignore this complication and 
This Lemma is a purely geometrical fact which is set simply 

proved later. Since trivially M"k ~ N - 1, we have bk = k[(l/)') + (1T/W»)./]. (5.31) 
now the upper bound for (5.16) 

(The inequality will be somewhat worse but the 
tAt min {N - 1, (41T/W)k} (5.19) calculation is easier.) One finds with (5.25) and (5.31) 

in the notation (5.6). Thus we have obtained the the identity 
following inequalities 

Bk = 2(Ak - 1)[(1/).) + (1T/W»)'/). (5.32) 
~ 3k k).t. { 41T } 
~.KI < - Kk+l + - + - mm N - 1, - k In particular, using (5.30) 

1=1 2 A 4 W 

(k = 1,2, ... , N - 1). (5.20) BN- 1 < (3N)1[(2j).) + (21T/w)A/]. (5.33) 
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We now write down the inequality which follows from 
(5.20) by Lemma 4 for the case k = N - 1 

Kl < (3N)l[(2/A) + (27T/W)At], (5.34) 

or equivalently (since A is arbitrary) 

Kl < 4(3N)l(7Tt/W)t. (5.35) 

We are now ready to complete the proof of 
Theorem 3. From (5.7) and (5.35) we have 

('p, HN"P) > N(Ji2/2m)t - 4e2N(3N)l[(7T/W)t]t 

2 -ANt Ry (5.36) 
with 

A = (l67T/W)3f = 124.2· . . . (5.37) 

The last inequality in (5.36) arises by minimizing with 
respect to t. 

A lower value of A can be obtained by using (5.26) 
instead of (5.31) to compute BN - 1 • We find A < 52. 
However, the exponent! cannot be improved. The 
latter originates in the factor! in (5.25) and that goes 
back to the factor! on the right-hand side of (5.12) 
in Lemma 2. The inequality in (5.12) can be made to 
approach equality with arbitrary precision, as the 
example'f" = const and 

r d3r 1'f"12 = l... r d3r 1'f"12 
In Irl 2b In (5.38) 

shows. It is clear that no constant larger than ! 
would do. 

lt is also easy to see that as long as we use not the 
true Coulomb energy W but rather the lower estimate 
given by Theorem 7, it is impossible to improve on 
the exponent! of Theorem 3. For we can exhibit a 
sequence of states "PN such that 

• 
("PN' [T + U]"PN) "-' -AN" Ry (5.39) 

as N -+ 00. Take wavefunctions of the form 

N 

"PN(r1, ... , rN) = II uA(rj ), (5.40) 
j=1 

where ul\(r) is a smooth wave packet of spatial extent 
A. The energy is about 

N{iC 1.. _ e2 N
l
} (5.41) 

2mA2 A ' 

because in the absence of correlations the nearest­
neighbor distance is about the mean interparticle 
distance AN-(l). If N is taken large and A = A(N) is 
taken to minimize (5.41) one obtains (5.39). Therefore 
a significant improvement over our Theorem 3 can be 
achieved only by giving up the use of Theorem 7. 

6. PROOFS OF LEMMAS 2, 3, AND 4 

In order to complete the proof of Theorem 3 we 
now have to prove the three lemmas used in the last 
section. 

We begin with Lemma 2. Suppose first that 0 is an 
arbitrary region and VCr) an arbitrary potential. The 
ground-state energy € of a particle of mass (2Ji2/A) in 
this potential is defined by 

€ = Inf {L d3r(!). 1V'f"12 + V 1'f"12) / In d3r 1'f"12}, 

(6.1) 

where the infimum is taken over all wavefunctions 'f" 
defined in O. No boundary condition is imposed on 'f", 
but the minimizing'f" satisfies the "natural" condition 

(n • V)'f" = 0 (6.2) 

on the boundary of O. The eigenvalue equation for 
€ is 

-!AV2'f" + V'f" = €'f". (6.3) 

Since the minimizing'f" is positive and nonzero in 0, 
we may introduce the vector 

w = -(V'f"/'f"), 

so that (6.3) becomes 

€ = V + tA(div W _(2). 

Taking the gradient of (6.4), we find 

(6.4) 

(w • V)w = iV2W + (2/A)VV, (6.5) 

an equation identical with the Navier-Stokes equation 
for steady flow of a fluid with velocity wand with 
kinematical viscosity equal to t. We do not pursue 
this peculiar hydrodynamical analogy any further 
(see note added in proof). Integrating (6.4) over the 
volume 0, we obtain 

(6.6) 

where < )av denotes an average over 0, and the term 
in (div w) has vanished by virtue of (6.2). 

We apply this analysis to the special case of a 
Coulomb potential 

VCr) = _,-1 

in a spherical shell 0 defined by a :::;; Irl :::;; b. In this 
case 

(V)av = -l-[(b2 - a2)/(b3 - a3)] > -3/2b. (6.7) 

The conclusion (5.12) of Lemma 2 states that 

€ > -(3/2b) - (1/),) (6.8) 

for the spherical region Irl < b. If (6.8) holds for the 
shell a :::;; Irl :::;; b, then Lemma 2 follows by taking 
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the limit a-+- O. By (6.6) and (6.7), we have only to 
prove 

(6.9) 

for the spherical shell n. 
For a spherically symmetrical n, the ground-state 

'¥ is spherically symmetric, and the vector w is 
parallel to r. We denote by ro the component of the 
vectorw in the radial direction. Then (6.5) becomes 

ro" + 2ro'[(l/r) - ro] + (2/r2)[(2/A) - ro) = 0, 

(6.10) 

where the prime denotes differentiation with respect 
to r, and the boundary condition (6.2) gives 

ro(a) = ro(b) = O. (6.11) 

If ro(r) were ever negative in a S r S b, there would 
be at least one minimum with 

ro" ~ 0, ro' = 0, ro < 0, 

which contradicts (6.10). If ro(r) were ever greater 
than (2{ A), there would be at least one maximum with 

w" S 0, ro' = 0, ro > (2/A), 

again contradicting (6.10). Therefore 

o S ro(r) ::;; (2/A) for a::;; lrl S b, (6.12) 

which proves (6.9) and also Lemma 2. 

Lemma 3 deals with a geometrical property of a 
finite set of points in space. Let this set be {Fa, 

FI , .• " Fn}. We distinguish a point, Fo say, and attach 
an index to each of the rest of them. The index of Fi 

is said to be the integer I if Fa is the (l)th nearest 
neighbor of Fi in the given set. Let now k ~ 1 be 
fixed, and define a certain subset, say {rl , F2, ••• , Fm}, 

consisting of all those points whose indices do not 
exceed k. We want to prove 

m ::;; (417'/ro)k, (6.13) 

with ro defined in (5.18). 
Let Ce be the circular cone with vertex at Fo, 

half-angle t17' and axis pointing in the direction £). 

Let v = v(£) be the number of points among {rl' 
F2 ,"', Fm} which are inside Ce • We have 

(6.14) 

where the integration is over the solid angle element 
formed by varying £). Thus (6.13) follows if we show 

v(fJ) ::;; k. (6.15) 

Let now fJ be fixed, and suppose for the sake of 
definiteness that out of {FI, F2,"', Fm} the first v 

points are inside CIJ' If v = ° or 1, (6.15) is true 
trivially, so we may suppose v ~ 2. We choose the 
notation so that 

Iro - fII ::;; Ifo - F21 S ... S Ifo - Fvl. (6.16) 

Take an i (1 ::;; i::;; v-I) and consider the triangle 
(Fo, Ft , Fv)' Since the angle at Fo is ::;; i17', the largest 
angle ofthis triangle must be either at r, or at r •. But 
the latter is excluded because IFo - Fil S Ira - Fvl and 
in a triangle the largest side occurs opposite the 
largest angle. Thus the angle at r t is largest and so, by 
the same principle, 

Ir. - Fil ::;; Ir. - Fol. (6.17) 

Since this is true of i = 1,2, ... , v-I, Fo cannot be 
less than the (v)th nearest neighbor of Fv or, in other 
words, the index of Fv is at least v. By assumption this 
index does not exceed k, therefore v S k which is 
what was to be shown. This completes the proof of 
Lemma 3. 

We may remark that the numerical factor 417'/ro = 
8 + 4.J3 = 14.928' ., in Lemma 3 is close to the 
best possible (if indeed not the best). To see this we 
display a set of n = 12k + 1 points such that 12k of 
them possess the index k. Choose one point Fo at the 
center of a regular icosahedron and the rest of them, 
Fl , F2 , '" , Fn in groups of k very close to the 12 
vertices. Since the edge of an icosahedron exceeds the 
distance of its center from its vertices, the center ro 
is the (k)th nearest neighbor to all 12k points. Thus 
the best constant of Lemma 3 must be ~ 12. 

To prove Lemma 4 we choose a fixed k ;;:: 2 (the 
case k = 1 is trivial), and define coefficients h! as 
follows 

{

hi = _1_rr_ai _ (I = 1,2,"', k - 1), 
1 + a! i~l 1 + a j 

krr-l aj 
hk = -- . (6.18) 

j~l 1 + a j 

These quantities satisfy 
k 

1,h; = 1, 
j=1 

k 

1,h; = a l_1hl_l (l = 2,3,' .. ,k). (6.19) 
1=1 

Now multiply the first k of the inequalities (5.21) by 
hI, h2' .. " hk respectively and add (this is valid 
because hi ~ 0). The inequality which results is just 
(5.22) with Ak and Bk given by (5.23) and (5.24). 

7. PROOF OF THEOREM 4 

We now assume all particles are fermions and that 
they fall into q ~ 1 groups so that the exclusion 
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principle holds between particles of the same group. 
No assumption is made about the number in each 
group except that the total number is N ~ q + 1. 

We make use of the antisymmetry of the wave­
function of identical fermions only by the application 
of the following inequality. 

Lemma 5: Let'l" = 'l"(Xl' X2, ... , xv) be a function 
of v ~ 2 space points having continuous first 
derivatives, antisymmetric with respect to interchange 
of any two points, and defined with all points in a 
sphere Q of radius A. Then 

r d3vx i IVi'l"1
2 ~ (v - 1) ~ r d3vx 1'l"12, (7.1) In i-I A In 

where ~ = 2.082 is the smallest positive root of the 
equation 

(d2/dx2)(sin x/x) = o. (7.2) 

For simplicity take v = 2 (the proof for v ~ 3 is 
analogous). Expand 

00 00 

'l" = 'l"(x, y) =! ! Cn,munCx)um(y) (7.3) 
n-O m-O 

in terms of the complete orthonormal set of eigen­
functions {unCx)} defined by the eigenvalue problem 

(7.4) 

which is important in its own right. It involves only 
t and K p _ 1 for some p ~ q + 1. It depends purely on 
the anti symmetry of the wavefunction and has 
nothing to do with the Coulomb problem as such. 

Theorem 8: For a system of N ~ q + 1 fermions 
belonging to q ~ 1 species 

(43W)[p/(p - q)]t ~ K~_1 (7.9) 

for q + 1 ~ P ~ N. 

The proof of Theorem 8 is based on Lemma 5. 
Before proving it we show how Theorem 4 is derived 
from Theorem 8. Since for q = 1 the physical content 
of Theorem 4 is vacuous, we may assume q ~ 2. From 
(5.20) and Lemma 4 we derive, using (5.29) and (5.32), 

Kl < (3p)![Kp_l + (2/A) + (21T/W)At]. (7.10) 

The inequality (7.9) may be rewritten in the alternate 
form 

Jl 43 _P- t - K + ~ > 0 
r 8~2 P _ q p-l f1 - , (7.11) 

where f1 is an arbitrary positive number. From (7.10) 
and (7.11) we eliminate K p _ 1 , obtaining 

Kl < (3P)t[(21T A + 43 _P- f1)t + 2(! + !)J. 
W 8e P - q A f1 -A",un(x) = EnU,;(X) 

with the boundary conditions 

o 
Or un(x) = 0 for r. = Ixi = A. 

One finds 

(7.12) 

Comparing with (5.34) we observe that (7.12) is a 
(7.5) weaker inequality when p > N. Thus we may ignore 

the restriction p ~ N given in Theorem 8 and choose 

L d3x In d3
y IV",'l"1

2 
= io loEn ICn,m1

2 

1 0000 
2 

=-! !(En+Em)ICnml 
2 n-O m-O 

(7.6) 

because the antisymmetry of'l" implies Cn,m = - Cm,n' 
Also 

In d3x In d3
y 1'l"12 = Jo loICn,mI

2
• (7.7) 

The ratio of (7.6) to (7.7) is smallest when Cn,m =;C 0 
only for those two values n =;C m for which En and Em 
are the two lowest eigenvalues. There is one s-state 
eigenvalue EO = 0 with uo(x) = (!1TA3)-l, and three 
degenerate p-state eigenvalues 

(7.8) 

The remaining E; all lie higher than (7.8). This com­
pletes the proof of Lemma 5. 

The proof of Theorem 4 is based on an inequality 

p = 2q (7.13) 

for any N ~ q + 1. Finally, A and f1 are chosen to 
minimize the right-hand side of (7.12). This results in 
the following. 

Corollary to Theorem 8: Under the conditions given 
in the theorem, 

(7.14) 
with the constant 

A = 2· 6![ e:f + G:SJ 
= 22.2···. (7.15) 

The proof of Theorem 4 is now completed by using 
(7.14) in (5.7) 

("P, HN"P) > N[(/i2/2m)t - e2K 1] 

> N[(/i2/2m)t - Aq!e2tl] 

~ _A2qfNRy, (7.16) 

with A2 < 500 by (7.15). 
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8. PROOF OF THEOREM 8 

We begin by introducing an arbitrary length A. 
and writing 

t = (41TA3)-1fd3Nr.l IIV;tpI2 f day. (8.1) 
3 N i=1 Jlrrtll:5,t 

If the order of the integrations over the rj and over y 
is interchanged, this becomes 

t = (41TA
3
)-11.. fd3y ~ f d3ril " -f d3riN_. 

3 N p out out 

x rn d3ril .. 'in d3ri.[IViltpl2 + ... +IVi.tp 12]. 
(8.2) 

The summation is over all partitions P of the set of 
subscripts {I, 2, ... , N} into two parts {iI' i2 , ••• , i.} 
and {jI,h,'" ,jN-v}' The phrase "in" under an 
integral sign signifies that the corresponding integra­
tion variable is restricted to lie inside the sphere of 
radius A around the center y, while "out" means the 
opposite restriction. 

We now drop all terms from the sum over P which 
do not satisfy 

p~'V~N, (8.3) 

Here 0v = 0.(r1' r2, ... ,rN) is the set of points y 
such that the inequality Ir; - yl ~ A is true for 
exactly v (and not more) values of the subscript i. We 
find it convenient to rewrite (8.7) somewhat differently 

.tv fQ. d3
y = it fa

i 
d

3
y. (8.8) 

E; is a set of points y, defined by the condition that 
Ir; - yl ~ A., and at least p - 1 more inequalities of 
the same type Irj - yl ~ A (j:;!: i) hold. The identity 
(8.8) is verified easiest after its intuitive content is 
grasped in terms of simple examples. 

The next step is to obtain a lower bound for the 
volume of Ei (as a function of the r1, ... , rN)' It is 
at this point that we introduce the (p - l)st nearest­
neighl'or distance R i .'P-1 of the point r;. When 
Ri . ,])--1 ~ A we write 

fa; d 3y ~ O. (8.9) 

Let then R;,p_1 < A. There are precisely p - 1 values 
of j (j:;!: i) such that 

Ir; - r;1 ~ Ri,'])--I' 

Consider the set E; of y satisfying 

(8.10) 

where p is an arbitrary integer satisfying 

q+l~p~N. 

Iy - ril ~ 2 - R i • P- 1 • 

(8.4) E; is a sphere of volume 

(8.11) 

Consider now a particular P and the particles labeled 
i1 , i2 , ••• , i. which are inside the sphere of radius 2 
around the center y. Let VI' '1'2, ••• , Vq be the numbers 
among them which belong to the first, second, ... , 
(q)th species respectively. We apply Lemma 5 to the 
integration over the VI variables belonging to the 
first species, then over the 'V2 variables belonging to 
the second species, and so on. Since 

Q p - q 
~ (vs - 1) = V - q ~ -- 'JI (8.5) 
8=1 P 

under the restriction (8.3), we obtain 

The prime on the summation sign stands for the 
restriction of the sum to terms P for which V = v(P) 
satisfies (8.3). We now restore the original ordet of the 
integration variables. This gives 

fa;' d3y = 43
1T 

(2 - R;.P_l)3. (8.12) 

For any y inside it and any j satisfying (8.11) one has 
Iy - rjl ~ 2, which shows that E; is a subset of E;. 
So we have 

L; d2y ~ ~1T (A - Ri,'])--It. (8.13) 

We now take (8.13) and (8.9) into (8.8) and (8.7). 
This gives 

t ~ ~: p - q .1 fd 3Nr Itpl2 f max {o, (1 _ R; P_I)3}. 
2 p N '=1 2 

(8.14) 

This inequality holds for any positive A. We average 
it over all values of A in the interval 0 ~ 2 ~ a. We 
have 

1 fa d2 {( R)3} ~ Jo A2 max 0, 1 - ;: 

= 4;R(1-~) max{o, (1- ~r} 
~ (lj4aR) - (l/a'!.). (8.15) 
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Therefore (8.14) implies 

t 2 e p - q (KV-I - !). 
p 4a a2 

Theorem 9: Suppose N particles satisfy the con­
ditions of Theorem 4 and are subject to an external 

(8.16) field generated by a smooth charge density with finite 
self-energy. Then 

The best value of a is 8(Kv_ I )-I, yielding Emin> -A(2q)iN Ry, (9.2) 

t > ~P - q K2 . 
- 64 P v--l 

(8.17) where A is the same constant as in Theorem 4. 

This completes the proof of Theorem 8,- except that 
64 appears instead of the coefficient 43 on the left 
side of (7.9). 

We have succeeded in deducing (8.17) with the 
coefficient 43, starting from (8.14). This requires only 
elementary but complicated manipulations which we 
do not present here.8 In mathematical terms the 
problem is the following. Given some probability 
distribution function F(t) on the positive real axis 
[F is nondecreasing and F(O) = 0, F( OCJ) = 1], such 
that 

f'(X - t)3 dF(t) :::;; C2X5 (8.18) 

for all positive x, where C is a constant. Write 

500 1 
K = - dF(t). 

o t 
(8.19) 

What is the best possible inequality of the type 

(8.20) 

The argument above shows (J.:::;; 64. Our more 
elaborate argument gives (J. :::;; 43. It is easy to see 
that the best (J. cannot be less than 40. For if F(t) = 
min {l, lOC2t2}, then K2 = 40C2. To determine the 
best (J. is an amusing problem, but it would give only 
a trivial numerical improvement of Theorems 8 and 4. 

9. SMOOTH BACKGROUND CHARGE 

Theorem 4 can be generalized by adding a smooth 
external charge distribution to the N fermions. The 
particles now interact not only with each other but 
also with the field produced by this background 
charge. Let p(x) be the charge density producing the 
external field. The Hamiltonian is now 

(9.1) 

The last term is a C number, the self-energy of the 
background charge. We assume that it is finite. 

• For details, see Ref. 6. 

To prove this we consider a fictitious system 
consisting of 2N particles, N of them having the given 
masses mi and charges ei , and the other N of them 
having the same masses mi but opposite charges -ei • 

The total number of species is 2q. Let H;N denote 
the Hamiltonian of this system, which includes the 
kinetic energy and the Coulomb energy due to the 
interactions between all 2N charges. Consider now 
the energy of this system in a state'Y defined by 

'Y(cI , ... , r2N) = V'(cI , ... , cN)V'(cN+l' ... , C2N)· 

(9.3) 
It is 

('Y, H~N'Y) = 2(V', HNV') - f d6Nr 1V'(cl • ... ,cN)12 

2N 2N e.e. 
X 1V'(cN+I,···,C2N)1 !! ' , 

i~lj~N+1 ICi - cil 

(9.4) 

Here by HN we mean the Hamiltonian (Ll), i.e., 
the energy of the first N particles alone. Theorem 4 
asserts that 

('Y, H~N'Y) > -A2N(2q)i Ry. (9.5) 

We compare this with the expectation value of the 
operator NN given by (9.1) in the state V'. 

(V', NNV') = (V', HNV') + f daNr 1V'(cl , ... 'CNWf dax 

x 5: eiP(x) +! fdaxfday p(x)p(y). 
i~llci - xl 2 Ix - yl 

(9.6) 
Therefore we have 

where 

p'(x) = p(x) + f daNr 1V'12it e;!5(ci - x). (9.8) 

The integral on the right-hand side of (9.7) is non­
negative. Therefore 

(9.9) 
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and comparing this with (9.5) the conclusion of 
Theorem 9 follows. Equality can occur in (9.9) only 
when p' = 0 identically, that is when the given 
background charge density exactly cancels the charge 
density S d3Nr 11p12 ~i eib(r; - x) of the particles. 

In this proof it is essential that we included the last 
term in (9.1), the self-energy of the background charge, 
in the definition of the Hamiltonian n N' Thus it is 
impossible to think of p(x) as the (singular) charge 
density of a certain number of fixed point charges, for 
in that case the self-energy is infinite and Theorem 9 
is vacuous. This consideration shows that our 
Theorem 5 is a significantly deeper result than 
Theorem 9, because it asserts the stability of a system 

JOURNAL OF MATHEMATICAL PHYSICS 

of charged fermions in the field of fixed point charges 
where the energy, by definition, does not contain any 
self-energy term. 

Note added in proof: For a deeper discussion of 
(6.5) see E. Nelson, Phys. Rev. 150, 1079 (1966). 
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The translational in variance properties of a one-dimensional fluid with finite range forces are investi­
gated. For N particles in the interval [0, L], with a two-body interaction potential w(x) = 0 for x Z R, 
we find the following: (a) If w(x) has a hard core of diameter d and R ~ 2d, each n-particle distribution 
function Dn(x

" 
... ,xn) is translationally invariant if and only if L > 2(N - n)R and x,, ... , Xn lie 

in [(N - n)R, L - (N - n)R]. (b) For arbitrary finite values of R, with or without a hard core, the 
above conditions are sufficient for translational invariance of the Dn. These conditions hold for all 
temperatures. 

I. INTRODUCTION 

I N a recent paperl (referred to as 1), translational 
invariance properties for a finite one-dimensional 

hard-core fluid were established. It was found that, 
for densities less than half the close packing density, 
there exists a central region in which the one-, two-, 
... , N-particle distribution functions are transla­
tionally invariant. It is the main purpose of this paper 
to extend these results to one-dimensional systems 
with arbitrary forces of finite extent, R. 

In I, use was made of the fact that, for systems with 
nearest-neighbor interactions, the n-particle distribu­
tion functions, D n' are expressible in terms of the 
configurational partition function. For pure hard 
cores (no attractive forces), this function is well known, 
and its precise form was used explicitly throughout 
the investigation of paper I. In order to extend the 

1 H. S. Leff and M. H. Coopersmith, J. Math. Phys. 8, 306 
(1967). 

investigation to a general class of potentials of finite 
extent, we employ a method which expresses deriva­
tives of distribution functions in terms of other 
distribution functions. These expressions are in the 
form of recursion relations which lead to the transla­
tional invariance properties of the n-particle distribu­
tion functions. The bulk of this paper deals with the 
derivation of these recursion relations. Once obtained, 
the translational invariance properties are immedi­
ately established using mathematical induction. 

The main result is that, for N particles contained 
in the interval [0, L], where L > 2(N - n)R, there 
exist central regions, [(N - n)R, L - (N - n)R], in 
which the functions Dn for n = I, ... , N are trans­
lationally invariant. It is rigorously established that, 
for nearest-neighbor potentials, these translational 
invariance properties do not hold outside the central 
regions and evidence that this is also true for poten­
tials of arbitrary extent is presented. An interesting 
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for densities less than half the close packing density, 
there exists a central region in which the one-, two-, 
... , N-particle distribution functions are transla­
tionally invariant. It is the main purpose of this paper 
to extend these results to one-dimensional systems 
with arbitrary forces of finite extent, R. 

In I, use was made of the fact that, for systems with 
nearest-neighbor interactions, the n-particle distribu­
tion functions, D n' are expressible in terms of the 
configurational partition function. For pure hard 
cores (no attractive forces), this function is well known, 
and its precise form was used explicitly throughout 
the investigation of paper I. In order to extend the 

1 H. S. Leff and M. H. Coopersmith, J. Math. Phys. 8, 306 
(1967). 

investigation to a general class of potentials of finite 
extent, we employ a method which expresses deriva­
tives of distribution functions in terms of other 
distribution functions. These expressions are in the 
form of recursion relations which lead to the transla­
tional invariance properties of the n-particle distribu­
tion functions. The bulk of this paper deals with the 
derivation of these recursion relations. Once obtained, 
the translational invariance properties are immedi­
ately established using mathematical induction. 

The main result is that, for N particles contained 
in the interval [0, L], where L > 2(N - n)R, there 
exist central regions, [(N - n)R, L - (N - n)R], in 
which the functions Dn for n = I, ... , N are trans­
lationally invariant. It is rigorously established that, 
for nearest-neighbor potentials, these translational 
invariance properties do not hold outside the central 
regions and evidence that this is also true for poten­
tials of arbitrary extent is presented. An interesting 
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feature is that the translational invariance of D n does 
not require a hard core and depends only upon the 
finite extent of the potential. Furthermore, the results 
are independent of the temperature. 

In Sec. II, we establish a notation convention and 
recall several useful formulas from paper I. Section 
III introduces the general method of this paper and 
the major results of paper I are rederived. In Sec. IV, 
these results are extended to the case of general 
nearest-neighbor forces. Section V is devoted to the 
case of arbitrary forces of finite extent. A discussion 
of the results is contained in Sec. VI. 

II. NOTATION AND REVIEW 

Consider a one-dimensional system of N + 1 
particles contained in the interval [0, L]. (We use 
N + 1 instead of N for algebraic convenience.) Assume 
the particles interact according to a two-body poten­
tial energy w(x), where x is the interparticle separation. 
The configurational partition function for the system 
is 

Here Xi; = IXi - x;l, fJ is the inverse temperature and 
(') L is the ordered domain ° ~ Xl ~ ••• ~ XN+l ~ L. 
The n-particle distribution functions 

D(N+1l(X ••• X I L) 
n l' 'n 

are defined by2 

D~N+l)(Xl' .•• , Xn I L) 

(tv + I)! 1 
= X 

(tv + 1 - n)! Z(L, tv + 1) 

X fL ... f\xp [-p;'I1W(XU)] 'II dx" (2) 
Jo Jo i<i k=n+l 

if 0 ~ Xi ~ L for i = 1, ... ,n and are identically 
zero otherwise. 

If w(x) contains a hard-core part with diameter d 
and is zero for X ~ 2d, then, according to I, the 
ordered n-particle distribution functions have a 
particularly useful form 

D(N+l)(X < ... /' X I L) = ___ 1 __ _ 
n 1 - ..:::. n n! Z( L, N + 1) 

,(N+l)!~ -
X L L(Xl, Nl)Z(L - xn,Nn+l) 

{Nt} niNi ! 
n 

X II Z(Xk - Xk- 1 ' N k). (3) 
k=2 

• This notation is slightly more detailed than that in paper I, 
indicating both Nand L dependence. 

This function is normalized to 

(N ~ 1) 
over the ordered domain (') L' The prime indicates that 
the summation over the set {Nl' ... , Nn+I} is to be 
carried out under the constraint 

n+l 

ZN; = N + 1 - n. 
i=1 

When n = 1, the product of Z functions does not 
appear. Z and Z are modified configurational integrals 
which are defined by 

Z(x, n) = n! f .. 'fexp [-fJ.I,.W(Xii) J@(ll :'<3 

-Pit w(lx; - XDJ II dxk , (4a) 

Z(x, n) = n!Se,,:' Jexp [-fJitW(Xii) 

- fJ itl w(lxi - xl) - fJ i~ W(Xi)]·fI dxk· 
(4b) 

For the special case when w(x) is a pure hard-core 
potential, one has (see Appendix B of I) 

Z(x, n) = [x - (n - l)d]n, for x ~ (n - l)d, (Sa) 

Z(x, n) = [x - nd]n, for x ~ nd, (Sb) 

Z(x, n) = [x - (n + l)d]n, for x ~ (n + l)d. (Sc) 

These functions are identically zero outside the indi­
cated domains. It should be emphasized that Eq. (3) 
holds only for the case of nearest-neighbor forces and 
requires that w(x) contain a hard-core part.3 

III. ONE-DIMENSIONAL PURE HARD-CORE 
FLUID 

In this section, we rederive the main results of I 
without resort to the explicit evaluation of the partition 
function. Specifically, we prove that, for N hard-core 
particles of length d in the one-dimensional interval 
[0, L], where L > 2(N - n)d, the distribution func­
tion D<,;')(x1 , ••• ,xn I L) is translationally invariant 
for (N - n)d < Xi < L - (N - n)dand i = 1,2,"', 
n. To do this, we first look at the derivative of 
DiN +1)(x I L) with respect to x. From Eq. (3), we have 

D(N+ll(X I L) = (N + 1) 
1 Z(L, N + 1) 

X L Z(x, n)Z(L - x, N - n), 
y(",) (N) 

n=u(",) n 
(6) 

3 The concept of nearest-neighbor forces is meaningful only if 
the potential has a hard-core part. The requirement of a hard core 
is dropped in Sec. V. 
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where u(x) and r(x) are given by' 

(

k for kd < x < (k + l)d; 
r(x) = N k == 0,"', N - I, (7a) 

for x> Nd, 

(

k for L - Nd + (k - l)d < x < L 
u(x) == 0 - (N - k)d; k = 1, ... ,N, (7b) 

for x < L - Nd. 

The derivative is then given by 

~ D~N+1)(x I L) == (N + 1) 7Il (N) 
ax Z(L, N + 1) 11="("') n 

X [Z(L - x, N - n)~Z(x, n) 
ax 

+ Z(x, n) :x Z(L - x, N - n)] 

+ terms proportional to or/ax and au/ax. (8) 

If we now restrict ourselves to values of x which are 
not integral multiples of d, then the terms involving 
the derivatives of rex) and u(x) vanish. This restriction 
is of no consequence since this set of points has 
measure zero. 

It is necessary now to evaluate the derivative of Z. 
For the pure hard-core case, this can be done easily 
since we have an explicit expression for Z as given by 
Eq. (5b). For x ~ nd, 

(a/ax)Z(x, n) == n{x - nd)1I-1 = nZ(x - d, n - I). 

(9) 

However, this equation can be derived without explicit 
use being made ofEq. (5b). To do this, we go back to 
the original definition of Z as given by Eq. (4a) applied 
to the nearest-neighbor case. 

Z(x, n) == n!f ., 'fexp [-fJ
1If W(xi+l - Xi) 

@~ .=1 

- fJw(x - Xn)] IT dxk , (10) 

where w(x) is the hard-core potential given by 

{

CO for x < d, 
wx = ( ) 0 otherwise. 

Differentiating Eq. (10), we find 

~Z(x, n) == n! [ .. 'fexp [-li1W(Xi+1 - Xi)] 
oX JIl'", <=1 

(11) 

X {:x exp [-fJw(x - Xn)]} IT dXk 

= n f'dXn{:x exp [-fJW(X - Xn)]} 

== nZ(x - d, n - 1) 
X Z(xn,n -1) 

(12) 
• Here, we are explicitly using the fact that Z(x, n) == 0 for 

x<nd. 

in agreement with Eq. (9). In Eq. (12), the integrand 
of Z evaluated at xn = x vanishes because of the 
Boltzmann factor exp [-fJW(O)]. The last step of Eq. 
(12) is true since 

a/ax exp [-fJw(x - x n)] == b(x - xn - d), 

where b(x) represents the Dirac delta function. Simi­
larly, we have 

a 
ii;Z(L - x, N - n) 

= (N - n) iLdX1{:x exp [-fJW(X1 - X)]} 

X Z(L - Xl' N - 1 - n) 

= -(N - n)Z(L - x - d, N - 1 - n). (13) 

We now proceed to use Eqs. (12) and (13) in Eq. (8). 

:x DiN+l)(x I L) 

= (N + 1)N YI) [(N - I)Z(X _ d, n - 1) 
Z(L, N + 1) n="(,,,) n - 1 

x Z(L - d - (x - d), N - 1 - (n - 1» 

- (N ~ l)Z(X, n)Z(L - d - x, N - 1 - n)] 

= (N + l)Z(L - d, N) 
Z(L, N + 1) 

X [DiNl(x - d I L - d) - DiNI(X I L - d)J. 

(14) 

The last step follows from a change of variables 
(n - I ~ n) in the first summation. As in I, the 
binomial coefficient takes care of any error in the 
limits on the summations. Equation (14) is a recursion 
relation which expresses the derivative of a DiN+ll in 
terms of a difference of two D~N)'S. We now observe 
that D~I)(X I L) is a nonzero constant for 0 ~ x ~ L 
and vanishes otherwise. Therefore, from Eq. (14) it 
follows that 

~ D(il(x I L) 

= 2Z~;,~' 1) [Dill(x _ d I L - d) - Dill(x I L - d)] 

= 0 (15) 

for d < x < L - d; i.e., Di2)(x I L) is constant in 
the interval [d, L - d]. Furthermore, outside of the 
interval [d, L - d], Di2>(X I L) is clearly not constant 
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since 

2Z(L - d, 1) D(1)(x _ d I L - d) 
Z(L,2) I , 

for L - d < x < L, 
~ Di2)(x I L) = 
ox _ 2Z(L - d, 1) D(I)(X I L - d) 

Z(L,2) I , 

for ° < x < d. 
(16) 

These results can now be used to show that Di3)(x I L) 
is constant in the interval [2d, L - 2d] but is not 
constant outside this interval. Working up step by 
step, one eventually arrives at the results 

DiNl(x I L) 
is constant for 

(N - l)d < x < L - (N - l)d 
and 

L > 2(N - l)d, 
with 

(17a) 

is not constant for 

x < (N - l)d, x > L - (N - l)d 
and 

L> (N - l)d, 
with 

N>l. (17b) 

A formal proof by induction follows. Assume that 
DiN)(x I L) is independent of x in the interval 
[(N - l)d, L - (N - l)d] for L > 2(N - l)d and 
N = r. By Eq. (14), D~)(x I L) independent of x in the 
interval [(r - l)d, L - (r - l)d] for L > 2(r - l)d 
implies that Dir+l)(x I L) is independent of x in the 
interval [rd, L - rd] for L > 2rd. Since Dil)(x I L) is 
independent of x in the interval [0, L] for L > 0, we 
have by induction that DiN)(x I L) is independent of 
x for L > 2(N - l)d and all N ~ 1 when (N - l)d < 
x < L - (N - l)d. To prove (17b), assume that 
DiN)(x I L) is dependent on x for L> (N - l)d and 
N = r when x < (r - l)d or x > L - (r - 1 )d. 
Again using Eq. (14), D~)(x I L) dependent on x for 
L > (r - l)d when x < (r - l)d or x > L - (r - l)d 
implies that Di'+l)(x I L) is dependent on x for L > rd 
when x < rd or x> L - rd. Since Di2)(x I L) is 
dependent on x for L > dwhen x < d or x> L - d, 
we have by induction that DiN)(x I L) is dependent on 
x for L > (N - l)dand all N > 1 when x < (N - l)d 
or x> L - (N - l)d. This completes the proof of 
(17a) and (17b). 

Due to the existence of Eq. (3), we may use the 
translational invariance properties of DiN) to deter­
mine the corresponding properties of D~N). Combining 

Eqs. (3) and (6), we have 

D~V)(XI :::;; ... :::;; Xn I L) 

1 /I N! n Z 
= 'Z(L N)! 'N"" N ,II._ (Xk - Xk-I,Nk) n., TJ. 2' n' k-2 

X i (TJ)Z(XI,NI)Z(L-(Xn-XI)-XI,1]-NI) 
Nl~O N} 

1 !" N! Z(L - (x n - XI ),1] + 1) 
n! Z(L, N) (1] + I)! N 2 !'" N n ! 

x {trZ(Xk - Xk- l ' Nk)}D~~+I)(XII L - (x n - Xl»' 

(18) 
The doubly primed summation is over N 2 , ••• ,Nn 
and TJ = NI + N n+l' with the constraint N2 + ... + 
N n + 1] = N - n. It is clear that when Di~+l) is 
independent of Xl' then D~N) depends only upon 
(X2 - Xl), ... , (xn - x n- 1). The condition for this in­
dependence is TJd :s;; Xl :::;; L - (Xn - Xl) - 1]d. Since 
this must hold for TJ = 0, 1, ... , N - nand Xn -
Xl ~ 0, each term of Eq. (18) is xl-independent if 
(N - n)d :s;; Xl :::;; ... :::;; Xn :s;; L - (N - n)d when 
L > 2(N - n)d. Furthermore, it follows that if one or 
more of the Xi is outside [(N - n)d, L - (N - n)d] 
then for fixed values of the nearest-neighbor spacings, 
D<;')(x1 , ••• , xn I L) is a nonconstant function of Xl' 
For further details the reader is referred to paper I. 

IV. ONE-DIMENSIONAL NEAREST-NEIGHBOR 
FLUID 

Since the form of the one-particle distribution 
function [Eq. (6)] remains the same when we add 
nearest-neighbor forces to the hard core, we are 
tempted to derive an equation similar to Eq. (14), 
that is, a recursion relation for the DI's. We now show 
that it is possible to do this and thus extend the results 
of Sec. III to include all nearest-neighbor forces. 

We start with Eq. (8) which is correct for nearest­
neighbor forces. Using Eqs. (12) and (13) and making 
the variable changes z = x - Xn and z = Xl - X, we 
have 

~ Z(x, n) = n r"dz{~exp [-PW(Z)]}Z(X - z, n - 1), 
ox Jo oz 

(19a) 
o -

oX Z(L - x, N - n) 

= -(N - n) lL-"dZ{~ exp [-PW(Z)]} 

x Z(L - x - z, N - 1 - n), (19b) 
where R( <2d) is the range of the potential defined by 

(

ro, x < d, (20a) 

w(x) = w(x) > - 00, d < x < R, (20b) 

, 0, x> R. (2Oc) 
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Using Eqs. (19), Eq. (8) can be written, for non-integral values of x/d, as 

:x D~N+l)(X I L) 

= ! dz-exp[-pw(z)]Z(x-z,n-l)Z(L-z-(x-z),N-l-(n-l» (N + 1)N y(x) [(N - l)lX {a } - -
Z(L, N + l)n=u(x) n - 1 0 oz 

(
N - 1) rL-x {a } - - ] - n Jo dz oz exp [-pw(z)] Z(x, n)Z(L - z - x, N - 1 - n) 

= (N + 1) [rXdz{~exp [-PW(Z)]}Z(L _ z, N)D~N)(x - z I L - z) 
Z(L, N + 1) Jo oz 

- LL-Xdz{:z exp [-PW(Z)]}Z(L - z, N)DiN)(x I L - Z)] 

= (N + 1) rR 
dZ{~ exp [-PW(Z)]}Z(L - Z, N)[D~N>(x - z I L - z) - D~N)(X I L - z)]. 

Z(L, N + 1) Jo oz 
(21) 

The last step holds if R < x < L - R. We can now 
proceed by induction as before. Since the argument is 
identical with the previous one for the pure hard-core 
case, we omit the details. It is only necessary to replace 
d by R in the induction proof of Sec. IIJ." The result 
is that 

is constant for 

(N - l)R < x < L - (N - 1)R 
and 

L > 2(N - I)R, 
with 

N21. (22a) 

DiN>(x I L) is not constant for 

x < (N - I)R, x > L - (N - 1)R 
and 

L> (N - I)R, 
with 

N>1. (22b) 

Furthermore, due to Eq. (I 8), the translational in­
variance properties of DiN)(x I L) again ensure that 
D~N)(Xl' ••• , xn I L) will be translation ally invariant 
for (N - n)R < Xl < ... < xn < L - (N - n)R when 
L > 2(N - n)R and will not be translation ally in­
variant when one or more of the Xi lies outside this 
interval. 

S Strictly speaking, the upper limit of Eq. (21) should be R + £ 

where £ is an arbitrarily small positive number. Then, for the pure 
hard-core system R = d and the delta function peak is within the 
domain of integration. For this case, Eq. (21) reduces to Eq. (14). 

V. LONG RANGE FORCES: TRANSLATIONAL 
INV ARIANCE OF D(N) 

n 

Since the key to the results of Sec. IV lies in Eq. (21), 
we are tempted to develop a similar recursion relation 
when the force range is of arbitrary, but finite extent. 
Specifically, we consider the case where R in Eq. (20c) 
is arbitrary and the condition (20a) is unnecessary. 
The most direct approach is to begin with D~N+l) (x I L), 
as given by Eq. (2) for n = 1. Differentiation of this 
unordered multiple integral leads t06 

oDiN+l)(x I L) 

aX 
= -P(iXdZW'(Z)D~N+l)(x - Z, x I L) 

- JoL-x dzw'(z)Dk'V+l)(x, x + z I L»). (23) 

If R < x < L - R then both integrals run from zero 
to R.7 One then sees that translational invariance of 
D~N+l) over some range of its variables implies trans­
lational invariance of D~N+l) over a corresponding 
range of x. Similarly, an examination of 

:x D~N+l)(X, x + z I L) 

6 Here, it is convenient to explicitly use the form 

(olih) exp [-pw(x)] = -pw'(x) exp [-pw(x)]. 

In the preceding sections this was not the case. 
7 For the case of nearest-neighbor forces, this equation becomes 

a recursion relation for D~N+l1 being identical with Eq. (21). This 
can be seen using Eq. (3) applied to D~N+l1(X - z, x I L) with 
o S z S 2d. Since Z(z, n) = exp [-pw(z)] t5o,n, Eq. (3) yields 
D~N+l1(x - z, x I L) = (N + I)Z(L - z, N) exp [-pw(z)] 

X D1N'(x - z I L - z)IZ(L, N + I). 
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shows that the translational invariance of D~N+1) 
implies this property for D~N+1). One might hope to 
continue this process for (ojoX)D~N+1) with n = 1, 
2, ... , N. However, for n = 3, one already finds that 
the integrand, which is a sum of DiN+ll functions, 
does not vanish in an obvious way. Furthermore, this 
process appears to become untractable as n becomes 
large. These difficulties lead one to adopt a slightly 
different approach. 

In Secs. III and IV we first discussed the transla­
tional invariance properties of DiN+1) . We then used 
these to determine the translational invariance prop­
erties of D~N+1) for 2 ~ n ~ N. Since Eq. (3) is not 
valid for the case of long range forces it is not a priori 
clear that the translational invariance of DiN +1) 
implies this property for D~V+1). The method of the 
preceding paragraph, if tractable, would establish a 
chain leading from the translational invariance of 
D(N+1) to the translational invariance of D(N+1) The N+1 1 • 

method which we adopt retains this desirable feature 
and, in fact, allows us to relate the translational in-
variance properties of D(N+1) to those of D(N-k) N-n N-n ' 
where ° ~ k ~ n. 

To begin, we define the functions 

g(N+1)(X ..• x I L) by n 1, 'n 

g~N+1l(X1' ... , Xn I L) 
== Z(L, N + 1)D~N+1)(X1' ... , Xn I L) (24) 

for n = 1, ... ,N + 1. Note that 

g(N+1)(X ... x I L) 

N+1 1, ,N+1 =(N+l)!exp[-p:~lW(Xii)J 
is translationally invariant for all values of Xl, .•. , 
xn+1 in [0, LV We denote the set Xl' .•• 'Xi by Xi 
and write 

gW+1)(x NIL) = foL dygW.01
)(X N' y I L). (25) 

To determine the translational invariance properties 
of gW+1) (and thus of DW+1», we investigate 
(ojO€)gW+1)(XN + € I L) for € ---+ 0, where XN + € 

represents Xl + €, ••• , XN + €. Using the transla­
tional invariance property of g~+;'l), one easily sees that9 

lim ~ gW+l)(XN + € I L) 
..... OO€ 

o fL-' = lim - dyg~V.01)(XN' Y I L) 
..... oO€ -. 

= gW++;.l)(XN , ° I L) - gW.0l )(XN, L I L). (26) 
---

8 Recall that if one or more of the {Xi} lies outside [0, Ll, g,VV.t,.I) 
vanishes. 

8 Equation (26) may be interpreted as signifying a translation of 
the container, holding the particles fixed. The fact that the €­

dependence can be removed from the integrand and isolated in the 
limits of integration is crucial to the present method. 

It follows that if the set X N lies in [R, L - R] then each 
term of Eq. (26) reduces to (N + l)gW)(XN I L - R) 
and the right-hand side vanishes.lo Thus, for Xn in 
[R, L - R], gW+1)(XN I L) is translationally invariant. 
If X N does not lie in this interval then the two terms 
on the right are in general unequal and gW+1) is not 
invariant under translations of the set X N . 

It is now desirable to generalize this discussion to 
g(N+1) g(N+1) •.. g(N+1) The general situation is far N-1 , N-2' '1 . 

more complicated because, after the differentiation 
(ojO€)g(N+1) there still remain n integrations ofg(N+1) N-n ' N+l 
and one must prove that these vanish under appro-
priate restrictions on the set X N-n. Thus, we consider 

I· 0 (N+1)(X I L) 1m - g.V-n N-n + € 
..... oO€ 

1 . 0 fL-E = hm- ... 
(n + I)! E .... 0 O€ -. 

f
~ ~ 

X -E g.~~tll(XN_n'Yl,···,yn+1IL)!!dYi 

= gk':..~~l(X N-n' ° I L) - g~~~~l(X N-n' L I L). (27) 

In order to show that this expression vanishes under 
certain restrictions on the X N-n' we decompose the 
integrals involved on the right-hand side of Eq. (27). 
For n = 1, for example, we write 

gW+1)(XN_1, ° I L) = IoR dyg~";l)(XN_l' 0, y I L) 

+ f: dyg~~l)(XN_l' 0, y I L). (28) 

Ifno member of the set XN _ l 1ies to the left of2R, then 

gW+1)(XN_l , ° I L) 

(N; 1)gi2)(0 I R)g»~11)(XN_l - R I L - R) 
+ (N + l)g~l(XN_l - R I L - R). (29a) 

Similarly, using the decomposition 

we find that 

rL= rL-R 
+fL , 

Jo Jo L-R 

gW+1)(XN_1 , L I L) = (N + l)gW~l(XN-ll L - R) 

+ (N; 1) gi2)(R I R)gW~l)(XN_l I L - R) 

(29b) 

10 If the set XN lies to the right of R, gjf1tll(XN, 0 I L) = 
(N + l)gjf)(XN - R I L - R). If the set XN lies to the left of L - R, 
gjf.N)(XN, L I L - R) = (N + l)gjf)(XN I L - R). These express­
ions are equal since gjf) is manifestly translationally invariant. Since 
XN is restricted to [R, L - RJ one could denote the domain in the 
gjf) functions by L - 2R, rather than L - R. The precise label is 
irrelevant for our purposes. 
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when no member of the set X N-1 lies to the right of 
L - 2R. Combining Eqs. (27) and (29) we see that 
gr-i1)(X N-1 I L) is translationally invariant if the set 
X N-1 lies in [2R, L - 2R]. 

We may gain an understanding of the integral 
decomposition by a simple graphical notation. We 
represent the two integrands of Eq. (28) by Fig. 1. 
Here, one sees that in the first term, y interacts with 
the fixed point at zero, but not with the set X N-1' In 
the second term, the reverse situation holds. The fact 
that y cannot simultaneously interact with the set 
X N-1 and the fixed point accounts for the factorization 
which occurs in Eqs. (29). This provides a clue as to 
how to proceed with Eq. (27) for arbitrary n. Sym­
bolically, we write 

gW--f:,.~l(XN-n' 0 I L) 

= :![LLdyrgWri1)(XN-n, 0, Y1"", Yn I L) (30) 

using an obvious notation. Now, let I j and In be 
integral operators defined by 

_l(Hl)R 
Ii = dy, 

jR 
for j = 0, ... , n - 1, (31a) 

In == rL 

dy. 
JnR 

(31b) 

S· (N+l)(X 0 I L) . . IDce gN+l N-n' ,Y1,'" 'Yn IS symmetrIC 
under permutations of the Yi variables, we may com­
bine Eqs. (30) and (31), using the multinomial expan­
sion, as follows: 

gW--f:,.~l(XN-n' 0 I L) 

1 
= - (10 + 11 + ... + In)n 

n! 
x gWri1 ) (XN - n , 0, Yl, ... , Yn I L) 

, I~oIll ... I~n (N+l) . . . I =! g,¥+l (XN- n ,0,Y1, ,Yn L). 
{I;} 'o! 'I! ... In! 

(32) 

It is understood using this notation that each integral 
operator acts on a different Yi variable. The primed 
summation signifies that 10, '1, ... , In each run from 
zero to n under the constraint 

n 

! Ii = n. 
i=O 

The utility of Eq. (32) lies in the fact that, for any 
configuration of the {Ii}' at least one Ii must be zero 
since there are n + 1 intervals and n integration 
variables. Graphically, this means that the integrand 
of Eq. (32) consists of a sum of terms, each of which 
has at least one gap of length R separating two group-

FIG.!. Graphical representation of the two integrands of Eq. (28). 

FIG. 2. Graphical representation of a typical term of the sum­
mation in Eq. (32). The set XN-n is assumed to lie to the right of 
(n + I)R, and 1m = 0 where m < n. 

ings of the Yi variables. For example, if 1m = 0, the 
configuration may be represented by Fig. 2 if the set 
XN - n lies to the right of (n + I)R. This condition and 
the occurrence of gaps allows a factorization of the 
g~i1) function which is essential to the translational 
invariance proof. 
To continue, we represent the summation in Eq. (32) 
as a sum over the various possible gaps, as indicated 
by Eq. (33). 

!' = ~' + !' + !' + ... + 
lI;} 10=0 11=0 1,=0 

10>0 10,71>0 

In each sum, the prime means that 
n 

! Ii = n. 
i=O 

(33) 

The other indicated restrictions are necessary to pre­
vent the overcounting of 2-, 3-, ... , (n - I)-gap con­
figurations. An analysis of the first three summations 
enables one to see that a useful pattern emerges. 

!' = (N + l)g~n(XN_n - R I L - R), (34) 
10=0 

" ~ (N + 1) I~o (/0+1)(0 I R) ~ = ~ 1 1 -[ , glo+l , Y1' ... , Ylo 
11=0 10=1 0 + o· 
10>0 

(n - [ )' I 12, • . I I,. X! 0 '2 n 

I.," ',In (n - lo)! 12! ... In! 

X gW--;!o) (XN- n , Y1o+l,"', Yn I L- 2R) 

= i (N + 1) gi'o+l)(O I R) 
10=1 10 + 1 

X gW--..lo) (XN - n - 2R I L- 2R). (35) 

In Eq. (35), the summation over 12, ••• , In is performed 
with 12 + ... + In = n - 10 , The binomial coefficient 

(
N + 1) 
10 + 1 

arises from the identity 

glv~il)(XN_n' 0, Y1"", Yn I L) 

= (: : ~) g:!~il)(O, Yl, ... , Ylo I R) 

X gW-i!o) (XN- n, Y1o+l, .. " Yn I L - 2R), (36) 
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which holds when a gap separates (Yl' 0 0 0 ,Ylo) and 
(Ylo+l'o 0 0 'Yn' XN- n); i.e., when 11 = O. For the third 
summation we have 

~, _ ~ (N + 1) I~o I~' (k+1)(0 0 • • /2R) 
k - k gk+l 'Y1' ,Yk 

12=0 10+h=k=2 k + 1 lo! II! 
10,/,>0 10,1,>0 

(n - k)' 1/3 ••• lin X! . 3 n 

13+ oo '+!n=n-k(n - k)! Is!" 'In! 

X gW-~k)(XN_n' Yk+l"", Yn / L - 3R) 

_ ~ (N + 1) IJo If' (k+1)(0 . . . \2R) 
- ~ _ k + 1 I' I , gk+1 'Y1' , Yk 

10'H,-k-2 0 0 l' 
10,1,>0 

X gW-;)(X N-n - 3R I L - 3R). (37) 

It is now clear that Eqo (32) is expressible in the form 

gW-+,.1).l(X N-n' 0 \ L) 
n n 

=! ! Ciilo, 0 0 • , Ii_I) 
;=010+" '+li-,=k=i 

lo.··· ,1J-1>0 

X g}f---;.k) (XN - n - (j + 1)R / L - (j + 1)R), (38) 

with 

C (I . o. I ) == (N + 1) I~o .. 0 I~>::::t 
ik 0, 'i-1 k + 1 lo!'" Ii_I! 

X gk~-t;l)(O, Yi, ... , Yk \ jR). (39) 

The j = 0 term in Eq. (38) is understood to be given 
by (34). 

It is possible to decompose the integrals in 

gW-+,.1).l(X N-n' L \ L) 
using the following operators 

SoL dy = (J1 + J2 + 0 •• + I n), 

where 

(40) 

L
L-iR 

J i == dy for j = 0, 1, ... , n - 1 (41a) 
L-(i+l)R 

and 
rL-nR 

I n == Jo dy. (41b) 

The analysis is identical to that above and leads to the 
following expression [as before, the j = 0 term is 
understood to be (N + l)g~n(XN-n \ L - R)]. 

g~~+n1).l(XN-n' L \ L) 

with 

n n 
=! ! B;ilo, ... , Ii_I) 

;=0/0+' .. +Ii_,=k=; 
lo, ... ,li-l > 0 

X gW~:) (XN - n \ L - (j + l)R) 

B I . 0 0 I _ 0 ,-1 (N + 1) J!o 0 0 • Jl.l-' 

ik( 0, 'i-I) - k + 1 lo!'" I i-I 

X g~~-t;,l)(L, Y1' .. 0 , Yk \ jR) 

(42) 

(43) 

when the set XN- n lies to the left of L - (n + I)R. 
Making the transformation of variables Y; = L - Yi 
for i = 1, 2, 0 0 • , k and utilizing the reflection sym­
metry of g~~-tt about lL it is obvious thatU 

Bik(lo, 0 0 0 , /;-1) = Cik(lo, 0 0 0 , /;_1)' (44) 

Therefore, the combination of Eqs. (27), (38), (42), 
and (44) yields the result 

I· a (N+l)( \ ) Im- gN-n X N- n + € L 
..... 0 O€ 

n n 
=! ! 

;=0 lo+ ... +li_,=k=; 
lo.··· ,1;_1>0 

X [gW~:)(X N-n - (j + 1)R / L - (j + 1)R) 

- gW--:)(XN - n \ L - (j + l)R)] (45) 

for(n+l)R::;;xi::;;L-(n+ I)R,i= l,ooo,(N-n) 
and n = 1,000, (N - 1). In thej = 0 term the second 
sum is ignored, k = 0, and Coo is taken to be N + I. 
Equation (45) is the desired recursion relation repre­
sentingg~-t;.I) in terms of differences of g~~)n's with N -
n ::;; M ::;; N. The proof of translational invariance 
is again by induction. Assume that g~n+m)(Xn \ L) is 
translation ally invariant for any n, 0 ::;; m ::;; r, and 
L such that mR < Xi < L - mR, i = 1, 0 0 0 , no By 
Eq. (45), this implies that 

g~n+r+1)(X n / L) 

is translationally invariant for (r + I)R < Xi < L -
(r + I)R. But g~n)(Xn \ L) is manifestly translationally 
invariant for any nand L such that 0 ::;; Xi ::;; L, 
i = 1 o. 0 n Therefore by induction g(n+m)(x \ L) , ,. , 'n n 

is translationally invariant for any n, all m ~ 0, and 
L such that mR < Xi < L - mR. Replacing m by 
N - n and using Dn functions, we have as our major 
result: 

D(NJ(x ... X \ L) n 1, 'n 

is translationally invariant if 

L> 2(N - n)R 
and 

(N - n)R ::;; Xi ::;; L - (N - n)R for i = 1, ... , n 

and 
n = 1,' 0 0 ,N 

with 
N~1. (46) 

It should be emphasized that this result holds for all 
potentials of finite extent, with or without a hard core. 

11 Note that the intervals [O,jR] and [L - jR, L] are both denoted 
simply as jR in the g1kj.., functions. The specific interval involved is 
clear from its context. 
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The result (46) gives sufficient conditions for trans­
lational invariance. It appears to be very difficult to 
establish whether or not these conditions are also 
necessary. Some evidence exists indicating that the 
stated conditions are necessary, and we are content 
to state this evidence with the hope that a general 
proof ultimately will be found. 

First, consider Eq. (26) and the remarks which 
follow it. Clearly, the condition that the set XN lies in 
[R, L - R] is necessary and sufficient for g!J+1) to be 
translationally invariant for arbitrary temperatures. 
Next, we consider gW-~ll(XN_n I L)wherex2 ,' •• ,xN- n 
lie in [en + I)R, L - (n + I)R], but Xl lies in 
[nR, (n + I)R]. Going back to the preceding analysis, 
one finds that for n ~ 1 

I· 0 (N+1)(X I lm- gN-n N-n + E L) 
..... OO€ 

= (N + I) g(N-n)(x I L - nR) n + 1 N-n N-n 

X 10 , •• In_lg~~~l)(O, Yl, ... , Yn I nR) 

X {exp [-pw(x l - Yn)] - I}. (47) 

Performing the integrals over Yl, ... ,Yn-l, one has 

lim E... g(N+1)(X, + € I L) 
::l N-n l\-n 

€.-.o uE 

= (N + 1) g(N-n)(x, I L - nR) 
n + 1 N-n lIi-n 

X rnR 
dYnF(Yn){exp [-pw(x l - Yn)] -I} 

J(n-l)R 

with 
(48) 

F(Yn) == 10 , •• In_2g~~1)(0, Yl' ... , Yn I nR). (49) 

In general, Eq. (48) does not vanish for all values of p, 
which shows that gW-~l) is not translationally invariant 
if X 2 , ••• , XN-n lie in [en + I)R, L - (n + I)R], but 
Xl lies in [nR, (n + I)R]. 

In order to demonstrate that the stated translational 
invariance properties are necessary, one would have 
to show that 

lim i g(N+l) 

• ~o O€ N-n 

is nonzero for any configuration where one or more of 
the Xi lies outside the interval [en + I)R, L - (n + I)R]. 
Although we have not been able to prove this, the 

above examples suggest that the conditions in Eq. (46) 
are indeed necessary. 

VI. DISCUSSION 

We have seen that it is not necessary for the length 
of a one-dimensional system to become infinite in 
order to have translational invariance of the n-particle 
distribution functions. It is a remarkable fact that the 
container walls have no effect on the property of 
translational invariance as long as they are a sufficient 
distance apart. The method which we have used in 
Sec. V provides a particularly transparent physical 
interpretation of this distance. D~N)(Xn I L) is trans­
lationally invariant when each member of the set Xn 
is far enough from the walls so that it cannot interact 
with a particle fixed at either wall, through a chain of 
interactions with the remaining particles. That is, trans­
lational invariance of D~N) is assured when Xl' ... , Xn 

are all at least a distance (N - n)R from either wall. 
The translational invariance properties are strictly 

geometrical in nature and do not depend in any way 
upon the temperature of the system. Furthermore, 
these properties do not require a hard core and depend 
only upon the finite extent of the potential. They 
therefore hold even for systems which may be unstable 
in the thermodynamic limit. 

On the basis of the physical picture in the first 
paragraph of this section one might expect three­
dimensional systems to have the same translational 
invariance properties as one-dimensional systems. If 
this is indeed so, then one intuitively expects the devi­
ations from translational invariance outside the central 
regions to be exceedingly small in three dimensions. 
To see this, consider a box of volume L3 with N = 1022 

and R = 10-8 cm. The above conditions for transla­
tional invariance would require that L > 2 X 1014 cm, 
corresponding to a density of ""'10-21 particles/cm3 ! 
On the basis of known homogeneity properties for 
real fluids, this suggests that either (a) less stringent 
conditions than (N - n)R < Xi < L - (N - n)R are 
necessary for the translational invariance of D~N) in 
three dimensions, or (b) if these conditions are neces­
sary then approximate translational invariance must 
exist for realistic densities. This open question poses 
a challenging problem for future study . 
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It !s shown how the complete dynamics of the hydrogen atom is related to the three-dimensional 
rotatton group. 

1. INTRODUCTION 

THE angular momentum, L, is an integral of the 
motion and gives rise to a (21 + I)-fold degeneracy 

for every spherically symmetric potential. The 
Coulomb potential has in addition a second vector 
integral of the motion, V, the Runge-Lenz vector, 
and a total degeneracy N2, where N is the principal 
quantum number. These two integrals, L and V, 
were related to the six generators of 04 by Fock1 and 
by Bargmann.2 More recent papers have discussed 
the relation of this problem to larger symmetry groups. 
Here, on the other hand, we base our treatment 
entirely on the group 03 , 

Our method depends on the fact that the Schrodinger 
equation in the momentum representation may be 
interpreted as an integral equation on the group 
space of 03 ; the connection with 04 arises because the 
group of motions of this space is just 04 , Here, 
however, we discuss the intrinsic geometry of the 
group space instead of embedding it in a space of 
higher dimensions as is usually done. Therefore our 
entire treatment is based on 03 , One may then say 
that the dynamics and symmetries of this problem, 
which determines the magic numbers (N2) of atomic 
physics, are both determined by a single group. 

2. MOMENTUM REPRESENTATION AND 
SPHERICALLY SYMMETRIC POTENTIAL 

We first consider a spherically symmetric attractive 
potential which is not necessarily Coulomb. In the 
momentum representation, we have 

(E - :~) rp(p) =5 V(p - p')rp(p') dp', (2.1) 

where V(p) is the Fourier transform of the potential 
with the property 

V(p) = V(lpl). (2.2) 
Let 

E = -p~/2m. (2.3) 
Then Po is real for bound states and imaginary for 

1 V. Fock, Z. Physik 98, 145 (1935). 
2 V. Bargmann, Z. Physik 99,576 (1936). 

scattering states, and 

G-1(p)rp(p) = ~ 5 V(p - p')rp(p') dp', (2.4) 

where 
G(p) = p~/(p2 + p~) (2.4a) 

is the propagator. 
Equation (2.4) may be written as an integral 

equation on the group space of 03 by using p itself 
to parameterize a rotation. Let the spin representation 
of the rotation w be 

Di(w) = exp (tiwa) 

= (Po + iap)!(po - icrp). 

(2.5a) 

(2.5b) 

In terms of p the invariant volume element in group 
space is (as shown in paragraph 4) 

dT = gi dp, (2.6a) 

where the group metric is simply related to the 
propagator G of (2.4), 

(2.6b) 

Then (2.4) becomes 

4>(p) = ~ 5 U(p, p')4>(p') dT', (2.7) 

where 
4>(p) = G-2(p)rp(p), (2.7a) 

U(p, p') = G-l(P)V(lp - p'I)G-l(p'). (2.7b) 

The kernel U(p, p') is now symmetric in view of (2.2). 
Since U(p, p') is real and symmetric, the eigenvalues 
E are real. The transformation just made is of course 
valid for any spherically symmetric potential. 

The function gi is positive definite for bound 
states (E < 0). For scattering states (E> 0), gt 
may become negative. 

3. GEOMETRY OF ROTATION GROUP 

Every three-dimensional rotation may be rep­
resented by a vector w giving the magnitude and 
axis of the rotation and, therefore, by a point in a 
sphere of radius 7T. This spherical ball is the group 
space and has a well-defined geometrical structure 

443 
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which may be characterized by its metric and con­
nection. It may be mapped into an unbounded 
three-dimensional continuum, but its total volume 
must, of course, remain finite. 

Since this space has constant torsion and therefore 
absolute parallelism, its metric and connection may 
be derived from either of two sets of absolutely 
parallel triad fields A~lI(±) as follows,3.4 

gap = ~ A~Il(±)A~!I(±), (3.1) 
! 

where the (±) means that there are in fact two 
parallels at P' to a vector at P, and one may describe 
the space equally well by using either the right (+) 
or the left (-) parallel triads. [Here Afn(±) means 
the reciprocal triad.] 

In terms of Arl)' one defines the displacement 
operators, 

1 
X l(±) = -: Aill(±)GIl , 

I 

which have the commutative properties, 

(3.3) 

[X;(±), X;(±)] = =f(2i/Ro)EiikXk(±)' (3.4a) 

[Xi(±), Xl=f)] = 0, (3.4b) 

where Ro is the radius of curvature of the space. The 
Casimir operator has the simple geometrical inter­
pretation, 

(3.S) 

where A is the Laplace-Beltrami operator, 

A = 1- .l.... gigllV ~ , (3.Sa) 
g1- Gall Ga" 

and all is any coordinate system in group space. The 
matrix elements of the irreducible representation are 
solutions of the differential equations, 

X 2(±)D:"m,(a) = [4j(j + l)/R~]D:"m,(a), (3.6a) 

Xa( + )D:"m,(a) = (2mjRo)D:"m.(a), (3.6b) 

Xa( - )D:"m·(a) = (2m'/Ro)D:"m·(a), (3.6c) 

and satisfy 

fn:"n(a)D:';'n.(a)gi da = bii'bmm.bnn' V, (3.7) 
. d

i 

where d i = 2j + I is the dimensionality of the repre-

3 Most of the geometrical background referred to here may be 
found in L. P. Eisenhart, Continuous Groups of Transformations 
(Dover Publications, Inc., New York, 1961); see particularly 
Chap. V. 

4 R. Finkelstein, J. Math. Phys. 1,440 (1960). 

sentation and 

f gi da = V (3.8) 

is the invariant volume of the group space. 
The eigenfunctions of (3.6) also satisfy the following 

integral equation5 : 

D:"nCa) = d:. fKia, a')D~nCa') d'Ta., (3.9) 
flo' 

where 
d'Ta = gi da, (3.9a) 

Kia, a') = 1. ~ D:"n(a)D:"n(a')flo2i 
V imn 

(3.10) 

= 1. 2 sin (j + t)w flo21 
V i sin iw 

(3.10a) 

1 ___ ..::.1 __ _ 

= V 1 - 2flo cos tw + flo2 ' 
(3.10b) 

where w is the magnitude of the rotation R-I R' 
connecting the points a and a', and 1 flo 1 ~ 1. 

The two triads of displacement operators X i (±) 
are the generators of motions which carry the group 
manifold into itself while preserving the metric and 
connection. Both the left- and right-hand triads 
generate Oa and the complete group of motions is 
04 = Oa X Oa. 

4. STEREO GRAPHIC COORDINATES 

Let us put 

D(a) = [I + tiR(a)]j[I - iiR(a)], (4.1) 

where R(a) is Hermitian. Choosing the spin rep­
resentation D1-(a) , one may introduce stereographic 
coordinates as follows: 

R = ar/Ro, (4.2) 

where Ro may be shown to be the radius of the group 
space. In this coordinate system, the metric and 
connection take the following form4.5: 
(a) metric 

gaP = G2bap ' 

gi = G3; 

(b) symmetric part of connection 

(4.3) 

(4.3a) 

LiaP) = (bllaGp + bllpGa - bapGIl ) In G; (4.4a) 

(c) torsion 

• R. Finkelstein. J. Math. Phys. 7. 1632 (1963). 
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In these formulas the scale factor G is 

G-l(r) = 1 + Hr2IR~), 
and the invariant group volume is 

f g! dr = 27T2R~. 

(4.5) 

(4.6) 

The fundamental triads with which we began are4 

A~(±) = G2[(2 - G-l)!5~ + !(1IR~)rZr" 
=f E;tCRIRoY], (4.7) 

and the corresponding displacement operators are 

where 
dz = (I/i)(iJliJrz), 

L! = rjdk - rkdk, 

A z = r2 dz - 2rl), 

() = rS ds · 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

To terms of order 11 Ro the Xi are helicity operators; 
the terms of order 11 R~ are present in an Einstein 
space without torsion and may be interpreted in 
terms of an acceleration operator. a 

The kernel of the integral equation is now expressed 
directly in terms of r with the aid of the relation 

(1IR~)G(r)(r - r')2G(r') = 4 sin2 (tw). (4.9) 

Therefore, 

K r r' _ 1:..( ft-
l 

) 

,,(, ) - V (ftl - ft-!)2 + Ro2G(r)(r - r')2G(r') . 

(4.10) 

5. CORRESPONDENCE BETWEEN MOMENTUM 
SPACE AND GROUP SPACE 

By Eq. (2.5b) we may parameterize a rotation with 
the components of the momentum itself. By com­
paring (2.5b) with (4.1), one establishes the following 
correspondence: 

pI Po = lrlRo (5.1) 

between momentum space and group space described 
in stereographic coordinates r. Let us put 

Po = 2Ro, 

P = r. 

(5.Ia) 

(5.Ib) 

Then the energy -p~/2m determines the radius (Ro) 
of the group space and 

G-l(r) = G-l(p) = 1 + p2Ip~. (5.2) 

The invariant volume element is by (4.3a) 

dT = g! dp = G3 dp, (5.3) 

as assumed in (2.6). The invariant group volume is 
then 

V= 27T2R~ 

= t7T2p~. 

(5.4a) 

(5.4b) 

The main point now is that the integral equation, 
(3.9), on the group space is the same as Schrodinger's 
equation in the momentum representation when the 
potential is of the Coulomb type. For then (in the 
attractive case) 

r(p - p') = -(e2/27T2/i)[Ij(p - p')2], (5.5) 

and therefore, 

U( ') __ ~ 1 _1 ___ 1_ 
p, P - 27T21i (p _ p')2 G(p) G(p') (5.5a) 

By comparing with (4.10), one has the result 

, e2 V , e2 Po , 
U(p, p) = - 27T21i R~ Kl(p, p) = - Ii "2 Kl(p, p ). 

Then (3.9) becomes 

<PE(P) = - !.. e2pO
fKl(P, p')<PE(p') dT'. 

E 21i 

The eigenvalues are by (3.9) 

-e2po/2EIi = di 
or 

Po = me
211i di' 

E = -(e4/2mIi2)(1Id~), 

(5.6) 

(5.7) 

(5.8) 

(5.8a) 

(5.8b) 

which is the Balmer formula, where di is the principal 
quantum number N. 

The eigenfunctions are 

(5.8c) 

The total degeneracy is d; = N2 since both m and n 
run from -j to +j. 

In the general case (ft -:F 1) we may again construct 
an integral equation for <P(p) by defining 

rep, p') 
2 

= G(p)U(p, p')G(p') = - e Po G(p)K(p, p')G(p') 
21i 

(5.9) 

~[ ~l ] 

= - 7T21i (ft! - ft-!)2pgG(p)-lG(p')-1 + 41p _ p'I 2 • 

(5.9a) 

This is not the Fourier transform of a central sym­
metric potential in configuration space. Nevertheless, 
if we regard the dynamical problem as given in the 
momentum representation, we may say that the 
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particle behaves as if it were moving in a Yukawa 
potential with a velocity-dependent mass or range, 
with the limiting value for p = p' = 0 given by 

(t-t! - t-t-!)2. 

On the other hand, for large values of p and p' and a 
fixed value of momentum transfer, 

P(P,p') "-' [t-t-1/(t-t! - t-t-!)2]G(P)G(p') -+ O. 

The spectrum is now determined by 

me2/lipo = d,/t-t2i 

or 
(5.10) 

The wavefunctions are the same as in the case t-t = I, 
but they are differently correlated with the energy. 
For small t-t there is effectively one bound state 
(N = I); the rest of the bound states are crowded 
into a small interval lying just below zero energy; 
thus the true continuum is extended into a quasi­
continuum lying just below zero. 

6. HAMILTONIAN 

It appears most natural to formulate this problem 
in the momentum representation and to ignore the 
Hamiltonian, since the natural operators are the six 
displacement operators X i(±), which do not include 
the Hamiltonian. In order to connect with the usual 
formulation, however, let us express the Hamiltonian 
in terms of the X i(±). We have 

E, = -€t-t2i/(2j + 1)2, (6.1) 

where - € is the lowest Balmer energy and where 
2j + I may be regarded as an eigenvalue associated 
with the integral equation, (3.9), or with the differential 
equation, (3.6a). 

It follows from (6.1) and (3.6a) that the energy 
operator which works on the bound states of the 
Coulomb potential may be expressed as follows: 

H = -€/[R~X(±)2 + 1]. (6.2) 

Since Ro also depends on the energy, the relation 
(6.2) may be re-expressed in the following operator 
form: 

iX2(±) = (H + €)lmH2, (6.3) 

where m is the mass. Therefore the Hamiltonian 
commutes with X i ( + ) and X i ( - ). 

The Hamiltonian also commutes with the six 
operators (U lm, Uk4) defined as follows: 

Ulm = UXi+) - Xk(-)], 

Uk4 = UXk(+) + Xk(-)]' 

(6.4a) 

(6.4b) 

From (4.8) we see that Ulm is, except for po, the 

ordinary angular momentum, 

Ulm = pO-ILk' 
and that 

Uk4 = dk - po-2A,c' 

According to Bargmann,2 the Runge-Lenz vector is 

Vk = (i1i12e2m)poG2U4kG-2, 

and in three-dimensional notation, 

V = (lj2e2m)[L x p - p x L] + rlr. 
It follows that L and V both commute with the 
Hamiltonian defined by (6.3). 

The (Uik , U i4) together generate 04 while the X i(±) 
are the screw displacement operators which carry the 
group space of 03 into itself. Therefore the angular 
momentum and Runge-Lenz vectors are also simply 
related to the left- and right-handed screw motions 
which carry the group space of 03 into itself. 

7. ANGULAR MOMENTUM STATES 

The angular momentum, like the Hamiltonian, is 
not included in the original set of six generators 
X i(±). The functions D~m' are therefore not eigen­
functions of the angular momentum; in fact, the 
index j labels the energy and the set D~m·(m, m' = 
- j ... + j) spans the complete manifold belonging 
to that energy and therefore includes all values of the 
angular momentum from I = 0 up to and including 
1= N - 1. If we wish to obtain eigenvalues of the 
angular momentum, we must form the linear com­
bination, 

<PNLJlf(P) = I C(NLM;jmm')D~m.(p)G2(p), 
m,m' 

such that <PNLJl has the correct angular dependence, 
namely, 

<P N Ll11(P) = I1NL(P)G2(P) Y LJlf(8, <p). (7.la) 

Therefore, 

I1NL(P)YLJlf(8, <p) = I C(NLM;jmm')D~m'(P)' 
m,'tn' 

(7.1b) 
The right side, since there is no sum over j, must also 
satisfy (3.6a) but not (3.6b) and (3.6c). In fact, if we 
can write (7. I), these states must be eigenfunctions of 
(P, Lz), where 

L = ipo[X( +) - X( - )]. 

These states may be determined by either differential 
or integral equations as follows. 

(a) Differential Equations: Let 

I1NL(P)YLJlf(8, <p) = XNLJlf(P). (7.2) 
Then 

I:::..XNLJlf = -[4j(j + l)jR~]XNLJlf 
= -[2(N2 - 1)N2j€m]XNLJlf' (7.3) 
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If we express ~ in stereo graphic coordinates, we 
obtain 

where 

V2=!~ 
op; 

1 0 2 0 1 ( 1 O. 0 1 0
2 

) = - - P - + - -- - sm () - + ----
p20p op p2 sin f} of} of} sin2 f} oq} , 

pV = p(%p). 

Hence, 

(7.4a) 

where 
x = p/Po = Np/( -2mE)!. 

The solution of (7.4a) leads to the Gegenbauer 
functions C.v(x) as follows6

: 

IT () = [?:. (N - L - 1) !J! N222(L+ll 

NLP n (N+L)! 

V NLpL (N2p2 - 1) X· CL+l 
(N2l + 1)L+2 N-L+l N2p2 + 1 ' 

(7.5) 

where CN(x) is the coefficient of hN in the expansion 
of (1 - 2hx + X2)-v. The Fourier transforms of the 
G2(p)ITNL(P) are the associated Laguerre functions. 

The S-state solutions are spherically symmetric and, 
therefore, can only be the character functions, 

X' = ! Di = sin (2j + l)(tw) (7.6) 
m mm sin (lw) , 

where w is the angle of rotation or 

cos tw = (p~ _ p2)/(p~ + p2). 

The Xi satisfy the integral equation, 

Xi(a) = dt JK,ia, a')Xi(a') dT', 
ft ' 

and the orthogonality relations, 

f Xi(a)Xi'(a) dTa = Vb ii
'. 

If one puts 
X = cos tw, 

(7.7) 

(7.8) 

(7.9) 

(7.10a) 

(7.1Ob) 

then U2i(X) are the Tschebyscheff polynomials which 

6 H. Bethe and E. Salpeter, Quantum Mechanics of One- and 
Two-Electron Atoms (Academic Press Inc., New York, 1957). 

satisfy by (7.9) and (7.10), the orthogonality relations, 

Lll U2i(X)U2i'(x)(1 - x2)! dx = bi l'ln. (7.11) 

The momentum amplitude of an s state may be 
very simply expressed in terms of the momentum 
itself, 

pi(p) = G\p)Xi(p), 

PN(P) = - ~ Po [(po + ~p)N _ (po - ~p)NJ. (7.12) 
4 p Po - Ip Po + Ip 

Of course the Xi(P) are the same as ITNO(P) and must 
also satisfy (7.4) for L = O. 

(b) Integral equation. We again make the ansatz 
(7. I)-but now in (5.7). Then 

ITNL(P)YLM(f), p) 

= ~ e~oJ Kl(p, P')ITNL(P')YLM(f}', p') dT', 

where 

Kl(p, p') = _1_ 1 . 
n 2po G(p)(lp - p'1)2G(p') 

Choose p along the z axis and YLO(f}, p) = 1. Then 

or 

IT () = _1_!C J IT NL(p')[g(p')]lp ,2 dp' 
N L P 2 n 2 liE G(p')G(p) 

x f YLO((}', p') dft' dp' 
p2 + p,2 - 2pp'ft 

= _1_.£ f ITNL(p')[g(p')]lp ,2 dp' 

2n2 liE G(p')G(p) 

X [2n QL(p2 + p'2)] 
pp' 2pp' 

ITNL(P) = _e_ k(p, P')ITNL(P') dT~, (7.13) 2 100 
nliE 0 

where 
dT 1> = [g(P)]lp2 dp, (7.13a) 

, 1 1 (p2 + p,2) 
k(p, p) = pp' G(p)G(p') QL 2pp' 

__ p~ + p2 p~ + p,2 QL(p2 + p'2). 

p~p p~p' 2 p p' 
(7. 13 b) 

The solution of (7.13) for general L are again the 
Gegenbauer functions while the special case L = 0 
leads to the Tschebyscheff functions. 

8. GENERAL COORDINATE SYSTEM 

The fundamental correspondence between the 
Schrodinger equation in the momentum representation 
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and an integral equation on the group space has so 
far been discussed in a particular coordinate system 
(the stereo graphic system). However, since this 
integral equation has been written in a generally 
covariant form, it is possible to introduce other 
coordinate systems in the group space. For example, 
we may parameterize the rotations by Eulerian angles 
(0:, p, y) and adopt these coordinates in group space, 
and therefore in momentum space. 

The differential equations are now 

where 

X 2(±)DXtlW = _[(N2 
- l)IR~]D'i'[M" 

XS{+)DXtM' = (2MIRo)DXtM" 

Xs{-)D'i':IM' = (2M'IRo)DXtM', 

R~ = i(me/N 2
). 

(8.1) 

(8.2+ ) 

(8.2-) 

In order to express either the integral or differential 
equation in a particular coordinate system, one needs 
a general method for going from an arbitrary param­
eterization of the group to the metric and connection 
of the group space. This may be done as follows. 5 

Let U(a) be some representation of the group, 
where a is an arbitrary coordinate system in the group 
space. The fundamental triad fields may be expressed 
as follows: 

(8.3) 
where 

A,,{ +) = -;(oU/oa,.)U-l, (8.4+) 

A,,( -) = -iU-1(oU/oa,) = i(oU-1/0a,,)U. (8.4-) 

It is then possible with the aid of (3.1) and (3.2) to 
calculate the metric and connection and also to 
obtain 

gap = R! Tr AaAp , 

L~p = R~ Tr N'opA". 

(8.5) 

(8.6) 

We may illustrate these formulas with Eulerian 
coordinates. Then 

where 

We find 

oU/oo: = (iiO's)U, 

oU/oP = U3(t0:)U2(iP)Ua(-!y){!i0'3), 

oU/oy = U(tiO's) , 

and therefore 
A,,( +) = to's, 

AP( +) = Us(0:)(!0'2), 

Ay( +) = U00'3)U-1. 

(8.7a) 

(8.8a) 

(8.8b) 

(8.8c) 

(8.9a) 

(8.9b) 

(8.9c) 

To obtain A,.{ -), calculate the right side for U-l 
instead of U. By (8.3) one finds 

g!,,, = (~ ~ co~ P), (8.10a) 

cos POI 

o -cos P) 
~ ,(8.10b) gllV= 1 ( ~ 

R~ sin2 P 
-cos P o 

g! = iR~ sin p. (8.11) 

Finally, 

V = (l/g!)O!,g!OIl 

= _1_(~ + ~ _ 2cospL) 
sin2 P 00:2 oy2 oo:oy 

02 0 
+ op2 + cot p op , (8.12) 

Xs( +) = ;l.;( + )o!, = (2/Ro)(0/00:), (8.13) 

Xs(-) = ;l.;{-) 011 = (2/Ro)(0/ oy), (8.14) 
so that (8.1), (8.2 -) may be expressed in Eulerian 
coordinates. 

These equations have been separated in other 
coordinate systems by Wenger,7 who has also shown 
that the Eulerian system has a geometrical inter­
pretation in terms of cylindrical coordinates. 

The different possible coordinate systems are most 
simply related through the spin representation. Thus 
if we write 

(
1' ) 1 + tiar/Ro exp 2,wa = 

1 - tiar/Ro 

( 
cos!pexp[ti(o:+ y)] 

= -sin iP exp [ti(y - 0:)] 

(8.15) 

sintpexp[ti(o:-y)] ) 

cos}pexp[-ti(o:+y)] , 

(8.16) 

then the w, r, and (0:, p, y) are Riemannian, stereo­
graphic, and Eulerian coordinates, respectively. Then 
we find, for example, the following relation between 
the Riemannian and Eulerian coordinates: 

where 

(ws/w) sin iw = cos tP sin Ho: + y), (8.17a) 

(w JJw) sin !w = sin tP, (8.17h) 

cos!w = cos tP cos Ho: + y). (8.l7c) 

Let us finally note that the invariant kernel of the 
integral equation now takes the following form, 
instead of (4.1 0), 

KII(a, at) = 1 
1 + ft2 - 2ft cos iP cos Ho: + y) 

(8.18) 

7 D. Wenger. J. Math. Phys. (to be published). 
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9. SY~ETRIC TOP 

The correspondence between the Eulerian angles 
and the components of p are determined by (8.15) 
and (8.16) as follows: 

( 
exp[!i(ex+y)]cos!P exp [ti(ex - y)]sin!p ) 

-exp [-ti(ex - y)] sin tP exp [-ti(ex + y)] cos tP 

( 
P~ - p2 + 2iPoP3 2iPo(PI- ip2) ) 1 

= 2iPo(PI + iP2) p~ - p2 _ '2iPOP3 p~ + p2 . 

Therefore, 

sin tP = 2PoPJ-'(p~ + p2), 

tan Hex - y) = PI/P2' 

tan Hex + y) = 2POP3/(P~ _ p2). 

(9.1) 

(9.2a) 

(9.2b) 

(9.2c) 
Note that the character of the spin representation is 

X!(w) = 2 cos tw = 2 cos Hex + y) cos tP; 
Therefore 

cos !w = (p~ - p2)/(p~ + p2), (9.3) 

where w is the magnitude of the rotation. 
In the Eulerian system we may solve the differential 

equations (8.12), (8.13), (8.14) simply by D:"n(exPy), 
where m and n are the eigenvalues of the operators 
X 3{ +) and Xi -). But the vector operators X( + ) 
and X( -) obey just the same commutation rules as 
the angular momenta of a top with respect to body­
fixed and space-fixed axes. Therefore D:"n(expy) may 
be interpreted as the state function of a symmetric 
top where m and n are the quantum numbers giving 
the z component of angular momentum with respect 
to body-fixed and space-fixed axes. These functions 
may be expressed in the familiar form 

D:"n(expy) = exp (imex) d:"n(P) exp (iny), 
where 

di (P) = [(j + m)! (j - m)!]! 
mn (j + n)! (j - n)! 

x (cos !P)m+n(sin tP)m-np'J'~.::.m+n(cos P). 

The orthogonality statements (3.7) now factor into 
the familiar exponential relations and the corre­
sponding equation for the Jacobi polynomials p~.v). 
That is, from 

~ (2" {IT (2" D:"n(rxPy)D:;"n'(exPy) sin P dex dP dy 
87T Jo Jo Jo 

= ~mm'~nn,~ii' djl, 
one finds the following orthogonality relations: 

LIp - x)ll(l + xYP~·v)(x)p~·v)(x) dx 

2/+v+1 r(n + p, + 1)ren + v + 1) 
= 6nm , 

2n + p, + v + 1 r(n + 1)I'(n + p, + v + 1) 

as well as the corresponding relations for the ex­
ponential functions. 

The problems of the top and the Coulomb field are 
then reciprocal in the sense that momentum space and 
configuration space are interchanged. The correlation 
of the states with the energy is of course different in 
the two cases. 

10. CONFIGURATION SPACE 

Momentum space is natural for the Coulomb 
problem since it is isomorphic to the group space. In 
momentum space the natural operators are the 
generators Xl + ) and Xl - ), in terms of which 

L = tpo[X(+) - X(-)], 

where L, V are the angular momentum and the 
Runge-Lenz vectors. If one diagonalizes V, L3 one 
gets Gegenbauer functions in momentum space and 
Laguerre functions in configuration space; in this case 
the natural coordinate systems in both momentum 
and configuration space are spherical. On the other 
hand, if one diagonalizes Xa( +) and Xa( -), one 
obtains 

In this case one is led to the Wigner functions in 
momentum space. The corresponding natural co­
ordinate system is (ex, p, y) since 

Xa( +),....", a/aex, Xa( -) ,....", alay. 

In configuration space the corresponding natural 
coordinate system is parabolic and the corresponding 
functions are the confluent hypergeometric functions. 2 

The statements of this paragraph as well as of Secs. 
6, 7, and 9 relate known results8 to our use of the 
geometry of Oa. 
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This paper discusses a theorem concerning the variational description of the eigenfunctions and 
eigenvalues of the two complementary reduced density matrices for a many-particle system in a bound 
state. 

I N this paper, we discuss a theorem concerning the 
variational description of the eigenfunctions and 

eigenvalues of the two complementary reduced 
density matrices for a many-particle system in a 
bound state. This theorem is the following: 

Theorem: Given a bound state 11fJ) of an N-particle 
system, any state vector Ip) of a m-particle subsystem 
(m < N), for which the functional II (1fJ I p) II is station­
ary, is an eigenvector of the reduced density operator 
D" associated with the subsystem. The stationary 
li(1fJ I p) II gives the corresponding eigenvalue to which 
the eigenvector belongs. (1fJ I p) corresponds to an 
eigenvector belonging to the same eigenvalue of the 
reduced density operator Dq associated with the 
(N-m)-particle subsystem. The operators Dp and Dq 
in the Schrodinger representation correspond to the 
Dirac density matrices. 1 

Proof: Consider the N-particle system to be com­
posed of two interacting subsystems, each consisting 
of m and N-m particles and each with associated 
Hilbert spaces E 1) and Eq , respectively. Take the 
Hilbert space E for the system to be the tensor 
product of Ep and Eq{E = Ep @ Eq). 

Consider the stationary conditions of the functional 

S = (pq 11fJ) 
of the space E, where 11fJ) is a given unit vector, and 
Ip) and Iq) are some arbitrary unit vectors in Ep and 
Eq • The quantity S is, of course, the amplitude of 
finding the state 11fJ) of the N-particle system in the 
state Ipq). 

By means of the method of Lagrange multipliers, 
the stationary condition of S reads 

(JS + AiJ(P Ip) + A/J(q I q) = 0, (I) 
where AJ) and Aq are the Lagrangian undetermined 
constants. 

Upon calculating the variations and rearranging 
terms, 

«(Jql [(p 11fJ) + Aq Iq)] + (ql Aq l(Jq) 
+ «(Jpl[(q 11fJ) + AJ) Ip)] + (pi AJ) IJp) = 0. (2) 

1 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 27, 240 (1930). 
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Since l(Jp) and l(Jq) are arbitrary, one may replace 
the kets l(Jp) by il(Jp) and l(Jq) by il(Jq), and the bras 
«(jpl by -i«(Jpl and «(jpl by -i«(jql, where i = (-I)!. 
Taking a linear combination of the new equation with 
(2), results the nontrivial equation 

«(jql [(p 11fJ) + Aqlq)] + «(jpl [(q 11fJ) + Aplp)] =0, 

(3) 

where «(Jpl and «(Jql are also independent of each 
other. It turns out that condition (1) satisfies the 
two following simultaneous equations: 

(p 11fJ) + Aplq) = 0, 

(q 11fJ) + Aqlp) = 0. 

(4) 

(5) 

With the aid of the normalization constraints on 
Ip) and Iq), the two Lagrangian undetermined con­
stants AJ) and Aq are now determined to be equal to the 
negative of the stationary S. Hence, we write both as 
-A and Eqs. (4) and (5) become 

(p 11fJ) = Alq), (6) 

(q 11fJ) = Alp). (7) 

The above two equations were previously2-4 

derived from the theory of integral equations and are 
valid only when the kernel of the integral operator is 
symmetric in a finite-dimensional space. In this case, 
it is known that the eigenvectors IPi), Iqi) belonging 
to the eigenvalue IAil2 of the respective density 
operators Dp and D~ associated with the two sub­
systems satisfy this theorem. In fact, one may 
alternatively adopt a variational definition of the 
reduced density matrices by taking the totality of the 
set of independently admissible solutions from (6) 
and (7) to construct the two complementary reduced 
density operators 

Dp = 1IAiI2IPi)(Pil, 

Q.E.D. 

2 B. C. Carlson and J. M. Keller, Phys. Rev. 121,659 (1961). 
3 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963). 
• T. Ando, Rev. Mod. Phys. 35, 690 (1963). 
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It may be noted that, due to the following identity, 

(V' - pq IV' - pq) = (V' IV') + (pq Ipq) 

-2 Re (pq IV'), 

the solutions of ipq) stationary to S also give the 
stationary solutions to the mean-square deviation of 
Ipq) from IV'). A discussion in terms of the latter 
quantity was given by Coleman.3 Much of the 
motivation for the present work, however, came 
from earlier discussion by Lowdin and Shull5 of the 
overlap properties in connection with the first-order 
density matrix. 

The theorem presented in this paper may be 
applied to the direct computation of the largest 
eigenvalues of reduced density matrices by a simple 

• P. O. Uiwdin and H. Shull, Phys. Rev. 101, 1730 (1956). 

JOURNAL OF MATHEMATICAL PHYSICS 

iteration procedure. We have, in particular, applied 
the variational generating equations (6) and (7), of 
these eigenvalue problems to the natural expansion 
of a many-electron wavefunction. A detailed dis­
cussion of this work with illustrative examples will be 
represented elsewhere.6 
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The partial wave series for the scattering amplitude for high-energy electron scattering is not uni­
formly convergent. The singularity responsible for the nonuniform convergence containing terms in 
(sin to)"la-', (sin to)",a-" and (sin to)2fa is separated from the rest of the series so that an accurate 
partial wave analysis may be carried out for any scattering angle. 

I. INTRODUCTION 

FOR high-energy electron scattering the long-range 
nature of the Coulomb interaction causes the partial 

wave series for the amplitude to converge slowly. In 
some calculations1.2 this difficulty was overcome by 
calculating f(O) = fcou\(O) + [f(O) - fcoulO)], where 
fcou!(O) is the point Coulomb scattering amplitude. 
This method is analogous to the one used to calculate 
nonrelativistic nuclear scattering when the Coulomb 
interaction is present.3 In both instances the series 
represented by the term f(O) - fcoulO) converges. 
However, for relativistic scattering of Dirac particles 
the point Coulomb amplitude is not available in 

1 L. R. B. Elton, Proc. Phys. Soc. (London) A63, 1115 (1950). 
2 R. Herman, B. C. Clark, and D. G. Ravenhall, Phys. Rev. 132, 

414 (1963). 
3 See for example, L. I. Schiff, Quantum Mechanics (McGraw­

Hill Book Company, Inc., New York, 1955), 2nd ed., Sec. 20. 

closed form, although an accurate evaluation can be 
made.4 •5 Another method was developed by Yennie 
et al.6 who considered the expansion of the function 
(1 - cos O)n f(O). This method works well except at 
small angles where many partial waves are required. 

Herman et al. 2 have suggested that the singular part 
of the scattering amplitude may be explicitly separated 
and summed so that a reliable partial wave calculation 
can be carried out at any scattering angle. Hethering­
ton7 attempted to do this for the Klein-Gordon 
equation. He separated the nonrelativistic point 

4 J. H. Bartlett and R. E. Watson, Proc. Am. Acad. Arts Sci. 
74, 53 (1940). 

5 See, for example, R. L. Gluck stern and S. R. Lin, J. Math. 
Phys. 5, 1954 (1964); W. A. McKinley and H. Feshbach, Phys. 
Rev. 74,1759 (1948). 

6 D. R. Yennie, D. G. RavenhalI, and R. M. Wilson, Phys. Rev. 
95, 500 (1954). 

7 J. H. Hetherington, Ph.D. thesis, University of Illinois (1960) 
(unpuhlished); J. H. Hetherington, J. Math. Phys. 4, 357 (1963). 
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It may be noted that, due to the following identity, 

(V' - pq IV' - pq) = (V' IV') + (pq Ipq) 

-2 Re (pq IV'), 

the solutions of ipq) stationary to S also give the 
stationary solutions to the mean-square deviation of 
Ipq) from IV'). A discussion in terms of the latter 
quantity was given by Coleman.3 Much of the 
motivation for the present work, however, came 
from earlier discussion by Lowdin and Shull5 of the 
overlap properties in connection with the first-order 
density matrix. 

The theorem presented in this paper may be 
applied to the direct computation of the largest 
eigenvalues of reduced density matrices by a simple 
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iteration procedure. We have, in particular, applied 
the variational generating equations (6) and (7), of 
these eigenvalue problems to the natural expansion 
of a many-electron wavefunction. A detailed dis­
cussion of this work with illustrative examples will be 
represented elsewhere.6 
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Relativistic Partial Wave Analysis of Electron Scattering 
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The partial wave series for the scattering amplitude for high-energy electron scattering is not uni­
formly convergent. The singularity responsible for the nonuniform convergence containing terms in 
(sin to)"la-', (sin to)",a-" and (sin to)2fa is separated from the rest of the series so that an accurate 
partial wave analysis may be carried out for any scattering angle. 

I. INTRODUCTION 

FOR high-energy electron scattering the long-range 
nature of the Coulomb interaction causes the partial 

wave series for the amplitude to converge slowly. In 
some calculations1.2 this difficulty was overcome by 
calculating f(O) = fcou\(O) + [f(O) - fcoulO)], where 
fcou!(O) is the point Coulomb scattering amplitude. 
This method is analogous to the one used to calculate 
nonrelativistic nuclear scattering when the Coulomb 
interaction is present.3 In both instances the series 
represented by the term f(O) - fcoulO) converges. 
However, for relativistic scattering of Dirac particles 
the point Coulomb amplitude is not available in 

1 L. R. B. Elton, Proc. Phys. Soc. (London) A63, 1115 (1950). 
2 R. Herman, B. C. Clark, and D. G. Ravenhall, Phys. Rev. 132, 

414 (1963). 
3 See for example, L. I. Schiff, Quantum Mechanics (McGraw­

Hill Book Company, Inc., New York, 1955), 2nd ed., Sec. 20. 

closed form, although an accurate evaluation can be 
made.4 •5 Another method was developed by Yennie 
et al.6 who considered the expansion of the function 
(1 - cos O)n f(O). This method works well except at 
small angles where many partial waves are required. 

Herman et al. 2 have suggested that the singular part 
of the scattering amplitude may be explicitly separated 
and summed so that a reliable partial wave calculation 
can be carried out at any scattering angle. Hethering­
ton7 attempted to do this for the Klein-Gordon 
equation. He separated the nonrelativistic point 

4 J. H. Bartlett and R. E. Watson, Proc. Am. Acad. Arts Sci. 
74, 53 (1940). 

5 See, for example, R. L. Gluck stern and S. R. Lin, J. Math. 
Phys. 5, 1954 (1964); W. A. McKinley and H. Feshbach, Phys. 
Rev. 74,1759 (1948). 

6 D. R. Yennie, D. G. RavenhalI, and R. M. Wilson, Phys. Rev. 
95, 500 (1954). 

7 J. H. Hetherington, Ph.D. thesis, University of Illinois (1960) 
(unpuhlished); J. H. Hetherington, J. Math. Phys. 4, 357 (1963). 
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Coulomb amplitude and a term containing a factor 
[sin lO]-2o.-I, where .A. = ZlZ2rx/f3 and rx and f3 are the 
fine structure constant and vic. However, his series is 
not absolutely convergent, since it stilI contains a 
singular factor [sin lO]-20. due to his neglect of the 
phase factor which increases logarithmically with I in 
his (J(1{I) term. 

We have separated and summed in closed form all 
the singular parts of the series for /(0) for high-energy 
electron scattering in the limit of zero electron mass. 
The series to be evaluated is then absolutely con­
vergent. It should be noted that the resulting form 
/(0) = /sing(O) + absolutely convergent series contains 
of course the same singularities as /COU!(O), the differ­
ence being in the nonsingular parts, i.e., /sing(O) is a 
closed form while /COU!(O) is not.4 

II. CALCULATION 

In the high-energy limit the Dirac scattering ampli­
tude is6 

where 'YJk' the phase shift, is the sum of a "nuclear" 
part bk and the relativistic Coulomb phase shift Xk 

given by 

ke2iXk = r(Pk + 1 - irx) i 1t(k-Pk). 
r(Pk + irx) 

Here rx. = Ze2{(ftc) and Pk = (k2 - rx. 2)1. The bk fall 
off rapidly with increasing k and only the Coulomb 
phase shifts need be considered. 

To expand the factor ke2ixk in inverse powers of k, 
we write 

ei1t(k-Pk) = 1 + i1Trx.
2 

_ 1T
2

rx.
4 + (J (-L) 

2k 8k2 k3 ' 

and we also expand f(Pk + 1 - irx)/f(Pk + irx.) in a 
Taylor series about P = k. Employing the asymptotic 
form for 1p(z) = f'(z)/r(z) we obtain 

r(Pk + 1 - irx) r(k + 1 - irx) 
= 

f(Pk + irx.) r(k + irx.) 

x [1 - ! rx.
2
(1 - 2irx.) + (J (-L)]. 

2 k 2 k3 

Combining the results we obtain 

ke2ixk = r(k + 1 - irx)[k + irx.(l + 7TCX) 
r(k + 1 + irx) 

+ ~2 (irx - t1Trx - i - 1T:rx) + (J (~2) 1 (2) 

When Eq. (2) is substituted into Eq. (I),/(O) may be 

rewritten in analogy with the nonrelativistic case as 
follows: 

f(O) = f1(6) + i2(6) + f3(6) 

+ _1_ i{ke2i(bk+xk) _ r(k + 1 - irx) 
2iK k=l r(k + 1 + jrx) 

X [k + irx(1 + t1Trx) + ~ 
k - lrx 

X (jrx - i1Trx - ~ - 1T:rx.)]} 

x [Picos 0) + Pk_1(COS 0)], (3) 
where 

f(O) = _1 !k r(k + 1 - irx) 
1 2iK k=l r(k + 1 + irx) 

X [Pk(cos 0) + Pk_1(COS 0)], 

f2(0) = ~ (1 + t 1Trx.)! r(k + 1 - irx) 
2K k=l r(k + 1 + irx) 

X [Pk(cos 0) + Pk_l(COS 0)], 

f3(0) = - irx. - .l1Trx - - - - I --rx.
2 

( 1 1T
2

rx.
2

) 00 1 
2K 2 2 8 k=l k - irx. 

r(k + 1 - irx) 
X , [Pk(cos 0) + Pk_l(COS 6)]. 

r(k + 1 + lrx) 

The series in Eq. (3) is absolutely convergent since its 
terms are (J(l (k2), 

It is possible to separate the nonrelativistic point 
Coulomb amplitude from the first term, but we do 
not do this since all of the above sums may be 
evaluated by the same method as follows. Labeling the 
sums which appear in /1(0), flO), and /3(0), II' I2' 
and I3' respectively, we find by employing the 
definition of the beta function 

1 00 

L = r(2' ) Ik[P,lz) + Pk-l(Z)] 
1 Irx. k=l 

X l\k-i"'(l - t)2i"'-1 dt, (4) 

where z = cos 0, The integral may be made to converge 
by adding E to the exponents. Using 

00 1 
ItkPk(Z) = t 

k=O (1 - 2tz + t2
) 

and 

t - t I tkPk(Z) = I ktkPk_1(Z) 0[00 ] 00 

at k=O k=l 

we find after some algebra 

I = (1 + z)4i
o< (1 [(1 - t)2/4trt dt 

1 r(2irx) Jo {[(I - t)2/4t] + t(l - z)}i(4t)i' 
(5) 
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Making the substitution u = (1 - t)2/4t and factoring 
out appropriate powers of z, we obtain 

I = . (sm to)",-2 u'''-t(1 + u)-! du 4i"-ICOS
2 tO[. . ioo

, 

I r(21(x) 0 

- (sin tOY,,-1 fooo 

ui"(1 + u)-~(1 + u sin2 to)-t du 1 
(6) 

Recognizing the first integral as a beta function and 
the second as a hypergeometric function which is 
then written in terms of hypergeometric functions 
with argument sin2 (t)O to obtain a form useful for 
small 0, and using the duplication formula for the 
gamma functions, the result is 

I = i(X cos2 tOr(1 - i(X) 
I (sin to)2-2'''r(1 + i(X) 

X {I _ sin to r(1 + i(X) ret - i(X) 
4 r(1 - i(X) ret + i(X) 

(cos tOi-2i" 
X F(t, 1 + j(X, t + i(X; sin2 to) + "----'. "--'--

21(x - 1 

F( 3 1 . 3 '.' 2111J) X 2, - 1(X,2 - l(x, SIn 2(1 , (7) 

where F (a, b, c; z) is the hypergeometric function. 
The singular part may be explicitly exhibited by 

writing out the hypergeometric series to obtain 

I = i(X cos2 t 6, r(1 - i(X) 
1 (sin to)2-2,,, r(1 + i(X) 

[1 
r(1 + i(X) ret - i(X) . 111 

X - sm 2(1 

r(1 - i(X) ret + i(X) 

+ (cos tW-2i" sin t~ + ... J . 
1 - 2/(x 

(8) 

We see that II contains the singularity associated 
with nonrelativistic point Coulomb scattering plus 
lower-order singular terms in sin to. 

The second sum I2 may be evaluated in the same 
way provided an infinitesimal is added to the exponent 
in the denominator of the first integral in the expression 
analogous to Eq. (6). The result is 

~ r(1 - i(X) (. 10)2iGl 2i sinh n(X 
..c..=- - stn~ -
2 r(1 + i(X) n 

ret - i(X) 2 111(' lLl)2i«-1 
X cos ~(I sm ~(I 

ret + i(X) 

X F(t, 1 + i(X, 1 - i(X; sin2 W) 

Again writing out the hypergeometric series to deter­
mine the nature of the singularity at 0 = 00

, we find 

I = - r(1 - i(X) _ (sin to)2i« + (sin 1O)2i"-1 
2 r(1 + i(X) 

X (2 cos210 _r~(t~-_i~(X) 
r(i + i(X) 

(cos tW-2iGl r(1 - i(X»). + + .... 
(i(X - t) r(1 + i(X). 

(10) 

We evaluate I3 by the same method used for II and 
I2' and we find 

I = r( - i(X) [-1 + (sin to)2iGl]. (11) 
3 r(1 + i(X) 

The scattering amplitude may now be calculated 
for small 6 by means of Eq. (3) which is exact, since 
the term by term subtraction is compensated for by 
adding/l(6)'/2(0),fa(6) back into /(0). 

1lI. KLEIN-GORDON CASE 

Hetherington's series for the Klein-Gordon case 
may be made absolutely convergent by subtracting 
the series 

S 00 1 rek + 1 + iA) P 6 
= I:o 2k + 1 r(k + 1 _ iA) icos ), 

which is summed as follows: 

(12) 

where 

l(v,O) = (1 du t' 
Jo (1 - 2vu2 cos 6 + V

2
U

4
) 

If we let u = l/x in lev, 6) we get 

l(v,6) = (l/vl)K(cos to), 

where K(cos to) is the complete elliptic integral of the 
first kind. Substituting back into Eq. (12) yields 

r(t + iA)f(2-iA)K( 1(j) s = cos"! . 
ret - iA) 

ACKNOWLEDGMENT + 2r(t - i(X) (cos tW-i" 
ntr(1 + i(X) 

X F(!, 1 - i(X, 2 - i(X, sip210). 

One of the authors (C. R. F.) is indebted to Dr. L. 
(9) Maximon for several valuable discussions. 
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In this paper we study some properties of irreducible representations of the unitary group in three 
di~ensions .Ua w!th positive.and negative in~ices. These representations are useful for the group theo­
retlc~l classIficatIOn of particle-hole states III nuclear shell theory, as well as in elementary particle 
physIcs. We show how the rules for reducing the direct product of two given representations should 
be modified when we include positive and negative indices and we use these rules to obtain an algebraic 
expression for the irreducible representations contained in the direct product. 

1. INTRODUCTION 

WE consider in this paper the construction of 
irreducible basis for the group Ua, which are 

expressed in terms of covariant and contravariant 
vectors. The irreducible representations IR carried 
by these polynomial basis are mixed, in the sense that 
they include positive as well as negative indices. The 
problem arises naturally when we consider the problem 
of constructing and classifying particle-hole wave­
functions in nuclear shell theoryl or elementary par­
ticle states containing both particles and anti-particles. 

In Sec. 2 we consider the group U3 as a subgroup 
of a six-dimensional orthogonal group and we use 
some results recently derived by Chacon2 for this 
group, to determine the highest-weight polynomial 
for mixed representations. We then show that not all 
Young diagrams with positive and negative compo­
nents correspond to IR of Ua . 

In Sec. 3 the reduction of the direct product of two 
given IR of Ua is considered. We use the mixed 
representations to derive an algebraic expression for 
the irreducible components of the direct product. a 
To accomplish this, we express Littlewood rules4 in a 
different form, which is convenient when we deal with 
mixed representations. Finally, in the Appendix, the 
equivalence of the modified with the usual Littlewood 
rules is shown. 

2. MIXED IRREDUCIBLE REPRESENTATIONS 
FOR THE UNITARY GROUP Ua 

We consider in this section the construction of a 
polynomial basis for irreducible representations of the 

* Th.is. work was supported by the U.S. Atomic Energy 
CommiSSIOn. 

t On leave of absence from Instituto de Fisica, Universidad de 
M~xico and Comision Nacional de Energta Nuclear, Mexico. 

J. Flores and M. Moshinsky, Nucl. Phys. (to be published). 
2 E. Chacon, Ph.D. thesis, University of Mexico (1966). 
3 N. Mukunda and L. Pandit, Progr. Theoret. Phys. (Kyoto) 34, 46 

(1965). 
'. D. ~. Littlewood, The Theory of Group Characters (Oxford 

Umverslty Press, New York, 1940). 

group Ua which contain the components of two types 
of three-dimensional vectors; one of them, 

x; (j = 1, 2, 3), (2.1) 

transforms according to the three-dimensional unitary 
matrices which form the group Ua; the other vector, 

~{ (j = 1,2,3), (2.2) 

transforms according to the contragradient repre­
sentation to x; of Ua. In both (2.1) and (2.2) j is the 
index affected by Ua transformations and the index t 
is used to differentiate among different vectors and 
takes, for the most general representation of Ua, 
three values also, say 1, 2, and 3. 

It proves convenient for our purposes to introduce 
the vectors (2.1) and (2.2) using a different notation, 
making the identification 

x; -- y;,., ~: -- Y:m (m, t = 1,2, 3), (2.3) 

whereby we define the vector y;", remembering that 
a negative index m indicates the component of a 
contravariant vector. 

In terms of this new vector y;", we define the fol­
lowing operators: 

a 
A;;:' = ! (y;,.p;,,' - Y:m,p-;m) == e;;:' - e=;;:" (2.4) 

t=l 

where 

pr;" = %y;" and p-;m = %Y:m. (2.5) 

By using well-known commutation relations (and 
taking into account that y;" and Y:m' with m > 0, 
are independent of each other) it is a simple matter 
to show that the operators defined in Eq. (2.4) are 
the elements of the Lie algebra corresponding to a 
rotational group in six dimensions. From the same 
commutation rules we can see that the set of operators 
A;;:', with m and m' > 0, define in turn a Lie algebra, 
this time for a unitary group in three dimensions; 
this latter is isomorphic to the group Ua introduced 
above. 

454 
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In order to construct irreducible polynomials, we used the notation 
follow Moshinsky5 and introduce the invariant ~~ = y~, ~~m = Y~m' 
operators, 

s 
es' ,s-m 

s = £. YmPs' , 
m=1 

s 
D ,m-m 

BS' = £. P. Ps' , 
m=1 

3 

r B 'S -m 
s' = £. Y-mPs' , 

m=1 

s 
D+ss' _, s s' 

- £. YmY-m' 
m=1 

(2.6) 

Using the same procedure as with the operators 
(2.4) one can show that the set given in Eq. (2.6) 
define a unitary group in six dimensions, which we 
call the complementary group to Us. With these 
generators we can characterize, as shown below, the 
irreducible basis for Us. The basis is given as a 
polynomial function, expressed in terms of y;" ful­
filling the following invariant conditions,5 

e!'p(y;,,) = 0, r:' P(y;") = ° (s < s'), (2.7a) 

DSB'P(y;") =0, Vs,s', (2.7b) 

C!P(y;") = hsP(y;,,), r:p(y;") = ksP(y;") 

(s = 1,2,3). (2.7c) 

In this set of equations C!', r~', with s < s', and 
DBs" for all values of sand s', form the set of raising 
generators5 of the complementary group to Us. The 
meaning of both sets of numbers (hs) and (ks) becomes 
clear below. 

If, besides conditions (2.7), we impose on P(y;") the 
following restrictions: 

(2.8a) 
and 

A;::P(y;") = AmP(y;,,) (m = 1,2,3), (2.8b) 

the polynomial P(Y;") will be the highest-weight func­
tion for an IR of Us, with indices (AI 1.2 As). One 
should notice that P(y;") is a function of y;" and thus 
of both covariant and contravariant vectors. In case 
P depends only on y;", m > 0, Eqs. (2.7) reduce to 
those previously used by Moshinsky.6 

We now obtain a solution for Eqs. (2.7) and (2.8), 
showing that it is unique. If we consider Eqs. (2.7a) 
and (2.7c) only, the polynomial 

P = (~~tl-h2(~~;)h2-h3(~m)h3(~~3l1-k2(~~23_2t2-k3 

(

AI ,1.12 Al ~12 

(~12S )kaz ~ ~ ~ ~) 
X -S-2-1 ~1 ' ~12 '~1 '~12 

1 12 -3 -3-2 

= (~) X Z (m = 1, 2, 3) (2.9) 

is a solution for these equations.6 In (2.9) we have 

• M. Moshinsky. J. Math. Phys. 4, 1128 (1963). 
6 M. Moshinsky. Nucl. Phys. 31, 384 (1962). 

AI", j '( 1)P P Al ,1.2 A j 
U m} ... mj = "'- - m mUmlUm2··· U mj , (2.10) 

Pm 

where Pm stands for a permutation over the indices 
m, (-l)Pm being the parity of the permutation. The 
last relation in Eq. (2.9) defines (PjZ), i.e., the factor 
of the function Z in P(y;"). This function Z depends 
on the variables explicitly indicated in (2.9) as its 
arguments, and is only restricted by the condition 
that when we multiply this function Z by the poly­
nomial (PjZ), a polynomial P(y;") in y;" is obtained. 
It is possible, therefore, that Z is not a polynomial 
• t 
mYm' 

We now introduce conditions (2.8a). We apply the 
raising generators of Ua, 

(2.11) 

to the polynomial defined in Eq. (2.9). When acting on 
(PjZ) , the generators (2.l1) give a vanishing result. 
We are therefore left only with the application of 
operators (2.l1) to the function Z. In order to do 
this, we follow Chacon2 and introduce new variables, 
defined as follows, 

II = L ~~m~i;" , 
m 

12 = L~~~~;-m' 
m 

(2.12) 
m 

which have the property of commuting with operators 
(2.11). By using these defining relations, we can replace 
some of the quotients appearing as arguments of Z 
in Eq. (2.9), obtaining a new function Z', which is 
now a function of the ratios 

_1_1_ II ~ 
A 1 A 12 ' A 1 AI' 
/..,11/..,1_S_2 /...11/...1_S 

Equation 
(2.13) 

AiP(y;,,) = ° 
then implies that Z' is not a function of ~~lj ~~3 • 
In a similar way, A~P = 0 and A~P = 0 tell us that 
Z' is not a function of ~~2j~=-3 and ~~j~i, respec­
tively. As a consequence of this, Z' is a function of 
the last three ratios indicated in (2.13). 

We can now expand Z' in a power series, obtaining 
the following expression for P(y;"): 

P(y;") = 

(2.14) 
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where the dummy indices ni are restricted by the 
condition that P(y;') is a polynomial function in y;' . 
This leads, in particular, to the restriction that nl are 
nonnegative integers. 

Using the form (2.14) for P(y;'), conditions (2.8b) 
now yield the relations 

Al = hi - ks - n2 - na, 
A2 = h2 - k2 - nl + n2, 
As = ha - kl + nl + ns , (2.15) 

and we are left with Eq. (2.7b) only, to determine 
the coefficient Anlnana • 

As can be seen from its definition, DBs' is a second­
order operator, and it is difficult to apply. It is at 
this point that our analysis is restricted to the three­
dimensional group Us, since we are forced to apply 
D'B' directly to P(y;'). This is not simply done for 
the general case of Ur • In any case, Eq. (2.7b) deter­
mines uniquely the values of ni , giving after a lengthy 
calculation the values 

ni = 0. (2.16) 

This shows that the highest weight polynomial P(y;') 
is determined uniquely and given by 

P(y;') = (~D"1-"·(~m"·-"3(~~~:)"3(~~s)kl-k. 
x (~':~2)kd3(~~2s~2_1l3. (2.17) 

We can now see the meaning of both sets of 
numbers (hi) and (k i ). Let us assume, for the moment, 
that P(y;') is a function of y;', with m > 0, only. In 
this case k i = 0, i = 1, 2, 3 and Ai = hi' If we now 
assume P(y;') to be a function of the contravariant 
vectors y;', m < 0, only, we have hi = ° and 

Al = -ks, A2 = -k2' A3 = -k l • (2.18) 

In this latter case, we have IR for the group Us, with 
indices (AI A2 As) which are negative numbers. We 
could represent (2.18) by a Young diagram of the form 

I k3 

I (2.19) 

and we could call the -blocks forming this diagram, 
negative blocks or antiblocks. 

In the general case P is a function of y;' with both 
negative and positive m. For example, we could have 
an IR with hi and h2 different from zero and ha = 0, 
and k; = ° except k l • In this case we have a diagram, 
representing (AI A2 As), of the form 

(2.20) 

We could ask ourselves, what is the meaning of a 
Young diagram with negative as well as positive 
blocks in the same row? In other words, what is the 
meaning of a Young diagram of the following type, 

(2.21) 

We call these diagrams virtual diagrams, and show 
presently that they do not correspond to IR of Us. 
In order to do this, consider the second-order Casimir 
operator of the group Us, defined as 

<I> = L A:;:'A:;:, 
mm' 

= L (A:;:)2 + 2A:;:'A:;:, + L (A:;: - A:;:), (2.22) 
m mm' 

where, in the last equation we have expanded the 
double summation and have used the commutation 
rules satisfied by A:;:'. 7 If we use the definitions (2.4) 
and (2.6), we can readily see that <I> can also be ex­
pressed as 

<I> = L, C!' C:' + ~ r!'r;, + 2 L. D+
BB

' D BS' • (2.23) 
s,s S,S s<s 

By expanding the right-hand side of this equation as 
was done in Eq. (2.22), and equating the resulting 
expression to (2.22), we obtain the operator identity, 

L (A:;:)2 + 2 L A:;:'A:;:, + L (A:;: - A:;:) 
m m>m' m<m' 

= L (C:)2 + 2 L C;'C;, + L (C; - C;:) 
S 8>8' S<8' 

+ L (r;)2 + 2 L r!'r:, + L (r: - r;) 
8>S' 8<8' 

+ 2 L D+BS'Dss" (2.24) 
8<S' 

Acting with this operator identity on the polynomial 
given in Eq. (2.17), we get 

(2.25) 

Since hi and k i are nonnegative integers, we conclude 
from Eq. (2.25) that 

hlks = h2k2 = hskl = 0, (2.26) 

proving with this that diagrams as (2.21) do not 
correspond to an irreducible representation of Us. 

We can understand the content of Eq. (2.26) in a 
fairly simple way, if instead of dealing with the group 
Us, we consider its unimodular subgroup SUs. As is 
well known,5 'there is a one-to-one correspondence 
between the IR of Us and those of SUs. Furthermore, 
it is also well known that complete columns (i.e., 
columns formed by three blocks) can be eliminated 

7 M. Moshinsky, in Physics of Many Particle Systems, E. Meron, 
Ed, (Gordon and Breach Science Publishers, Inc., New York, 1965). 



                                                                                                                                    

MIXED IRREDUCIBLE REPRESENTATIONS FOR Ua 457 

when considering Young diagrams for SUa. This has 
to do with the fact that the determinants 

(2.27) 

are invariant functions of y:", with respect to SUa 
transformations. The reference line can then be dis­
placed at will, and the most general IR of SUa is 
characterized by two indices (AI AJ, the Young 
diagram is of the form 

(2.28) 

From a diagram such as (2.28) we obtain another 
one, looking like the diagram (2.20), by making a 
displacement of the reference line to the right. And 
vice versa, moving the vertical reference line in (2.20) 
to the left kl positions, we get a two-row diagram 
of the general form (2.28). 

We can obtain the highest-weight polynomial 
corresponding to a displaced diagram by multiplica­
tion of the original highest-weight polynomial with 
an invariant function of y:" with respect to SUa trans­
formations [i.e., determinants (2.27)]. The multipli­
cation process, therefore, does not change the SUa 
IR carried by the polynomials. 

We can now understand condition (2.26): If we 
displace the reference line in a diagram whose indices 
violate conditions (2.26), a non-allowed Young 
diagram for the unimodular group is obtained. 

Using the fact that we can displace the vertical 
reference line, we discuss in the next section the 
reduction of two given IR of SUa. 

3. REDUCTION OF THE DIRECT PRODUCT 
OF TWO IR OF SUs 

We now use the negative indices representations 
introduced in the previous section to find an algebraic 
expression for the irreducible components of the 
direct product of two given IR of SUa. The same 
expression has been found by Mukunda and Pandit3 

using an entirely different approach. Our procedure 
is based directly upon Littlewood's rules,4 conveniently 
modified to introduce mixed representations. The 
procedure is generalizable to other unitary groups, 
but the algebraic expressions obtained are much more 
complicated, so as to cease to be useful from a 
practical point of view. We therefore restrict ourselves 
to the SUa group. 

Suppose we want to find out which IR of SUa are 
contained in the direct product (A~ A~) X (A~ A;). 
Using the fact mentioned at the end of Sec. I, we can 

make a translation of the vertical reference line by A~ 
blocks to the right, in the Young diagram corre­
sponding to (A~ A~). We can then represent the direct 
product, graphically, as 

,.----l..-A_i _-A_2 --I ® ~ . (3.1) 

Ai I 
At the end of the process we turn back the reference 

line to its original position, moving it the same A~ 
positions to the left. 

We now state the rules to reduce the direct product 
indicated in (3.1). We show in the Appendix the 
equivalence of this set of rules to the well-known 
Littlewood rules. Although the argument is given 
there for the group SUa only, we have shown the 
same result to be true in general for SUr' with 
arbitrary r. 

In order to reduce the direct product (3.1), first of 
all superpose both diagrams appearing in (3.1) to 
obtain the (virtual) diagram 

I 
r A' - A' 1 2 

A' I 

h" 
2 

Aj' I 
I (3.2) 

As has been shown before, this is not an allowed 
Young diagram (except for the particular cases with 
A~ = A~ or A; = 0). To obtain the indices of the IR 
contained in the direct product, we make all possible 
contractions (i.e., annihilation of one positive with 
one negative block in the diagram) in diagram (3.2), 
one at a time, in such a way that the following 
conditions are satisfied: 

(1) An allowed Young diagram is obtained [which 
means, as a matter of fact, that a large enough number 
of contractions has been made in (3.2), so as to obtain 
a nonvirtual diagram from it]. 

(2) No two blocks in the same negative row (or 
column) are to be contracted with two positive blocks 
in the same positive column (or row). 

(3) The order of the contractions of negative 
(positive) blocks in the same row with some positive 
(negative) blocks in any row or column is immaterial. 

Applying these set of rules to the case indicated in 
(3.2), we get a diagram of the type 

, (3.3) 



                                                                                                                                    

458 JORGE FLORES 

where we have indicated by n ij the number of blocks 
in negative row i (counting from bottom to top) con­
tracted with a corresponding number of blocks in the 
positive row j (counting from top to bottom, in the 
positive component of the diagram). The resulting dia­
gram has been left blank in (3.3). Proceeding in this 
form we have taken rule (3) into account, since we have 
made no distinction among contractions differing only 
in the order in which they were made. 

In diagram (2.3) we have made the further 
assumption 

A~ - A~ ~ A~ , (3.4) 
which implies lack of generality. However, if the 
opposite inequality to (3.4) holds, the analysis is 
similar, and is not given here. Using (3.4) we have 
completely annihilated the negative blocks in the 
second row, in such a way to get a nonvirtual diagram, 
as required by rule (1). In other words, we have 
assumed that 

n21 + n22 = Ai - A;. (3.5) 
If rule (2) is to be satisfied, the following inequality 

should hold: 

o ~ nll ~ A~, (3.6) 
in order to avoid contractions of two blocks in the 
same negative column with two blocks in the first 
positive row. By applying the same rule, we get 
another restriction on the nonnegative integer nll , 

i.e., 

nll ~ A~ - A~ . (3.7) 
Using (3.7) together with (3.6) we conclude that 

nu is restricted by 

(3.8) 

Considering now the second negative row, the 
inequality 

A~ - n12 ~ A~ - (nu + n21) (3.9) 
holds, since otherwise we would have contracted 
two blocks in this negative row with two positive 
blocks in the same column. 

At this point we have two alternatives, 

n 21 ~ n 12 ; n 21 = n12 + r (r ~ 0), (3.lOa) 

n 21 < n 12 ; n 21 = n 12 - s (s < 0). (3.10b) 

We consider case (a) first. By construction, we have 

n21 = n12 + r ~ A{ - A~ ~ A~, 

which is equivalent to 

o ~ r ~ (A{ - A~) - n12 • 

(3.11) 

(3.12) 

On the other hand, using inequality (3.lOa) in the 
relation (3.9), we get 

nll + r ~ Ai' - A~. 

This latter, together with (3.12), implies the following 
restriction on the integer r, 

o ~ r ~ min (A{ - A~ - n12 , A~ - A~ - nll)' (3.13) 

We see finally, from the diagram (3.3), that the 
resulting mixed U3 tableaux have components 
(~1 ~2 ~3) given by 

~1 = Ai' - n 21 - nn' 

X2 = A~ - n 22 - n12, 

;:3 = -(A{ - nll - 'n 12), 

where ~1 and ~2 are positive numbers and ;:3 is a 
negative integer. Returning the reference line to its 
original position, i.e., moving it A~ positions to the 
left, we obtain the indices (.1. 1 .1.2) for the irreducible 
components of the direct product. These are given by 

Al = A~ + Ai' - 2n21 - 2nll - r, 

.1.2 = A~ + A~ - n 21 - nll + r, (3.14) 
with nll , n21 and r restricted by the conditions given 
in (3.8), (3.11), and (3.13), respectively. Once these 
conditions are fulfilled, rules (1), (2), and (3) are 
satisfied, and Eq. (3.14) gives the possible irreducible 
indices in the decomposition of the direct product. 

If we now consider case (3.10b) and follow exactly 
the same steps, we arrive in this case, at the following 
expressions for (AI A2) 

Al = A{ + A~ - 2n21 - 2nll - s, 

.1.2 = A~ + A~ - n 21 - nll - 2s, (3.15) 
where nll and n21 are restricted as in the previous case, 
but now the possible values for the positive integer 
s are such that the inequality 

o ~ s ~ min (A~ - nn, A~ - n21) (3.16) 
holds; this is the analogous relation to (3.13) for 
case (b). 

As a final remark, we notice that (3.14) and (3.15) 
represent different IR of SU3 contained in the 
reduction of (A~ A~) x (A; A;), as is clear from the 
way they have been derived, cases (a) and (b) corre­
spond to a different set of contractions. 
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APPENDIX 

We show in this Appendix the equivalence between 
the rules enunciated in Sec. 3 and the usual Littlewood 
rules4 for reducing the direct product of two IR of 
SU3 • By exactly the same argument we have proved 
this equivalence in the general case for the group SUr. 
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We restrict the proof given here to those cases 
which satisfy the inequality (3.4), although the proof 
can be given in the other case in a similar way. 

In order to show the equivalence between both sets 
of rules, we notice that when the vertical reference line 
is returned to its original position, any place in the 
diagram where a negative block is present, does not 
contain a block in the diagram obtained at the end 
of the process and vice versa. Having this in mind, 
we label the positive blocks in the first row of (3.3) 
with the letter I'J. and, at the same time, we use this 
letter to label the negative blocks contracted with 
these blocks [i.e., those blocks indicated in (3.3) by 
nn and n 2l ]. In a similar way, we use the label f3 for 
the positive and negative blocks, indicated in diagram 
(3.3) by n12 and n22 . 

Using this labeling, we obtain the following diagram 
at the end of the process: 

(AI) 

One can see from (AI) that the number of blocks 
labeled by I'J. is equal to A~ and that the number of 
blocks labeled by f3 is equal to A;, as required by 
Littlewood rules. Furthermore, the alphabetical order 
from left to right and from top to bottom is obtained 
automatically from our procedure, agreeing with 
Littlewood.4 

We now show that our second rule (Sec. 3) is 
equivalent to the two following Littlewood rules: 

If a diagram such as (AI) corresponds to an 
irreducible component of the direct product of two 
IR of SU3 , then 

(a) no two blocks labeled with the same letter are 
to be placed in the same column; 

(b) the number of blocks labeled by I'J. should be 
greater or equal to the number of blocks labeled by 
f3 at any position in the diagrams when counting them 
from right to left and from top to bottom. 

As can be seen from diagram (AI) there exists the 
possibility of placing blocks with the same label in a 
given column [and, therefore, of violating rule (a)] 
at two positions only [marked as I and 2 in (AI)]. 
We consider point I first, and we see that the condition 

imposed by rule (a) on nij is 

Os nn S A~, (A2) 

which is identical to inequality (3.6). Regarding point 
2, the condition is 

Os nn + n12 S A~ + n 21 , (A3) 

which is equivalent to 

A~ - A~ - n 21 S A{ - (nn + n 21). 

Inequalities (A2) and (A3) can be obtained from 
diagram (3.3) by requiring that no two blocks in the 
same negative column are contracted with blocks in 
the first and second positive row, respectively. 

We consider rule (b) now; we could violate this 
rule only at points I and 2 in diagram (AI), as before. 
We restrict our attention to these two points only, 
obtaining the relation 

(A~ - n12) + n12 S A~ - (nn + n21) + n21, (A4) 

which is identical to (3.7). Analogously, at point 2, 
rule (b) imposes the following restriction over nij, 

A~ - n12 S A~ - (nn + n21), (AS) 

which is identical to (3.9). 
We then see that rule (b) is equivalent to the condi­

tion that no two blocks in the same positive column 
should be contracted with two blocks in the same 
negative row. This proves the equivalence of Little­
wood's rules (a) and (b) with our rule (2). 

The set of rules we have used here, have the two 
following nice features: 

(1) From a practical point of view, they can be used 
instead of the usual prescription, when one of the 
diagrams in the direct product has a smaller number 
of negative blocks (when the reference line is displaced 
to the right in order to obtain a diagram with negative 
indices only) than the number of positive blocks it 
had with the reference line in its original position. 

(2) From a theoretical point of view, they show 
that Littlewood rules (a) and (b) have a very simple 
meaning. This can be seen, if we consider the highest 
weight tensor corresponding to each one of the 
irreducible components of the direct product, each 
of these tensors being formed by homogeneous linear 
combinations of the vector components x; and ,~, 

introduced in Sec. 2, and classified by their symmetry 
with respect to the exchange of the indices j and t. 1 If 
rule 2 is violated, the corresponding highest weight 
tensor is identically zero, having to do with the fact 
that the contraction of two symmetrical with two anti­
symmetrical indices leads to a vanishing function, and 
showing that the corresponding diagrams are not con­
tained in the reduction of the direct product. 
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A proof is given, in the canonical and the grand canonical formalism, to show that t~e density fluctu­
ations in a macroscopic region of a fluid ar~ large in t.he t~o-phase states ~nd small m the ~ne.-phase 
states. The definition of large and small densIty fluctuatIOns IS one. ~sed pr~vlOusly by. Dobr~shm I~ ~on­
nection with the Ising model. The density fluctuations at the crItical pomt are, USIng thIs defimtlOn, 
small if the critical isotherm has no flat portion. 

I. INTRODUCTION 

THE authors wish to examine the probability of a 
density fluctuation in a macroscopic region of a 

fluid. If the fluid is in a one-phase state, the proba­
bility of such a fluctuation should be small since we 
expect every macroscopic subvolume of the total 
volume to have essentially the same density as the 
over-all density of the fluid. If the fluid is in a two­
phase state, then a macroscopic subvolume may 
contain varying amounts of the two phases, and one 
would expect the probability of density fluctuations 
to be large. The problem is to rigorously and con­
veniently characterize "large-" and "small-" density 
fluctuations, and to prove within this characterization 
the above-mentioned properties. In a recent paper 
Dobrushin l has solved this problem for the lattice gas 
(Ising model) in any number of dimensions, using the 
canonical ensemble. He makes use of these results to 
obtain some estimates of the boundaries of the phase 
transition regions. In this paper we obtain results 
identical to Dobrushin's for the characterization of 
the fluctuations, except that we take the case of a 
fluid and either the canonical or grand canonical 
ensembles. For the grand canonical ensemble, the 
classical and the quantum fluid may be treated in the 
same way. We treat only the classical fluid in the 
canonical ensemble. We have not yet been able to use 
these results to estimate the boundaries of the phase 
transition region. 

In the second section we review some known results 
concerning the thermodynamic limit which we need 
later. In the third section we consider the problem 
using the grand canonical formalism. We take this 
case first because the pertinent theorem is easier to 
state and to prove than in the case of the canonical 
ensemble. In the fourth section we consider the canon­
ical ensemble. Throughout we consider only a three-

1 R. L. Dobrushin, Dokl. Acad. Nauk SSSR 160, 1046 (1965) 
[English transl. : Soviet Phys.-Doklady 10, III (1965»). 

dimensional gas but none of the arguments depend 
on the dimensionality of the space. 

II. THERMODYNAMIC LIMIT 

We are interested only in systems for which a 
proper thermodynamic limit exists. One takes this 
limit by considering a sequence of systems, contained 
in successively larger volumes, but with a fixed density 
of particles. In order that a proper thermodynamic 
limit exists and is independent of the shape of the 
containing region, one must put some conditions on 
the Hamiltonian of the system and on the sequence 
of domains which one uses in taking the limit. This 
problem is most recently and comprehensively treated 
by Ruelle2 and by Fisher.3 We review those results 
which are necessary for this problem. We use Fisher's 
notation as much as possible. There is apparently no 
known set of necessary and sufficient conditions which 
leads to the properties we want; however, Fisher 
gives two sets of sufficient conditions of which we 
pick one to simplify the presentation. The other could 
also be used. The results listed here are valid for both 
quantum and classical systems. 

The Hamiltonian is of the form 
N 2 

HN = L l!i.. + U ~fl ... fN), (1) 
i=12m 

where Pi and fi are real variables in the classical case 
and the usual operators in the quantum case. The 
classical partition function is given by 

A-3N r r 
Z(fJ, N, Q) = Ii! Jo.' . 'Jo. exp ( - fJU N) dfl ... dfN' 

(2) 

where A = (fJh2j27Tm)!, fJ = IjkT, and Q is the region 
in which the fluid is contained. The quantum partition 
function is given by 

Z(fJ, N, Q) = Tra exp (-fJHN)' (3) 

2 D. Ruelle, Helv. Phys. Acta 36, 183 (1963). 
3 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964). 

460 
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The trace is taken over a complete set of N-partic1e 
wavefunctions (including internal degrees of freedom 
which have not been indicated explicitly) which satisfy 
appropriate boundary conditions and symmetry 
requirements. We do not notationally distinguish 
between the classical partition function and the 
quantum-mechanical partition function for Fermi, 
Bose, or Boltzmann statistics, because the results 
quoted in this section are independent of this distinc­
tion. In the particular case of Boltzmann statistics, 
the right-hand side of (3) should be multiplied by 
lIN!. If the region Q has volume V(Q), then the free 
energy per unit volume is defined by 

g«(J, p, Q) = V(Q)-I In Z«(J, N, Q) 

for particle densities P = NIV(Q), which are integer 
multiples of V(Q)-I. For fixed Q, the definition is 
extended to all P by linear interpolation. If the poten­
tial UN has a hard-core component so that two 
particles can never get too close together, Z vanishes 
for densities larger than some finite density Pm' which 
is the maximum allowed density. If there is no hard 
core, Pm may be infinite. The thermodynamic limit 
is taken by choosing a sequence of domains Q j with 
V(Q,) -+ 00 and considering the sequence of functions 
g({J, p, Q,) with (J and P fixed. We make the following 
assumptions: 

(a) The potential UN(rl '" rN) is stable, that is, 
there exists a fixed positive W such that 

UN(rl ' .• rN ) ~ - NW (4) 

for all N and all r1 ... rN' 
(b) The potential is strongly tempered. This means 

that the interaction between two groups of particles 
becomes nonpositive if the groups are separated by a 
large enough distance. There exists a distance Ro such 
that for all Nl> N 2 

WNl.N,(rl ... rNl' r{' .. rN.) 

= U Nl+N.(rl ... rNl' r; ... rN.) 

- U Nl(rl ... rNl) - U No(r; ... rN.) ::;:; 0, 

whenever Iri - r/I ~ Ro for all I::;:; i ::;:; N l , I::;:; 
j::;:; N 2 • Both Fisher and Ruelle discuss examples of 
potentials with properties (a) and (b). In particular, 
a two-body hard-core interaction with a finite range 
tail satisfies (a) and (b). 

(c) The sequence of domains {Q j } allowed in 
taking the thermodynamic limit has the following 
properties. For all j, Qj is a bounded, simply 
connected domain with volume V(Q;) (which we 
sometimes shorten to Vj ). Let V(h, Q) be the volume 
of the set of points within a distance h of the boundary 
of Q and interior to Q for h > 0, exterior to Q if 

h < O. We require that V(h, Qj)V-I(Qj) -+ 0 as 
j -+ 00 for any fixed h. This is Fisher's condition of 
asymptotic regularity which restricts the rate at which 
the surface of Q; can grow compared to the volume. 
Finally, we assume that if 7T; is the smallest parallele­
piped containing Qj' then there is ad> 0 such that 
V(Qj)V-l(7Tj) ~ d for allj. 

Under assumptions (a), (b), and (c), it is proven3 

that 

limg«(J, p, Q j ) = g«(J, p), (5) 
j .... 00 

where g«(J, p) is a continuous, convex upward function 
of P in the interval 0 ::;:; P ::;:; Pm' and the convergence is 
uniform in any closed subinterval 0 ::;:; P ::;:; PI < Pm . 
If we define 

00 

Q«(J, z, Q) = L (Nz)NZ«(J, N, Q), (6) 
N=O 

7T«(J, z, Q) = V(Qrl In Q«(J, z, Q), (7) 

then the series (6) is absolutely convergent for any z 
and 

lim 7T((J, z, QJ) = 7T((J, z) (8) 
;-+ 00 

for 0 < z < 00, where 7T«(J, z) is a continuous convex 
function of In z. Furthermore, 

7T«(J, z) = max [p In (A3Z) + g«(J, p)], 0::;:; P ::;:; Pm' 

(9) 

provided the maximum does not occur at P = Pm' 
Fisher points out that this cannot happen if the pres­
sure diverges to infinity as P -+ Pm' Equation (9) 
implies the equivalence of the canonical and grand 
canonical formalism. For each positive value of z, 
there is at least one value of P determined by (9). 
These are all the results we need. It should be pointed 
out that one can somewhat relax the strong tempering 
condition3 (b) if one is willing to put more restrictions 
on the sequence {Qk}' 

III. DENSITY FLUCTUATIONS IN THE 
GRAND CANONICAL FORMALISM 

In this formalism the probability of finding a 
system with N particles in it is 

Pn«(J, z, N) = (Az)NZ«(J, N, Q)/Q«(J, z, Q). (10) 

Corresponding to a given value of z and fJ, there is at 
least one density p(fJ, z) given by (9). Let PMfJ, z) be 
the probability that the system has a density differing 
from p«(J, z) by more than E. Then 

P'n(fJ, z) = L Pn(fJ, z, N), IN/V(Q) - pi > E. (11) 
N 

If there is more than one value of P corresponding to 
(fJ, z), we can consider the above expression for any 
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of those p. For such «(3, z) we should distinguish the 
probabilities corresponding to different P, but the 
results do not depend on such a distinction so we 
do not explicitly indicate it. Let us look at the sequence 
V(Oj)-I In Po;«(3, z) = VjI In P~({J, z). This is a se­
quence of negative numbers; therefore, if it has a 
limit, the limit must be negative or zero. This lets us 
characterize the fluctuation as being large if the limit 
is zero and small if the limit is negative. Before we 
state Dobrushin's theorem for this case, we need to 
characterize a one-phase and two-phase state. For 
our purposes we say that «(3, z) corresponds to a one­
phase state if there is a unique p«(3, z) determined by 
the maximization procedure in (9). If there is more 
than one value of P corresponding to ({J, z) the state 
is called two phase. One can show, as we do in 
Appendix A for completeness, that this definition of 
a two-phase state is equivalent to the condition that 
g«(3, p) be a linear function of P in some interval, which 
in turn implies the canonical pressure is constant. 
The statement which gives the relationship between 
the density fluctuations and the number of phases 
follows. 

If ({J, z) is a one-phase state, then for every € > 0, 

lim ViI In P~«(3, z) 
j-+ 00 

exists and is less than zero. If ({J, z) is a two-phase 
state then there exists € > 0 such that 

lim VjI In P~({J, z) 

exists and is zero. 

Proof" Let us consider the two-phase state first. 
Since VjI In P:({J, z) is always less than zero, we must 
show that, for large enough j, it is always larger than 
any pre-assigned negative number. If ({J, z) is a two­
phase state, there are at least two densities PI and P2 
such that 

o S PI < Pm' 0 S P2 < Pm' PI:;e P2, 

7T«(3, Z) = PI In Nz + g«(3, PI) 

= P2 1n Nz + g«(3, P2). (12) 

Let € > 0, € < PI, € < t IPI - P21 and let Ps be such 
that max [PI' P2] < Ps < Pm. Since P In A Sz + g({J, p) 
is continuous in the closed interval [0, Ps], it is uni­
formly continuous there. Given any il > 0, we can 
find'Y > 0 and 'Y < € such that, whenever Ip - p'l < Y 
and both P, p' are in the interval [0, Ps], we have 

Ip In Nz + g({J, p) - p' In Nz - g«(3, p')1 < til. 
(13) 

From the convergence properties quoted in Sec. II, 
there is an integer jo such that for all j > jo we have 

Ig«(3, P, OJ) - g«(3, p)1 < tb (14) 

for all 0 S P S Ps and 

17T«(3, z, OJ) - 7T«(3, z)1 < tb. (15) 

Now P~«(3, z) is greater than any single member of the 
sum (11). From (10) and (11) we have for a fluctuation 
from PI 

P~«(3, z) ~ (Nz)NZ«(3, N, O,)/Q«(3, z, OJ) (16) 

for any N such that 

INVjI - PII > €. (17) 

For each j choose N j such that (17) is satisfied and 
so that 

(18) 

Set pj = NjV;I. Then from (13)-(16) we have, for 
j > jo, 

P:«(3, z) > (NZ)N; exp {Vj [g«(3, Pj) - tb]} 
- exp {Vj[ 7T({J, z) + iil]} 

= exp {Vj[pjlnASz + g({J, Pj) - 7T({J, z) - iiln 
~ exp {Vj[P21nASz + g({J, P2) - 7T({J, z) - il]}. 

By (12) the first three terms in the exponent cancel, 
so for all j > jo, ViI In P~({J, z) ~ -il, which com­
pletes the proof for the two-phase state. 

Now suppose ({J, z) is a one-phase state of density 
Pl. From the lower bound (4) on the potential energy, 
one gets the upper bound 

Z({J, N, 0) S A-SNV(Q)N exp ({JNW)/N!, 

and since N! > NNe-N, we have 

Z({J, N, Q) S [A-3V(D)N-I exp «(3W + 1)]N. (19) 

This bound is for a classical system. There exists a 
similar bound for quantum-mechanical systems,3 and 
the rest of the proof is the same in either case. Con­
sider first the case when Pm = w. Choose, for fixed z, 
P2 so large that P2 > PI and 

ZP2 I exp «(3W + 1) S t. (20) 

From (19) and (20) we have 

! (Nz)NZ({J, N, Q) S ! t N < 1. (21) 
N>P2V(Q) N>P2V(Q) 

From (10), (11), and (21) we obtain 

P'o({J, z) S [1 + ! (A3z)NZ({J, N, Q)]Q-I({J, z, Q), 
NEG<(Q) 

where GE(D) is the set of all integers N such that 
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N < P2 V(O) and INV(O)-l - PII > E. There are less 
than P2 V(O) terms in the sum so 

P~({3, z) ::s:; [P2V(Q) + 1] max {(Nz)NZ({3, N, O)}, 
Q({3, z, 0) NeG€(fl) 

(22) 
where we have also used the fact that 

max {(NZ)NZ({3, N, O)} ~ Z({3,O, 0) = 1. 
NeG€(Q) 

It is clear that 

P~({3, z) ~ Q({3, Z, 0)-1 max {(A3z)NZ({3, N, O)}. 
NeG€ (Q) (23) 

From (22) we have 

V(O)-lln P~({3, z) ::s:; V(O)-lln [P2V(0) + 1] 

+ max {NV(O)-l In Nz 
NeG€(Q) 

+ g[{3, NV(O)-l, OJ} - 7T({3, z, 0), (24) 

and from (23) 

V(O)-l In ~({3, z) 

~ max {NV(O)-lln A3z + g[{3, NV(Orl, OJ} 
NeG€(!!) 

-7T({3, z, 0). (25) 

Now choose a sequence of regions OJ satisfying 
the regularity conditions (c). Since g({3, p, OJ)---+ 
g({3, p), uniformly in the interval [0, P2] and ViI X 

In [P2 Vj + I] ---+ 0, 7T({3, z, OJ) ---+ 7T({3, z), we have 
from (24) 

Vjlln P~({3, z)::S:; max [NVil In Nz 
NeG€(Q;) 

+ g({3, NVil)] - 7T({3, z) + fJ j , 

where fJ j ---+ 0. Then 

ViI In P~({3, z) ::s:; max [In pNz + g({3, p)] 
peG€(Pl) 

-7T({3, z) + fJ j , (26) 

where G€(Pl) is the set of P such that 

° ::s:; P ::s:; P2 and Ip - PII > E. 

From (25) we have 

Vjlln P~({3, z) ~ max [NVi1 In A 3Z 
NeG€(Cl;) 

+ g({3, NVil)] - 7T({3, z) - fJ;. 

Since pin Nz + g({3, p) is uniformly continuous in P 
in the interval [0, P2], it must be true that 

I max [NV;-l In (Az) + g({3, NVil)] 
NeG€(Qj) 

- max [p In Nz + g({3, p)]1 < y;, 
peG€(PI) 

where Y i ---+ 0. Hence, 

ViI In P~({3, z) ~ max [p In Nz + g({3, p)] 
peG€(Pl) 

- rr({3, z) - y; - fJ j • (27) 

Combining (26) and (27) and passing to the limit we 
find 

lim ViI In P~({3, z) 
;-+00 

= max [p In A3z + g({3, p)] - 7T({3, z). (28) 
peGE(Pl) 

By (9) the maximum value of the right-hand side of 
(28) is zero. By assumption of the one-phase state, 
this maximum is attained only for P = Pl' But PI is 
not in G€(Pl); hence, the limit in (28) must be less than 
zero. 

In the case Pm :;!: 00, we simply take P2 = Pm in 
the previous calculation. In this case, however, we 
must assume that the maximum in (28) occurs at a 
value of P less than Pm' This is necessary because we 
can approximate g({3, P, OJ) by g({3, p) uniformly in 
P only in a closed subinterval ° ::s:; P ::s:; p' < Pm' 

IV. DENSITY FLUCTUATIONS IN 
THE CANONICAL FORMALISM 

In this section we restrict ourselves to classical 
systems. Later in this section we need some stronger 
assumptions on the potentials, too. We want to con­
sider the probability that a macroscopic subvolume 
of the total volume has a density different from 
the over-all density. Let us choose a sequence of 
domains {OJ} and a sequence of subdomains {Wj}, 
where Wj is in OJ. We indicate the set of points in 
OJ but not in Wj by OJ - w j • We assume the sequences 
{OJ}, {Wj}, and {OJ - Wj} are chosen to satisfy the 
condition (c) in Sec. II which is used iIi the thermo­
dynamic limit. In particular, we note that for all j, 
the three domains must be simply connected (Fig. 1). 
This condition is not necessary for the proof of the 
thermodynamic limit, but it is used in Ref. 3, and we 
retain it here. We want W to be a macroscopic sub­
volume of 0, so we require that V( w j )/ V(Oj) ---+ 01:, 

where 0< 01: < 1. 

FIG. 1. (A) n, ro, n - ro 
all simply connected; (B) 
n - ro not simply connected. 
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Given Q and w, the probability of finding n par­
ticles in W if the total system has N particles is 

Po({l, n, w, N) = [n! (N - n)! Z({3, N, Q)r1 

xl· .. r exp (-{3U N)dr1 '" drn drn+1'" drN, 
co Jo-co 

(29) 

where the first n integrations are over wand the rest 
are over Q - w. Let Pb.{{3, p, w, N) be the probability 
that the domain W has a density differing from P by 
more than E. 

P~({3, P, w, N) = '5' Po({3, n, w, N). (30) 
In-pV(;)1 >EV(w) 

In this section ({3, p) is a two-phase state if there is a 
neighborhood of P, such that g({J, p) is linear in P in 
that neighborhood. Otherwise, ({3, p) is a one-phase 
state. For notational convenience, we set P;({3, p) = 
Pb}{3, p, Wi' N j). 

The theorem can be stated as follows: Let 
Nj V(Qj)-l -+ p, then if ({3, p) is a two-phase state, 
there is an E > 0 such that 

lim V;(Q)-l In P~({3, p) = O. (31) 
j ..... 00 

If ({3, p) is a one-phase state, then for any E > 0 

lim V(Qi)-lln P~({3, p) < O. (32) 
j-t> 00 

Let us consider the two-phase state first. Since each 
term in the sequence (31) is negative, we need only a 
lower bound on V;(Q)-lln P;({3, p). We choose E in 
the following way. Since ({J, p) is a two-phase state, 
we can find y > 0 such that g({J, p') is a linear function 
of p' for all 1/ - pi < y. Let PI and P2 be any den­
sities such that PlOC + P2(1 - oc) = p. We want to 
choose E so small that we can find PI such that 

Ipl - pi < y, Ip2 - pi < y, Ipl - pi > E. 

This is possible if we choose 

E < min {y, y[(l - oc)Joc]}. (33) 

Now let nj be a sequence of integers such that 

ni V( Wi)-l -+ PI . 

Since V( wi) V(Qj)-l -+ oc and .i\ j V(Qj)-l -+ p, we have 
(Ni - nj)[V(Qi) - V(Wi)]-l -+ P2' Then we can find 
a jo so that for all j > jo we have 

InjV(wj)-l - pi < y, 

I(Ni - nj)[V(Qj) - V(Wi)]-l - pi < y, 

InjV(wj)-l - pi > E. (34) 

From (30), P;({3, p) is larger than any term in the sum; 
therefore, we can put n = nj and write 

Pj({3, p) ~ [nj! (N j - ni )! Z({3, N;, Qi)r1 

xi ···1 e-PUN; dr .. ·dr dr ... dr 1 ni niH N;' 
wi OJ-CO; 

(35) 

Now let w~ be the set of all points interior to Wj and 
distance Ro from the boundary of w j • If we allow the 
first nj integrations in (35) to go only over w~, we 
decrease the value of the integral. But now the inter­
action between particles in w; and Q j - Wj is negative 
[see Sec. II, assumption (b)]. Therefore, if we replace 
UN; by UN;-n. + Un;' we decrease the integrand and 
the resulting integral factors into a product. 

Pj({3, p) ~ Z({3, n j , wi)Z({3, Ni - n j , Q j - Wj ) 

X Z({3, N i' Qj ) -1. 

Hence, if the limits exist, 

lim V(Q;)-lln P;({J, p) ~ [V(w;)V(Qitl] 
j-+ 00 

x {V(wirlln Z({3, n j , wi)} + [V(Qj ) - V(wi)]V(Qj)-l 

X ([V(Qj) - V(wj)rlln Z({3, N j - n j , Q j - Wj)} 

- V(Q,rllnZ({3, N j , Qj)' (36) 

From assumption (b) in Sec. II, we have 

V(w;)V(Wj)-l-+ 1. 

By the way we have chosen n j , we know nj V( W~)-l -+ 

PI' (Nj - nj)[V(Qj) - V(Wj)]-l-+ P2' and therefore, 

lim V(Qj)-lln Pj({J, p) 
j-. 00 

~ ocg({J, PI) + (1 - oc)g({J, P2) - g({3, p). (37) 

But the right side of (37) is zero since g({J, p) is assumed 
linear in the interval containing PI and P2' So if the 
limit exists, it is greater than or equal to zero. But 
each term in the original sequence is negative; there­
fore, the limit exists and is zero. 

Now let ({3, p) be a one-phase state. For any j and 
E > 0, we have from (30) 

Pj({J, p) ~ N j max Pn;({3, n, Wj' N j). (38) 
In-pV(co;) I >EV(Wj) 

We want to find an upper bound on P o({J, n, w j ' N j ). 

To do this we see from (29) that we need'a lower bound 
on the interaction across the surface of Wj . 

To obtain this lower bound we define 

<I>(W) = min [UN,+N.(rl ··· rN" r{'" rN.) 

- U N,(rl ... rN,) - U N.(r{ ... rN.)], (39) 

where the minimum is taken over all configura­
tions (rl ... rN, ' r~ ... r~2) such that UN, +N. -:;6 + 00, 
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(rl ... rN ) are all in w, (rl' ... r~ ) are not in w, and 
1 2 

NI and N2 vary from 0 to 00. We must assume 

(40) 

In Appendix B we show that (40) holds for the case 
where UN is a sum of pair potentials of finite range 
with hard cores. In fact, for such potentials 

cI>(W) > KV(b, w), (41) 

where b is the range of the potential, K is a constant, 
and V(b, w) is the volume of those points interior to W 

and within b of the boundary of w. From (29) and (39) 
we have the upper bound, 

PoP), n, Wi' Ni) :::;; Z(P, n, wi)Z(P, Ni - n, OJ - Wj) 

X Z(P, N i , Wi)-l exp [-PcI>(wi)]. (42) 

From (38) and (42) we have 

V(Oi)-lln P~(P, p) 

:::;; V(Oj)-lln N j + max V(Oi)-1 
I n-pV(Olj) I> .V(Olj) 

X {lnZ(p, n, wi) + InZ(p, N, - n j , 0, - Wj)} 

- In Z(P, N i , wi) - PV(OitlcI>(Wi). (43) 

The first term in (43) converges to zero. By virtue of 
(40) and the assumption V(Wj)V(Oj)-1 -+ IX, the last 
term in (43) converges to zero. If we assume the maxi­
mum in (43) occurs for eachjfor nV(wi)-1 :::;; P2 < Pm' 
we can approximate each In Z by the corresponding 
g to obtain, for large j, 

V(Oj)-lln PlP, p) 

:::;; ma1x {lXg[P, nV(wi)-I] + (1 - IX) 
I nV(Olj)- -pi >. 

X g(P, [Ni - n][V(Oj) - V(Wj)]-I)} 

- g(P, p) + 0i' (44) 
where OJ -+ 0 as j -+ 00. Because g(P, p) is uniformly 
continuous, we can set 

V(Oj)-lln P~(P, p) 

:::;; max {lXg(P, pi) + (1 -1X)g(P, p") - g(P, p)} 
Ip'-pl>< 

+OJ+Yj, 
where Yj -+ 0 and p" is defined by IXp' + (1 - lX)pH = p. 
Since g is a convex function of p, the combination 
IXg(P, pi) + (1 - lX)g(P, pH) - g(P, p) is less than or 
equal to zero for all p'. If p is not in a linear portion 
of g, then this expression is negative for all pi ~ p. 
Since pi is bounded away from p in the maximization, 
the maximum is negative; hence, 

lim V(Oj)-lln PlP, p) 
j-+ 00 

:::;; max {lXg(P, pi) + (1 - lX)g(P, p") - g(P, p)} < o. 
Ip'-pl>' 

(45) 

We have shown that if the limit on the left exists it is 
bounded from above by a negative number. To show 
that the limit exists, we should bound it from below 
by the same number. We note from (30) that 

P~(P, p) ;;::: mat Yn;(P, n, Wi' N j). (46) 
I nV(wl)- -pi >. 

Since we need a lower bound on Pil (P, n, Wi' N j ), I 
we can proceed as in the two-phase case. The calcula-
tion is straightforward so we omit it. The result is that 
one obtains a lower bound of the same form as in 
(45) and, hence, completes the theorem. 

V. CONCLUSIONS 

We have applied Dobrushin's idea for characterizing 
large and small density fluctuations to the case of a 
fluid described by either canonical or the grand canon­
ical formalism. We have proven the fluctuations are 
large in the two-phase region and small in the one­
phase region. It is interesting to note that by this 
criterion the density fluctuations at the critical point 
are small if the critical isotherm has only a point of 
inflection and not a flat portion. 
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APPENDIX A 

We want to show that there is a two-phase state, if 
and only if g(P, p) is a linear function of p in some 
interval. Suppose there are two densities PI < Pa 
which maximize pin Nz + g(P, p). Then 

PI In A3Z + g(P, PI) = pin A3Z + g({3, P2) 

;;::: plnNz + g(P, p) 

for any p. (AI) 

Let 0 :::;; IX :::;; 1 and set p = (1 - IX)Pl + IXP2' Then 

pin A3Z + g(P, p) :::;; PI In Nz + g(P, PI) 

= (1 - IX) PI In A3Z + (1 - lX)g(P, PI) 

+ IXP2 In Nz + IXg(P, P2) 

= pin Nz + (1 - lX)g(P, Pl) + IXg(P, P2)' 

Hence, 
g(P, p) :::;; (1 - lX)g(P, PI) + IXg(P, P2)' (A2) 

But since g(P, p) is convex upward in p, 

g(P, p) ;;::: (1 - lX)g(P, pJ + IXg(P, P2)' (A3) 
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Equations (A2) and (A3) imply 

g({J, p) = (1 - rx)g({J, PI) + rxg({J, P.;), 

which means g is linear in P for 

Now consider the converse case. Let PI maximize 
pin A3Z + g(fJ, p) and suppose g({J, p) is linear in a 
neighborhoCid of Pl' If PI is close enough to PI' 
then g({J, P2) = g(fJ, PI) + C(P2 - PI), where c = 
(dgjdp)({J, pJ. Since PI is a point of m~ximum of 
pin ASz + g({J, p), we must have In AS + c = O. 
Hence, 

g({J, P2) = g({J, PI) - (PI - PI) In ASz, 

and this implies that Pa is also a point of maximum. 
If the point PI is the end point of a linear portion of 

g({J, p) and if (dg/dp)({J, pJ does not exist there, then 
this proof fails at PI' This cannot happen if the pres­
sure is a continuous function of p. 

JOURNAL OF MATHEMATICAL PHYSICS 

APPENDIX B 
Let 

N 

U N(r1 - rN) = Z #,.rl - rl)' 
i<i=2 

and suppose 

cp(r) = + 00 if r < a, cp(r) = 0 if r > b. 

We assume cp(r) is bounded from below by -d, where 
d ~ O. From (38), 

Nl N2 

<P(w) = min Z Z #,.ri - rD, 
i=1 i=1 

where the r i are in wand the r; are not, and no two 
particles are ever closer than a. Now each particle 
can interact with at most (8b3ja3) others without 
violating the hard-core condition. The most negative 
each interaction can be is -d. Only those particles 
within b of the boundary of w can interact with those 
particles not in w, and there are at most V(b, w)[-117a3]-1 
such particles. Hence, 

<P(w) > -(db3a-6tn-)V(b, w). 

VOLUME 8, NUMBER 3 MARCH 1967 

Strong Coupling Limit in Potential Theory. I 

WILLIAM M. FRANK * 
Bar-I1an University, Ramal Gan, Israel 

(Received 16 June 1966) 

Analytic properties of the Jost function in g, the coupling constant, are studied for potentials which 
are H, i.e., f: dr I V(r)lt < 00, and have a negative power or exponential tail for large distances. For 
the bound state and scattering problems, it is found that the Jost function has exponential order! for 
large g, which implies that the scattering phase shift and the number of bound states in an attractive 
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THIS investigation of strong coupling methods in 
potential theory is motivated, as is much of the 

attention given these days to potential theory, by 
analogies to elementary particle theory and field theory. 
The desirability of strong coupling methods to study 
strong and broken interactions of elementary particles 
is self-evident. Another motivation for this study 
derives from some recent investigationsl in field theory 
which show in the case of some solvable models that 
the renormalized perturbation solution in field theory 
represents a function, singular at the origin but ana-
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lytic at the point at infinity, as a function of g, the 
coupling constant. With the aim of developing tech­
niques for calculation of a perturbation series in 
negative powers of g, the corresponding potential 
theory problem is first considered. Naturally, the 
problem has its own intrinsic interest both thl!oreti­
cally and practically. From the practical point of view 
a strong coupling expansion would cOlnplement the 
usual Born expansion whose convergence limitations 
are well known, in particular for problems of strongly 
repulsive potentials.2 For potential theory in fact, a 
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strong coupling expansion is really an asymptotic 
expansion, since quantities such as the Jost function 
have an essential singularity at infinity. One inter­
esting theoretical result we find is a significantly 
improved bound on the numbers of bound states in 
a given potential. This result has also been recently 
discovered by Calogero.3 Bound I-wave states are 
considered first in Sec. I. In Sec. II more specific 
results are established for the bound S-wave state. 
In Sec. III scattering states are considered. This 
article restricts itself to spherically symmetric local 
potentials which are Lt and whose absolute square 
root can be expressed as a Laplace transform in the 
radial variable. Singular potentials and those which go 
to zero at large distances faster than any negative 
linear exponential will be dealt with in separate 
articles. 

The strong coupling limit is studied via function­
theoretic techniques. The scattering equation is 
written as an integral equation and the Jost function 
can be represented in terms of the familiar power 
series (in the coupling constant g) for the Fredholm 
determinant of this integral equation. Some standard 
results in the theory of entire functions connect the 
growth of the power series coefficients with the nature 
of the essential singularity of the power series for large 
coupling constant. These connections provide the 
strong coupling behavior of the Jost function whose 
zeros represent the eigenvalues g for which bound 
states exist for fixed energy, and whose phase corre­
sponds to the scattering phase shift. 

I. BOUND STATES: GENERAL I WAVES 

and for the moment everywhere nonnegative (i.e., 
generally attractive). The Schrodinger equation de­
scribing an I-wave bound state with energy E = 
-1i2fl2J2m reads 

[!..- +~!!.. _ fl2 _ 1(1 + 1) + gV(r)]u!(r) = 0, 
dr2 r dr r2 r 

(2) 

with u!(r)/r == "P!(r) the wavefunction, and g is a coup­
ling constant which must be positive for bound states 
to exist. We introduce the Fourier-Bessel transforms 
defined by 

(3) 

with Nkr) the familiar spherical Bessel function. 
From Eqs. (2), (3) one finds the integral equation 
(the subscript I is dropped where the context allows) 
[Wk = (k2 + fl2)t] 

u(k) = g foo dk'k,2V(k k')u(k') 
k 2 + fl2 Jo ! , 

(4) 

with 

a real symmetric kernel. Setting 

We restrict our considerations to potentials V(r) Eq. (4) becomes the Fredholm eigenvalue equation 
which are local, central, and are Lt, i.e., which satisfy 

LOO dr ! V(r)!t < 00 

(all integrability conditions are to be understood in one 
dimension). This condition is somewhat novel to 
potential theory, but is in fact the significant one from 
a number of points of view. We also demand that 
! V(r)!t be expressible as a Laplace transform 

! V(r)!t = 50
00 

doca(oc)e-«r, (1) 

which means that V(r)eKr -+ 00 for sufficiently large 
r for some K. Potentials which decrease at large 
distances faster than any linear exponential will be 
considered in a separate article. 

We consider general I-wave states, and fix our 
attention on a given I value. V(r) is assumed to be real 

8 F. Calogero, Commun. Math. Phys. I, 80 (1965). 

r/Jlk) = g f dk' U!(k, k')r/J!(k') (6) 

with the real symmetric kernel U!(k, k'). U!(k, k') is 
D if f dr ! V(r)! < 00. Equation (4) is an eigenvalue 
equation whose eigenvalues gr are the zeros of the 
Fredholm determinant,4 alias the Jost function. The 
correspondence between the Fredholm determinant 
and the Jost function has been demonstrated for the 
scattering problem, but is to be rederived as a basic 
step in our reasoning, and to establish notation. The 
Fredholm determinant for Eq. (6) is constructed as 

where an evident notation for the determinant is used. 

• R. Jost and A. Pais, Phys. Rev. 82, 840 (1951), Appendix. 
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The determinant can be transformed (i labels rows, 
j labels columns) 

det I UzCki , kj)1 

x V(r1)" . VCr n)it(k1r1) ... it(knr n) det U!(kjr;) I 

= L" dr1 ... L" dr "r;V(rl) ... r~ VCr n) 

(8) 

Performance of the k integrations of Eq. (7) inside the 
determinant leads to 

50'" dk1 ... L"'dkn det I U!(ki , kj)1 

= 50'" dr1 .. ,50'" dr n V(r1) ... VCr J det IY!(r" r)l, 

(9) 
where 

ro> ( ') = ~ l"'dk krit(kr)kr'jl(kr') 
~!~r - 2' 

7T 0 Wk 

(10) 

This quantity is in fact the Green's function of the 
differential operator 

corresponding to solutions which vanish at r = 0 and 
r = 00. We can therefore write 

YzCr,r' ) = w<r>Niw<)h/(+)(iW», (11) 

with rNiw), ,h~+)(iW) zeros of the differential operator 
~!.,. which respectively vanish at , = 0, , = 00. Np), 
h~+)(p) are respectively the regular spherical Bessel and 
the spherical Hankel function, and for large p 

pNp)""", sin (p - il7T), ph~+)(p)""'" exp [i(p - !17T)]. 

The quantity 

(12) 

is a symmetric function of all its arguments and is in 

fact nonnegative. 5 In view ofthis and Eq. (9), we can 
write 

x DI(r1' .. rn) 

= ! ( _ g)n r'" dr1 r 1

drs ... rn
-

l 

dr n 
n=o Jo Jo Jo 

x V(rl)' .. V(rn)D:(rl ... rn), (13) 

where in D('l ... 'n) the condition ,; ;::: '2 ;::: '3' •. ;::: 

'n must be obeyed. Using the representation Eq. 
(11) one finds, with a little juggling in the determinant 
D('l' .. 'n), the recursion relation 

D>( ) W~h:+)(iW1) Ih(+)(' ). (. ) 
! r1 '" rn = (+). I Iftr2 h Iftr1 

h! (IW2) 

- h:+)(iW1)jzCiW2)1 D: (r2 ... r n) 

== HI(rt. r2)D( (r2 ... r n), (14) 

which leads to 

D(r1' .. rn) 

= W~it(iW n)h:+)(iftr n)H!(r1, r2) 

x H!(r2' r3) ••• HI(r n-1' r n) 

= HI(r1 , r2)HI(r2 , r3) ••• H!(r n-l' r n) 

X HzCr n , 0). (15) 

One can show that for all " s 

IHI(" s)l/lr - sl ::::;; IHo(" s)I!I, - sl ::::;; 1. (16) 

Then from Eq. (13) 

'" Id(g) I ::::;; !Igln 
n=O 

x 50'" drlf:ldr2' . ·fn-ldrn W(rl) ... V(rn) I 

x (rl - r2)(r2 - r3) ••• (rn- 1 - r,,)rn . (17) 

We make the variable changes 

~j = 'j - 'H1 (j= 1··· n - 1), ~n = 'n' 

Then 

Id(g)1 ::::;; ~olgln 50'" d~ .. ,50'" d~n~l .•. ~n V(~n) 

X V(~n-1 + ~n) ... V(~l + ... ~n) 

n=O 
We set 

(18) 

5 See, e.g., discussion in W. M. Frank, Ann. Phys. (N.Y.) 19,175 
(1964), Sec. III. 
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[O'(OC) is known as the "Laplace weight" of VCr)]. Then 

Ln = 50 co doci • • • doc2n 

X 0'( OCI) • • • 0'( OC2n) 

(OCI + OCZ)2( OCI + OC2 + OCa + oc4l • • • 
(OCI + OCz + ... OC2n-l + OC2n)2 

(19) 
We use the inequality 

(OCI + OCz + ... OC2k-1 + OC2k)2]-1 

~ [(OCI + OC2 + ... OC2k- l ) 

X (OCI + OC2 + ... OC2k-1 + OCZk)]-1 (20) 
to find 

Ln ~ fooo 
doci ••. Loo doc2n 

\ 0'( OCI) ..• 0'( OC2n)\ 
X ------~~~----~~---------

[
OCI(OCI + oc2) •.• (OCI + OC2 + ... OC2n-I)] 

X (OCI + OC2 + ... oc2n) 

= - doci ••. doc 100(oc)'" O'(oc )1 1 foo 
(2n)! 0 2n I 2n 

X I [OCP1(OCP1 + OCP.)··· (OCPl + OCP. + ... OCP2)]-l, 
P 

(21) 
where the integral in Eq. (21) has been replaced by a 
symmetrized sum over all permutations P of the 
OCI' OC2' OCa, ••• , OCZn ' This quantity sums to a simple 
expression resulting in 

L < _1_ roo doc I O'(OCI) \ 
n - (2n)! Jo I OCI 

X roo docz
I0'(OC2)1 ••. roo doc2n 1 0'(OC2n) I == uin 

(22) 
Jo OC2 Jo OC2n (2n)! 

with the notation 

U I == roo doc 100(oc)1 • 
Jo oc 

We find therefore that 

1~(g)1 ~ cosh (VI Igl!), (23) 

which shows ~(g) to be an entire function of expo­
nential order6 at most l. That the exponential order of 
~(g) is precisely t is demonstrated by providing a 
lower bound to ~(g) for negative real g [where ~(g) 
is positive], which also has exponential order l. Such 
a lower bound is readily found in the Fredholm 
determinant ~s(g) corresponding to a square.well 
potential S(r) which satisfies V(r) ~ S(r). Clearly 
since D(r 1 ••• r n) is nonnegative 

~(g) ~ ~s(g) (24) 

6 An entire functionf(z) is said to be of exponential order ex ~ 0 
if ex is the greatest lower bound of numbers y such that one can find 
a K such that If(z)1 ~ exp K Izlr. If f(z) is of exponential order ex 
its type l' is defined by l' = lim sup Izl-r Ilnf(z)l. Izl-?oo 

for negative real g. That the exponential order of 
~s(g) is t follows from the consideration that ~s(g) 
can be expressed in terms of its Weierstrass factoriza· 
tion7 

(25) 

where ~s(gm) = O. The zeros gm of ~s(g) are just the 
values of coupling constant which bind a particle in 
the potential gS(r) with energy -1i2ft2f2m. If [O(x) 
represents the step function, 0 for negative x, 1 for 
positive x] 

S(r) = VoO(b - r), 

the gm are solutions to 

cot b(Vogm - ft2)! = -ft(Vogm - ft2)-! (26) 

and clearly for large m 

(27) 

so that the gm have exponent of convergence t. This 
establishes8 the exponential order of ~s(g) to be t. 
For general Lf potential which is not restricted to be 
positive, all the reasoning which leads to Eq. (23) 
follows if VCr) is replaced by W(r) I and VCr) == W(r)I!. 
If VCr) is purely repulsive, ~(g) would correspond to 
the Fredholm determinant for the attractive potential 
with the reversed sign. If VCr) has a finite number of 
nodes corresponding to alternating regions of attrac­
tion and repulsion, eventually becoming (say) positive, 
a lower bound S(r) to VCr) can be found in the spirit 
of the previous analysis in the form of a step function 
with a finite number of steps. The zeros of the corre­
sponding Ils(g) can be estimated in principle for large 
g. This has not been done, but one expects the eigen­
value equation for large g to involve an almost­
periodic function of (g)!, so that the eigenvalues are 
"relatively dense,"9 leading to a set of zeros whose 
exponent of convergence is again l. 

II. S-WAVE BOUND STATES 

In the special case of S waves the kernel ~o(r, s) 
takes the especially simple form 

~o(r, s) = 2rs roo dkk2 io(kr)~o(ks) 
7T Jo W k 

= 2~ [e-Ill r-s l - e-Il(r+sl], (28) 

7 E. C. Titchmarsh, The Theory of Functions (Oxford University 
Press, London, 1939), 2nd ed., See. 8.24. 

8 E. C. Titchmarsh, Ref. 7, Sees. 8.25,8.26. 
9 See, e.g., A. S. Besicovitch, Almost Periodic Functions (Cam­

bridge University Press, New York, 1932), p. 1. "A set E of real 
numbers is 'relatively dense' if there exists a number I > 0 such that 
any interval oflength I contains at least one number of E." 
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and it is not difficult to obtain more accurate estimates 
on the behavior of A(g). One can show that 

n>(r
l
'" rn) = _1_ det le-Illr;-rll _ e-ll (r;+T;) I 

(2/1)n l~i.;~n 

X O(rl - r2)0(r2 - ra)' .. O(r n-l - r n) 

= _1_(e-21l(TI-T2)_1)(e-21l(r2-'a)_1).·' 
(2/1)n 
(e-21l (rn- 1-r,,) _ 1)(e-2Ilr" - 1) 

x O(rl - r2) ••• O(r n-l - r n) 
n-l 

== II G(rj - rHl)G(rn)· (29) 
;=1 

Then with the variable change applied in connection 
with Eq. (17) one finds that 

00 

A(g) = L ( - g)n 
n=O 

x fooo 
d;l ... 50

00 

d;nG(;l) ... G(;n)V(;n) 

x V(;n-l + ;n) ... V($l + ... $n) 
00 

== L (- g)nLn(/1)· (30) 
n=O 

In terms of a(~), the Laplace weight of I V(r)l! one 
finds as before 

Li/1) ~ (-tLood~l" ·Loo d~2n la(~l)'" a(~2n)1 
X G(~l + 1X2)G(1X1 + 1X2 + lXa + 1X4) ... 

G(~l + ~2 + ... 1X2n), (31) 
where 

-G(~) = l/~(IX + 2f1,). (32) 

The estimates of Sec. I were based on the bound 

/G(IX) I ~ l/1X2
, 

which corresponds to inequality /G($)/ ~ 1;/, equiv­
alent to Eq. (16). This leads as was seen in Sec. I to 
the conclusion that A(g) is of exponential order! and 
of type6 

1"4 ~ U
l 

== roo doc /a(IX)/ . (33) 
Jo IX 

For a (~) ~ 0, U1 = J: dr W(r)lt. For the case of 
finite range VCr) ~ 0 with a(~) ~ 0 a lower bound on 
the type can be obtained from the inequality 

b/(IXI + ... + 1X2k)(~1 + ... ~2k + 1X2k+1) 

~ -G(IXI + ... 1X2k), (34) 
where 

b = min (1, (J12/1) (35) 

and 11{J < 00 is double the range of VCr); i.e., (J is the 

greatest lower bound of the support a(~). Then from 
Eq. (31) 

Li/1) ~ (2/1b)nfooodlXlLoodIX2n 

X a(lX) ... a(1X2n) = _(b_u_~_)n 
(IXI + IXg) ... (IXI + ... 1X2n) (2)>)! 

(36) 

This corresponds to the lower bound for the type 

Tt:J. ~ b!Ul = min [1, ({J/2/1)!]U1. (37) 

For 2/1 < (J the type is exactly U1 • 

We now show that if V(r) ~ 0, U1 is in fact exactly 
the type for A(g) as a function of a possibly complex 
/1. A(g) == A(g, /1) as a function of /1 is analytic in the 
entire complex /1 plane except for a cut along the 
negative real axis ending at /1 = - t{J, for each value 
of g. This can be recognized from Eqs. (30)-(32). We 
consider the quantity 

T(/1) == lim 1"i/1) == lim g-t In A(g, /1). (38) 
g-+oo y-oo 

g may approach 00 along any path avoiding zeros of 
A(g; /1). In view of what has been proven, Ti/1) is 
uniformly bounded for sufficiently large g if the zeros 
of A(g; fl) are avoided. Equation (38) defines an 
analytic function of /1. It has the constant value U1 

along the segment 0 ~ 2/1 ~ (J and hence has this 
value everywhere in the cut f-I plane. T(/1) is just the 
aforementioned type and is constant. This is borne out 
by the WKB approximation. 

The interest in the type stems from the fact that it is 
related to the asymptotic distribution of the zeros of 
A(g, /1). From the Hermiticity of the kernel Ul(k, k') 
it follows that all the zeros of A(g) are real and in 
fact nonnegative. (We ignore the complications of the 
case where g = 0 is an eigenvalue.) A theorem1o tells 
us that an entire function of exponential order t and 
type T with real positive zeros has an asymptotic 
distribution of zeros neg) (the number of zeros of 
modulus ~ Ig/) given by 

neg) r-..J (1/7T)1" Iglt. (39) 

By applying Jensen's theoremll we can find a bound 
on the number of bound states, i.e., zeros of A(g, 0) 
determined by the relation 

n(bg) In - ~ dg' -g- = - In IA(gei6 , 0)1 1 ig 
n(') 1 i2

" 

bog' 27T 0 

~ IgltT. 

10 Reference 7, Sec. 8.64. 
11 See, e.g., E. Hille, Analytic Function Theory (Ginn and Com­

pany, Boston, Massachusetts, 1962). Vol. II, Theorem 14.1.4, p. 189. 
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Optimizing t5 with the value t5 = e-2, we find the 
inequality for all g 

nB ~ ie Igl! Loodr I V(r)I!. (40) 

The quantity in Eq. (40) is a bound on the number of 
zeros with modulus =:;; Igi of A(g, 0) (at zero energy). 
Since each bound state in a potential g V(r) passed 
zero energy at a smaller value of the coupling constant, 
the number of bound states is just this number of 
zeros. [For potentials such as the Coulomb potential, 
bound states exist for arbitrarily weak coupling. 
However, potentials which are L! also satisfy the 
Bargmann condition S dr IrV(r)1 < 00 and do not 
bind at "zero energy."] The Bargmann inequalityl2 

nB < -.l£L (OOdrr W(r) I (41) 
- 21 + 1 Jo 

or the £2 boundl3 

nB ~ ~ Jd3rJd3r' I V(r)V(r')1 (42) 
41T2 Ir - r'l 

both fail to give the correct growth of the number of 
bound states with g for large g, and greatly over­
estimate this quantity. The result Eq. (40) is "best 
possible" as far as the g-dependent goes, and a crite­
rion of this type for the first bound state was found by 
Calogero.3 For high I values the inequality Eq. (41) 
may give sharper bounds. The integral S dr IrV(r)1 
converges ever so slightly better than S dr I V(r)l! for 
borderline potentials, such as those which behave 
for large r like (r Inr)-2. Potentials which are not L! 
will be discussed in a subsequent article. 

Another interesting by-product of these results is 
the existence of the "square-root kernel" of the 
integral equation (6). Uz(k, k') as a real symmetric 
kernel can be expressed in terms of the orthonormal 
eigenfunctions cp.(k) and the positive eigenvalues 
g. of Eq. (6) in the form 

U,(k, k') = 1 cp.(k')cp.(k) . (43) 
g. 

One can define 

W(k, k') == 1CP.(k')t .(k) , 

• g. 

which exists as a square integrable kernel since 

1 1-<00 
g. 

12 V. Bargmann, Proc. Natl. Acad. Sci. U.S. 38, 961 (1952). 

(44) 

13 J. Schwinger, Proc. Natl. Acad. Sci. U.S. 47,122 (1961); C. G. 
Ghirardi and A. Rimini, J. Math. Phys. 6,40 (1965). 

according to Eq. (39). Moreover, W(k, k') is the 
square root of U(k, k') in the sense that 

J dk"W(k, k")W'k", k') = U(k, k') (45) 

as is evident from Eq. (44). 
It was established that for g large and negative 

A(g, "') = I (- g)"LnC/-L) ,...., exp FT( - g)! + o(g!)] 
,,=0 

= exp [T(e-i"g)! + o(g!)]. (46) 

Since all the zeros of A(g) are real and positive, the 
growth described in Eq. (46) for large Igl is validlO 

for all 0 < arg g < 21T. It is not difficult to deduce 
from the asymptotic distribution of the (real positive) 
zeros of A(g, "') as given by Eq. (39), that A(g, "') is 
bounded for positive g, and as a real function of 
exponential order t, its behavior for large positive g 
must be of the form 

A(g, "') '" peg, "') sin b'g! + cp(g, ",)], (47) 
where 

Inp(g, "') = o(g!), cp(g, "') = o(g!) (48) 

with T = S dr W(r)ll for VCr) nonnegative, and inde­
pendent of ",. This agrees with the extrapolation from 
Eq. (46) 

III. SCATTERING STATES 

The corresponding estimates can be carried out for 
the scattering problem. The Fredholm determinant in 
this case can be obtained by reasoning similar to that 
in Sec. I. The expression for it is, however, well 
known4 in a form similar to Eq. (13): 

&(g, k) == &(g) = I( _g)n 
n=O n! 

X Loo drl .. ·L"'drnV(rl)· .. V(rn)DtCrl ... rn), (49) 

where 

DI(rl '" rn) = det 1~I(ri' ri: k)l, (50) 
1:5i.i:5n 

gl(r, r':k) == -ikr<r>it(kr<)h~+)(kr», (51) 

where jzCkr), h~+)(kr) are familiar spherical Bessel 
functions whose significant boundary values are 

UO) = 0, jl(kr)~ sin [kr - l(t1T)]/kr; 
r-+ 00 

h~+l(kr) ~ e[-ikr-H!..l]/kr. 
r-+oo 

From symmetry, following notations used earlier, 

00 foo foo &(g) = 1 ( - g)n dr1 . . . dr n V(rl) ... VCr n) 
n=O 0 0 

X D~(r1 ... rn); (52) 
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also 

lJ-;(rl' .. rn) 

= R l(rl, r 2)Rl(r2, r 3) ••• Dl(r n-l' r n)RzCr n' 0), 
where 

Rl(r, s) = -ikr2[h:+)(kr)/hl+)(ks)] 

X Ih:+)(ks)iz(kr) - h~+)(kr)iz(ks)l. (53) 
Once again 

IR1(r, s)/(r - s)1 ~ 1, 

so that the very same estimate is obtained as in Eq. 
(23). 

I~(g, k)1 ~ cosh (Iglt U1). (54) 

The similarity of Eqs. (23) and (54) is more than 
coincidental. It is of interest to note the relation 
between ~(g, k) of Eq. (49) and A(g, ft) == A(g) of 
Eq. (13). Comparison of gl(r, r': ft) in Eq. (11) and 
gl(r, r': k) of Eq. (50) shows that 

g/(r, r': k) = gz(r, r': -ik). (55) 

Then from Eqs. (12), (13), (48), (49) 

~(g, k) = A(g, -ik). (56) 
From 

f{k) == lim g-t In ~(g, k) (57) 
y ... oo 

follows by considerations presented earlier that 

T(k) = T( -ik) == 'T, (58) 

For g positive, it is presumed that Eq. (47) can be 
analytically continued to imaginary ft. Then one 
would write 

A(g, ik) -' peg, ik) sin ['Tgt + rp(g, ik)] (59) 

with Eq. (48) continuing to hold. The functions 
peg, ik) rp(g, ik) will generally be complex. The phase 
shift b(k, g), which is merely the phase of the Jost 
function f(k, g) = ~(g, -k) = A(g, ik) is therefore 
given by 

b(k, g) = 1m In A(g, ik). (60) 

To order gt, the leading behavior of beg, k) can be 
shown with the help of Eqs. (60), (59), and (48) to be 

b(k, g) -' -'Tgt (61) 

independently of k for k ¥= O. For strongly repulsive 
potentials [if one analytically continues in Eq. (46) 
from positive ft to pure imaginary values as discussed], 
one obtains no phase shift to order gt but rather an 
enhancement factor14 h(g, k) whose leading behavior is 

h(g, k) ,...., e-lra1• (62) 
Equation (61) is related to Levinson's theorem and is 
also derivable from it. 

It M. Goldberger and K. M. Watson, Collision Theory (John 
Wiley & Sons, Inc., New York, 1964). Sec. 6.5. 

IV. DISCUSSION 

In this article only the leading asymptotic behavior 
in g is discussed. Subject to the assumptions that 
I V(r)l! is local, Lt, and expressible as a Laplace 
transform it was shown that the Jost function is of 
exponential order i in g, which implies that the number 
of bound states and the phase shift for an attractive 
potential both grow as Iglt for large g. If VCr) is 
singular in the sense of not being Lt, then the ex­
ponential order of the Jost function is in fact not i. 
These cases will be dealt with separately. 

Many of the results of this article can also be 
obtained by WKB methods which also permit means 
of calculating further terms in the asymptotic ex­
pansion of the Jost function for large g. Such a 
treatment will appear separately. The WKB method, 
however, does not of itself permit analytic continua­
tion in g, unless independent knowledge of analytic 
properties is available. A criterion for the "largeness" 
of g is set by the condition for validity of the WKB 
method, namely the slow change of the potential over 
the de Broglie wavelength in the region of interaction, 
i.e., 

0;' _ .E.[ 1 J t ~.£. _1_ « 1 (63) 
or - Or (k2) + gV ,...., or (gV)t . 

The noncommutativity of the limits g -+ 00, k -+ 00 

should be noted. The present results on exponential 
order in g are valid for fixed k (in an upper half-plane), 
and are not affected by a consequent growth of k. If g is 
fixed and k grows asymptotically large, G( IX) -+ I I IX and 
a function of exponential order unity in g is obtained. 
It is clear from the criterion Eq. (63) that the large­
ness of g is determined relative to k, and the criterion 
is not uniform in k. The potential, no matter how 
strong, must eventually go to zero and yield to the 
asymptotic behavior modulated by k 2, and its large­
ness is therefore never uniform in space. 

It is seen that, in the strong coupling limit of poten­
tial theory, one can effectively neglect the total energy 
k 2 in comparison with the potential energy in the first 
approximation. Such a consideration may not carry 
over to field theories, where the particle acquires a 
self mass which is large if the coupling is large. It 
would seem to be a subtler problem to determine the 
dominating terms in the interaction between re­
normalized particles. 
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An examination of two functionals, which are in common use for making variational estimates of 
weighted averages, reveals that one may be preferred over the other in certain cases. In particular, for 
a positive-definite self-adjoint operator, the normalization-independent functional always yields the 
better approximation to the stationary value. 

VARIATIONAL principles are particularly con­
venient for approximating weighted averages. If 

the solution to a system of equations is unknown, but 
the quantity of interest is some weighted average of the 
unknown solution, then rendering an appropriate 
functional stationary enables one to calculate the 
quantity of interest to a degree of accuracy which is 
higher than that of the solution itself. 

Two functionals which are currently in common use 
in variational analyses are 

Fl = (st, 1pt) + (r/>t> s) - (r/>t, H1pt), (I) 

F2 = (st, 1pt)(r/>t, s)/(r/>t, H1pt). (2) 

H is some operator, sand st are known ("source") 
functions, and 1pt and r/>t are unknown ("trial") 
functions. The scalar product notation is used to 
denote integration over all the variables of interest. 

(f, g) = If(X)g(X) dx. (3) 

Recently, these functionals have been generalized 
in one sense or another. 1- 3 (For earlier work, the 
reader is referred to the bibliography of Ref. 1 or 2.) 
We concentrate on the simpler forms given by Eqs. 
(1) and (2), with the aim of pointing out that in certain 
situations one functional may be preferred over the 
other. Frequently, one or the other of the functionals 
has been used as a matter of convenience, but it 
appears that there may be a calculational advantage 
in using one over the other, depending on the 
particular situation. 

Consider the functional F1 • Assume that the exact 
solutions 1p and r/> to some system of equations are 
known only to some accuracy b1p and br/>, respectively. 
Using the trial functions 1pt = 1jJ + b1p and r/>t = 
r/> + br/> in Eq. (I), we obtain 

Fl = (st, 1p) + (br/>, s - H1p) 

+ (st - Htr/>, b1jJ) - (br/>, Hb1p), (4) 

1 M. D. Kostin and H. Brooks, J. Math. Phys. 5, 1691 (1964). 
2 G. C. Pomraning, J. Soc. Indust. Appl. Math. 13, 511 (1965). 
8 D. S. Seiengut, Trans. Am. Nucl. Soc. 8, 485 (1965). 

where the adjoint operator Ht is defined by the 
relation, 

(f, Hg) = (H:t, g), (5) 

for all functions f and g. Implicit in this definition are 
appropriate boundary conditions. 

If we require that the first variations of the func­
tional always vanish, then 1p and cp must be solutions 
to 

(6) 

(7) 

The functional Fl is thus stationary about the solu­
tions to Eqs. (6) and (7). The boundary conditions 
that are to be associated with Eq. (7) are to be adjoint 
to the boundary conditions that are associated with 
Eq. (6), in order for the equality (5) to hold. 

The stationary value of the functional, which we call 
I, is given by 

(8) 

The weighting function in the quantity of interest, I, 
is to be chosen, therefore, as the source in the adjoint 
equation, (7). For example, if the quantity of interest 
is a resonance integral, s t is taken as the resonance 
cross section. 

Applying Eqs. (6)-(8) to Eq. (4), the trial functional 
Fl may be written as 

Fl = I {I - [(br/>, Hb1jJ)/(r/>, H1p)]). (9) 

Having required that the first variations of the func­
tional vanish, we see that the stationary value is 
estimated to second order, though the solutions to 
the equations of interest are assumed to be known 
only to first order. The variational principle yields 
an accurate estimate of I, however, only if the second­
order terms are small. In other words, we still have 
to make fairly good guesses for the trial functions 
(based on physical considerations, usually) in order 
to have a good approximation to I. 

Consider now the functional F2 • This functional 
is also stationary about the solutions to Eqs. (6) and 
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(7), and its stationary value is given by (8). An anal­
ysis, similar to that given for F 1 , gives for the trial 
functional F2 , 

F2 = 1(1 _ (bcp, HtJ1p) + (bcp, s)(st, b1p») + O(b3), 
(cp, H 1{J) (cp, s)(st, 1{J) 

(10) 

where the expression O(b3) represents terms of third 
order (and higher) in b1{J and bcp, which we neglect in 
the remaining discussion. 

Clearly, the second-order terms in Eqs. (9) and 
(10) are, in general, different. It may be that, for a 
given operator and for a particular class of trial 
functions, the second-order terms of one functional 
are smaller in magnitude than those of the other. 
This would make one of the functionals preferred 
over the other for this class of trial functions. It 
appears, therefore, that a careful investigation of 
these second-order terms may be important and useful 
when one is calculating weighted averages. 

These arguments are not limited entirely to weighted 
averages. They may be extended to a class of eigen­
value problems by use of the following artifice3 : 

Suppose that we are interested in finding the eigen­
values to the equation 

(L - AM)1{J = O. (11) 

Consider the auxiliary problems given by Eqs. (6) 
and (7), but take H = L and choose the sources so 
as to represent the operator M by taking 

M = s(st, ). (12) 

This is possible, for example, for integral operators 
with separable kernels. The functional F2 now becomes 

F2 = (cpt, M1{Jt)/(cpt, L1{Jt), (13) 

which is stationary about the inverse eigenvalue, l/A, 
to Eq. (11). 

Qualitatively, it would appear that, if the two 
second-order terms of Eq. (10) are of comparable 
magnitude and the same sign, then, for the same trial 
functions, F2 gives a better estimate of 1 than does F1 . 
It is difficult to make quantitative statements about 
completely general operators H, so we consider a 
special case. 

Consider the case when H is a positive-definite 
self-adjoint operator; Ht = Hand (J, Hf) > O. (The 
arguments are equally valid for negative-definite 
operators.) We choose the sources st = s, so that 
from Eqs. (6) and (7), we have that 1p = cp. For this 
case, (9) and (10) become 

F1 = 1 {I - [(b1{J, Hb1{J)/(1p, H1{J)]), (14) 

F2 = 1(1 _ (b1{J, Hb1{J) + (s, b1{J)2). (15) 
(1p, H1{J) (S,1p)2 

Now, the signs of the second-order terms are definite. 
Because of the definiteness of the operator (positive 
or negative), the term involving H is positive, while 
the last term in Eq. (15), being a perfect square 
(everything is assumed real here), is also positive. 
Thus we have the following inequalities: 

F1 < j and F1 < F2· (16) 

In other words, the functional Fl gives us a maximum 
principle bounded by 1. But it is still not clear whether 
F2 is greater than or less than I. In either case, how­
ever, since the two second-order terms in (15) have 
opposite signs in front of them, if they are of com­
parable magnitude, F2 gives a better estimate of I 
than Fl' 

It is possible to show directly that the last term in 
Eq. (15) is always smaller than the other second-order 
term, so that, in fact, F2 also generates a maximum 
principle. This means that F1 :::;; F2 :::;; I. 

We show this, however, in an indirect way. The 
functional F2 has the feature of being normalization 
independent; that is to say, substituting A1{Jt as the 
trial function does not affect the value of the func­
tional. On the other hand, the functional F1 is affected 
by this substitution. Since for all A, F1(A) is bounded 
from above by I, let us choose that A which maxi­
mizes Fl' The solution to oF1(A)/oA = 0, is Ao = 
(s, 1{Jt)/(1{Jt, H1{Jt), and the maximum value of F1 turns 
out to be F2 ; in other words, F2 = Fl(Ao) < 1, which 
was to be proved. The fact that the functional F2 can be 
derived from F1 is not new,1 but the approach used 
here reveals its importance in the calculation of 
weighted averages. 

As an illustrative example of this case, consider the 
diffusion equation in a multiplying subcritical assem­
bly of a one-dimensional slab of width 2a. 

(-DV2 + ~a - V~f)1{J = S, (17) 

where D is the diffusion coefficient, ~a, the absorption 
cross section, is greater than V~f' the multiplication, 
and S is some external source. We choose the homo­
geneous boundary conditions 

1{J(±a) = O. (18) 

Letting (~a - v"f./)/D = K2 and S/("f.a - v"f./) = s, 
where both K2 and s are positive quantities, Eq. (17) 
becomes [1 - (I/K2)V2]1{J = s, or 

H1{J = s, where H = 1 - (1/K2)V2. (19) 

Note that this H is a positive-definite self-adjoint 
operator. A reasonable trial function which satisfies 
the boundary conditions for this problem is 

1pt = cos (1T/2a)x. (20) 
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If the source s is constant in space, then the 
weighted average (s, "') is related to the volume aver­
aged flux, ip. If the source is a point source, then 
the weighted average is the flux at the source point. 
For the case of constant s, the variational approximat­
ions to the average flux with the trial function (20) are 
plotted in Fig. 1 together with the exact solution to 
the problem. If one changes the amplitude of the 
trial function, then Fa remains unchanged, while the 
curve for Fl moves up or down but never becomes 
greater than Fa. The preferred functional is thus Fa. 

The above arguments fail for the more general 
non-self-adjoint case, because the functionals are not 
maximized. It is possible for Fl or Fa to be larger or 
smaller than I, depending on the magnitude and sign 
of the second-order terms. For this case, however, it 
may be possible to show for a given operator and a 
given class of trial functions that the second-order 
terms of one functional are smaller than the other. 
Therefore, an investigation of these second-order 
terms would seem appropriate, for it may reveal a 
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FIG. 1. Variational estimates FI and FI and the exact solution I 
for the average flux if as a function of the slab half-width a. 

functional preference in a given class of problems. 
Furthermore, it may be possible to alter the preference 
between the functionals in the non-self-adjoint case 
by altering the amplitudes I)f the trial functions. 
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As has been recently suggested, many subjects in small angle x-ray scattering theory can be discussed 
by using a function called the intersect distribution function G(M), which gives an average value of the 
distribution of lines with length M which pass through a point in a particle and which also have both 
ends lying on the boundary of the particle. Some properties of the intersect distribution function for a 
plane lamina with a convex boundary are investigated. The calculation is found to require the use of a 
weighting factor which is expreSSible in terms of the function generating the boundary of the lamina. 
The relation between G(M) and the two-dimensional characteristic function is given. The exact intersect 
distribution function is found for a circle, and an approximate calculation of G(M) is carried out for 
small M for an arbitrary plane lamina with a convex boundary. 

I. INTRODUCTION 

I T has recently been pointed out by Porodl that many 
topics in small angle x-ray scattering theory can 

conveniently be discussed in terms of a function called 
the intersect distribution function, which up to this 
time has been rarely used, even though an essentially 

1 G. Porod, in Proceedings of the Small Angle X-Ray Scattering 
Conference (Gordon and Breach Science Publishers, Inc., New 
York, 1967). 

equivalent function,2 the line distribution function, 
was introduced a number of years ago.3 

The name "intersect" has been applied by Porod to 

2 A. Guinier, G. Fournet, C. B. Walker, and K. L. Yudowitch, 
Small Angle Scattering of X-Rays (John Wiley & Sons, Inc., New 
York, 1955), pp. 12-13. 

8 The intersect distribution function G(M) defined below is 
essentially equivalent to Porod's intersect distribution function. 
The line distribution function g(M) of Ref. 2 can be obtained from 
G(M) by the relation g(M) = (MIM)G(M). The normalizing con­
stant M is defined below in Eq. (4). 
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was introduced a number of years ago.3 

The name "intersect" has been applied by Porod to 
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Small Angle Scattering of X-Rays (John Wiley & Sons, Inc., New 
York, 1955), pp. 12-13. 
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essentially equivalent to Porod's intersect distribution function. 
The line distribution function g(M) of Ref. 2 can be obtained from 
G(M) by the relation g(M) = (MIM)G(M). The normalizing con­
stant M is defined below in Eq. (4). 
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any line passing through a body and with both ends 
lying on the boundary of the body. The intersect 
distribution function G(M) is an average distribution 
of lines of length M passing through a point and with 
both ends lying on the particle surface. 

Because of the renewed interest in the intersect 
distribution function we have recently investigated 
some properties of this function. In these studies, 
approximate values of the function were calculated 
for a plane lamina with a convex boundary. In the 
calculation, a weighted average had to be computed. 
Since the form of this weighting function was not 
apparent from other discussions of intersect distri­
bution functions, and since the weighting function can 
affect other calculations of the intersect distribution 
function and its properties, the results for the plane 
lamina are outlined below. 

For simplicity, only the plane lamina is considered, 
although analogous results would be expected for 
convex three-dimensional bodies. 

D. THE WEIGHTING FUNCTION P1(P, 0) 

For a plane lamina with a convex boundary and 
uniform electron density, let po(r) be the two-dimen­
sional characteristic function, which is the analog 
of the three-dimensional characteristic function4 

Yo(r). By analogy with the three-dimensional case,4 for 
a plane lamina 

A = 50D 27Trpo(r) dr = A-I L dA 50
20

' de 5o
R

(P.9) r dr, 

(1) 
where A is the area of the lamina; D, the maximum 
diameter, is the length of the longest straight line that 
can be contained in the lamina; and where p is a 
vector from a fixed origin to the area element dA. 
The surface integration extends over the area of the 
lamina. The vector p defines a point which is called 
point p and which is taken as the origin of a polar 
coordinate system with coordinates r and e. The 
boundary of the lamina is given by the equation 
r = R(p, e). Equation (1) can be written as 

A = (2A)-IL dA r"[R(p, e)]2 de, (2) 

Passing through each point p there is a line with length 
M, the ends of which lie on the lamina boundary and 
which is oriented at an angle e with respect to the 
reference axis of the polar coordinate system. This line 
is called an intersect. 

Equation (2) can be expressed as 

A = (2A)-1 L dA 5o"deM2PI(p, e), (3) 

4 Reference 2, pp. 10-19. 

where 

P1(p, e) = M-2{[M - R(p, e)]2 + [R(P, e)]2}. 

When M replaces e as a variable of integration, (3) 
can be put in the form 

A = 7T/(3M) !aD dMM3G(M), (4) 

where 

G(M) = [3M/(27TMA)] i~ L dA Ide/dMli pep, M), 

(5) 

M = 50D dMMG(M). 

The weighting factor pcp, M) is obtained by 
expressing e in terms of p and Min P1(p, e). In the 
change of variables from e to M, the interval of 
integration must be divided into j subintervals in each 
of which e is a single-valued function of M. Therefore, 
as (5) indicates, G(M) must be expressed as the sum of 
j integrals with Ide/dMli being the value of I de/dM I 
valid in interval i. In (5) the value of M determines the 
part of the lamina area over which the area integration 
extends. 

One of the main purposes of this note is to emphasize 
the need for the use of weighting factor pep, M) in 
calculating the intersect distribution G(M) or the line 
distribution function gr(M) described by Guinier et 
al. 6 An approximate expression for pep, M) for small 
M is given below for a plane lamina with a smooth 
convex boundary. 

Ill. THE RELATION BETWEEN G(M) AND Mr) 

By two partial integrations, (4) can be written as 

7T/(3M) 50D dMM3G(M) 

= 27TM-1 50D r dr i
D 

dM(M - r)G(M). 

Then by analogy with the three-dimensional case,6 
the two-dimensional characteristic function po(r) is 
related to the intersect distribution function G(M) by 
the equation 

paCr) = M-li
D 

dM(M - r)G(M). (6) 

Thus 
p~(r) = M-IG(r). (7) 

The characteristic function po(r) and the line distri­
bution function G(M) therefore give very nearly equiv­
alent information. At times, however, one function 
may be more convenient to use than the other. 

6 Reference 2, p. 12, Footnote 1. 
6 Reference 2, p. 13. 
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IV. THE INTERSECT DISTRIBUTION FUNCTION 
FOR A CIRCLE 

Equation (5) requires knowledge of the relation 
between the angle e and the intersect which has a 
length M and which passes through point p. Let the 
boundary be represented by the circle 

X2 + (Ro - b - y)2 = ~, (8) 

where Ro is the radius of the circle, and b is the distance 
from the circle to point p. The intersect can be repre­
sented by the line 

y = X tan e. 
This line intersects the circle at two points, the x 
coordinates of which are given by the two roots Xl and 
X 2 of the quadratic equation 

x~ sec2 e - 2x(Ro - b) tan e + (Ro - b)2 - R~ = O. 

Since the two points of intersection must be separated 
by a distance M, 

M cos e = X2 - Xl . 

Therefore for 0 :s: e :s: !1T, 

e = cos- l [(R~ - 1M2)t/(Ro - b)], (9) 

and for !1T :s: e :s: 1T, 

(10) 

Since two expressions are necessary to specify e as a 
function of M throughout the interval 0 :s: e :s: 1T, in 
(5)j = 2. 

The quantity R(p, e) in (2) is the distance from point 
p to the boundary. Therefore, in (8), y = R(p, e) sin e 
and X = R(p, e) cos e. By substitution of these values 
of X and y into (8), a quadratic equation for R(p, e) is 
obtained with the solution 

R(p, e) = (Ro - b) sin e + [R~ - (Ro - b)2 cos2 e]t. 
From (9) and (10), 

M = 2[~ - (Ro - b)2 cos2 e]t. 
Thus 

R(p, e) = M/2 + [(Ro - b)2 + (M/2)2 - R~]t, 
P(p, M) = 1 + 2M-2[(Ro - b)2 - R~]. (11) 

Points on the boundary of the circle are specified by the 
arc length t from the point to a reference point. The 
boundary point with arc length t is called "point t." 
For the surface integration in (5), the variables band 
I are employed. Then 

dA = (1 - biRo) db dt. 

The largest value bmax of b is determined by the con­
dition that the values of cos e given by (9) and (10) 

must satisfy the condition that Icos el :s: 1. Therefore 

bmax = Ro - (~ - 1M2)t. 

When the above results are substituted in (5), G(M) 
can be expressed as 

3M 2 
G(M) = --I 21TRO 

21TMAi=1 

ibm&X ( b ) I de I x db 1 - - P(p, M) - : 
o Ro dM • 

Thus 
G(M) = MM/1TR~(4R~ - M2)t. 

This result agrees with the intersect distribution for a 
circle obtained from (7) using the expression for the 
characteristic function for a circle. 7 

V. THE INTERSECT DISTRIBUTION FUNCTION 
FOR SMALL M 

The results for a circular boundary can be used to 
find an approximation for G(M) for small M for a 
smooth convex boundary with arbitrary shape since, 
when the quantity R in (8)-(11) is replaced by the 
radius of curvature R(t) at point I, these equations 
hold approximately at a point t on an arbitrary 
smooth convex curve. Equation (5) then gives 

G(M) = LM(41TA)-1 (R-2)M + .. " (12) 
where 

- rL 

R-2 = L-1 Jo [R{t)]-2 dt 

and L is the total arc length of the boundary. The 
quantity R-2 thus is the average of [R(t)]-2 over the 
boundary. 

Since8 Po{O) = 1 and fJ~{O) = -L/{1TA), from (6) 

and (12) 

po{r) = 1 - (L/1TA)r + [L/{241TA)](R-2)r3 + .... 
Kirste and Porod9 obtained this same expression by 
a direct calculation of po{r). 
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The following results are proved for a system of Ising spins tY I = ± 1 in zero magnetic field coupled 
by a purely ferromagnetic interaction of the form -'EI<iJ;;tYltYi with JIj ~ 0, for arbitrary crystal 
lattice and range of interaction: (1) The binary correlation functions <tY~tYl> are always nonnegative ({ > 
denotes a thermal average). (2) For arbitrary i, j, k, and I, <tYltYitY~tYl> ~ <tYltYi><tY~tYl>' Consequences of 
these results, in particular the second, are: (i) <tY~tYl> never decreases if any JIj is increased. (ii) If an Ising 
model with ferromagnetic interactions exhibits a long-range order, this long-range order increases if 
additional ferromagnetic interactions are added. This last fact may be used to prove the existence of 
long-range order in a large class of two- and three-dimensional Ising lattices with purely ferromagnetic 
interactions of bounded or unbounded range. 

I. INTRODUCTION 

CONSIDER a finite system of Ising spins (1i = ± 1 
with a Hamiltonian 

N 

Je = - ! Ji/«(1 • .(1; - 1), (1) 
i< i 

where for every pair i ¥= j 

o ::;; Ji; = J;i < 00. (2) 

That is, all interactions are ferromagnetic, favoring 
parallel alignment of spins. The thermal average of an 
operator C> is defined by 

(C» = Tr [C> exp (-PJe)]/Z, (3) 
where 

Z = Tr [exp (-PJe)] (4) 

is the partition function, and the inverse temperature 
p = (kT)-l is always positive. As all interactions favor 
parallel alignment, the following result is not 
surprising. 

Theorem 1: For the system described by (1) and (2) 
and any pair k, I, 

(5) 

Also it seems intuitively plausible that increasing 
the ferromagnetic interaction between any pair of 
spins tends to enhance the tendency of other pairs to 
line up parallel, a result embodied in Theorem 2. 

Theorem 2: For the system described by (1) and (2), 
and where k, I, m, n denote any four spins (not 
necessarily all different), the following is true: 

P-l O«(1k(1!)/oJmn = «(1k(1!(1m(1n) - «(1k(1!)«(1m(1n) ~ O. 

(6) 

• Research supported in part by the National Science Foundation. 

Further, the result (6) still holds when Jk! or Jmn (of 
both) is negative (we suppose all other Ji; are non­
negative). 

Section II contains the straightforward proof of 
Theorem 1 together with definitions and notation 
useful in discussing Theorem 2. The latter is proved 
in Sec. III with assistance from two lemmas in 
Appendix A. An immediate consequence of Theorem 
2, with proof in Sec. III, is found in Theorem 3. 

Theorem 3: For the system described in (1) and (2), 
and where k, I, and n denote any three spins, the 
following relation holds: 

(7) 

and it is unnecessary to assume that Jk! and J!n are 
nonnegative. 

Some applications of Theorems 2 and 3 to the 
problem of long-range order in various types of Ising 
ferromagnets are found in Sec. IV. We hope to 
present others in a future publication. The principal 
utility of these theorems seems to lie in applications 
where the results, just as the theorems themselves, are 
intuitively very reasonable, but formally difficult to 
prove. We feel the results merit pUblication because 
at the present time the statistical theory of phase 
transitions, in which the Ising model has played a 
major role, is seriously restricted by a lack of exact 
solutions for even relatively simple models. Various 
approximation methods are of much value, at least in 
regions removed from the critical point, but there is 
increasing evidence that they are not adequate to 
answer many questions of theoretical interest. In the 
absence of exact solutions (and even if they were 
available), precise mathematical results may be useful 
for gaining insight into the behavior of various 
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k~=7r 
m~n 

FlO. 1. Complete diagram for a system 
of 4 spins. 

models.1 We hope our results may make some 
contribution toward this end. 

II. DEFINITIONS, NOTATION, AND THE 
PROOF OF THEOREM 1 

For conceptual purposes it is convenient to represent 
Ising spins as small circles in a diagram connected with 
lines or bonds, the bond between spins k and I 
representing the term -Jk!(aka! - 1) in (1). An 
example with 4 spins is shown in Fig. 1. With each 
bond we associate a factor (Boltzmann factor) 

Xk! = exp ( - 2f3 Jk!) (8) 

representing the contribution of the bond to the 
partition function when aka! = -1. In fact, the 
partition function is simply a sum of terms which are 
polynomials in the {Xii}' with any given Xk! occurring 
to the zeroth or first power. For Jii satisfying (2) we 
have 

(9) 

If Jk ! vanishes, i.e., XkZ = 1, we erase the corre­
sponding bond in the diagram. Another important 
operation is that of taking the limit JkZ --+ 00 or 
Xk! --+ 0, which we call "combining" spins k and I. 
The effect of this operation on the partition function 
is easily verified: k and I may now be treated as a 
single spin, say k'. Further, the factors Xk'm are simply 
given as products 

(10) 

(that is, Jk'm = Jkm + J!m)' Note that if both Xkm 
and Xzm satisfy (9), so does Xk'm' That is, the ferro­
magnetic nature of all bonds is preserved when two 
spins are combined. An example is shown in Fig. 2. 

We use the same diagram to represent both the 
Hamiltonian (1) and the associated partition function 
(4). In connection with the latter it is convenient to 
introduce restricted partition functions in which 
instead of summing over all configurations, as in (4), 
one sums only over those in which certain spins have 
specified values. For example, Z(k+), represented 
in Fig. 3(a), is a restricted partition function in which 

1 For example, the very powerful results of T. D. Lee and C. N. 
Yang [phys. Rev. 87, 410 (1952)] on the zeros of the Ising model 
partition function have provided information of great importance 
about the behavior of such models in a magnetic field, even though 
an exact solution to the statistical problem (in two and three 
dimensions) is still lacking. 

p 

k' 

FIG. 2. Illustration of the 
effect of combining spins k 
and I by letting Xtl go to zero. 
The result before combina­
tion is shown in (a) and the 
result after combination in (b). 
The factor X.,P is equal to 
Xtp'X,p, mO--~tll.....--On mer-..=!!'-O 

(0) (b) 

+~-
(b) FIG. 3. Diagrams illustrating various 

(0) 
~ restricted partition functions. 
-~+ 

(e) 

only configurations with ak = + 1 are included ir.. the 
sum (4). Figure 3(b) represents the restricted partition 
function Z(k+ 1-) which, because (1) is invariant 
under time reversal (unaltered if each at is replaced by 
-at) is identical withZ(k- 1+) illustrated in Fig. 3(c). 
In these figures all other spins plus connecting bonds 
are, for brevity, represented by a cross-hatched region 
or "blob." 

We add two terms to complete our notational and 
diagrammatic machinery. A diagram (Hamiltonian or 
partition function) is complete if every spin is joined 
to every other spin by a bond; that is, Jii #: 0 for any 
pair i #: j. A diagram is connected if one can get from 
any spin to any other spin by passing along bonds 
from spin to spin. 

We now prove Theorem 1. In terms of restricted 
partition functions it suffices to show that 

IZ(akaz) = ![Z(k+ 1+) + Z(k- 1-) - Z(k+ 1-) 

-Z(k- 1+)] = Q 
= [Z(k+ 1+) - Z(k- 1+)] ~ 0, (11) 

where we have used time reversal symmetry [e.g., 
Z(k+ l+) = Z(k- 1-)] to simplify the expression 
for Q. 

For a system containing only two spins i and j, Q is 
simply 1 - Xii and (11) is obviously true. Now let us 
proceed by induction. Suppose (11) holds for any 
system of N spins described by (1) and (2). Let us add 
one spin, k, to this system, initially connecting it by a 
single bond to a spin m as shown in Fig. 4(a). Q is a 
linear function of the factor Xkm , so it suffices to 
check (11) at Xkm = 1 and Xkm = O. In the former 
case k is disconnected from the diagram containing I, 
so Z(k+ 1+) = Z(k- 1+) and Q vanishes. In the 

FIG. 4. Diagram illustrating proof 
of Theorem 1. 

~£ 
(0) (b) 
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latter case, X km = 0 combines spins k and m which 
reduces our problem to N spins, for which Q is non­
negative by the induction hypothesis. 

Suppose next that k is connected by two bonds to 
spins m and n as shown in Fig. 4(b). Q is linear in Xkn , 
and for Xkn = 1 the (kn) bond disappears and we 
have the problem considered in the preceding 
paragraph. But setting Xkn = 0 reduces the system to 
one of N spins, and thus the nonnegativity of Q is 
assured. 

Clearly the same technique works as more and more 
bonds are added joining k to the original system of N 
spins. There is no difficulty if a bond is added directly 
connecting k and l. Thus the positivity of Q for all 
systems containing N + 1 spins is ensured, given its 
positivity for all systems of N spins, and our proof 
is complete. 

m. PROOF OF THEOREMS 2 AND 3 

Initially we assume that k, I, m, and n all denote 
different spins; the case where two or more are 
identical is considered later. We rewrite the require­
ment (6) in terms of restricted partition functions as 
follows 

Z2[ (O'kO'IO'mO'n) - (O'kO'I) (O'mO'n) ]/8 

= U(a + b + c + d - e - f - g - h) 

X (a + b + c + d + e + f + g + h) 

- (a + b + e + f - c - d - g - h) 

x (a + b + g + h - c - d - e - f)] 

=F=~+b~+~-~+n~+~~~ 
(12) 

where 

a = Z(k+ 1+ m+ n+), b = Z(k+ 1+ m- n-), 

c = Z(k+ 1- m+ n-), d = Z(k+ 1- m- n+), 

e = Z(k+ 1+ m+ n-), f= Z(k+ 1+ m- n+), 

g = Z(k+ 1- m+ n+), h = Z(k+ 1- m- n-), 

(13) 

and we have made free use of time-reversal invariance 
to replace, for example, Z(k- 1+ m- n-) by g. 

In order to gain insight into the algebraic structure 
of F, we consider first a simple example: the system 
illustrated in Fig. 1, a saturated diagram with four 
spins. Direct calculation yields 

F = XkIXmn[XknXlm(1 - X:m)(1 - X:n) 

+ X kmX 1n(1 - X:n)(1 - X~)], (14) 

a quantity obviously nonnegative for all Xii between 
o and 1. 

Note that F is the sum of terms with the structure 

gG where g, the "linear term,"2 is a simple product of 
X's and linear in any particular Xii' G, on the other 
hand, is a polynomial in which any X, if it occurs at 
all, appears as X2. Such polynomials we call quadratic 
terms. A more precise definition of a linear term is the 
following: Let W be a set of distinct X's (note that Xii 
and Xii are considered equivalent) containing at least 
one member. The linear term g associated with W is 
simply the product of all X's appearing in W. No 
additional numerical factors are permitted. For 
example, X12X13 is by our definition a linear term, and 
2X12X13 is not. The latter is of the form gG, with 
G = 2 the "quadratic term." 

Any restricted or unrestricted partition function is 
the sum of linear terms plus a constant (which may 
be zero). Thus F, the sum of products of pairs of 
restricted partition functions, may be written as a 
sum of terms each of which is either constant or the 
product of X's, some of which occur linearly and some 
quadratically. After classifying different terms ac­
cording to the set W1> of linear factors, we may add 
up all terms with the same W1> and write the sum as 
g1>G1> , where g1> is the (unique) linear term associated 
with W1>' and G 1> is a quadratic term. (Clearly it is 
not possible for a particular X to appear both in g1> 
and G1>') Some quadratic terms occur without linear 
factors and we denote their sum by Go. Thus Fhas the 
form 

F = Go + !g1>G1>, (15) 
1>=1 

where g1> :F g" for p :F q. In general the G's will not 
have the simple form found in (14). 

Provided the bonds kl and mn are present, F is 
always the product of XklXmn times a quantity not 
containing these factors, just as in the example (14). 
That this is true in general follows from (12) and the 
observation [see the definition (13)] that c, d, e, andf 
each contain Xmn to the first power while a, b, g, and 
h do not contain it at all. Similarly Xkl occurs to the 
first power in c, d, g, and h, and is absent from 
a, b, e, and f The fact that Xkl and Xmn are simply 
multiplicative factors in F is the reason we do not 
need to require in Theorem 2 that Jkl and J mn be non­
negative. 

Consider next the example shown in Fig. 5 con­
sisting of two disconnected diagrams A and B which, 

k t. 

FIG. 5. Special case investigated in connection ~ ~ 
with Theorem 2. ~ ~ 

m n 

• They could, more properly, be called multilinear. 
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apart from the fact that one contains the spins k and 
m and the other the spins land n, are wholly arbitrary. 
Let ZA and ZB denote the [restricted] partition func­
tions for these diagrams. Each term in (13) may be 
expressed as a suitable product; for example, 

f= ZA(k+ m-)ZB(l+ n+). (16) 

Inserting these in (12) and making free use of the time 
reversal symmetry [ZA(k+ m+) = ZA(k- m-), etc.] 
we have 

F = [ZA(k+ m+)2 - ZA(k+ m- )2] 

X [ZB(l+ n+)2 - ZB(1+ n- )2], (17) 

which is nonnegative by Theorem 1 [see (11)]. We 
later need the following result: 

Lemma 1: If systems A and B in Fig. 5 are both 
connected systems and the corresponding F given by 
(17) is decomposed in the form (15), then Go is non­
negative. 

Let FA and FB denote the first and second factors 
on the right-hand side of (17). In analogy with (15) 
let us decompose FA as 

FA = G~ + !g:G: (18) 
1>=1 

and FB in similar fashion. Since none of the X's 
appearing in FA appear in FB and vice versa, Go is 
simply the product G~G~. We need only prove that 
G~ is positive-the same proof suffices for G~-in 
order to prove Lemma 1. 

We may write (see Appendix A) 

ZA(k+ m+) = ! r1>; ZB(k+ m-) = ! tq , (19) 
1> q 

where each r 1> is either 1 or a linear term and the same 
is true of the t's. By Lemma Al of Appendix A, for 
p :;l: p', r 1> does not contain the same factors as r 1>" so 
that r 1>r 1>' will always contain a linear term and can 
make no contribution to G~. The same holds for the 
t's. We conclude that 

G~ =! r! - ! t! = ZA(k+ m+) - ZA(k+ m-), 
1> q 

(20) 

where by ZA we mean the (restricted) partition 
function for a system A obtained from A by multi­
plying by 2 every Jii which occurs in A. The result of 

this process is to replace every Xii by Xil. Since A 
contains only ferromagnetic bonds, Theorem 1 

applies and, by (11), the expression (20) must be 
nonnegative. This completes the proof of Lemma 1. 

We now prove Theorem 2 for a complete system 
containing N spins, assuming that k, l, m, and n are 
distinct spins. The decomposition (15) for F lacks the 
term Go, since, as noted above, F contains the linear 
factors Xk!Xmn • Choose a particular p, say p = 2, 
and set all the factors in W2 (the set of X's in g2) 
equal to 1 everywhere in the expression for F. The 
result, F', corresponds to a diagram in which every 
bond corresponding to some X in W2 has been erased. 
This diagram, according to Lemma A2 of Appendix 
A, consists of two disconnected pieces, A and B, each 
of which is complete. Since Xk! belongs to W2 , it is 
evident that spins k and l cannot both belong to 
system A or both to system B, for then one or the 
other of these systems would be incomplete The 
same holds for spins m and n. Several possibilities 
remain; without loss of generality we may assume the 
one shown in Fig. 5. 

Of course, F' may be decomposed in the form (15) 
as 

F' = G~ + ! g;G~. (21) 
1> 

We now assert that G~ and G2 are identical. It is clear 
that setting all the X's in W2 equal to one does not 
alter G2 , and thus G2 is a quadratic term appearing 
in F' with no linear term as a factor. However, for 
p:;l: 2, g~ (that is, the term obtained from g1> by 
setting all X's in W2 equal to one) contains at least 
one of the Xii' This follows from part (ii) of Lemma 
A2 in Appendix A. Thus, in fact, G2 is the only 
quadratic term appearing in F' without a linear term 
as a factor and must be identical with G~. But the 
latter is nonnegative by Lemma 1 above. 

A similar argument works for any G 1> in the 
decomposition (15) of F for a complete system. But 
if every G 1> is nonnegative, so is F, which completes 
our proof. The same result holds for an incomplete 
system, since we need only take the limit of setting 
certain X's equal to 1, and F is a continuous function 
of the X's. 

We next consider the case where spins k, l, m, and n 
are not all distinct. If k and l are the same, (fk(f! 

becomes ai = 1 and (6) simply vanishes. The case 
where m and n are identical is similarly uninteresting. 
The case where l = m can be considered by taking 
the limit X!m ~ 0, that is, by combining the spins. 
In this case (6) becomes 

«(fk(fn) - «(fk(fl)«(fl(fn) ~ 0 (22) 

or, in other words, we have proved Theorem 3. 
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IV. APPLICATION: LONG-RANGE ORDER 
IN ISING FERROMAGNETS 

The phase transition which occurs as the temper­
ature is lowered in zero magnetic field for an Ising 
ferromagnet on a square lattice with nearest-neighbor 
interactions results in (among other things) the 
appearance of "long-range order"3 which we define 
(in general) as 

L = lim inf (rii -+ 00) lim (N -+ oo)(uiUi)N, (23) 

where the N -+ 00 limit implies some "sensible" 
means of defining a correlation function as the number 
of spins N tends to infinity. 4 in the limit inferior as 
rij -+ 00 we allow the direction of the vector joining 
the two spins to vary, though Schultz, Mattis, and 
Lieb3 have shown that the result is independent of 
direction for the Ising ferromagnet mentioned above. 

An obvious application of Theorem 2 is the follow­
ing: Given an Ising model A with purely ferro­
magnetic interactions, the long-range order L is 
never less for a model B obtained from A by adding 
ferromagnetic bonds. Further, the transition temper­
ature (Curie point) of B, which we define as the 
highest temperature at which long-range order 
appears, is not less than that of A. 

Thus suppose, for example, that we have a two­
dimensional square Ising lattice with a ferromagnetic 
nearest-neighbor interaction, and also ferromagnetic 
interactions, of arbitrary magnitude, with second, 
third, and fourth nearest neighbors. This model must 
(to no one's great surprise!) exhibit long-range order 
at any temperature below the Curie temperature 
obtained by Onsager.5 Or, as another example, 
consider the particular case of long-range interactions 
(decreasing exponentially in one of the lattice 
directions) for which Kac and Thompson6 have 
recently shown that a two-dimensional Ising model 
exhibits long-range order at sufficiently low temper­
atures. Since the potential is obtained by adding 
ferromagnetic terms to a case with ferromagnetic 
interactions between nearest neighbors, the existence 
of long-range order at low enough temperatures 
follows at once from Theorem 2. 

As another application, we note that the existence 
of long-range order for the Ising ferromagnet in a 

8 T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 
36, 856 (1964). 

4 See R. B. Griffiths, J. Math. Phys. 8, 484 (1967) (following 
paper) for an approach which works for an Ising ferromagnet, and 
M. E. Fisher, J. Math. Phys. 6, 1643 (1965) for a more general 
procedure. 

5 L. Onsager, Phys. Rev. 65,117 (1944). 
8 M. Kac and C. J. Thompson, Proc. Nat!. Acad. Sci. U.S. 55,676 

(1966). A recent note flom these authors indicates that the proof as 
published is not correct and will require modification. 

two-dimensional square lattice with nearest-neighbor 
interactions at sufficiently low temperatures implies 
the same for the corresponding three-dimensional 
simple cubic lattice. Suppose that spin i is located at 
(0,0,0) and j at (n, m,p)-the three numbers giving 
x, y, and z coordinates. Let spin k be located at 
(n, q, 0). By Theorem 3, 

(uiUj) ~ (UiUk)(UkUi ). (24) 

But at sufficiently low temperatures (UiUk) is bounded 
from below? since both spins lie in a plane perpen­
dicular to the z axis, and similarly (uku/), since both 
spins lie in a plane perpendicular to the x axis. We 
know that long-range order exists for such planar 
lattices, and the fact that they form portions of three 
dimensional lattices merely implies that the additional 
ferromagnetic interactions present serve to enhance 
(by Theorem 2) or, at the least, not decrease, the 
correlation functions calculated for planar lattices 
alone. 

This last result is, once again, not unexpected, 
especially since the presence of spontaneous magnet­
ization in the simple cubic lattice described can be 
proved by using a simple argument given by Peierls,8 a 
rigorous version of which was developed by the 
author9 and independently by Dobrushin.10 The 
power of Theorem 2 is, we believe, illustrated in the 
fact that one can proceed immediately from the two- to 
the three-dimensional case with no need of invoking 
any new combinatorial argument. And, of course, 
the cubic lattice with ferromagnetic nearest-neighbor 
and next-nearest-neighbor interactions, or interactions 
decreasing as l/r4, or a multitude of other cases, are 
known immediately to display long-range order at 
low enough temperatures. 

APPENDIX. PARTITION FUNCTIONS 
FOR COMPLETE SYSTEMS 

The partition function Z associated with any 
diagram [or Hamiltonian of the form (1)] is obtained 
as follows. A configuration y denotes a division of 
indices labeling different spins into two disjoint 
complementary sets U(y) and D(y). For j E U(y), 
(1/ = + 1 ("up") and for k E D(y), (1k = -1 ("down"). 
Configurations y and y' are distinct if and only if 
D(y) ¥= D(y') [or, the equivalent, U(y) ¥= U(y')]. We 
now define 

(At) 

7 In accordance with our definition (23) we must assume that 
spins i and k are sufficiently far apart, and similarly k and j. This 
may be accomplished by a proper choice of q. 

8 R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936). 
9 R. B. Griffiths, Phys. Rev. 136, A437 (1964). 
10 R. L. Dobrushin, Teoriya Veroyatnostei Primeneniya 10,209 

(1965). 
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where 
Zy = II IT Xii (A2) 

IED!y) iNi. y) 

and, in an unsaturated diagram, Xii is set equal to I 
for absent bonds. Each Zy is either I or a linear term 
as defined in Sec. III. 

Lemma Al: A restricted partition function Z' (that 
is, with the value of one or more of the a's specified) 
for a connected diagram has the form 

(A3) 

with gy (either I or a linear term) ~ gYJ for y ~ 'YJ. 
The prime denotes a summation over all configurations 
satisfying the restriction. 

The proof is almost obvious. We know that at least 
one a has a specified value, say ao = + 1. In a 
configuration y we can determine the value (± 1) of 
any spin (1i connected to ao by a bond by observing 
whether Xot is present or absent in gy • The values of 
still other spins connected by bonds to these at may 
be determined by repeating this process, and even­
tually the configuration y is uniquely determined 
from a knowledge of gy , since the diagram is connected. 
[We remark that the lemma holds for the unrestricted 
partition function for a connected diagram if a 
factor of 2 is placed in front of the summation in 
(A3).] 

Lemma A2: Let Z(1) and Z(2) be two restricted or 
unrestricted partition functions (they may be identical, 
or there may be different restrictions in the two cases) 
corresponding to the same complete diagram. Suppose 
the product is decomposed in the form (15): 

Z(1)Z(2) = Go + ! gpGp . (A4) 
p=l 

The sets Wp corresponding to the linear terms gp (see 
Sec. III)are, of course, distinct: Wp ~ Wp,for p ~ p'. 

(i) If all the X's in a particular Ware set equal to 1 
and the corresponbing bonds in the diagram erased, 
the resulting diagram consists of two disconnected 
pieces, each of which is complete. 

(li) For p ~ p', Wp is not a subset of Wp" 

To prove part (i) we consider a particular term 
Z~y, [see the definition (A2)] in the product Z(l)Z(2), 

where y and y' are configurations permitted by the 

FlO. 6. Schematic diagram illus­
trating the division of all spin 
indices (represented by the com­
plete rectangle) into sets according 
to two configurations I' and 1". The 
smalI circles connected by straight 
lines indicate bonds whose factors 
enter linearly in the product ZyZy' • 

un 0' 

Dn D' 

unu' 

D n U' 

restrictions (if any) for Zl and Za. respectively. Now 
if D(y) is identical with either D(y') or U(y'), then 
Zy = Zy' and the product contains no linear term. 
When D(y) is not identical with D(y') or with U(y'), 
we have a situation illustrated schematically in Fig. 6, 
where the horizontal line indicates the division of 
indices into U(y) and D(y) [U and D for short] and 
the vertical into U(y') and D(y') [U' and D' for 
short]. We now ask, which X's occur linearly in the 
product ZyZy'? That is, which X's occur in one 
factor but not in the other? There are four possibilities: 
Xii occurs linearly if (a) iE D ~ D', jE U ~ D'; 
(b)iE U ~ D',jE U ~ U'; (c) iED ~ U',jE U ~ U'; 
(d) i E D ~ D', JED ~ U'. These bonds, represented 
schematically in Fig. 6, constitute the set W for the 
termZ~y,' 

If we erase all bonds corresponding to X's in W, 
it is evident from Fig. 6 that the set of spins splits up 
into two disconnected sets, 

and 
A = (D ~ D') U (U ~ U') 

B = (D ~ U') U (U ~ D'). 

That is, there are no bonds connecting the systems A 
and B. On the other hand, none of the bonds con­
necting two spins within A has been erased, nor any 
of the bonds connecting two spins within B. Therefore 
both A and B are complete. It is easily verified that if 
D is not identical to D' or to U', neither A nor B is a 
null set. This completes the proof of part (i). 

To prove part (li), assume that Wp is a proper 
subset of Wp ' (they cannot be identical for p ~ p'). 
In the initially complete diagram, erase all bonds 
corresponding to X's in Wp • The result, as we have 
just shown, is two disconnected systems A and B, 
each of which is complete. But if instead we were to 
erase all bonds corresponding to X's in the larger set 
Wp ' , we would erase not only all the bonds connecting 
A and B, but additional bonds as well. That is, we 
would erase some of the bonds within A or within B. 
This would leave one or both systems incomplete in 
contradiction with part (i) of the lemma. 
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Correlations in Ising Ferromagnets. II. External Magnetic Fields* 
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Results of a previous paper showing that (aka,) and [(akalama .. ) - (akal)(ama,,)] are always positive 
for a system of Ising spins a i = ± 1 coupled by a purely ferromagnetic interaction « ) denotes a thermal 
average) are extended to the cases where (i) certain spins are constrained to have the value + 1 or (ii) 
the system is placed in an external ("parallel") magnetic field H. The theorems thus obtained provide 
a simple proof of the existence of "bulk" values for (akal) and for (ak); the latter is identical with the 
usual bulk magnetization per spin. The correlation functions (rIkrIl) are monotone nondecreasing in IHI 
for fixed temperature T. Both (aka,) and (ak) (and thus the bulk magnetization) are monotone non­
increasing in T for fixed H ~ o. 

I. INTRODUCTION 

I N a previous paperl (hereafter referred to as CIF I) 
we showed that for a system of N Ising spins 

ai = ± 1 with Hamiltonian 

Je = - ! Ji/(aiaj - 1), 
i<j 

where for i ~ j, 
o :s: Jii = Jji < 00, 

the following statements are valid: 
(A) For any k and I, 

(akal ) ~ O. 

(1) 

(2) 

(3) 

(B) For any spins k, I, m, and n (not necessarily 
distinct) 

fJ-liJ(akal)/iJJmn = (aka1ama .. ) - (akal)(ama .. ) ~ 0 

(4) 
and Jkl or Jmn or both may be negative. 

(C) For any spins k, I, and n 

(aka .. ) ~ (akal>(a1a .. ) 

and Jkl or J1n or both may be negative. 
The angular brackets denote a thermal average: 

where 
(0) = Tr [Oe-PJe]/Z, 

Z = Tr [e-PJe] 

(5) 

(6) 

(7) 

is the partition function and Tr denotes the sum over 
all configurations (a configuration is a specific 
assignment of the value + 1 or -1 to each ai). We 
always assume fJ = (kT)-1 is nonnegative. 

We extend these results as follows: 

Theorem 42: Statements A, B, and C are valid for a 
system described by (1) and (2) but having the re-

• Research supported in part by the National Science Foundation. 
1 R. B. Griffiths, J. Math. Phys. 8, 478 (1967). 
I Theorems are numbered consecutively with those in Ref. 1. 

striction that certain spins belonging to a set U are all 
positive: 

for (8) 

[Alternatively, one may require ai = -1 for all i in 
U.J By the restriction we mean that only configurations 
satisfying (8) appear in the traces (6) and (7). 

Theorem 5: Statements A, B, and C are valid for a 
system with Hamiltonian [Je is defined in (1) and (2)1: 

N 

Je1 = Je - ! Hiai 
i=1 

(9) 

and Hi ~ 0 for every i [the theorem also holds if 
Hi :::;; 0 for every i] where Jel replaces Je in calculating 
thermal averages, Eqs. (6) and (7). If Hi = H for 
every i, Jel is the Hamiltonian of an Ising model in an 
"external parallel magnetic field." 

Corollary 1: Under the conditions of either Theorem 
4 or Theorem 5, for any k, 

(1Oa) 

and for any pair k, m, 

(lOb) 

[In the case where the ai in U are -1, or where 
Hi :s: 0 for all i, the inequality (lOa) is reversed.1 

A brief summary of notation from CIF I is found in 
Sec. II followed by proofs of Theorems 4 and 5 in 
Secs. III and IV, respectively. In Sec. V we apply 
these results to prove the existence of binary corre­
lation functions for a fairly general Ising model in 
the "bulk limit," that is, for a suitable infinite system. 
This existence proof is simple, rigorous, and quite 
different in its approach from other arguments for 
the existence of these functions of which we are 
aware. The same argument provides a bulk limit for 

484 
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(C1,,). Its equivalence with the ordinary "thermo­
dynamic" magnetization per spin in a uniform, non­
zero external magnetic field is shown in Sec. VI. In 
Sec. VII the temperature and field dependence of 
magnetization and binary correlation functions are 
discussed with the aid of Theorem 5. 

n. NOTATION 

We summarize the diagrammatic and notational 
conventions from elF I. A diagram representing the 
Hamiltonian (1) or its associated partition function 
consists of small circles representing spins joined by 
straight lines or "bonds," one for every nonzero Jij in 
(1). The partition function is a polynomial in the 
factors 

(11) 

associated with the different bonds. In a restricted 
partition function the sum (7) is limited to configu­
rations in which certain spins have specified values; 
thus Z(p+ k-) includes only configurations with 
C1:/> = + 1 and a" = -1. This may be indicated on the 
corresponding diagram by placing + or - beside the 
spins in question. 

Provided no Jii is 0, i.e., all spins are connected by 
bonds, the diagram is "complete." It is connected if 
one can move continuously from one spin to any 
other by means of bonds connecting spins. By letting 
J"z -+ 00 or X"I -+ 0 we "combine" the spins k and I. 
That is, if a single spin k' in a new diagram replaces 
the two spins k and 1 in the previous diagram, and 
X"'m = X"mXlm for all m, the new partition function 
is precisely that obtained by setting X"l = 0 every­
where in the previous partition function. 

Additional notation in connection with the Hamil­
tonian (9) is introduced in Sec. IV. 

m. PROOF OF mEOREM 4 

First consider the case where U contains the single 
spin h, and rewrite (3) as 

Z(h+ ) (C1"C1I) = [Z(h+ k+ 1+) + Z(h+ k- 1-) 

- Z(h+ k+ 1-) - Z(h+ k- 1+)] = Q ~ O. (12) 

If h is the same as k, Q becomes Z(h+ 1+) -
Z(h+ 1-) which is nonnegative by Theorem 1 of 
elF I. 

When h, k, and 1 are distinct we argue by induction. 
Assume (12) is true for any system containing M 
spins (it is easily verified for M = 3) and consider a 
case of M + 1 spins with h connected by a single 
bond to another spin m [Fig. l(a)]. As Q is linear in 
X"m, it suffices to check (12) at X"m = 0 and 1 
[compare (2) and (11)]. But X"m = 0 "combines" 

FIG. 1. Diagram illus­
trating the proof of 
statement A. +~: 

(a) 

+~ 
m 1 

(b) 

spins hand m, and (12) follows from the induction 
hypothesis, as we have but M spins. When X llm = 1, 
h is disconnected from the remaining M spins and 
does not affect (C1ka,), which is nonnegative by 
Theorem 1 of elF I. 

Next suppose [Fig. l(b)] that h is connected to two 
spins m and n. Q is linear in Xlln • But Xlln = 1 
reduces to the case just considered (the bond hn 
vanishes), and X lln = 0 to a system of M spins. In 
analogous fashion we may add bonds from h to every 
other spin. No difficulty arises in adding the bond hk 
(or hi), since setting Xllk = 0 identifies hand k, a case 
considere<1 earlier. 

The inequality (4) presents a more difficult problem. 
We suppose h, k, I, m, and n are five distinct spins and 
rewrite (4) as 

!Z(h+)2 [(a"C1!am C1n ) - (akC1,)(aman )] 

= F = (IX + 1X')(fJ + fJ') - (y + y')(Cl + Cl'), (13) 

where 

IX = Z(h+ k+ 1+ m+ n+) 

+ Z(h+ k+ 1+ m- n-), 

fJ = Z(h+ k+ 1- m+ n-) 

+ Z(h+ k+ 1- m- n+), 

y = Z(h+ k+ 1+ m+ n-) 

+ Z(h+ k+ 1+ m- n+), 

(j = Z(h+ k+ 1- m+ n+) 

+ Z(h+ k+ 1- m- n-), 

(14) 

and IX' is obtained from IX by changing k+ to k-, 
1+ to 1-, m+ to m-, n+ to n-, and vice versa, fJ' 
is similarly obtained from fJ, and so forth. 

As shown in Sec. III of elF I, F may be decomposed 
in the form 

F = Go + ~g:/>G:/>, (15) 
:/>=1 

where the linear terms g:/> are products of distinct X's 
in a set W:/>, and the quadratic terms G:/> are poly­
nomials in which wherever any Xii occurs (if it occurs 
at all) it appears as X i2i • 

Our strategy closely follows that of elF I, Sec. III. 
First consider the relatively simple case shown in 
Fig. 2, where the diagram consists of two discon­
nected pieces A and B, each of which is assumed to 
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FIG. 2. Special case considered in the proof 
of statement B. 

be complete, but is otherwise arbitrary. We show that 
Go in (I5) is nonnegative for this example. 

The partition functions (14) factor; for example: 

Z(h+ k+ 1- m- n+) = ZA(h+ k+ m-)ZB(/- n+) 

(16) 

with sUbscripts A and B referring to the separate 
pieces in Fig. 2. This factorization plus time-reversal 
invariance [for instance, ZB(/- n+) = ZB(l+ n-)] 
allows us to write 

(17) 

FA = ([ZA(h+ k+ m+) + ZA(h+ k- m_)]2 

- [ZA(h+ k+ m-) + ZA(h+ k- m+ )]2}, (18) 

FB = [ZB(l+ n+ )]2 - [ZB(I+ n-)t (19) 

The term Go in (15) is the product G:G~, where G: is the quadratic term without a linear term as a 
factor in the decomposition of FA in the form (15) 
and G~ the corresponding term for GB

• Lemma 1 of 
CIF I shows that G~ ~ 0; we show the same is true 
of G:. We may write 

ZA(h+ k+ m+) + ZA(h+ k- m-) = ! 'p, (20) 
p 

where each , p is either 1 or a linear term, and for 
p ¢ pi, , P ¢ , p', that is, the two contain different 
factors. Such a decomposition is possible for either 
one of the two terms on the left side of (20) accord­
ing to Lemma Al of CIF I, Appendix. But since 
the factor Xhk occurs in every linear term of 
Z A (h + k - m -) and in none of the linear terms of 
ZA(h+ k+ m+), the two classes of linear terms are 
disjoint. By a similar argument we may write 

ZA(h+ k+ m-) + ZA(h+ k- m+) = ! tq (21) 
q 

with the t's linear terms and tq ¢ tq, for q ¢ q'. 
Following the argument used in Lemma 1, CIF I 

Sec. III, we see that 

Gt = ZA(h+ k+ m+) + ZA(h+ k- m-) 

- ZA(h+ k+ m-) - ZA(h+ k- m+), (22) 

where Z A is the restricted partition function for a 

system A obtained from A by doubling every 'if 
which appears in A. This does not affect the re-

striction (2), so we conclude from comparison with 
(12) that Gi is nonnegative. Thus Go also must be 
nonnegative. 

To establish (4) for a general case, we consider a 
complete diagram containing N spins. From a com­
parison of (13) and (14) it is evident that F is equal 
to Xk1Xmn times something which does not contain 
these factors at all; i.e., the term Go is absent in the 
decomposition (15). We next set equal to one every­
where in F every X appearing in a particular g1J' say 
g2 (this leaves G2 unaltered). The resulting F', as 
shown in Sec. III of CIF I, corresponds to a diagram 
of the form shown in Fig. 2, except that, for example, 
m and n could be interchanged, and h could appear in 
either system A or system B. In any case, the quadratic 
term in F' which appears without any linear term as 
a factor is simply G2 , and by the argument given above 
this is nonnegative. 

We have thus established (4) for the case where U 
contains the single spin h, and h, k, I, m, and n are 
all denote distinct spins. The cases k = 1 or m = n 
are uninteresting [(4) vanishes]. The case 1 = m may 
be obtained by letting X!m ~ 0, and the result is the 
inequality (5). In the case h = k, one finds that the 
terms rx/, pi, y', and b' in (13) all vanish, leaving an 
expression identical with Eq. (12) of CIF I, which was 
there shown to be nonnegative. 

The case where U contains more than one spin may 
be reduced to the case where U contains a single spin 
by a very simple argument. Suppose there are two 
spins hand) in U. Since (1h = (1j = + 1 and Xhj 
appears in a partition function only for configurations 
in which (1h(1j = -1, it is clear that none of the 
restricted partition functions with which we deal in 
establishing (3), (4), and (5) contains Xhj as a factor. 
They are, therefore, unaltered if we set Xhj = 0, that 
is, if we combine spins hand) to form a new spin hi. 
This brings us back to the case where U contains only 
one spin. Clearly, the same argument works given 
any number of spins in the set U, and this completes 
our proof. Corollary 1 is proved by letting 1 and n 
belong to the set U. Then (3) becomes (lOa) and (4) 
becomes (10b). 

IV. PROOF OF THEOREM 5 

Theorem 5 is readily seen as a corollary of Theorem 
4 if we proceed as follows. Given a system of spins 
(11' (12' ••• , (1N, we introduce in addition a "ghost 
spin" (10 which is restricted to have the value + 1. 
For) = 1,2,"', Nwe set 

(23) 

The situation is illustrated in Fig. 3 for the case 
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1~2 
o + 

4 3 

FIG. 3. Illustration of applying magnetic 
fields with the aid of a "ghost spin" (ao) 
restricted to the value + 1. 

N = 4. Counting all N + 1 spins as one system, we 
have a Hamiltonian of the form (1): 

N N N 
:re2 = - ~ ~ Ji;«J;(J; - 1) - ~ H;«Ji(JO - 1), (24) 

i=1 ;=i+ 1 i=1 

which, because (Jo = + 1, differs from (9) only by an 
additive constant.S Thus statements A, B, and C 
applied to the original N spins are merely applications 
of Theorem 4. [In the event Hi ~ 0 for all i, we insert 
a minus sign in front of H; in (23), require that (Jo 
have the value -1 rather than + 1, and proceed as 
before.] Corollary 1 is proved, as in Sec. IV, by 
identifying (J I and (J n with (Jo. 

V. EXISTENCE OF BINARY CORRELATION 
FUNCTIONS 

Theorem 5 may be used to prove the existence of a 
suitable "bulk limit" for binary correlation functions 
as the size of an Ising ferromagnet becomes infinite. 
The technique is best illustrated by a simple example: 
Ising spins on a two-dimensional square lattice with 
Hamiltonian 

:re = - ~ Ji;(Ji(J; - H ~ (Ji' (25) 
i<; i 

where the Jii satisfy (2) and possess the translational 
symmetry of the lattice; that is, they depend only on 
the vector rif joining spins i and j. 

A finite system consists of a set 0 of spins which we 
may (but need not) assume are those found inside a 
simple closed curve, as illustrated in Fig. 4. The 
Hamiltonian Je of this system is obtained by con­
fining the sums in (25) to cases where i and j both lie 
in O. The diameter D(O) is the maximum distance 
between any pair of spins in O. 

Consider a particular pair of spins k and I and a 
sequence of finite systems ON' N = 1, 2, ... , with 
the properties 

(i) Each ON contains both the spins k and I. 
(ii) If dkZ(O) is the minimum distance from either 

k or I to a spin outside 0, then dkl(ON) -+ 00 as 
N -+ 00. 

(iii) ON C ON+!; that is, all spins in ON are also 
in ON+!' 

3 Which, needless to say, has no effect upon the correlation 
functions. 

FIG. 4. Possible finite system n: aU 
spins within the closed curve. 

o 0 

o 0 0 0 0 0 

o 0 0 

o 0 
o ---o 0 0 0 0 0 0 

o 0 

Let «Jk(J')N be the correlation function defined in 
the system ON' Theorem 5 and condition (iii) imply 
that 

«Jk(J,)N+1 ~ «Jk(J')N, . (26) 

since ON+1 is obtained from ON by adding ferro­
magnetic bonds to the latter (including bonds to the 
"ghost spin" of Sec. IV when H ¢ 0). Since the 
«Jk(J')N form a monotone increasing sequence in N 
bounded from above by 1, they tend to a limit as 
N -+ 00. 

The same limit is obtained using any other sequence 
of systems WN satisfying conditions (i) and (ii). For 
if N is large enough, we can always choose K and L, 
tending to infinity with N, such that 

D(OK) < d(WN) - 2a, 

d(OL) > D(wN) + 2a, (27) 

where a is the lattice constant and OK and 0L belong 
to our standard sequence. We thus have 

(28) 

and «Jk(J,) for WN' bracketed between «Jk(JZ)K and 
«Jk(J/)L, tends as N -+ 00 to the limit previously 
obtained. 

For spins k' and l' such that rk", = rkl , the bulk 
limit «Jk,(J!') is the same as «Jk(Jl)' This is obvious 
because we can translate the systems ON obtaining 
systems O~ in which k' and l' have the same relative 
positions as k and I in ON' 

The above existence proof is quite simple and 
provides (at least for the systems considered) an 
approach quite different from others of which we are 
aware.4 All that we require is a sequence of systems 
such that both k and I are eventually infinitely far 
from any walls. The sequence need not yield limiting 
values for bulk thermodynamic functions, and in 
particular there is no stability requirement for the 
energy (that is, it need not be bounded from below by 
- CN, where C is a constant and N the number of 
spins).5 On the other hand we are unable to show 
that the same bulk limit would be obtained in, for 
example, a system with periodic boundary conditions. 

The above argument applied to «JO(Jk) = «Jk)' 

4 D. Ruelle, Ann. Phys. (N.Y.) 25, 109 (1963); M. E. Fisher, J. 
Math. Phys. 6,1643 (1965); O. Penrose, ibid. 4, 1312 (1963). 

5 We would guess that the bulk limit (aka,) is 1 at any tempera­
ture if the stability condition is violated. 
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o ® 000 
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o 0 0 000 

FIG. S. The solid line represents an 
infinite wall; spins to the right are "inside" 
the system considered and those to the left 
outside. Spins k and I are marked by cross­
es; the correlation function (IJkIJ,) will in 
general be different from the bulk value. 

where 0'0 is the "ghost spin" of Sec. IV, proves the 
existence of a "bulk limit" for (O'k)' In Sec. VI below 
we show that this limit for H :F- 0 is identical with the 
average magnetization per spin obtained from the 
ordinary calculation of bulk thermodynamic quan­
tities, in situations where the latter procedure is 
applicable. In particular, the limit as H -- 0+ of the 
bulk value of (O'k) defines a spontaneous magnet­
ization equivalent to definition A in Ref. 6. 

By the above techniques it is also possible to define 
binary correlation functions (O'kO'/) (and likewise 
(O'k» near a "wall" while the system is allowed to 
become infinite (illustrated in Fig. 5). We leave details 
of the argument to the reader, as also the extension, 
if not already obvious, of the above results to three 
(and, if preferred, higher)-dimensional systems. 

VI. "THERMODYNAMIC" MAGNETIZATION 
AND (Uk) 

For a finite system ON in the shape of a square7 

containing V N = (2N)Z spins, we define the total 
magnetization operator 

(29) 

Provided suitable restrictions are placed on the Jii 
appearing in (25),8 one can show that for H> 0 the 
infinite volume or "thermodynamic" magnetization 
per spin 

m(H) = lim Vi<.A(,)N (30) 
N .... oo 

exists and is an analytic function for 0 < H < 00.9 

By the arguments of Sec. V, any (O'i)N cannot exceed 
its bulk value, which we call 0' for short, and thus 

m(H):S;; 0'. (31) 

We show that (31) is real1y an equality. Let O'N (we 
assume H is fixed and positive) be the value of (O'k>N 
for the spin k lying nearest the center of the square 
ON' From Theorem 5 it follows that for M > N'O'N_l 

• R. B. Griffiths, Phys. Rev. 152,240 (1966). 
7 Other shapes are possible and we consider a square only for 

simplicity. 
8 R. B. Griffiths,l. Math. Phys. 5. 121S (1964). 
• C. N. Yang and T. D. Lee. Phys. Rev. 87. 404. 410 (1952). 

is a lower bound for (O'i>M for any spin i in OM lying 
at least a distance Na (a is the lattice constant) from 
the nearest boundary. For spins closer to the bound­
ary, (O'i) M is certainly nonnegative. 

Thus we have a bound 

(32) 

The limit M -- 00 followed by the limit N -+ 00 yields 
(31) with inequality sign reversed, and therefore 

m(H) = 0'. (33) 

Needless to say, similar arguments work for three (or 
one )-dimensionallattices. 

VII. FIELD AND TEMPERATURE DEPENDENCE 
OF CORRELATION FUNCTIONS AND 

MAGNETIZATION 

Consider the Hamiltonian (25) [satisfying con. 
dition (2)]. If H is greater than zero, an increase of H 
corresponds to increasing the ferromagnetic coupling 
between the "ghost spin" and the other spins, thus 
producing an increase, or at least not a decrease, in 
the binary correlation functions in accordance with 
(4). The same holds, of course, for their bulk limits. 
Likewise (O'i) and its bulk limit 0' increase with 
increasing field. The last result is not surprising, 
inasmuch as the increase of thermodynamic magnet­
ization with increasing field reflects a general convexity 
property of the free energy for a spin system in which 
the Hamiltonian depends linearly on the magnetic 
fieldS (it is also true, for example, in an Ising anti­
ferromagnet). 

Next, suppose that H is fixed at some value 2 O. 
The Xii depend on the temperature through (11). 
Increasing temperature or decreasing P has the effect 
of simultaneously decreasing all the Ji; which are 
greater than zero. Thus by Theorem 5, an increase of 
temperature at constant field leads to a decrease, or 
at least not an increase, of the binary correlation 
functions and the (O'i) (for H> 0); the same holds 
true, of course, for their bulk limits. That the magnet­
ization decreases with temperature in a fixed field is 
a nontrivial, though not unexpected, result. 

The limit (at constant temperature) as H - 0+ of 
the bulk magnetization is the spontaneous magnet­
ization if one adopts definition A of Ref. 6. The above 
remarks imply that the spontaneous magnetization 
is a nonincreasing function of the temperature. 
Theorem 5 implies that the addition of ferromagnetic 
bonds to an Ising system with purely ferromagnetic 
interaction always increases (does not decrease) the 
spontaneous magnetization and therefore the Curie 
temperature (the lowest temperature at which the 



                                                                                                                                    

CORRELATIONS IN ISING FERROMAGNETS. II 489 

spontaneous magnetization vanishes). Thus, for 
example, since it is known that spontaneous magnet­
ization, in the above sense, occurs at sufficiently low 
temperatures for a variety of two-dimensional Ising 
ferromagnets, it follows immediately that the same is 
true of three-dimensional ferromagnets obtained by 

JOURNAL OF MATHEMATICAL PHYSICS 

joining two-dimensional layers with ferromagnetic 
bonds. 
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, ~ criterion establis~ed by J?ynkin is used to speci!y the _embedding of a connected simple Lie group 
g !Dto a connected slIDple Lie group g, and to denve a standard procedure for evaluating branching 
rules. It is shown that the weight systems of the irreducible parts contained in the representation of g' 
induced by a given finite dimensional representation rp of g are obtained by projection of the weight 
system of rp. The projection mapping is detennined directly from the specification of the embedding. 
The general procedure is supplemented with two constraint equations on the dimensions and indices of 
the irreducible representations. 

I. INTRODUCTION 

THE study of embeddings and branching rules for 
two simple Lie groups and their representations is 

motivated in elementary particle physics by the need 
one often has to relate a symmetry scheme to another 
possible symmetry scheme.l.2 This study is also of 
interest in nuclear spectroscopy where nuclear states 
may be classified by using group chains.3 In a recent 
paper, Whippman2 summarized branching rules for 
various choices of two classical simple Lie groups. 
His choices are, however, particular from several 
points of view; for instance, only classical groups of 
certain ranks and types and which can be embedded 
one into the other in at most two distinct ways are 
considered. 

Our purpose in this paper is to develop a standard 
procedure for obtaining branching rules for any 
choice of two connected simple Lie groups with no 
restriction concerning their ranks and types and the 
way they are embedded one into the other. Several 

• Holder of a Studentship from the National Research Council 
of Canada_ 

t Postdoctoral Fellow of N.R.C., on leave of absence from the 
Physics Institute of the Czechoslovak Academy of Science. 

1 For example, R. Gatto, in Theoretical Physics (International 
Atomic Energy Agency, Vienna, 1963), p. 197_ 

2 M. L. Whippman, J. Math. Phys. 6, 1534 (1965), and references 
therein. 

8 M. Hamermesh, Group Theory (Addison-Wesley Publishing 
Company Inc., London 1964), Chap. 11. 

of our arguments, and especially a criterion of equiv­
alence of embeddings, follow the work of Dynkin.4 

The main tools we use to study the embeddings and 
the branching rules for two simple connected Lie 
groups g' and g, are a mappingf(embedding) between 
the two corresponding Lie algebras G' and G, and a 
related projection mapping f* acting between the root 
spaces Rand R' of these Lie algebras. We start, in 
Sec. II, by reviewing some useful properties of the 
root space and the weight system of a Lie algebra. 
The notion of the index of a representation is also 
recalled. In Sec. III the embeddingf of a Lie algebra 
G' into a Lie algebra G is studied. When G is of the 
type5 An' Bn, en, G2 , F4 , or Ea,fcan be specified by 
that representation of G', embedded into the lowest 
dimensional representation of G. When G is of the 
type D n' E7 , or Es ,fis specified by two representations 
of G' embedded respectively into the lowest dimen­
sional and into some other representation of G. In 
Sec. IV it is shown how one can introduce from the 
embedding f, the mapping f* which maps the root 
space of G onto the root space of G'. The most 
valuable property of f* is that it maps the system of 
weights of any irreducible representation of G onto 

, E_ B. Dynkin, Matematiceskii Sbornik New Series 30, 349 
(\952); also Am. Math_Soc., Trans!., Ser. 2 6,111 (1957). 

• In Cartan's nptation, we distinguish nine types of simple Lie 
groups; four classical A .. , B .. , Cn , D .. , and five exceptional Gl , 

F,. Ee. Ei • Ea. 
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FIG. 1. Numbering of the simple roots. 

5 6 
0 0 

5 6 7 
0 0 0 

the system of weights of the induced representation 
of G'. This property together with two constraint 
equations on the indices and dimensions of the 
irreducible representations, are used to present in 
Sec. V the standard procedure for obtaining the 
branching rules. An example is considered in detail. 
Tables I and II, contained in Sec. IV, give the mapping 
f* for all types of simple Lie algebras G, once the 
embeddingfis fixed. 

D. MATHEMATICAL PRELIMINARIES6 
AND NOTATIONS 

Because not all the ideas important for the present 
work are common in the physical literature; we first 
recall some of the definitions. Let us fix a system of 
simple roots {ail, i = 1,2, ... ,n, of a simple Lie 
algebra G of rank n. Suppose the roots ai' a2, ... , an 
are numbered as in Fig. I, and normalized by the 
condition 

(1) 

where CXmax is one of the longest roots of G, and (,) 
denotes the scalar product in the root space R of G. 
The system of simple roots {ai} forms a natural basis 
of R. However, for our purposes it is more convenient 
to introduce a conjugate basis {Vi}, i = 1,2, ... , n, of 
R by the condition 

(a" vi) = l(ai' ai) (JiJ' 

For an arbitrary vector 

" 
M=~mt'''i 

of R, we then have 
i=1 

m i = [2/(a i , ai)](M, ai)' 

(2) 

(3) 

The introduction of the basis {Vi} is justified by 

8 For more details, see, for instance, E. B. Dynkin, Am. Math. 
Soc., Trans!., Ser. 2 6, 245 (1957), Supplement; or N. Jacobson, 
Lie Algebras (Interscience Publishers, Inc., New York, 1962). 

Cartan's theorem, which states that a vector M of R 
is the highest weight of an irreducible representation 
q; of G if and only if the coordinates (3) are nonnega­
tive integers. In order to specify a particular repre­
sentation q; we adopt the notation q; = (ml' m2, ... , 
m,,), where the m i are coordinates (3) of the highest 
weight M of q;. 

An arbitrary weight L of the weight system ~(q;) of 
a representation q; of G can be written in the form 

n 

L = M - ~aiai' 
i=1 

where ai are nonnegative integers. We say that a 
weight L belongs to the k layer of the system ~(q;), if 

n 
~ai = k. 
i=1 

Orderings in the root space R may be defined as 
usual. 6 Any ordering of R for which the fixed simple 
roots remain positive is called a simple-root ordering. 

If a weight M is the only weight in an m layer and 
L is a weight from an I layer of a weight system 
~(q;) such that m < I (m > l), it follows from the 
above definitions and Dynkin's theorem6 0.15 that the 
relations M> L (M < L) hold in any simple-root 
ordering. The usefulness of this last remark is shown 
in Sec. IV. 

For a given linear representation q; of G, the scalar 
product of the elements x and y of G being fixed by 
Eq. (1), we have,·7 

Tr [q;(x)· q;(y)] = l(q;)' (x,y). (4) 

The multiplicative factor /(q;), called the index of the 
representation q;, does not depend on x and y and is 
given by 

l(q;) = [d(q;)/d(G)] . (A, A + g). (5) 

d(q;) and d(G) here denote the dimensions of the 
representation q; and of the algebra G, respectively, 
g is the sum of all the positive roots of G, and A is the 
highest weight of q;. From the definition, the following 
property of the index can be established: 

l(q;1 + q;2 + ... + q;.) 

= [(q;I) + [(q;2) + ... + [(q;s)' (6) 

m. THE EMBEDDING 

Let us fix two simple Lie algebras G' and G corre­
sponding respectively to two simple connected Lie 
groups ~' and ~. An embeddingf of G' into G is an 
isomorphic mapping of G' into its image f(G') which 
is a simple subalgebra of G. Clearly fmay also be called 

7 J. Patera, Nuovo Cimento (to be published). 
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a representation of G' in G. In general, there are 
in G several subalgebras isomorphic with G', and thus 
there exist several possible embeddings of G' into G. 
We call two embeddings II and 12 equivalent, if for 
any finite dimensional linear representation q; of G, 
the representations q;/1 and q;/2 induced by q; in/l(G') 
and 12(G'), respectively, are equivalent. Since by 
definition two equivalent embeddings induce the 
same branching rules, we characterize an embedding 
only up to equivalence. 

A convenient criterion of equivalence of embeddings 
was established by Dynkin.' 

Case I: Let £0 denote the linear representations: 
(1,0,' ",0) for G = An' Bn , Cn, and E6 , (0, 1) for 
G=G2 , and (0,0,0,1) for G=F,. Then two 
embeddings II and 12 of G' into G are equivalent, if 
and only if the representations w/l and w/2 of G' are 
equivalent. 

Case II: Let w = (I, 0, 0, ... , 0) and w = (0, ... , 
0, 1,0) for G = Dn and E 8 , w = (0,' .. ,0, 1,0) and 
w = (1,0,' . ',0) for G = E7 • Then two embed dings 

11 and 12 of G' into G are equivalent, if and only if 
w/l is equivalent to w/2 and w/l is equivalent to w/2' 8 

We use this criterion to specify an embedding by 
the highest weights of wi in Case I, and by the highest 
weights of wi and wi in Case II. Another character­
istic of an embedding f, which we use in Sec. V, is 
Dynkin's index j" defined in analogy with the index 
of a representation [Eq. (4)] by 

(f(x),I(Y» = j,' (x,y); x,y E G'. (7) 

Here (x,y) and (f(x),f(y» are scalar products in G' 
and G, respectively, fixed by the normalization (1). 
From Eqs. (4) and (7) one obtains 

j, = l(qf)Jl(q;) (8) 

for an arbitrary representation q; of G, and in par­
ticular 

j, = l(wl)Jl(w) = l(wl)Jl(w). (9) 

IV. THE MAPPING r 
Gantmacher9 proved that for a given Cartan 

subalgebra K' of G', it is always possible to choose a 
Cartan subalgebra K of G such that 

I(K') c K. (10) 

Thus the restriction of the mappinglto K'determines 
a dual mapping 

f: R' --+ feR') C R, (11) 

8 One notes that for all G. OJ is the lowest dimensional representa· 
tion and for G = D". w is the spinor representation. 

• F. R. Gantmacher. Mat. Sb. N.S. 5, 101 (1939). Theorem II. 

where R' and R are respectively the root spaces of 
G' and G. A mapping/* projecting canonically R onto 
R' may be defined by 

I*(/(L» = L, for L E R', (12) 

1*(Ro) = 0, for Ro = R -feR'). (13) 

The construction of f* makes it to have the important 
property of mapping the weight system Ll(rp) of an 
arbitrary representation rp of G onto the weight 
system Ll(rp') of the induced representation q;' = rpl 
of G'. For let the representation q; of G act in a vector 
space V, and let v be a vector of V corresponding to 
a weight A of Ll(q;); i.e., 

rp(K)v = Av. (14) 

Then v remains a weight vector for the induced 
representation q;' and from (10)-(14) one gets 

q;1(K')v = 1*(A)v. (15) 

It follows that any weight of the weight system Ll(rp') 
must be of the form /*(A), A E Ll(w), and we can 
write 

Ll(q;') = 1*(Ll(q;». (16) 

Consider now the weight systems Ll(w) and Ll(wl) 
of the representations wand wi defined in Sec. III. 
(We limit ourselves for simplicity to algebras G 
considered in Case I. In the Case II, one must take 
into account also the representations wand wf, but 
the arguments are identical.) The weights of an 
irreducible weight system may be calculated by 
subtracting from the highest weight a certain number 
of times simple roots.6 They can, at the same time, be 
ordered using a simple root ordering and partitioned 
in layers, as mentioned in Sec. II. Thus, we write 

Ll(w) = {Ol > O2 ~ 0 3 ~ ••• > 0d(W)}' (17) 

Ll(wf) = {MI ~ M2 ~ ... ~ Md(w)}, (18) 

where the weights of Ll(w) and Ll(wf) are ordered 
respectively following convenient simple-root-order­
ings 0 and 0' of Rand R', and d( w) denotes the 
common dimension of the representations wand wf 

Now, although one has globally Ll(wf) = /*(Ll(w), 
the relation 

(19) 

is verified only if one of the following two conditions 
holds: 

(A) The simple-root orderings in R' and Rare 
consistent, that is, the relation /*(AI ) > /*(AJ in 
R' implies the relation Al > A2 in R. 

(B) The weight 0i is contained in a simple-weight 
layer of Ll(w); then one has 0i < 0i (Oi > 0i) if 
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TABLE I. Classical Lie algebras. The basis vectors {Vi} of Rare 
mapped by f* into linear combinations of at most n weights of 

the representations wf or rof of G'. 

i 

A". e" 1.2." ',n !Mj 

;~1 

i 

B" 1,2 ... ·,n-l !Mj 

;~1 

i 

D" 1,2,···.n- 2 !Mf 
;=1 

n-3 

n -M1 + M"'--l + M,,_a + 2 ! Mi = -M, 
;=1 

i > j(i <j) for any simple-root ordering of R, as 
follows from the remark of Sec. II. 

Similar remarks can be made about weight systems 
Ll(ep) and Ll(epf) corresponding to an arbitrary repre­
sentation ep of G. The reason why the representation 

TABLE II. Exceptional Lie algebras. The basis vectors {Vi} of R 
are mapped by f* into linear combinations of at most n weights 

of the representations wf or rof of G'. 

Ga 1 
2 

F, 1 
2 
3 
4 

Es 1 
2 
3 
4 
5 
6 

E. 1 
2 
3 
4 
5 
6 
7 

£8 1 
2 
3 
4 
5 

6 
7 
8 

M1+Ma 
MI 

Ma+M, 
M1+Ma+Ma 
M1+Ma 
MI 

MI 
M1+M. 
MI +Ma +Ma 

-Ms. - MIS 
-MI. 

MI + Ma + Ma + M, + Ma. + Mn 

Ml 
Kli + Ma 
lVIl + lVI. + KIa = MI + Ms + Ma + M, 
MI +M. +Ma 
M1+M. 
MI 
M. + Ma = MI + M. + Ma + M, + M. 

- MI - KIa 
MI 
M1+M, 
M1+Ma+Ma 
Ml + M. + M3 + M, 
MI + Ma + Ma + M, + M. 

= Xli + KIa + Ma 
Ml + KI. 
Ml 
M. + Ma= Ml +Ma +Ma+M, +M. 

+M.-MI-Ma 

w (or wand w) is particularized in Dynkin's criterion 
is that Ll(w) [Ll(w) and Ll(w)] contains n (n = rank G) 
linearly independent weights which satisfy condition 
(B). This can be verified readily by computing the 
weight system Ll(w) [Ll(w) and Ll(w)] for each type 
of G. Consequently one has n linearly independent 
relations (19) connecting vectors of Rand R'. In 
principle, one could use also the condition (A) 
for the specification of f*, but the choice of ~onsistent 
simple-root-orderings in Rand R' is much less 
convenient to work with. 

Tables I and II are intended to specify the mapping 
f* on the basis vectors {Pi} of Rand {p;} of R'. The 
quantities f*(p;), i = 1,2, ... , n, are given as linear 
combination of at most n weights {Mi } or {gil of 
Ll(wf) or Ll(wf). These weights are to be expressed in 
terms of the basis vectors {Pi} once the embedding 
is fixed. 

V. BRANCHrnNG RULES 

It is relatively simple now to formulate a standard 
procedure for obtaining branching rules. After a 
particular embedding of G' into G was specified, the 
mappingf* is known explicitly and can be applied to 
the weight system Ll(ep) of any inducing representation 
ep of G. The general procedure can be, in principle, 
summarized in the following steps: 

(1) Fix the embedding f, by expressing the weights 
{Mi} of wf in Table I or the weights {Mi} of wi and 
{gil of wfin Table II, in {p;} notation. 

(2) Obtain in {Pi} notation the weight system 

Ll(ep) = {AI, A 2 , ••• , A<I(4I)} (20) 

of the inducing representation ep of G. 
(3) Apply the mappingf* to the weights of Ll(ep) 

and, using Table I or II, find in {p;} notation the 
weight system 

Ll(ep') = {LI' L2 , ••• , Ld(4I)} (21) 

of the induced representation ep' of G'. 
(4) Separate in Ll(ep') all weight systems Ll(ep~), 

Ll(ep~I)' ... which correspond to irreducible com­
ponents. 

These successive steps, in particular the last one, 
imply elaborate calculations, part of which is often 
superfluous. For instance, only the highest weights of 
irreducible components of ep' are subjects of our 
interest, but not the whole system Ll(ep'). The general 
procedure is shortened by two equations of con­
straint. 7 The first one, 

deep) = deep') = d(ep!) + d(epir) + .. " (22) 

connects the dimensions of the unknown irreducible 
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TABLE III. Dimensions d and indices 1 of the representations of the algebras Ba and A6 which occur in the example of Sec. V. 

d 
1 

(0,0) 

1 

° 

(0,1) 

4 
1 

(1,0) 

5 
2 

(0,2) 

10 
6 

components in q/ to the known dimension of q;. The 
second equation, 

/(q/) = h . /(q;) = /(q;~) + /(q;~I) + ... , (23) 

obtained from (6) and (8), relates the indices of the 
unknown nontrivial irreducible components of q;' to 
the known index of q;'. 

Let us illustrate the whole method by an example. 
We consider an embedding of the algebra B2 into A5 • 

According to Sec. III, the embedding can be specified 
as an isomorphism of B2 into the representation 
w = (1,0,0,0,0) of As. Thus one finds two possi­
bilities, 

B2 4 wf = (1,0) + (0,0) c (1,0,0,0,0) (24) 

and 

B2 .4 Wfl = (0, 1) + 2(0,0) c (1, 0, 0, 0, 0), (25) 

where wf and Wfl are representations of B2 which are 
matrix subalgebras of the representation ill of A5 • 

We have written explicitly the trivial representations 
(0, 0) necessary for the equality of dimensions of the 
embedded representations wf, Wfl' and w. 

Let us consider, for example, the embedding (24). 
The weight system f!J.( wf) consists of 

where Y~ and y; form the basis of the root space of B2 
defined by (2). As one can easily prove, the numbering 
(26) of the weights of f!J.( wf) and the inequalities (18) 
imply a simple-root-ordering of the root space R' of 
B2 • Hence the mapping f* is given explicitly by 
Table I and formulas (26). 

Suppose, for instance, that the inducing representa­
tion q; of A5 is the adjoint representation q; = 
(1,0,0,0, 1). Its weight system f!J.(q;) consists of 

Al = Vl + Y5' A2 = -Yl + Y2 + Ys , ... , (27) 

where Y., i = 1,2, ... , 5, is the {v}-basis of the root 
space R of As. Using Table I and formulas (26) we 

(2,0) 

14 
14 

d 
1 

(1,0,0,0,0) 

6 
1 

(1,0,0,0, 1) 

35 
12 

apply the mappingf* to the highest weight Al of q;: 

1*(A1) = 1*(v1) + 1*(y5) = 2v;'. 

Here 2Y~ is a weight of the induced representation q;' 
of B2 • Since the highest weight Al of q; is always the 
only weight of the ° layer of f!J.(q;), it follows that Al 
is always mapped into a highest weightf*(AI) of q;'. 
Consequently, one of the irreducible components of 
q;' is q;~ = (2, 0). Similarly, the weight A2 is mapped as 
follows 

1*(A2) = - f*(v1) + f*(Y2) + 1*(v5) = 2Y~. 

One can check that the weight 2y; does not belong 
to the weight system f!J.( q;~), hence it is the highest 
weight of another irreducible component q;~I = (0, 2) 
ofq;'. 

In principle, the rest of the weight system f!J.( q;') can 
be obtained by subsequent application of the mapping 
f* to the rest of the system f!J.(q;). However, the pro­
cedure is shortened by using the constraint Eqs. (22) 
and (23) as follows. From Eqs. (8) and (9) one has 

/(q;') = [/(wf)//(w)] ·l(q;) = 24, 

where the values of indices and dimensions of the 
representations for the present example are summa­
rized in Table III. The direct sum of the irreducible 
components of q;', which were not yet found, has the 
index /(q;') - /(q;~) - 1(q;~I) = 4 as it follows from 
(6), and the dimension d( q;) - d( q;~) - d( q;~I) = 11. 
By inspection of Table III one sees that only the 
direct sum (1,0) + (1,0) + (0,0) has such index 
and dimension. Finally, the solution of our example 
is q;' = (2, 0) + (0,2) + 2(1, 0) + (0,0). 
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Two-body ~~tering is ana~yzed using ~ time-dependent formalism and wave packets of arbitrary 
shape a.s the InItial 'Yavefunct~o.ns. In partIcular, the case of single-channel resonant scattering is dis­
cussed In some de~aIl. In a.dditl(~n to the us,ual. amplitudes. resulting from the potential term and the 
~esona~t te~, a thir~ amplitude IS foun~ WhIch Interfe~es with the other two. Another interesting result 
IS that I? thIS form~lism the final state IS not necessarIly represented by spherical out~oing waves, but 
~~. be Interpreted Instead as two separate outgoing wave packets whose ·shape is dIfferent from the 
InItial packets. The Wigner time delay is obtained as a natural consequence of the analysis and the 
resonant cross sections are expressed as density matrices constructed from the wave packets. ' 

1. INTRODUCTION 

THERE are two limiting cases of resonant scattering 
which are of particular interest. One, which usually 

applies in atomic physics or low-energy nuclear physics, 
occurs when the width r of the resonant state is very 
small compared to the energy spread of the incident 
packets. Here the incident wave packets have a spatial 
spread much smaller than the resonant state, and 
r-l is long compared to the interaction time. This 
limit can be thought of as an impulse approximation in 
the sense that a classical periodic system, set in motion 
by a force whose time duration is short compared to a 
period, will oscillate at the resonant frequency of the 
system. Thus one expects, in the quantum mechanical 
case, the final state wave packets to emerge from the 
scattering region with an average energy and momen­
tum characteristic of the resonance. 

The other limit, which applies primarily in high­
energy physics, occurs when the incident packets have 
an energy spread much less than r. Here r-1 is not 
much larger than the interaction time, and the spatial 
extent of the incident packets is large compared to that 
of the resonant state. Consequently, the classical 
analog for this case is that of the driven periodic 
system which decays at its characteristic frequency as 
the dri~ing force is removed. Therefore, one might 
expect mterference effects which are not normally 
observed in low-energy phenomena. 

In this paper the time-dependent formalism de­
veloped earlier1. 2 is used to investigate these two 
limiting cases for the particular physical circumstance 
when two initial wave packets interact in the center-of­
momentum system via a time-independent short-range 
interaction V(x!, X2)' 

A third scattering amplitude, different from the 

usual potential and resonant terms, is found which 
interferes destructively with the other terms. For small 
r this interference causes the familiar [1 - exp (-rt)] 
time dependence for the cross section of the scattered 
p~rticles. For large r no interference occurs at large 
dIstances and the usual single-level Breit-Wigner cross 
section is obtained. However, in both cases, if a final 
state interaction occurs, that is, if a second scattering 
takes place in the neighborhood of the initial inter­
action, interference effects occur which tend to make 
the interaction look peripheral. As a consequence of 
the analysis, the Wigner "time delay" for the inter­
action is obtained and found to be in agreement with 
the recent work of Ohmura.3 

Previous authors have also investigated some of the 
aspects of this problem. The excellent early work of 
~latt and Biedenharn,4 formalized using a time­
mdependent phase-shift analysis, discussed the scat­
tering of low-energy neutrons from a single resonance 
level of the compound nucleus. One of their results is 
that the scattering amplitude contains two terms, one 
due to potential (hard sphere) scattering and the other 
due to the resonance, which interfere with each other. 
Both of these terms are displayed in this paper in 
addition to the third term which, in the large r case, 
cor~es~onds in the classical analog to the decay of the 
pen OdIC system after the driving force diminishes. 
. HeitIer5 discusses the absorption and emission of 

lIght quanta for both limiting cases described above, 
~ut loses the transient effects by evaluating the transi­
tIon probabilities only in the infinite time limit. 

The work most closely resembling the presentation 

3 T. Ohmura, Progr. Theoret. Phys. (Kyoto) Suppl 29 108 
(1964). . , 

• J. M. Blatt and L. C. Biedenham, Rev. Mod. Phys. 24, 258 
(1952); see also J. M. Blatt and V. F. Weisskopf, Theoretical 
Nuclear Physics (John Wiley & Sons, Inc., New York, 1952), 

1 C L H d T A Chap. 8, Sec. 8, p. 398. 

• 
. . ammer an . . Weber, J. Math. Phys. 6, 1591 (1965). • W H 'tl Q C. L. Hammer and T. A. Weber N C" ' el er, uantum Theory of Radiation (Oxford University 

, uovo Imento 37, 88 (1965). Press, London, 1954), 3rd ed., Sec. 20, p. 196. 
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here is the wave packet approach to scattering theory 
described in Goldberger and Watson's recent book.6 

Again, the important difference is primarily that they 
use an S-matrix formalism, which implies infinite 
time limits, rather than the U-matrix formalism, 
which implies large but finite times. 

2. BASIC FORMALISM 

Consider the elastic scattering of two particles of 
masses ml and m2 and let the potential which describes 
the interaction be V(XI' xJ where Xl and X2 are the 
coordinates of particles 1 and 2. It is assumed that the 
wavefunction which describes the two particle system 
satisfies the differential equation 

[Ho + V(XI' x2)]V{t) = i(%t},p(t); Ii = c = 1. (1) 

If V(XI' xJ is a short-range potential, there is a 
time to before which the particles have not scattered. 
Thus for t ~ to, 'P(t) satisfies the equation 

Ho'P(t) = i(%t)'P(t); t ~ to. (2) 

A formal solution to Eq. (1) for t :;;:: to is 

'P(t) = exp [-iHo(t - to)]'P(to) 

- i exp (_iHot/
t 

d~ exp (iHo~)V'P(~)' (3) 
Jto 

Since H is presumed to be independent of time, 

'P(t) = exp [-iH(t - to)]'P(to), (4) 

so that Eq. (3) becomes 

'P( t) = exp [- iH o(t - to) ]'P( to) - i exp ( - iH ot) 

x t d~ Ip', q')(p', q'l exp (iHo~)V 
Jto 

X exp [-iH(~ - to)] 1'P(to», (5) 

where Ip', q') are the eigenstates of the free particle 
Hamiltonian Ho. Thus one has 

Holp',q') = E'lp',q'), (6) 

E' = (p,2 + mDt + (q,2 + m~)t, (7) 

Ip', q') = (27T)-3 exp (ip' • Xl) exp (iq' • x 2)Xs" (8) 

where X.' is a spinor which describes the spin state of 
the two particles. It should be noted at this point that 
the formalism to be developed can be extended to 
include all reactions of the type A + B ~ C + D if it 
is assumed that an equation of the form of Eq. (1) 
applies and that the free-particle wavefunction for 
any pairing of the four particles satisfies Eq. (6). In 
this event, X.' would be a spinor which depends not 

6 M. L. Goldberger and K. M. Watson, Collision Theory (John 
Wiley & Sons, Inc., New York, 1964), p. 80. Time dependence is 
considered in Chap. 8 but not using wave packets. 

only on the spin but also upon other quantum numbers 
(isospin, strangeness, etc.) which are necessary to 
describe the pairing. Then all summations of the type 
Ip', q') (p', q'l should imply a summation over all 
pairings. 

The time integration yields 

'P(t) = exp [-Ho(t - to)]'P(to) + Ip', q')(p', q'l V 

exp [-iH(t - to)] - exp [-jE'(t - to)] ) 
x I''''to) . H-E' '1'\ 

(9) 

For finite t and to, the integrand is analytic in the 
neighborhood of H = E' so that H - E' can be 
replaced by H - E' - i'YJ and the limit taken as 
'YJ ~ O. Thus Eq. (9) can be written as 

tp(t) = exp [-iHo(t - to)]V{to) 

+ lim Ip', q')(p', q'l V 1 1'P(t» 
11-+0 H - E' - i'YJ 

-lim Ip', q')(p', q'l exp [-iE'(t - to)]V 

1 x 1'P(to»' 
H - E' - i'YJ 

(10) 

In terms of the stationary states of H, 

Hrpp.a = Erpp.a, (11) 
where 

E = (p2 + mDt + (q2 + m:)t, (12) 

'P( t) becomes 

'P(t) = f dp dqA(p, q)rpP,a exp (-iEt). (13) 

Here the labels p and q correspond to the momenta of 
the particles only in the asymptotic limit. Therefore, 
the initial conditions imply that for t ~ to, 

'P(t) = (27T)-3f dp dqA(p, q) exp (ip. Xl) 

X exp (iq • x2) exp ( - iEt)X.' (14) 

Substitution into the matrix elements of Eq. (10) for 
'P(t) and 'P(to) from Eqs. (13) and (14) gives 

'P(t) = f dp dqA(p, q)rp(t), (15) 

where 

!pet) = Ip, q) exp (-iEt) + lim exp (-iEt) Ip', q') 
11-+0 

x (p', q'l V E ;, . Irpp,Q) 
- -l'YJ 

- lim exp (-iEto) Ip', q')(p', q'l 
II -+0 

X exp [-iE'(t - to)]V lip, q). 
H - E' - i'YJ 

(16) 
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The last term in Eq. (16) can be put in the more 
familiar T-matrix form by using the operator identity 

111 1 - - - = - (B - A) - , 
A B B A 

with 

A = Ho - E' - i1] and B = H - E' - ;1] 

to express the function (H - E' - ;1])-1 as 

1 1 1 
= , +E' H . H-E-~ ~-E-~ - +~ 

X V 1 . (17) 
Ho - E' - i1] 

Substitution into Eq. (16) for this quantity gives 

rp(t) = Ip, q) exp (~iEt) + lim exp (-iEt) Ip', q') 
,,. .. 0 

X (p', q'l V E ;, . Irp:p,q) 
- - 11] 

+ lim exp (-iEto) Ip', q')(p', q'l 
,,-+0 

X exp [-iE'(t - to)} T(E,) I) (18) 
E' - E + i1] p, q , 

where, following Goldberger and Watson's7 notation, 

T(E') = V + VeE' - H + i1])-1 V. (19) 

An interesting point occurs here regarding the 
infinitesimal parameter 1]. Here, in contrast to the 
usual approach, the sign chosen for 1] is irrelevant 
since the integrand of Eq. (9) is analytic. With the 
positive choice of sign, as shown, the second term of 
Eq. (18) vanishes exponentially in the asymptotic 
limit of large IXI - xal. The third term gives the 
outgoing spherical waves for the pole at E' = E - i 11]1 
and the singularities of the T matrix. If the negative 
sign is chosen, as is normally done in the S-matrix 
formalism,s the contribution to the scattering cross 
section from the singularity at E' = E + i 11]1 comes 
from the second term of Eq. (18). The singularities of 
the T matrix which appear in the third term give rise 
to contributions which damp to zero only in the extreme 
limit as to -- - 00 or t -- 00. This establishes the 
connection between the S-matrix formalism and the 
one presented here. 

Before obtaining the asymptotic limit of 1p(t), it is 
convenient to change to variables which represent 
the center of energy of the system and the relative 
displacement of the particles. Consequently, consider 

7 See Ref. 6. p. 21S. 
a See Ref. 6, p. 81, Eq. (91). 

the transformation of variables 

- C~l) C~2) x = 2 Xl + £ Xa, (20) 

r = Xl - Xa, (21) 

q' = Q'(;2) _ P', (22) 

p' = Q,(!l) + P', (23) 

where 

£1 = [P2 + m:J*, (24) 

22 = [P2 + m:]*, (25) 

£=21+£2' (26) 

The momentum :P is later chosen to be either the 
average momentum of the incident or scattered 
particles or the momentum corresponding to the 
center of a resonance, whichever is convenient for the 
approximation under study. With these substitutions, 
Eq. (18) becomes 

rp(t) = Ip, q) exp (-iEt) + lim (2nr3 exp (-iEt) 
'1-+0 

X ~ f dP' dQ' exp [i(P'. r + Q'. i)]X.' 

X ..:.:(Q::::..'(,-E=ll £""":)O-+-,---P-,-', Q='..>-(E....=!2/_E.::.-.) -_p--,-'I_V.....;.I rp~:p:<=,q) 
E - E' - i1] 

+ lim (2nr3 exp ( - iEto) 
'r+O 

X ~ f dP' dQ' exp [i(P' • r + Q' • i)JX.' 

(Q'(E1/E) + P', Q'(Ea/E) - P'I 
X T(E') exp [-iE'(t - to)] Ip, q) 

X ----------~~~~--~~~~~ 
E' - E + i1] 

(27) 
where now 

E' = [(P' + Q'(El/E)2 + m~]t 
+ [(P' - Q'(E2/E)2 + m:]*, 

= E~ + E~. (28) 

It is also convenient to factor the conservation of 
momentum. delta functions from the matrix elements. 
Thus, let the reduced matrix element (p', q'l (0) Ip, q) 
of an operator 0 be defined by 

(p', q'l 0 Ip, q) = !5(p' + q' - p - q)(p', q'l (0) Ip, q). 
(29) 

With this substitution the Q' integration in Eq. (27) 
can be done. The net effect is to replace Q' everywhere 
by (P + q). 
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FIG. 1. The path of 
integration in the P' 

plane. 
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I (.-~,(p+q)(£I-£zJ/£ 
I 2~ t 

To obtain the asymptotic limit for large Irl, 
the usual procedure is simplified if, wherever 
feE') IQ'(El/£) + P', Q'(EIl/£) - P') appears, it is 
replaced by f(Ho) IQ'(El/E) + P', Q'(EzIE) - P'). 
Then if V(Xl' XIl) falls off with sufficient rapidity so 
that negligible error is made by integrating over some 
finite region rather than over all of space, Eq. (27) 
becomes 

'(2 )-2 
pet) == Ip, q) exp (-iEt) + ~ 

r 

X exp {i[(p + q). i - Etl} lim I (lIs' - las')' 
" ..... 0 8' 

where (30) 

Ib' = L:p' dP' exp (iP'r) 

Xs,{(p + q)(EI/E) + P',(p+q)(E2/E)-P'\(V)IlJ'p,q) x , 
E' - E + i'1} 

(31) 

12., = exp [iE(t - to)]L:P'dP' 

X exp [i(P'; - E')(t - to)lls' 

{(p + q)(El/E) + P', (p + q)(Ez/E) - P'/ 
x (T(E'» Ip, q) 

X --------------------~~~~ 
E'- E + i'1} 

(32) 
; = r/(t - to), (33) 

P' = P'(r/r), (34) 

E' = {[P' + (p + q)(EIIE)]2 + mni 
+ {[P' - (p + q)(£sIE)]2 + mni. (35) 

3. CONTOUR INTEGRATIONS 
The integral 1111' can be done by using a contour 

which closes in the upper half of the P' plane, whereas 
the integral 128, can be done by using a contour similar 
to that described by the authors in Refs. 1 and 2. For 
the purpose of clarity the procedure for obtaining this 
contour is briefly repeated here. 

Because of the E'(t - to) term in the exponent of the 
integrand of 123, , the contour cannot be closed in the 
upper P' plane alone for (I - to) > O. Examination of 
the phases shows that it is possible to have an infinite 
contour C1 and C3 in the 2nd and 4th quadrants as 
shown in Fig. 1. The contour CIl , also shown in Fig. I, 
which connects these two infinite contours, is uniquely 
determined by the requirement that the integral along 
this path be a Laplace transform so that it can be 
directly evaluated asymptotically without further dis­
tortion of the contour. This follows from considering 
the transformation suggested by the exponent in Eq. 
(32), ,= P'; - E'. (36) 

The path in the, plane which corresponds to the path 
of integration of 128, along the real P' axis is shown 
as the heavy line in Fig. 2 along with the appropriate 
phases. The branch points shown at ± '0 and ± '1 
correspond to those values of P' which satisfy the 
equation (dUdP') = O. that is, for 

~ _ P' + (£'1/£)1\· (p + q) 

- UP' + (p + q)(El/E)]2 + mni 
+ P' - (£'a/£')I\ • (p + q) t. (37) 

{[P' - (p + q)(EalE»)S + m:) 
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_1.. " 1" q y-0, 0, 
t2® :: , , 

" I' , 

-to t. 

Flo. 2. The path of integration in the' plane. 

In terms of the speeds of the two particles, it can be 
shown from Eqs. (36) and (37) that 

'0 = M1(1 - ~D-t[1 - ~1(~1 + ~2)(£2/E)] 
+ Ma(1 - ~=>-t[1 - ~2(~1 + ~a)(£lIE)], (38) 

'1 = M1(1 - ~~)-t[l - ~1(~1 - ~2)(E2/E)] 
- M 2(1 - ~=>-t[1 + M~l - ~2)(E1/E)], (39) 

where 

~1 = p' + (E1/E)i.(p + q) , 

{[P' + (p + q)(E1IE)]2 + mnt 

~2 = p' - (E2/E)i.(p + q) , 

{[P' - (p + q)(E2/E)]2 + mnt 

M~ = m~ + (E1/E)2{(p + q)2 - [i. (p + q)]2}, 

M: = m: + (E2/E)2{(p + q)2 - [r. (p + q)]2}. (40) 

It should be noted, since the interaction takes place 
in the vicinity of the origin, that in the asymptotic 
limit in the center-of-energy system, 

~1 = ~, ~2 = J!!L. (41) 
t - to t - to 

The path of integration in the , plane can be rotated 
about - {o to the dotted line shown in Fig. 2, encircling 
poles and indenting around branch points where 
necessary, thereby changing the Fourier transform to 
a Laplace transform. The contour ell in the p' plane 
corresponds to the dotted path of integration in the 
{ plane shown in Fig. 2. The point - {o corresponds to 
the point in the p' plane where e2 crosses the real axis. 
This ~alue of p' shown as p~ in Fig. 1 satisfies Eq. 
(37). In the center-of-energy system this value of P' 
would be the momentum of m1 or ma if the speed of 
separation of the particles after the collision is 
rl(t - to). 

The integration along ea can be evaluated asymp­
totically for large t using Watson's lemma described 

previously.9 The branch points at Co and at ±C1 can 
be shown to be sufficiently far removed from - Co so 
that at most only the singularities of the T matrix 
shown symbolically at CII in Fig. 2 and the branch 
point at - Co need be considered. In the following, the 
singularities of the T matrix are assumed removed far 
enough from - Co so that in evaluating Eq. (32) along 
the contour ell, expansions can be made about - {o . 
This restricts the discussion to a consideration of that 
region of time where the resonant states decay with an 
exponential type behavior as shown below. The con­
tribution to Eq. (32) from the path along e. is found in 
a way parallel to Eq. (38) of Ref. 2. The result is to 
lowest order in It - tol, 

(42) 

Since It - tol is related to r through Eq. (33), (1.,')0 
is of order r-t and does not therefore contribute to th; 
scattering cross section. 

With this result, Eq. (30) can be reduced consider­
ably. Firstly, it should be noted that the integrand of 
Eq. (30) as represented by the sum (118' - 12 .. ) cannot 
contain any singularities in the 2nd and 3rd quadrants 
of the p' plane. This follows because such singularities 
lead to incoming spherical waves which are a violation 
of the initial conditions. Thus, the simple pole which 
is in the second quadrant of the P' plane must cancel 
between the two terms Ils' and 128, This cancellation 
can be seen explicitly if the substitution 

fPtJ,q = ( 1 + E ~ H V) Ip, q) (43) 

is made in Eq. (31). Since the contour integration for 
lIs' is in the upper-half P' plane, all other contributions 
from this term lead to functions which damp expo­
nentially with r. Thus, 118' does not contribute to the 
scattering cross section. 

The time-independent [apart from a factor of 
exp (-iEt)] part of the cross section comes from 
128, because of the pole at E' - E + irl which lies in 
the 4th quadrant of the P' plane. As is shown in Fig. 
1, this pole is included within the contour only if 
Pg < p' or, equivalently, only if (t - to) ~ (t - t'), 
where t' is the time at which the particles elastically 
scatter. It therefore follows that t' ~ to so that, as 
expected, causality is automatically taken into 
account. 

The time-dependent parts of the scattering contri­
butions can be separated from the time-independent 

• T. A. Weber. D. M. Fradkin. and C. L. Hammer, Ann. Phys. 
(N.Y.) 17, 362 (1964); see also Ref. 2. 
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parts by using the residue theorem to write Eq. (30) as 

q(tXJarge t) = Ip, q) exp (-iEt) 

+ (21T )-8r-l exp {i[Pr - Et + (p + q) • in !J.·x., .' 
- lim (21T)-ar- 1i exp {i[p + q). i - Eto]} 

'1-+0 

x I r P' dP' exp [i(P'~ - E')(t - to)]x., 
.. JOB'''''B 

(P' + (p + q)(EI /E), (p + q)(Ea/E) - P'I 
x (T(E'» Ip, q) 

x----------------------~~~~~ 

E' - E + i'f} 
(44) 

where the scattering amplitude is given by 

I' , = _(21T)a EIE2[1 + i . (p + q) (ElEa - £aEl)J-1 
;, E PEE 

that decay in the presence of the interaction P. The 
state la) can be written as 

la) == (21T)-1 exp (iPa • i)ua(r), (56) 

where Pa represents the momentum of the center of 
energy of the system and uir) describes the internal 
degrees of freedom. The energy Ea can be described by 

(57) 

where rna is the mass of the resonant state. Since g is 
diagonal in this representation, 

(a'i g la) = Ga!5a•a!5{Pa' - Pa). (58) 

Further, let these diagonal elements be the diagonal 
elements of G so that 

(al (G) la) = Ga and (al (F) la) = 1. (59) 

x (P + (p + q)(EI /E), 
x (p + q)(Ea/E) - PI (T(E» Ip, q), 

Substitution for G from Eq. (52) into Eq. (51) then 
(45) gives Ga and, after some manipulation, F as 

P=Pi, 

El = {[P + (p + q)(El/E)]2 + rnn*, 

E2 = {[P - (p + q)(Ea/E)]a + rnn*, 

E = El + E2 = (p2 + rn~)t + (q2 + rn:)t, 

(46) 

(47) 

(48) 

(49) 

and the subscript E' ¢ E means ignore the pole at 
E' = E - i'f) in doing the indicated contour integra­
tion. 

It is easy to show the resonant nature of Eq. (44) 
explicitly by writing T(E') as 

T(E') = V + VGV, (50) 

where G is the exact Green's function 

(51) 

(60) 

F la) = la) + [E' - Do + i'f}rl (1 - la)(al)17F la). 

(61) 
The matrix element of VGV can be written as 

(p', q'l VGV Ip, q) 

= (p', q'l VG la)(al Vip, q) 

= Ga(p', q'l VF la)(al Vip, q) 

!5(p' + q' - p - q)(p', q'l (VF) la) (al (V) Ip,q) 
= 

E' - Ea - (al WF) la) + i'f} 
(62) 

where, since the integral over Pa has been done, 

Following Goldberger and Watson,lO G can be written The reduced matrix element of T(E') is 
as the product of two operators 

G=Fg, (52) (p', q'l (T(E'» Ip, q) = (p', q'l (V) Ip, q) 

+ (p', q'l (VF) la)~1 (V) Ip, q). (64) 

E' - Ea - (al (VF) la) + i'f} 
where g is diagonal in the representation la). As a 
particular example, the interaction V considered 
previously could be the sum of two terms 

The real and imaginary parts of (al WF) la) can be 
(53) defined (for real E') as H - Ho = V = U + V, 

so that 
H - Do = V, Eo - Ho = U. 

The states la), which satisfy the equation 

Do la) = Ea la) 

(54) 

(55) 

could then be resonant states of the rnl , rn2 system 

10 See Ref. 6, p. 425. 

In general, the denominator in Eq. (64) is a very 
complicated function of E'. However, for the purposes 
of this paper, it is assumed that IRal « Ea so that to 
lowest order 

(66) 
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With these assumptions, Eq. (44) becomes 

q;>(t)(large t) = Ip, q) exp (-iEt) 
,. .... "" 

+ exp {i[Pr - Et + (p + q). i]} (21T)-3 2.1.,x., 
r ~ 

1
. i exp {i[(p + q). i - Eto]} 

-1m 
" .... 0 (21T)2r 

X 2 i P' dP'x., exp [i(~''; - E')(.t - to)] 
.' aE'~E E - E + '11 

X (Pi + (p + q)(El/E), (P + q)(E2/E) - pil (V) Ip, q) 

1
. i exp {i[(p + q) • i - Eto]} 

-1m 
" .... 0 (21T)2r 

x 2 i P' dP'x., exp [i(P''; - E')(t - to)] 
.' aE'~E [E' - E + il1] 
(Pi + (p + q)(EI/E),(P + q)(E2/E) - pil 

x (VF) la)(al (V) Ip, q) x ----------------~~~~~~~~ 
[E' - Ea - Da(Ea) + tira(Ea) + il1] 

(67) 

However, the third term of Eq. (67) does not contrib­
ute to the scattering cross section since it contributes 
only to the incident flux. This follows directly from a 
consideration of the matrix element, 

hood of the real P' axis. The roots of Eq. (71) are 

P' = po· r ± i[C2 + (Po x r)2]t. (72) 

If this singularity, with either sign, is included within 
the contour of Fig. 1, the result of the evaluation of the 
third term in Eq. (67) is proportional to 

rl exp {-IImE'llt - to - Re [C2 + (Po x r)2]1 

X 11m E' I-Irl} exp [i(p· Xl + q. xJ], 

an exponentially damping contribution to the incident 
plane wave. 

Similarly, since to lowest order in P, F la) ,...,.., la), it 
follows that the singularities of the matrix element in 
the last term of Eq. (67), in this approximation, also 
contribute only to the incident plane wave. The residue 
theorem can then be used to write Eq. (67) as 

q;>(t)(large t) = Ip, q) exp (-iEt) 
,. .... 00 

+ (21Tr
3 

exp {i[Pr - Et + (p + q). in 
r 

(21T)-3. _ 
x 2f.,x., - -- exp {l[(p + q). X - Eto]} 

8' r 

x 2 exp {i[PRr - ER(t - to)]} 
8',a 

(73) 

M = where 

(P' + (p + q)(E1/E),(p + q)(E2/E) - P'I (V)lp, q). 

Changing variables of integration according to Eqs. 
(20) and (21) gives, since V must be invariant to 
displacements, 

where 

M = f dr exp [-i(P' - Po) • rJf(r), (68) 

Po = p(E2/E) - q(EI/E). 

A general interaction V must also be invariant to 
rotations. This determines that 

fer) = lAt'"'mr!''' rmglr), (69) 
; 

where At, ... m are tensors which contain the spin 
directions and, if V contains differential operators, the 
initial momenta. Thus, 

M = 2 At,. .. m(P; - POI) ... (P;" - Porn) 
; 

X g'OP' - Pol), (70) 

so that any singularities of M must be at the points 

IP' - PolS + C2 = 0, (71) 

{[Pc + (p + q)(El/E)]2 + mn1 

+ {[Pc - (p + q)(E2/E)]2 + m:}t 
= Ea + Da(Ea) - liraCEa), (74) 

is the position of the pole in the P' plane, 

(75) 

h",a = -(21T)2pc[aE'(pc)/apcJ I 

(Pc + (p + q)(EI/E), (p + q)(E2/E) - Pcl 

x (V F) la) (al (V) Ip, q) x --------------~~~~~~~ 
E - Ea - Da + lira 

t' = t + (2PI Jra)r. 

(76) 

(77) 

The time t ' is the retarded time at which the resonant 
state decays, since for smalllra and PI, the Cauchy­
Riemann condition gives 

(aER/aPR) = [a(-lra)/aPI ] r.J -ra/2PI , 

so that 

where C2 cannot be a negative real number since it is or 
assumed that the integrand is analytic in the neighbor- (79) 
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If r a > 0, then the pole is included within the contour 
only for e < (oER/oPIJ. Equation (79) then shows 
that (t' - to) > 0 for (t - to) > O. This constitutes 
a time delay and is therefore resonant scattering. If 
r a < 0, then the pole is included within the contour 
only for e > (oER/oPR). Equation (79) then shows that 
(t' - (0) < 0 for (t - to) > O. This is a time advance 
and is therefore a case of antiresonance scattering. 
In both cases, the last term of Eq. (73) is exponentially 
damped at (t - to) -+ 00 because for e :F (oER/oPIJ, 
rit' - to) -+ 00. The remaining terms of Eq. (73) are 
just the usual S-matrix result. However, the last term 
can contribute to the scattering cross section since in 
a particular experiment trit' - to) may not be large. 
This would be particularly apparent if r a is very small 
or if a second scattering takes place close to the initial 
interaction region. 

4. FINAL STATE WAVE PACKETS 
Up to this point there has been no discussion of the 

nature ofthe wave packets. Since the incident particles 
are usually independently prepared; the wave packet 
amplitude A(p, q) [see Eq. (14)] is assumed to be of 
the form 

A(p, q) = a(p - Po)b( q + Po), 

so that initially 

1p(t) = (27T)-af dp dqa(p - Po)b(q + Po) 

(SO) 

x exp [i(p • Xl + q • X2 - Et)]. (S1) 

Also, as is usually the case physically, assume that th' 
amplitudes a(p - Po) and b(q + Po) are sufficiently 
narrow that terms of order [(p - PO)2/(p~ + mDl] and 
[(q + Po)2/(p~ + m:>l] can be ignored. In this approx­
imation Eq. (Sl) becomes, after changing variables of 
integration according to 

't'=P-Po, a=q+po, 

1p(t) '" (27T)-a exp [i(po • r - Eot) 

x f d't' daa('t')b(a) exp [i't'· (Xl - VOlt)] 

X exp [ia • (X2 - vost)], (S2) 
where 

Eo = (p~ + mDl + (p~ + m~)l 
= EOI + E02 , 

VOl = PO/EOl' VOll = -Po/E02 ' (S3) 

The two independent packets therefore move toward 
one another with negligible change in shape, in a 
frame of reference where each has an average momen­
tum Po. The centers of the packets can be made to lie 
along a line perpendicular to Po at I = 0, their distance 

of separation depending upon the choice of the phase 
of a( 't')b( a). For wave packets with finite spatial extent 
the time to can be chosen as the time that particular 
parts of the wave packets begin to interact. Conse­
quently, to would then be a function of the relative 
coordinates of the packets. For example, if the inter­
action distance is much smaller than the size of either 
wave packet, then for t in the neighborhood of zero, 

t '" _ (Xl - Xi) • ~Ol (S4) 
0= IVol - v021 

Thus for to = 0, the centers of the packets would begin 
to interact whereas the initial interaction would have 
taken place at to = -t5lvol - v021-l, where t5 is the 
spatial extent of each packet. For I > 0, 10 can be 
obtained from the definition e = r(1 - (0)-1. Since 
to is bounded in the vicinity of zero and since, as is 
shown below, r is bounded in the vicinity of (r), the 
distance between the centers of the final state packets, 
e approaches the constant value 

(e) = «r)/t) (S5) 

in the asymptotic limit oflarge t. Therefore, for large t, 

to = I - (r/(e», 

where r varies over the dimensions of the final states 
wave packets. 

The wavefunction for the scattered particles as 
obtained from Eq. (73) is 

1p(t)(large t) = (27T)-3r-l( 'PI - 'P2), (S6a) 
r-+oo 

where 

'PI = ~ f dp dqa(p - Po)b(q + Po)f.,X., 

X exp {i[Pr - Et + (p + q) • i]}, (S6b) 

'P2 = ~ f dp dqa(p - po)b( q + Po)h"aX.· 

X exp [-traCt' - to)] 

x exp {i[PRr - ER(t - to) - Eto + (p + q) .i]}. 
(S6c) 

To illustrate the procedure to be followed, consider 
first 'PI alone. By again changing to the 't', a variables 
and retaining only terms linear in 't' and a, Eq. (S6b) 
becomes 

'PI = ~ exp (-iEot) f d't' daa('t')b(a)f.·x., 

X exp {i[Pr + 't'. (i - VOlt) + a· (i - V02t)]), 

(S7) 

where f.,X., are now functions of 't' and a, and from 
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Eqs. (47)-(49) 

{[P + ("" + a)(EI/E)]2 + mnt 
+ {[P - ("" + a)(E./E)]2 + m:}t 

= [("" + PO)2 + m~]t + [(a - PO)2 + m:Jt. (88) 

Because of the variation due to "" and a, P will vary 
about some average value (P). Therefore, if 

P = (P) + LW, (89) 

expansion of both sides of Eq. (88) gives the equation 
which defines (P) as 

(E) = (EI ) + (Ea) 

and 

= «p)2 + m~)t + «p>2 + m~)t = EOl + E02 

(90) 

4p· «P)/I(P)I) = (VOl' "" + Vos' a) I (VI) - (VS)I-I 

- ("" + a). [(vI)(EI/E) 

+ (vs)(Ea/E)] l(vI) - (vs)l-l, (91) 
where 

then 

ot(E) ro.J ot(Eo) + [Oot(Eo)/oEo]("'" VOl + a • voJ, (96) 

and the final state wave packets at t = (t~) 
(97) 

are at the same position as that of the initial wave 
packets at t = O. This asymptotic time delay (or 
advance) is in agreement with the recent work of 
Ohmura.3 

The expression for "I'a can be reduced in a manner 
similar to that used for "1'1' The diiferenC'.e being that 
instead of Eq. (88), the conservation of energy 
equation as obtained from Eq. (74) is, in the a and 
"" variables, 

{[p. + (a + ",,)(EI/E)]2 + mnt 
+ {[P. - (a + ",,)(E,./E)]2 + m:}t 

= [(a + ",,)2 + m!]t + DjJ{[(a + ",,)2 + m!]t} 
- !irjJ{[(a + ",,)2 + m:]t}. (98) 

(VI) = (P)/(EI ); (va) = -(P)/(Ea). (92) The zeroth- and first-order terms in a and "" thus are 

The wavefunction "1'1 then becomes 

"1'1 = ~ exp [i«P)r - (E)t)]f d"" daa(",,)b(a)f.,x., 

X exp (i"". {i - [(vI)(EI/E) 

+ (va)(EaIE)](t - t:") - VOlt:"}) 

X exp(ia • {i - [(vl)(EI/£) 
+ (va)(Ea/E)](ta - t:,,) - vost:"}), (93) 

where t~ is the time of scattering defined by 

t:" = t - r I (VI) - (V2) rl. (94) 

Just as for to, t~ varies as r varies over the dimensions 
of the final state packets. From the definition of i 
from Eq. (20), it is clear that "1'1 is a function only of 
[XI - (VI)(t - t~)] and [xa - (va)(t - t~)]. Therefore, 
"1'1 resembles two separate wave packets, one centered 
about (XI) = (VI)(t - (t~» and the other centered 
about (xa) = (va)(t - (t~», where (t~) is the value of 
t~ when the centers of the packets are at the origin. If 
the choice (:Ii) = (P) is made, then from Eq. (90), 
IPol = I (P)I and the center of energy is stationary, 
that is i = 0 before t = 0 and after t = (t~). 

The time (t~) can be obtained by using a method 
originated by Wigner,u This method in essence 
compares the phases of the final wave packets evaluated 
at their centers to the phases of the initial wave 
packets evaluated at their centers. If 

AP •• «P.)/I(P.)I) 

= -(0' + "") . [(vI.)(EI/E) + (v2.)(E2/E)] 

where 
p. = (P.) + LW., 

(VI.) = (P.)/[(P.)2 + m~lt, 
(v2.) = _(P.)/[(P.)a + m:]t. (101) 

The expression for "1'2 is more cOl1lplicated than that 
for "1'1 since (VIc) and (va.) are complex quantities. 
However, in the limit [rjJ(mJ/ERl « 1, which covers 
most physical cases, products such as lal(rjJ/E~ or 
l""l(ra/ER ) can be neglected. Thus, Eq. (100) becomes 

LW •• «P.)/I(P.)I) 

= -(a + ",,). [(VI.) R(EI/E) + (V2.) dEalE)] 
X I(vl .) R - (va.) RI-\ (102) 

where use has been made of the expressions which are 
correct to order (ra/ER ), 

(vc) = (V.)R + i(vch, (103) 

(V1.)R = «PR)/(E1R», (Vac)R = -«PR)/(E2R», 
(104) 

f., = If.,1 exp (iot), (95) (vl.h = «P1)/(Em » + urjJ(mJ/(ER )] 

11 E. P. Wigner, Phys. Rev. 98, 145 (1955). X «PR)/(Em »«E2R)/(Em », (105) 
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(Vgc)z = -«P1)/(Em » - ![ra(ma)/(ER)] 

X «PR)/(Em»«ElR)/(EsR»' (106) 

(PR)(PI) = -!ra(ma)«ElR>(EsR)!(ER», (107) 

(ER) = (EIR) + (E2R) 

= [«PR»2 + mni + [«PR»2 + m:l1 
= ma + Da(mJ. (lOS) 

With these assumptions "P2 becomes 

"P2 = ! exp {i[(PR)r - (ER)(t - to) - Eoto]} 
.',a 

X exp [-!ra(ma)(t' - toll 

X f d-r daa(-r)b(a)h"aXs' 

x exp (i-r • {x - [(VIC) R(El!E) 

+ (vac)RCEa/E)]{t - t') - vOltO}) 

X exp (ia. {x - [(Vlc)R(E1!B) 

+ (vac)R(E2/B)](t - t') - voato}), (109) 

where from Eq. (7S) in this approximation 

t' = t - r l(v1c)R - (vac)RI-l • ClIO) 

From the definition of x from Eq. (20), it is clear from 
the exponents of Eq. (109) that "Pa is a function only 
of {Xl - (V1C)R{t - t')] and [X2 - (Vac)R(t - t')]. 
Therefore, "P2 represents a state which decays at 

(t') = t - (r) I (VIc)R - (vsc)RI-l, (111) 

into two separate wave packets, one centered about 
(xz) = (V2C )R(t - (t'» and the other centered about 
(Xl) = (V1C)R(t - (I'». Again at 1= (t') the final 
state wave packets are at the same positions as those 
of the initial wave packets at t = O. 

Just as for (I~), the time (to), 

(to) = t - (r)/(~), 

can be obtained from 

(112) 

h"a = Ihs'al exp (iP), (ll3) 

peE, Ea) "" P{Eo, ma) + [oP(Eo, ma)/oEo] 

X (VOl' -r + VOl' a). (114) 
This gives (to) as 

(to> = oP(Eo, ma)/oEo . (115) 

It is clear from Eq. (84) that this expression for (to) is 
valid only if 

sign, giving 

"PI = ! exp (i(por - Eot)lf"BXs' 
s' 

x f d-r daa{-r)b(a) exp [i-r· {x - vOlt~)l 
x exp [ia • (x - v02t~)1 

+ ! exp [i(por - Eot)]MB'a({P), Po)Xs' 
s'a 

f 
d-r daa(-r)b(a) exp [i-r. (x - vOlt~)] 

X exp [ia • (x - voat~)] 

"P2 = ! exp {i[(PR)r - (ER)(t - to) - Eoto]} 
s'a 

x MB,a«PC) , Po)x.J d-r daa(-r)b(a) 

x exp (i-r. {x - [(VIC)R(Eol/Eo) + (V2c)R 

X (E02/Eo)](t - t') - VOltO}) 

exp (ia. {x - [(Vlc)R(Eol/Eo) 

+ (V2C}R(Eoz/Eo)](t - t') - V02tO}) 
X --------~~~~~--~---=~ 

(117b) 

where Eq. (19) has been used to write!., as two terms 
with 

IB = _(211')2(EolE02/Eo) < (P), - (P)I (V) Ipo, -Po> 

(l1S) 
as the Born approximation term, and with 

M, «F) ~p) = _(211')2 (El ) (E2) 
sa' 0 (E) 

< (P), -(P)I (VF) la>(al (V) Ipo, -Po>; (119) 

as the matrix elements of the resonant terms. Also the 
choice IPI = IPol = I(P)I has been made. For initial 
energies near the resonance, the rate of change of the 
phases IX and P is primarily due to the resonant 
denominators. Therefore, ignoring the change of 
phase due to the matrix elements Ms'a and considering 
only the change of phase from the resonant denomi­
nators, Eqs. (97) and (l1S) become 

!ra(Eo)[1 - oDiEo)/oEo] 

- [Eo - ma - Da{Eo)][ora{Eo)/2oEol (116) (t~) = ___ ~ _____ ~~~~~.:t:..!-= 
[Eo - ma - Da{Eo)]2 + [ir a(Eo)J2 

The expressions for "PI and "P2 can be further simpli­
fied if the spatial extent of the initial wave packets is 
much larger than the interaction region. Consequently, 
to lowest order in -r and a, the matrix elements in 
/" and hs' a can be factored from under the integral 

(120) 
and 

(to> = !ra(mJ{[Eo - ma - Da(mJ]2 + [!ra(mJ]2} 1. 

(121) 
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If, as is usually assumed in similar calculations but 
which may be unwarranted, 

r,,(Eo) = ra(ma) = const, 

Da(Eo) = Dima) = const, 

then (t:) = (to) and (t~) is the Wigner time delay.3 
This is analogous to the result obtained from the 
differential equation with constant coefficients for a 
damped driven resonant cavity. Here "PI represents a 
pulse corresponding to the driving frequency which 
leaves the resonance region at (t~), and "Ps represents 
the subsequent decay (since (t~) = (to» of the reso­
nance following the departure of the driving force. 

If ra is very small, (ooc/oEo) and (oP/oEo) become 
very large. Consequently, the approximate expansions 
for the phases oc and p become invalid and (t~) and 
(to) are no longer sharply defined. Ohmura3 has 
shown that for such a case (t~) is of the order r;;l so 
that in contrast to the near equality of Eqs. (120) and 
(121) 

«to)/(t~» "'" (bra) « 1. (122) 

5. CROSS SECTIONS AND LIMITING CASES 

The probability that one of the outgoing wave 
packets is in a particular counter volume V, very large 
compared to the volume of the wave packets, is [see 
Eq. (86a)] 

pet) = (217)-6Iv dXI I dx2r-2 Tr Pt(XI ; x2), (123) 

where the trace refers to the spinor components and 
P,(XI; xs) are the diagonal elements of the density 
matrix for the outgoing particle 

P,(XI; Xs: x;; x~) 

=.! rW·dEoW.(Eo)("P1 - "P2)("PI - "Ps)t. 
8 JWl 

(124) 

The density matrix for the initial particle in the spin 
state s is then 

P8i = rW·dEoW.(Eo)"P(to)"Ptcto), (125) 
JWl 

where 

Pi(XI ; x2 : x;; x~) = .! P8i' (126) 
8 

If "P(to) is chosen to be an orthonormal set of spin 
states, then Eq. (125) implies 

I dXI I dxs Tr P.(XI ; x2) = ~ L:" dEoW.(Eo) = 1. 

(127) 
In general, in the calculation of pet) there is inter­

ference between thelB term and the other terms ofEq. 
(117), as pointed out in Blatt and Weisskopf,4 unless 
IB is small in comparison to the other terms. For 

simplicity this assumption is made along with the 
assumption that there is only one state la). The result 
is, after changing to the rand i variables, 

pet) = ~ dO(217)-SI d~ I dG I d~' dG'at(~')a(~) 
X bt(G')b(G)t5(~ + G - ~' - G')b[(~ - ~'). tOl] 

X r
W2

dE WeE )( IMs'a«P) , .00)1
2 

JWl O. 0 [E _ ma - DiE)]2 + [}raCE)]2 

exp [-ra«t') - (to»] IMs'aC(Pc) , .00)1 2 

+ _________ X_0~(P.....;:R~-_P...:e!..._+...:.._P~I) 

(E - (ER»S + [tra(maW 

X (;) ) - 2 Re.! dO(217)-2Id~ dG 
IVOI - vo21 88' 

X I d~' dG'at(~')a(~)bt(G')b(G)b(~ + G -~' - G') 

f.
W. dEoW.(Eo) exp [-tra«t') - (to))] 

X M!,aC(Pc) , Po)M.,,,«P) , Po) 
X 

Wl [E(~', G') - ma - DaCma) - tir,,(ma)] 

X [E(~, G) - ma - DaCE) + tiraCE)tl 
X 0(PR - PE + PI)d(P - PR + «ER) - E)(;)-l 

+ (~ - ~I). (VOl - VoS)(;)-l) exp {i[(P - PR)(r) 

+ «EE) - E)(t - (to» + (~- ~'). (VOl - vos)(to)]), 

(128) 
where 

E = Eo + ~ . VOl + G· Vos 

and dO is the solid angIe of the detector in the center­
of-energy system. The step function 0(PR - Pe + PI) 
is necessary because the terms involving "Ps are zero 
unless the contour shown in Fig. 1 includes the 
resonance singularity. The singularity is excluded 
when Pg exceeds the value where the singularity lies 
on the contour Cs . For small (ra/E~ the pole is near 
the real P' axis where the contour is essentially a 45° 
straight line. Thus for the singularity to be included 
within the contour, 

Pe S PR + PI = PR - ira I (VIc)R - (V2c)RI-I
. (129) 

In terms of the density matrix, the number of 
collisions/cms per incident particle N is given by the 
overlap integral of P.i(XYZ; XYZI) over a plane per­
pendicular to VOl for all Z = ZVOI and Zl = ZIVOl ' That 
is, N is given by 

N = ~ I dzlI dx Tr Ps;(XYZ; XYZI) 

= (217)-2I d~ I dG I d~' dG'at(~I)a(~)bt(G') 

X b(G)b(~ + G - ~' - G')b[(~ - ~I). tOI]' 

(l30) 
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where, for simplicity, it has been assumed that a(Of) 
and b( 0) are independent of s. The cross section is 
then obtained from Eq. (128) as 

du = P(t)N-I. (131) 

The usual S-matrix result is obtained from Eq. (128) 
by allowing t -+- 00. This gives the Breit-Wigner 
single-level formula 

du = ~ J.w1dEo W.(Eo) IMB,a< (p), Po)1
2 

dO. 88' WI [E - ma - Da<E)]2 + [tra(E)]2 

(132) 
as expected. 

For small ra«t') - (to» there are several limiting 
cases depending upon the momentum spread of the 
wave packets and the energy spread of W.(Eo) relative 
to ra. If ra« (1/~), then from Eq. (122) it follows 
that PE < Po so that the elastic pole is included within 
the original contour when the resonance pole is 
included. Therefore for this case, the step function in 
Eq. (128) can be taken as one. For energies near the 
resonance 

P - PR + «ER ) - E)(~)-l 

,.....,ra , ra« (l/~); (133a) 

,....., r!(~) -l[ m~ + m~ ] 
(P2 + m~)! (P2 + m~)! ' 

ra »(1/~). (133b) 

In the limit of small r a this term can be ignored when 
compared to (Of - Of')· (VOl - V02)(~)-I. Also, W.(Eo) 
and the matrix elements in Eq. (128) can be considered 
as slowly varying in the vicinity of the resonance. For 
WI and Wa bracketing the resonance energy, the 
remaining integrals are to lowest order 

f
WI 1 

Wl dEo (E _ (E
R

»2 + [traCma)]2 "-' 21Tr;l(m,,), 

(134) 

fWl

dE 
exp [(P - PR)(r) + «ER) - E)(t - (to»] 

Wl 0 (E - (ER»2 + [traCma)]2 

'" 21Tr;I(ma) exp [-tr a(ma)«t') - (to))]. (135) 

Subsitution for these integrals into Eq. (128) gives the 
familiar form for the cross section 

du 
dO. = f.; W.«ER»21Tr;I(ma) IM.,aC(PR),Po)12 

X {I - exp [-ra(ma)(t') n, (136) 

where to the lowest order in r a , 

(~) '" I (VIc)R - (V2c)RI ,....., IVOI - v021, 

and where (t') is the retarded time or time at which 

the resonant state decays and (to) has been neglected 
since 

(t') » (~/I(VIC)R - (V2c)RI). 

Another limiting case occurs when ra» (1/~). 
Equations (120) and (121) now apply and in the 
asymptotic limit PE -+- Po. Therefore from Eq. (129), 

Po::; PR - tra I (V1c)R - (V2c)RI-I, (137) 

or equivalently 
(138) 

so that the terms of Eq. (128) that arise from "P2 are 
zero when Po exceeds the value where the resonance 
singularity lies on the contour C2 • Also in this limit 
Eq. (133b) applies, but (Of - Of'). (VOl - V02)(~)-1 is 
now neglected when compared to [P - PR + 
«ER ) - E)(~)-l]. The interference term therefore 
vanishes and 

X 
X 0(PR - Po + PI) exp [-raW') - (to))]} 

(E - (ER »2 + [tra(ma)]2 
(139) 

For large t Eq. (111) can be expressed as 

(t') - (to) '" [1 - I(vl) - (v2)1 ] (r) . 
I(VIc)R - (V2c)RI I(vl) - (v2)1 

(140) 

Since from Eq. (137) it is apparent that I (VI) - (V2) I < 
I (VIc)R - (V2c)RI, it is clear that "Pa or the last term of 
Eq. (139) can contribute only over a limited range of 
(r). This range can be estimated using the fact that the 
smallest value for (t') - (to) occurs when both the 
singularity at E' = E and E' = Ea + Da - itra lie 
on the contour C2 • Equation (137) then can be used 
to show that 

I(vlc) R - (vac) RI - I(vl) - (V2) I 

tra [m~ m~ ] = ! + (141) 
I(vl) - (Va) I (p~ + m~) (p~ + m~)! . 

Consequently, ra«t') - (to» can be expressed as 

r a«t') _ (to» = r!( ma)( r) 
21(vl) - (va) 13 

X [ m~ + m~ ] (142) 
(p~ + mD! (p~ + m~! . 

In order that Eq. (117) be consistent with the fact 
that various (l/(r» contributions have been neglected 
in deriving the scattering solution, the exponential 
terms must be of order one where these contributions 
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TABLE I. Values for (r) in units of m;1 such that 
r.«t') - to) = 1. 

Mass (r) r. 
Resonance MeV Decay mode m-1 

'11 MeV 

N:'. 1236 fT,P 13 120 
y* 1405 fT,:E 41 35 
p 765 fT,fT 171 124 
.p 1019 K,K 68 3.3 
f 1253 fT,fT 1092 118 

are negligible. It is clear from Eq. (142) that this 
condition is always satisfied in the high-energy limit 
Po -- 00, po < (PR )· 

In Table I, the values of (r) corresponding to 
ra«t') - (to» = 1 are given for various high-energy 
resonances. Whereas retaining the eXRonential terms 
as compared to the (1/(r» terms for the Baryon 
resonances may be of borderline validity, for the 17 

meson resonances it plays a dominant role if a second 
interaction takes place well outside the original 
interaction region but inside of the range 

(r) = 21(vI) - (v2)1 3 r;;2(ma) 

x [m~(p~ + mD-! + m~(p~ + m~)-!]-l. (143) 

The expressions 1jJI - 1jJ2 given in Eqs. (114) and (115) 
therefore represent a better approximation to the 
exact solution of the scattering problem than is 
obtained with the standard approach and may prove 
of value when taking into account final state inter­
actions. It is interesting to note that any final state 
interaction that involves the resonant parts of 1jJl - 1jJ2 

is peripheral because from Eq. (117) 

1jJI - 1jJ2"""; 1 - Ae-br, 

which tends to zero for small r. 

6. DISCUSSION 

In the interest of simplicity it was assumed above 
that there was only a single state la). For a relativistic 

theory there would in general be at least the other 
state, say la_), the negative energy state of 10+). The 
propagator for this state becomes 

! lal)(a". 
1 E - EQI - Dal + lira 

= ! (Do + E.+ ~al + lira) lal)(:II, (144) 
1 (E + lira) - (Ea+ + Da) 

since iDa and ra are presumably invariant to charge 
conjugation. Near the resonance this can be written as 

L lal)(a l l . 

I E - Eal - Dal + l(raI2) 

~ 2ma la+)(a+1 ,(145) 
- (E + lirSI - (Ea+ + DaY 

where, as before, terms of order (r al ER ) are neglected. 
Consequently, the cross sections have a Lorentz shape 
rather than the shape of a Breit-Wigner resonance. 

The formalism developed in this paper is easily 
extended to include closely coupled unstable states as 
well as isolated resonances by adopting the projection 
operator techniques developed by Feshbachl2 and 
recently extended by Mower.13 The generalization is 
made simply by using the appropriate diagonal 
elements of the Green's function rather than those 
defined by Eq. (60). 
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~ new and simp~e deriv~tio~ of the cluster expansion for the free energy of an Isin model with 
arbitrary range of mteractlOn IS presented. The proof explicitly isolates the dependen~ of the free 
~nergy <;>n the stre!l~ of individual interaction bonds. Several points of principle are discussed An 
illustratIVe appendix gives simple applications. . 

I. INTRODUCTION 

T!fE tert~ "cluster expansion" has several meanings 
. In the hterature. Roughly speaking, let us distin­

gUlsh between (a) perturbation expansions in powers 
of the interaction strength, the tenns of which may 
be represented graphically as linked clusters, and 
(b) nonferturbative expressions giving the physical 
propertIes of an ensemble in tenns of those of its 
constituent subensembles. There are, of course, con­
nections . bet~een these two types of expansions, the 
latter beIng In some sense partial summations of the 
former (see below). It is with cluster expansions of 
the type (b) that this paper is primarily concerned. 

.Past derivations of the cluster expansion for the 
ISIng model have followed two separate lines. The 
first approach, due independently to Rushbrooke and 
Morga?1 and to Elliott and Heap,2 was motivated by 
~he de~Ire to treat the "randomly dilute" Ising model, 
In whIch a proportion, p < 1, of lattice sites are 
magnetically active and the remainder are inert. 
It is postulated that the active sites are distributed 
randomly, with no reference to energetic considera­
tions. At sufficiently low concentrations p, the prob­
able distribution of active sites looks like a collection 
of small magnetic clusters of various sizes and 
configurati~ns, . each isolated from its neighbors by 
nonmagnetic SItes. Under these circumstances it is 
reasonable to expand the thermodynamics as a sum 
of contributions from isolated magnetic clusters each 
multiplied by an "occurrence factor," involving~ and 
the geometry of the perfect lattice. In this approach the 
occurrence factor for a given cluster is a cumbersome 
function of p, since one must require not only that all 
the cluster sites are active but also that all the neigh-

bori~g sites, with which the cluster might interact, 
are . I~ert. After some labor the expansion can be 
exhlblt~d as a power series in p. The meaning of this 
~xpanslOn for large p, particularly in the limit p = 1, 
IS not clear from the derivation. For large p the 
occurrence of isolated finite clusters becomes most 
improbable. In particular, for p = 1 the occurrence 
factor for every cluster other than the perfect lattice 
itself is rigorously zero.3 

To clarify this situation, Brout and Klein4.5 and 
la~er Rushbrooke6 took an entirely different approach. 
~lgh-tem~erature.expansions7.8 in powers of fJ = l/kT 
tlmes the Interactlon potential had been in existence 
for some time. It proved possible to associate a 
concentration dependence with each of the tenns in 
this expan~ion and then to sum all terms of given 
co~ce~tratlOn ~ependence, thus rederiving the power 
senes In p. ThIS second derivation, while free of the 
conceptual difficulties of the first, is combinatorically 
quite complicated in a way that tends to obscure the 
appearance of the thennodynamic functions of the 
magnetic clusters. 

The present derivation works for p = 1 but uses a 
~agneti~ field and an interaction streng~h varying from 
SIte to SIte and from bond to bond, respectively. The 
free energy is t~us exhibited in its functional depend­
ence on each SIte and bond. The derivation holds for 
a~bitra~ range of interaction. The result emerges 
dIr~ctly In tenns of the cluster free energies. It is easy 
to Introduce powers of p appropriate to the random 
dilution problem into the p = 1 fonn of the free 
energy. 

Section II presents the meat of the derivation. The 
result is discussed in Sec. III. Calculations of previous 

8 Each inert neighbor carries a factor (1 - p), which vanishes at 
• R P = 1. Only the perfect lattice lacks inert sites. 

esearch supported by National Science Foundation Grant 'M W Kl . d No. NSF GP 4937. ~ . . em an R. Brout, Phys. Rev. 131,2412 (1963). 
t National Aeronautics and Space Administration Fellow R. Brout, Phys. Rev. 115, 824 (1959), provides background for 
1 G SR' Ref. 4. 

. . ushbrooke and D. J. Morgan, Mol. Phys. 4,1(1961); : G. S. R~shbrooke, J. Math. Phys. 5, 1106 (1964). 
se~ ~s~ DEl Morgan and G. S. Rushbrooke, ibid. 4, 291 (1961). For a hst of these references see G F NeweIl and E W 
264 (i9' . lott and B. R. Heal?,.Proc. Roy. Soc. (London) Al65, MontroIl, Rev. Mod. Phys.2.5, 353 (1953): . . • 

62), also, B. R. Heap, IbId. 82., 252 (1963). 8 G. Horwitz and H. B. Callen, Phys. Rev. 12.4, 1757 (1961). 
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authors are resketched from our point of view in an 
Appendix. 

We wish to emphasize that our result, Eq. (21), the 
cluster expansion in powers of p, is identical to that 
derived by previous authors. 1.2. 4-6 Only the proof is 
different. Methods very similar to those we use have 
been employed in other contexts by Kubo, Strieb, 
Callen, and Horwitz.9 

n. THE DERIVATION 

Use numerical arguments 1,2,· .. to refer to the 
N sites of the Ising lattice. It is not necessary at this 
stage to specify the lattice geometry. Write the Ising 
Hamiltonian H as 

-PH = ! b(I),u(1) + ! v(12),u(1),u(2), (1) 
1 (12) 

where b(1) is the dimensionless external magnetic 
field at the site I, v(12) is the dimensionless interaction 
strength between sites 1 and 2, and 

! 
(12) 

is to be read as the sum over all interacting pairs I, 2. 
The dynamical variable ,u at each site is restricted to 
the values ,u(1) = ±l. We emphasize that b(l) and 
v(12) are functions over sites and pairs of sites, 
respectively. In the particular case of uniform magnetic 
field and nearest-neighbor interactions 

b(l) = b, v(12) = neighbors, (2) 
{

V for 1 and 2 nearest 

o otherwise. 
The free energy F of the model is 

-PF = W = In Tr exp (-pH), (3) 

where the trace is over the two values of each operator 
,u. Now, any operator A satisfying A2 = 1 as a mini­
mum equation obeys 

exp (IXA) = cosh 1X(1 + A tanh IX) (4) 

for any number IX for which the operator exponential 
is well defined. Use (4) to rewrite W: 

W= Wo + WI (5) 
with 

Wo = ! In 2 cosh b(l) + '5' In cosh v(12) (6) 
1 (ill 

and 

W1[s, t] = In [2-N Tr 1f (1 + ,u(l)s(l» 

X IT (1 + ,u(2),u(3)t(23»J, (7) 
(23) 

where 
s(1) = tanh b(I), t(23) = tanh v(23), (8) 

• R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962); B. Strieb, 
H. B. Callen, and G. Horwitz, Phys. Rev. 130, 1798 (1963). We are 
grateful to the referee for bringing these references to our attention. 

and the functional dependence of WI on the set of 
variables s(I), t(23) has been indicated. Observe that 
expansion of the multiple product in (7) produces a 
power series in the operators ,u. The trace of any term 
which contains an odd power of one or more of the 
operators ,u(1) is zero. The relation 

W1 [s, 0] = 0 (9) 

is a direct consequence of this important property. 
What, now, is the structure of W1 [s, t]? 

W1 [s, t] may be regarded as the result of the opera­
tion, 

W1 [s, t] = exp [! t(12) _t5_J W1 [s, fj /l=O' (10) 
(12) M(12) 

This is just a formal way of writing the Taylor 
expansion10 of WI in the t variables. It is convenient 
to regard (10) as a multidimensional translation 
operation: 

where 

W1 [s, t] = IT T(12)W1 [s, f], 
(12) 

(11) 

T(12) = exp [t(12) t5/M(12)] (12) 

and it is left implicit that the barred variables are to 
be set to zero after differentiation. All the operators 
T(12) commute. Note that every term in the expansion 
of [T(12) - I]W1 [s, f] contains one or more powers 
of t(12). Thus, the separation, 

T(12) = I + [T{l2) - 1] 

isolates those terms which do not depend on v(12) 
from those which do. 

We now assert that the development of WI in 
!:l.T = (T - 1) is the cluster expansion: 

W1[s, t] = IT [1 + !:l.T(12)]W1[s, f], (13) 
(12) 

!:l.T(12) = T(12) - l. (14) 

The general term in the expansion of (13) is just a 
product of !:l.T factors for a certain set, G, of inter­
acting pairs: 

IT !:l.T(IX). 
«eo 

A simple graphical representation is achieved by 
drawing onto the labeled lattice of sites those bonds 
IX contained in G. Every such graph appears once and 
only once in (13). See Fig. 1 for examples. Many of 
the terms in (13) correspond to graphs having two 
or more disconnected parts. We now prove the follow­
ing proposition: The contribution to (13) of every 

10 Equations giving Ising thermodynamic functions as power 
series in t = tanh 11 have been given, for example, by T. Oguchi, J. 
Phys. Soc. Japan 6, 31 (1951), and S. Katsura, Progr. Theoret. Phys. 
(Kyoto) 20, 192 (1958). Such expansions are in a sense rearrange­
ments of those given in Refs. 7 and 8. Equation (10) can be used 
as a basis for their derivation. 
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:1 w I~: 
FIG. 1. Graphs in the ex-

1'-'2 pansion of Eg. (13). Graphs 
(a) and (c) are connected. 

6T(l2) 6T(l2)6T(34) M(l2)6T(23) Graph (b) is disconnected 
and does not contribute to 

(0) (b) (c) the free energy. 

disconnected graph is zero.ll Consider a disconnected 
term, 

IT ~T(oc) IT ~T(P)W1[S, f], 
«eOl Pe02 

where no bond in G1 shares a site with a bond in G2 • 

To make this more explicit, let F1 and F2 be the set of 
end points of the bonds in G1 and G2 , respectively. 
F1 and F2 are disjoint. Notice that the f variables 
associated with neither G1 nor G2 may be set to zero 
immediately. Now evaluate W1 [s, f] by (7). The trace 
factors. The logarithms of the factors add. The p,'s 
associated with sites in neither Fl nor F2 cannot be 
paired. So, by a logic parallel to that leading to (9), 

W1[s, f]lo = W1[s, f; G1] + W1[s, f; G2], (15) 

where the bar on the left indicates that f = 0 for bonds 
in neither G1 nor G2 • The quantities on the right are 
defined by 

W1[s, f; G] = In [2-" Tr IT (1 + p,(I)s(I) 
1eF 

X IT (1 + P,(2)P,(3)t(23)]. (16) 
(23)eO 

The trace in (16) is restricted to the n sites contained in 
F. W1 [s, t; G] is just the nontrivial part of the free 
energy of an Ising model containing only the sites in 
F and the bonds in G. Equation (15) expresses the 
additivity of the free energy of noninteracting sub­
systems. Since 

~T(oc E G1) W1[s, f; G2] = ~T(P E G2) WI [s,f; G1] = 0, 
(17) 

the proposition is proved. Thus, 

W1[s, t] = ~ IT ~T(CX)W1[S, fj, (18) 
connected 0 "eO 

which shows the basic cluster property of the free 
energy. The term, C[G], associated with each graph 
G contains the total contribution of the group of 
bonds in G acting together; i.e., the term is present for 
any dilute Ising model containing all the bonds in G 
but vanishes as soon as anyone of the bonds in G is 
removed. 

Equations (1), (5), and (18) constitute the cluster 
expansion for the undiluted Ising model with arbitrary 
strength and range of interaction. We now complete 
the circle12 by pointing out that the contribution to 

11 This proposition ensures that for an interaction of finite range 
the ratio F/ N is finite as N ->- 00. i.e.. that the free energy is 
extensive. 

11 See Sec. III (i). 

WI of each graph G is expressible as a sum of free 
energies of "mutilated" Ising models, in which the 
only bonds are in subsets of G. Notice that 

W1[s, t; G] = IT T(OC)W1[S, f] (19) 
«EO 

is a special case of (11). Thus, each term in (18) can be 
written as 

C[G] = IT ~T(OC)W1[S, f] = ~ (-ltyW1[s, t; y], 
«EO v'O 

(20) 
where the sum has one term for each subset, y, of G 
and ny is the number of bonds in G but not in y. For 
small clusters W1 [s, t; y] is easy to evaluate via (16) or 
other available methods. Then (20) expresses con­
veniently the contribution to the free energy of the 
graph G. 

The extension to the randomly dilute system is now 
straightforward. We follow other authors1.2.4-6 in 
arguing that for large N it is possible to realize the 
"randomly dilute" system described in Sec. I by 
assigning to each site independently a probability p of 
being active and correspondingly a probability (1 - p) 
of being inert. Any cluster of n labeled points then 
has a chance p" of surviving intact a dilution of the 
lattice from p = 1 to some concentration p < 1. 
Thus the contribution of each graph G" having n 
sites as bond endpoints must be decreased by a factor 
p". The cluster expansion then reads 

-PF = W = P ~ In 2 cosh b{l) 
1 

+ p2 ~ In cosh v(12) 
(12) 

00 

+ ~ p" ~ IT ~T(CX)Wl[S, f], (21) 
,,=2 an «eOn 

connected 

which gives the free energy of the randomly dilute 
Ising model in an arbitrary external field and with 
arbitrary interaction range and strength. 13 The 
restriction to uniform magnetic field and, for example, 
nearest-neighbor interactions is direct. Some simple 
applications are presented in the Appendix. 

ID. DISCUSSION 

(i) The skeptical reader will have observed a certain 
circularity in the argument for p = 1. Equation (13) 

18 There is a hidden assumption here. Equation (21) is actually 
a rigorous evaluation of the average of W over an ensemble of 
dilute Ising models characterized by a site occupation probability p. 
The identification of (21) as the free energy ofa typical Ising model 
of concentration p rests on two assertions: (i) that the peaking of the 
concentration distribution is such that (21) gives· the mean free 
energy ofIsing models with concentration p. and (ii) that the fluctua­
tions of free energy among Ising models of concentration p are 
sufficiently sman so that a typical one will have a free energy near 
the mean with high probability. We do not attempt to justify these 
assertions. 
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expresses T in terms of (T - 1), while (20) gives 
(T - 1) in terms of T. In effect, the substitution of 
(20) into 03) expresses W1 [s, t] as W1 [s, t] plus a set 
of terms summing to zero, involving the free energy 
of Ising models with one or more missing interaction 
bonds.14 What is the significance of an "expansion" 
which is simply a rearrangement of a large number of 
extraneous terms adding to zero? We have indicated 
after (18) that the cluster expansion in our form does 
have the significance of isolating the contribution 
of each site and bond to the free energy. Suppose a 
given interaction bond v(I2) is deleted from the 
Hamiltonian (1). What is the decrease in free energy? 
In principle the answer is obtained by adding to the 
trivial term, In cosh v(12), the sum of the contributions 
to (18) of all graphs in which the bond v(12) occurs. 
Of course, this computation is not easy in practice. 
The free energy associated with a given site can be 
calculated adalogously. Part (i) of the Appendix 
should clarify these points. 

(ii) A more subtle question concerns the convergence 
of (21), particularly at p = 1. When the number of 
sites, N, is finite, there is no difficulty. It is the present 
authors' belief that no one has been able to discuss 
the N _ 00 limit of the cluster expansion with any 
degree of mathematical rigor .15 

(iii) Another mathematical question concerns the 
convergence of the translation operator T(12). When 
t = tanh v approaches ± 1, one may well worry that 
the radius of convergence of such forms as In (1 + t) 
is being approached. Again, there is no trouble 
for finite N: one may always work for very weak inter­
action, for which the Taylor expansion is certainly 
valid, and then invoke the analyticity of W in inter­
action strengths to extend the result. The N _ 00 

limit remains obscure. 
(iv) An interesting conceptual point emerges in the 

comparison of our result with that of Ref. 1. Our 
analysis isolates individual bond contributions, while 
Rushbrooke's analysis is based on the contributions of 
isolated point clusters of magnetic sites. Let us restrict 
ourselves to a square plane lattice with nearest­
neighbor interactions and develop an apparent para­
dox. Refer to Fig. 2. Both 2(a) and 2(b) appear as 
admissible graphs in our formulation. Only 2(b) is an 

1& It is just this feature which we noted in Rushbrooke's terminology 
in Sec. I and Ref. 3. 

11 R. J. Elliott, B. R. Heap, D. J. Morgan, and G. S. Rushbrooke 
[phys. Rev. Letters 5, 366 (1960») pr\lsented an argument showing 
that the critical concentration P. below which long-range order is 
impossible no matter how low the temperature, is the same for the 
Heisenberg and Ising models, depending only on lattice structure. 
This proof was based on the susceptibility expansion, i.e., the 
second derivative of (21) with respect to the external field. In 
a critique of this proof Rushbrooke and Morgan [Mol. Phys. 6, 477 
(1963») suggest that the susceptibility expansion for the special case 
b = O. T = 0 is "ot uniformly convergent. 

Fro. 2. Two p' graphs. Only (b) is a 
point cluster in the analysis of Ref. 1. 

'..-..,2 
4 ......... 3 

(al 

'02 

4 3 

(bl 

admissible point cluster for Rushbrooke. Since sites 
1 and 4 are nearest neighbors, they must interact in 
Rushbrooke's formulation. The paradox is that 
W1 [s, t; 2(a)] for the graph 2(a) seems to appear in 
our expansion but not in Rushbrooke's. The resolution 
is that both graphs contribute to order p' of our 
cluster expansion. When contributions are calculated 
according to (20), there is a cancellation between them 
in which W1 [s, t; 2(a)] disappears. The identity of our 
result with previous ones guarantees that this cancel­
lation is a general feature. In our formulation there 
will be cancellations between different graphs Gn for 
the same value of n. This dead wood is the price we 
pay for the conceptual clarity of being able to exhibit 
explicitly individual bond contributions. Part (i) of the 
Appendix should make these remarks more concrete. 

(v) At b = 0 there is a simplification of the cluster 
expansion. Graphs with one or more free ends16 do 
not contribute. This is easy to see: let the free site be 
1 and its single connecting bond be t(12). Then, since 
s(1) = 0, the ",(1) in ",(I)",(2)t(12) can never be paired 
and 

(T(12) - I)W1 [s, f] = 0 (22) 

regardless of what other bonds the graph contains. 
(vi) Calculations. Once the interaction v(12) is 

made translationally invariant, all graphs of similar17 
geometry contribute identically. The contribution of a 
given graph type is, of course, the product of a single 
graph contribution and an occurrence factor. See 
Appendix (ii) and (iii) for some examples. In actual 
computation our form, (21), of the cluster expansion is 
not significantly less cumbersome than others. IS We 
do feel that the derivation is both simple and trans­
parent. 

(vii) Note finally that Eq. (18) allows treatment of 
what we may call the "bond dilution" problem, in 
which bonds instead of sites are removed on a random 
basis. For a concentration p of bonds (all sites 
remaining present), 

Wo = I In 2 cosh bel) + p I In cosh v(12). (23) 
1 (12) 

Wl is given by the same graphical sum as in (21), only 
with n reinterpreted as the number of bonds in the 
graph Gn • 

18 A free end is a site which serves as endpoint for one bond only. 
17 It is only neighbor relationships which count here, not bond 

angles. See Appendix, part (ii). 
18 By comparison with Ref. 1, for example. we have (T - 1) 

factors instead of (1 - p) factors. 
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APPENDIX. SAMPLE CALCULATIONS 

(i) The Triangle Problem: Consider an Ising model 
consisting of three sites, I, 2, and 3, and three bonds, 
0(1, 0(2, and o(s. See Fig. 3(a). Since N = 3 is small here, 
the W given by Eq. (21) can only be interpreted as the 
ensemble average described in footnote 13. The calcu­
lation of WI involves seven graphs, Fig. 3(a) itself, 
three graphs with bond pairs, and three with single 
bonds. Label the graphs by bonds contained and use 
(20). Typical contributions are 

Cf123] = W1[l23] - W1[I2] - Wl[13] - W1[23] 
+ W1[I] + W1[2] + W1[3], 

CfI2] = W1[I2] - W1[I] - W1[2], 
C1[l] = W1[I], (AI) 

where sand t dependences have been suppressed. 
From (16), 

W1[I23] = In [1 + SlS2tS + Slt2sS + t1S2SS 
+ t1t2s1S2 + t2tSS2SS + t1tsslSS + t1t2tS], 

W1[I2] = In [1 + slt2sS + t1s2SS + t1t2S1S2], 
W1[I] = In [1 + t1S2SS ]' (A2) 

where 
Si = tanh b(i), t, = tanh v(O(j). (A3) 

If for simplicity we allow bond strengths and fields to 
become equal, Eq. (21) reads 

W = 3p In 2 cosh b + 3p21n cosh v + 3p2Wl[I] 
+ p3(Wl[I23] - 3W1[I]). (A4) 

Note that the non-point-cluster contribution, W1[I2], 
has disappeared19 from (A4), as discussed in Sec. 
III(iv). 

Suppose now that bond 0(3 were absent. See Fig. 
3(b). The graphs, [123], [13], [23], and [3], would give 
zero. Instead of (A4), 

W= 3pln2coshb + 2p2 In cosh v + 2p2Wl[l] 
+ p3(Wl[I2] - 2W1[I]). (A5) 

Note that W1[l2] does appear here. The difference, 
(A4)-(A5), is that part of the free energy due ex­
clusively to the presence of bond O(s. 

(ii) The Free Energy for Low Concentration: Let 
us calculate the cluster expansion (21) for plane 
square and simple cubic nearest neighbor Ising models 
through terms in p3. Contributing graphs are shown in 
Fig. 4. Graphs 4(b) and 4(c) contribute identically. 

18 This cancellation holds even when bond strengths are unequal. 

FIG. 3. An Ising model consisting of 
three points and (a) three bonds or (b) two 
bonds. 

G l G, ,V \:2 

(a) 

(a) (b) 

FIG. 4. Free energy graphs 
of orders pO [graph (a)] and p3 

____ ----, [graphs (b) and (c)] for plane 
• square and simple cubic 

(b) (e) nearest-neighbor lattices. 
Graphs (b) and (c) contrib­
ute identically. 

Cf4(b)] = Wl[4(b)] - 2W1[4(a)], 
Cf4(a)] = WI [4(a)]. (A6) 

Wl[4(b)] = In (1 + 2ts2 + t2S2), 
W1[4(a)] = In (1 + ts2). (A7) 

Occurrence factors for 4(a) and 4(b) are !zN and 
!z(z - I)N, respectively, where z is the number of 
nearest neighbors. Thus, through order p3 

WIN = pin 2 cosh b + !p2Z 

X In (cosh v + tanh2 b· sinh v) + !yz(z - 1) 
X [In (1 + 2 tanh2 b . tanh v + tanh2 b . tanh2 v) 

- 21n (1 + tanh2 b . tanh v)]. (AS) 
This result agrees20 with Ref. 1. 

(iii) Ring Graphs: Consider an Ising model with 
b = 0 and arbitrary range of interaction. As shown in 
Sec. III(v), graphs with free ends do not contribute. 
Ring graphs are defined as those graphs consisting of 
a single closed loop of bonds, i.e., at each vertex of a 
ring graph two and only two bonds meet. Without 
discussing the relevance of this set of graphs,21 we 
show, as a demonstration of technique, that it is 
possible to go some way towards evaluating its 
contribution to the free energy. Consider the set of 
ring graphs with n bonds and (thus) n vertices. Only 
the leading term of (20) fails to vanish. A typical 
graph, labeled now by its vertices taken in serial order 
around the perimeter, gives 

Cn[I •.• n] = In (1 + t(12)t(23) ••. ten - 1, n». (A9) 

The total n-bond ring contribution to the free energy 
Wn ring is obtained by summing (A9). The sum on 
graphs is converted to a sum over vertex sites: 

Wnring = pn !' Cn[l'" n], (AIO) 
2nl.···.n 

where each of the arguments is summed over all 
lattice sites. The prime on the summation restricts the 
vertices, 1,"', n, to distinct sites. The symmetry 
factor I/2n compensates for multiple counting. The 
result (AIO) has been derived elsewhere.22 

20 Actually, it is the susceptibility X which is calculated in Ref. 1. 
The following equivalences facilitate comparison: 

dOWI 4kT - = -X (Ref. I), 
db- ~-o glpO 

V = K (Ref. I) = J/2kT (Ref. 1), 
b = gPH/2kT (Ref. I). 

n This is discussed in a particular context in Ref. 4. 
It Reference 4, Eq. (10). The restriction on the summation is 

omitted there as part of the approximation scheme being used. 
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Pade Approximant and Partial-Wave Integral Equation* 

D. MASSON 
Department of Mathematics, University of Toronto, Toronto, Canada 
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The Pad6 approximant is applied to the partial-wave integral equation and is shown to yield approxi­
mate solutions which satisfy exact two-body unitarity and which converge to the NI D solution. 

I. INTRODUCTION 

THE Pade approximant1 can be used to make 
approximate analyti~ continuations of the power 

series expansion of a function. For rational functions 
or functions whose power series expansion is a series 
of Stieltjes1- 3 the Pade approximant can be shown to 
"converge" to the function as the degree of the Pade 
numerator and denominator tend to infinity:' Fortu­
nately, some functions of physical interest can be 
represented as series of Stieltjes, for example, the 
forward scattering amplitude1 and partial-wave scat­
tering amplitude for potential scattering5 as a function 
of the potential strength. Here we demonstrate the 
convergence of the Pade for a relativistic model. We 
consider the s-wave amplitude for the scattering of 
two spinless particles as a function of the strength of 
the left-hand discontinuity. We show that it is related 
to a series of Stieltjes and hence the Pade can be used 
as an alternative to the N/ D method8 for solving the 
partial-wave integral equation. A natural approximate 
solution to the problem is thus given by the (N, N) 
Pade, which satisfies two-body unitarity and which 
would yield the exact amplitude if the left-hand cut 
consisted of N poles. 

• Supported in part by the National Research Council of 
Canada. 

1 G. A. Baker, Jr., in Advances in Theoretical Physics, K. A. 
Brueckner, Ed. (Academic Press Inc., New York, 1965), Vol. I, p. 1. 

2 H. S. Wall, Analytic Theory of Continued Fractions (D. Van 
Nostrand Company, Inc., Princeton, New Jersey, 1948), Chaps. 
XVII and XX. 

a A function fez) is a series of Stieltjes (Ref. I) if fez) = 
f: [d4>(u)/(I - uz)] has a power series expansion fez) = "i:.fnzn, 
where4>(u) is a bounded nondecreasing function taking on infinitely 
many values in the interval 0 S u < 00. 

C The precise statements of convergence which we use are: (I) 
If fez) is a ratio of polynomials of degree m in the numerator and n 
in the denominator then the (N, M) Pade is equal to fez) if N ~ n 
and M ~ m. (2) If fez) is a series of Stieltjes and has a finite radius 
of convergence, Baker (Ref. I) proves that lim (N. N + j) Pade 

N ..... oo 
converges to fez) when z is not a singular point and j ~ -1. By 
considering fez) = f(O)/[1 - zg(z)], one can show that g(z) is a 
series of Stieltjes and thus extend the theorem to arbitrary j. 

6 S. Tani, Phys. Rev. 139, BIOll (1965). 
• G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 

n. THE PADE APPROXIMANT 

For the elastic scattering of two spinless particles, 
the s-wave amplitude 

T = ei6
(8) sin ~(s)/ p(s) (1) 

is a real analytic function of s (the square of the total 
center-of-mass energy) in the complex plane cut along 
the real axis, where p is a kinematical factor. We 
assume that for sufficiently small values of A, T 
satisfies the dispersion relation 

T(A, s) = AB(s) + 1: 5. 00 

1m ,T(A, s') ds', (2) 
7T 8R s - s 

where 

B(s) = 1: i 8L 

~(s') ds', (3) 
7T -00 s - s 

the left-hand cut contribution to T is given. In the 
two-body unitarity approximation, along the right­
hand cut 

1m T(A, s) = p(s) IT(A, s)12. (4) 

Equation (2) can then be considered as a singular 
nonlinear integral equation for T(A, s). We propose to 
solve Eq. (2) by first iterating to get 

00 

T(A, s) = I ti(sW (5) 
i=1 

and then forming the (N, M) Pade approximant to the 
power series (5) 

[T(A)]N.M = PN.M(A)/QN.M(A), (6) 

where PN.M and QN.M are polynomials in A of degree 
M and N, respectively, with coefficients which are 
functions of s and determined from the condition that 
(6) have the same power series expansion as (5) up to 
and including the term AN+M+1. 

m. PROOF OF UNITARITY AND 
CONVERGENCE 

We now prove the following: 
(1) [T(A)]N.M satisfies exact two-body unitarity for 

N~M. 

512 
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(2) In the limit as N and M become infinite 
[T(A)]N.M is equal to T(A). 

To prove (1) we need only know that the (N, M) 
Pade is unique.2 Along the right-hand cut unitarity 
tells us that 1m [lIT(A)] = - p. The uniqueness of the 
Pade tells us that Aj[T(A)]N.M = [A!T(A)]M-l.N' and 
for M ~ N, 1m AfT(A) = 1m fA/T(A)]M-l.N' Com­
bining these three statements we have, for N ~ M, 

1m [T(A)]N.M = pes) I [T(A)]N.MI 2
• (7) 

To prove (2) we use a modified version of the NI D 
method of solution due to BalF which reduces the 
solution of Eq. (2) to the solution of a Fredholm 
integral equation of the Hilbert-Schmidt type. 

We write T = NID with 

A rBL 

N(s) = AB(s) + :; J_oods'K(s, s', so)N(s') (8) 

and 

D(s) = 1 _ (s - so)f
OO 

N(s')p(s') ds' (9) 
7T 8R (s' - s)(s' - so) , 

where 

K( 
, ) B(s')(s' - so) - (s - so)B(s) pes') 

s,s, So = 
s' - s (s' - so) 

(10) 
and So is an arbitrary point less than SR' 

Since the kernel for the integral Eq. (8) is of the 
polar type,8 it can be transformed into one with a 
symmetric kernel, 

, , (p(S) (s' - so»)! k(s, s ; so) = K(s, s ,so) - , (11) 
pes') (s - so) 

and if sufficiently well behaved has a denumerable set 
of real eigenvalues Ai(so) which we assume to be non­
degenerate. Nand D can then be expanded in terms 
of the eigenfunctions and eigenvalues of the kernel. HI 

One gets 

N(s) = AB(s) + ').2 ~ Bi(so)Ui(s, SO)f)'i , (12) 
1 - ').f').t 

where 

B ( ) -fOOd' p(s')B(s')Ui(s', so) 
iSO - S , , 

8R S - So 
(13) 

UtCs, so) = ').tCso)fooK(S, s', so)Ui(s', so) ds'. (14) 
8R 

If one now considers s = So , then one has finally 

T(')., s) = AB(s) + 1..'1(1.., s), (15) 

7 J. S. Ball, Phys, Rev. 137, BI573 (1965). 
8 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Company, Inc., New York, 1953), Pt. I, 
Chap.S. 

• W. V. Lovitt, Linear Integral Equations (Dover Publications Inc., 
New York, 1950). 

where 

f(A) ~ B~(s) 
,s = "" 1 _ ').fAt(s) , (16) 

and Bi(S) and Ai(S) are both real for SL < s < SR' 
There are three cases that one can consider. 

(A) The Ai are finite in number: A necessary and 
sufficient condition for this to occur is for the left-hand 
cut to consist of a finite number of n poles, in which 
case [T(A, S)]N.M = T(A, s) for Nand M ~ n. 

(B) The Ai are all 01 the same sign: If ~B:(s)AtCs) is 
uniformly convergent,9 then B(s) = ~~(s)AtCs), and 
Eq. (15) becomes 

T(A, s) = '). ~ B~(s)Ai(s) (17) 
1 - ').fAi(s) 

so that for SL < s < SR' T(A,3)/A is a series of 
Stieltjes3 in A and therefore' 

lim [T(A, S)]N,N+i = T(A, s). (18) 
N-+oo 

A necessary and sufficient condition for Case (B) to 
hold is for the kernel k (s, s' ; so) to be definite.8 That is 

foo k(s, s'; so)f(s)f(s') ds ds' ¢ 0 
8R 

for arbitrary real/(s). From Eqs. (3), (10), and (11) 
one has the equivalent condition 

i8L 

-00 dsa(s)p(s)(s - so) ¢ O. (19) 

Hence if s" > SL' the kernel is definite if and only if 
a(s) is positive or negative semidefinite in the interval 
(- 00, SL)' This is indeed the situation in many 
bootstrap models.7 

(C) The Ai differ in sign: In this case one is dealing 
with the moment problem over the interval (- 00, 00). 
From the form of/(A, s) in Eq. (16), one can provel ,!! 

that forj = ±1, ±3,"', and SL < S < SR' 

lim [f(A, S)]N,N+i = f(A, s). (20) 
N-+oo 

Also, one can write T(A, s) = AB(s)[l - Ag(A,8)]-I, 
where g(A, s) is of the same form as/(A, s), and hence 
the statement of convergence (20) applies also to 
g(A, s). Combining the statements of convergence for 
1(1.., $) and g(/.., s) with the uniqueness of the Pade, 
one obtains Eq. (18) forj = ±l, ±3,···. 

IV. DISCUSSION 

We have shown that the Pade approximant can, 
with complete rigor, replace the NI D method of 
solution of the partial-wave integral equation. It 
provides also a natural method of obtaining approxi­
mate solutions which satisfy exact unitarity. These 
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solutions are roughly speaking equivalent to approxi­
mating the kernel by a finite sum of separable kernels, 
which in this case means replacing the left-hand cut by 
a finite number of poles. They have the advantage, 
however, that they are independent of the approxi­
mation. That is, the solution does not depend on the 
choice of these poles. For example, the (1, 1) Pade 
approximant is 

[T(A, S)1t,l = AB(s) (1 _ AB-l(S)i
oo 

p(s?B
2

(s') ds,)-l, 
'8 s - s 

(21) 
which would be exact if R(s) consisted of one pole. It 
is interesting that the approximate solution (21) has 
already appeared in the literature and was considered 

JOURNAL OF MATHEMATICAL PHYSICS 

as satisfactory for weak and moderately strong 
couplings.lo The approximate solutions have the 
additional feature that they also supply bounds on the 
exact solution. l 

The techniques illustrated here should be capable 
of generalization to include many channels and spin, 
and hopefully extended beyond two-body unitarity.ll 
The Pade method may of course be applied to any 
integral equation. The proof of its convergence is at 
present, however, limited to solutions which are 
essentially series of Stieltjes. 

10 G. L. Shaw, Phys. Rev. Letters 12, 345 (1964); J. Reinfelds and 
J. Smith, Phys. Rev. 146, 1091 (1966). 

11 J. L. Gammel and F. A. McDonald, Phys. Rev. 141, 1245 
(1966). 
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Reciprocal variational principles are used to formulate upper and lower bounds on the low-pressure 
(Knudsen) flow rate of a gas through a channel of arbitrary geometry. The upper bound is equivalent 
to one obtained earlier by DeMarcus, but we believe the lower bound to be new. Explicit calculations 
are given for a short parallel-plate channel. The variational principles discussed here may be applied to 
a wide range of problems involving linear inhomogeneous integral equations. 

1. INTRODUCTION 

I N the so-called Knudsen regime, a gas flowing 
through a channel is at sufficiently low pressures 

for molecule-molecule collisions to be negligible, and 
only molecule-wall collisions need be taken into 
account. In addition, one usually assumes that a 
molecule equilibrates with the wall at each collision, 
so that its paths before and after the collision are 
totally uncorrelated. 

Now, suppose that we have a gas at equilibrium in 
front of the entrance of the channel (Fig. 1), at a 
density of n molecules per cc, that the exit of the chan­
nel opens into a vacuum, and that these conditions 
are maintained until a steady state has been reached. 
If the mean molecular speed at the prevailing tem­
perature is ii, then 10 = !niiA is the number of mole­
cules entering the channel per unit time, A being the 
area of the entrance cross section. Of these, a number 

• Present address: University of Notte Dame, South Bend, 
Indiana. 

Q/sec will leave through the exit, never to return, 
while the remainder come back out through the 
entrance. 

For all but the simplest channel geometries, the 
calculation of Q is an exceedingly difficult problem,l 
and must be treated by approximate methods. One 
of the most promising has been the variational pro­
cedure introduced by DeMarcus,2 which leads to 

FIG.!. Channel with 
sample molecular path. 

dS 

1 E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book 
Company, Inc., New York, 1938). 

• W. C. DeMarcus, in Advances in Applied Mechanics SuppJ. I, 
Rarefied Gas Dynamics (Academic Press Inc., New York, 1961), p. 
161. 
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2
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J. Smith, Phys. Rev. 146, 1091 (1966). 

11 J. L. Gammel and F. A. McDonald, Phys. Rev. 141, 1245 
(1966). 
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1 E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book 
Company, Inc., New York, 1938). 
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rigorous upper bounds on the transmission prob­
ability Q/lo. In this paper, we develop a companion 
procedure to bound Q/lo from below as welJ.3 

2. MATHEMATICAL FORMULATION 

Steady-state Knudsen flow through a channel of 
arbitrarily complex geometry is characterized by the 
number of molecules tp(S) co1liding with unit area 
of the channel wall per unit time at each point S on 
the wall. The function satisfies the Clausing-DeMarcus 
integral equation,2 

",(S) = IoCP(S) + I K(S', S)",(S') dS', (1) 

where CP(S) dS is the probability that a molecule 
entering the channel will make its first wall co1lision 
with the surface element dS located at S (Fig. 1), 
K(S', S) dS is the probability that a molecule leaving 
the wall at S' will make its next collision in dS at S, 
and the integral extends over the *"ntire wall. Under 
the assumption that the molecule "forgets" its past 
history upon each collision, K and 4> will depend only 
on the geometry of the system. Equation (1) is just 
a mass balance condition, and states that a molecule 
co1liding with any portion of the channel wall must 
have come either from the entrance or from some 
other element of the wall. We find it more convenient 
in what follows to rewrite Eq. (1) in the form 

IoCP(S) - ",(S)M(S) - I K(S', S) 

X [tp(S) - ",(S')] dS' = 0, (2) 
where 

M(S) = 1 -I K(S', S) dS'. 

Once tp(S) is known, the ratio Q/lo is readily 
obtained from the relationS 

the functional 

o.{ G, "'} == 1 II K(S, S')G2(S, S') dS dS' 

+ I ",2(S)M(S) dS (4) 

with respect to G and "', subject to the subsidiary 
conditions that 

z == I ",(S)CP(S) dS 

has a specified value and that 

G(S, S') = 'f'{S) - ",(S') 

(5) 

(6) 

for all Sand S'. That a minimum value of 0. exists is 
evident from the fact that the coefficients of G2 and ",I 

are never negative, i.e., 

K(S, S') ~ 0, M(S) ~ 0; 

the latter inequality follows from the interpretation 
of jK(S, S') dS' as the probability that a molecule 
leaving the wall at S does not pass directly out of the 
channel. 

The conditions (5) and (6) may be introduced 
through Lagrangian multipliers WI and w2(S, S'); 
instead of D., we then minimize the functional 

o.'{G, "'} == o.{G, "'} + w l Z + II W2(S, S') 

X [G(S, S') - ",(S) + ",(S')]. (7) 

For the desired extremum the variation of D.' must 
vanish, 

II ~G(S, S')[K(S, S')G(S, 8') + waCS, S')] dS dS' 

+ I ~'f'{S) [2",(S)( 1 - I K(S, S') dS') + WI CP(S) 

- I(wz(s, S') - WaCS', S» dS'] dS = O. (8) 

0./10 = 1 - AI tp(S)4>(S) dS/lo' 

Setting the coefficients of MJ and ~'" independen4lly 
(3) equal to zero, we have the Euler-Lagrange equatio~s 

The integral in Eq. (3) represents the rate at which 
molecules leave the channel through the entrance. 

3. UPPER BOUND ON QIIo 

In this section we rederive the variation principle of 
Davison' and DeMarcusl by a somewhat different 
route, so as to make clear its relationship to the 
reciprocal principle discussed in the next section. We 
show that solving Eq. (2) is equivalent to minimizing 

8 For a general discussion of reciprocal variational principles see 
J. L. Synge, The Hypercircle in Mathematical Physics (Cambridge 
University Press, London, 1957). 

, B. Davison, Phys. Rev. 71, 694 (1947). 

K(S, S')G(S, S') + waCS, S') = 0 (9) 
and 

2",(S)M(S) + w l 4>(S) 

-I [w2(S, S') - W2(S', S)] dS = 0, (10) 

from which £02 and G can be eliminated by using the 
subsidiary condition (6). Because of the symmetry of 
the kernel K(S, S') with respect to the interchange of 
Sand S', the result can be written as 

W14>(S) + 2",(S)M(S) + 2 I K(S', S) 

X [",(S) - ",(S')] dS' = O. (11) 
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Equation (11) is identical with (2), provided we make 
the identification 

W l = - 2/0' (12) 

The minimum value of the functional 0 has a 
simple meaning, as can be seen by multiplying (2) on 
both sides by V'(S) and integrating over the wall 
surface. After some reduction one obtains 

0= IoIV'(S)cP(S) dS = IoZ. (13) 

Of course, this relation is only valid if 'f'{S) actually 
satisfies (2): if instead we calculate 0 from trial func­
tions V'*:F- V' and G* = V'*(S) - V'*(S') :F- G, the 
result will necessarily be larger: 

0* = O{G*, V'*} > loZ. (14) 

It should be borne in mind that, in order for (14) 
to hold, '1'* must satisfy condition (5). In other words, 
(14) is true only for trial functions which lead to the 
required value of Z. On the other hand, different 
choices for '1'* lead to different values of the La­
grangian multiplier Wl = -210' Thus (14) gives an 
upper bound on 10 for a fixed value of Z. Recalling 
that, according to Eq. (3), 

Z = (/0 - Q)/A, (15) 

we can equally well say that we have an upper bound 
on Q/Z for a given Z: 

Q/Z == AQ/[/o - Q] < (O*/Z2) - A, (16) 

or, after rearrangement, 

Q/lo < 1 - AZ2/0*. (17) 

at every S. In addition to (19), we require 

J(S, S') + J(S', S) = 0 (20) 
for all Sand S'. 

To take these subsidiary conditions into account, 
we introduce Lagrangian multipliers Al(S) and A2(S, S') 
and minimize 

N{J, T} == A{J, T} + I Al(S) 

x [T(S) + I J(S, S') dS'J dS 

+ II A2(S, S')[J(S, S') + J(S', S)] dS dS'. (21) 

Setting the variation of A', 

bA' = II/JJ(S, S')[J(S, S')/K(S, S') + Al(S) 

+ A2(S, S') + A2(S', S)] dS dS' 

+ I bT(S) [2 T(S)/M(S) + Al(S)] dS, (22) 

equal to zero for arbitrary variations /JJ and bT, we 
are led to the Euler-Lagrange equations 

J(S, S') + K(S, S')[Al(S) + A2(S, S') + ~(S', S)] = 0, 

(23) 

2T(S) + Al(S)M(S) = O. (24) 

When introduced into (16), the requirement (20) that 
J be antisymmetric with respect to the interchange of 
Sand S' gives 

A2(S, S') + A2(S', S) = -UAl(S) + Al(S')]; (25) 

This is the bound used by DeMarcus in his treatment with the identification 
of Knudsen flow. Al(S) = -2V'(S) (26) 

4. LOWER BOUND ON Q/lo 

To obtain a lower bound on the ratio Q/lo, we 
reformulate the principle of the preceding section in 
terms of the net flux J(S, S') between two points S 
and S' on the wall, and the rate T(S) at which mole­
cules leave the unit area of the wall surface at S to 
pass directly out through the channel entrance or 
exit without further collisions. We thus seek to mini­
mize the functional 

A{J, T} = ~ II [J2(S, S')/K(S, S')] dS dS' 

+ I [T2(S)/M(S)] dS (18) 

with respect to all J and T which are consistent with 
a given entrance rate 10 , i.e., which satisfy the mass 
balance condition 

locP(S) = T(S) + I J(S, S') dS' (19) 

Eqs. (23) and (24) then become 

J(S, S') = K(S, S')[V'(S) - V'(S')], (27) 

T(S) = M(S)'f'{S). (28) 

Together with (19), these equations are equivalent 
to the original Clausing-DeMarcus equation (2). 

The minimum value of A{J, T} is the same as the 
minimum of O{G, V'}, namely, loZ, and is obtained if 
and only if T and J satisfy (19), (27), and (28). This 
time, however, the minimization has been carried 
out at fixed 10 [Eq. (19)], rather than at fixed Z. There­
fore, if in place of the minimizing J and T we use 
trial functions J* and T* satisfying the conditions 
(19) and (20), we obtain,jor any given value oj 10 , an 
upper bound on the product loZ: 

A *{J*, T*} > loZ = 10(/0 - Q)/A. (29) 

This inequality may be rewritten in the form of a 
lower bound on Q/lo to give the final result 

O/lo>I-AA*/I~. (30) 



                                                                                                                                    

UPPER AND LOWER BOUNDS ON KNUDSEN FLOW RATES 517 

5. SHORT CHANNELS BETWEEN 
PARALLEL PLATES 

To illustrate the variational bounds (17) and (30), 
we consider the flow through a two-dimensional 
channel between two parallel lines separated by a 
distance A.5 The channel has a length L in the direc­
tion of flow, which we take to be the x direction. The 
functions 4> and K now depend only upon the x co­
ordinates of the points Sand S': assuming that 
the gas molecules enter the channel and leave the wall 
with a two-dimensional cosine law distribution, simple 
geometrical considerations lead t06 

4>(x) = (1/2A)[1 - x/(x2 + A2)!], 

M(x) = !A[4>(x) + 4>(L - x)], (31) 

K(lx - x'l) = !A2[A2 + (x - x')2]-i. (32) 

For a lower bound on Q/lo, we take J* identically 
equal to zero and calculate T'" from (19). It is clear 
that, in using these trial functions, we are in effect 
counting only those paths which involve no more 
than a single collision with the wall surface. The 
lower bound (30) thus becomes 

Q/lo > 1 - 2 SoL {4>2(X)/[4>(x) + 4>(L - x)]} dx. (33) 

For short channels, we may expand (33) in powers of 
p = L/A to obtain 

Q/lo > 1 - p/2 + p2/4 - p3/24 - p4/12 + .. '. (34) 

An upper bound on Q/lo for this system was 
derived by Berman? using a linear trial function 
tp = ax + b; in expanded form, Berman's result is 

Q/lo < 1 - p/2 + p2/4 - p3/24 - p'/16 + .. " (35) 

which is identical with (34) through the term in p3. 
For very large values of p, however, the lower 

bound (33) goes to zero as p-l, whereas Berman's 
upper bound for long channels is p-l In p. While the 
one-collision trial function is thus quite· effective 
for a short channel, improved trial functions are 
necessary for larger values of L. For example, one 
might choose 

J*(x, x') = aK(lx - x'l)(x - x'), 

corresponding to the choice tp*(x) = ax + b. 

6. SUMMARY AND CONCLUSION 

To exhibit the bounds on the transmission prob­
ability in a more explicit manner, we can use the 
subsidiary conditions (5) and (6) to eliminate Z and 
G* in (17), and the condition (19) to eliminate T* in 
(30). In making the latter substitution, we may also 
write 

J"'(S, S') = p.j(S, S') 

and, for any choice of the trial functionj(S, S') which 
is antisymmetric with respect to interchange of Sand 
S', maximize the lower bound on Q/lo given by (30) 
with respect to the parameter p.. The resulting in­
equalities are 

A [I4>(S)tp*(S) dsJ 2 
1 - ~ Q/lo ~ 1 - A I 4>2(S)M-1(S) dS 

~ II K(S, S')( tp*(S) - tp*(S,)2 dS dS' + I M(S)tp*2(S) dS 

A(II j(S, S')4>(S)M-1(S) dS dS'J 

+ ~ II l(S, S')K-1(S, S') dS dS' + III j(S, S')j(S, S")M-1(S) dS dS' dS" 

Extension of these inequalities to diffuse-elastic 
scattering from the walls merely involves a modifica­
tion of the kernel K, and DeMarcus has determined an 
upper bound on Q/lo for flow through cylinders under 
these conditions. Surface diffusion can also be included 
if the wall surface is sufficiently irregular for the effect 
to be appreciable. 

Equations of the same form as (1) describe a wide 
range of phenomena, such as radiation transfer, neu-

6 This is equivalent to three-dimensional flow between infinitely 
wide parallel plates. 

6 W. C. DeMarcus, United States Atomic Energy Commission 
Report K-1302 (1957). 

[j(S, S') = -j(S', S)]. (36) 

tron diffusion, etc. The reciprocal variation principles 
discussed in this paper apply in those cases where 
the kernel K is symmetric, and where both K and 
[1 - J K(S, S') dS'] are everywhere positive or zero. 
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Electrodynamics problems with mixed boundary values promise to assume increasing practical impor­
tance in fields such as plasma physics. A new method of attacking such problems in three dimensions 
is presented and discussed. 

1. STATEMENT OF THE PROBLEM 

THE emergence of plasma physics as an important 
scientific discipline has disclosed many imper­

fections in the traditional approaches to certain 
aspects of mathematical physics. One of these is 
the mixed boundary-value problem in electrodynamics 
originating when a moderately conducting domain is 
incompletely bounded by perfect conductors. While 
it is evident that this problem can be solved in all 
two-dimensional symmetries, the simplest examples 
of complete three-dimensional character present great 
difficulties. 

The classical example of such a problem is Nobili'sl 
colored rings first considered by Riemann. 2 This is 
the problem of an infinite slab of conducting material 
on whose plane sides two circular metallic disks held 
at opposite potential are placed. The conductivity of 
the slab is finite, that of the disks infinite. The formu­
lation of the problem is as follows: 

A solution of Laplace's equation 4>(p, z) is to be 
found such that for z = ±a, 

4>(p, ±a) = ±4>0, p < c, 

(a4>/az)±a = 0, p> c. 

Here p is the two-dimensional distance (x2 + y2)t, 
the thk:kness of the slab is 2a, the radius of each 
electrode disk is c. A presumed solution of this 
cylindrically symmetric, mixed boundary-value prob­
lem was given by Weber,3 but it was actually only an 
approximation for the case where the disk size is small 
compared with the slab thickness. 

The method presented in the following pages 
reduces the problem to a standard integral equation of 
the Fredholm type (integral equation of the "second 
kind"). In another paper4 the construction of solutions 

1 L. Nobili, Poggendorf Ann. 9, 183 (1827); 10,393, 410 (1827). 
B B. Riemann, Poggendorf Ann. 95, 130 (1855). 
• H. Weber, Z. Angew. Math. 75, 75 (1873). 
, O. Laporte and R. O. Fowler, Phys. Rev. 148, 170 (1966). 

of this equation is presented in detail together with 
numerical results. Recently, the same problem was 
attacked by Tranter5 using the method of integral 
transforms and an approximate solution was con­
structed. However, since the method given here is quite 
different and capable of considerable generalization 
(see Sec. 6 below), we think it merits a detailed 
presentation. 

2. THE SINGLE CIRCULAR DISK 

As a preparation, let the well-known solution for the 
metallic disk be rederived. We start with 

(1) 

where A(A) is to be determined so that 4>(p, 0) is equal 
to the constant potential 4>0 for p < c. Rather than 
trying to find A(A) directly, we make the following 
Ansatz: 

A(A) = Led~ cos Mf(~) 

and attempt to find f(~) from 

2 foo fe - dAJo(pA) d~ cos Mf(~) = 4>0' 
7T 0 0 

(2) 

(3) 

Replacing p by 1] momentarily, we now operate on this 
with (d/dp) S~rJ d1]/(p2 - 1]2)t: 

- - 1] 1] t dAJo(1]A) d~ cos Mf(~) = 4>0' 2 d iP 
d foo fe 

7T dp 0 (p2 _ 1]2) 0 0 

(4) 

Mter drawing the A integration to the left, the 1] 

integral can be performed: 

(P 1] drJ J
o
C1]A) = sin AP 

Jo (pS _ 1]2)t A 

5 C. J. Tranter, Quart. J. Math. 2, 60 (1951). 
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and (3) becomes 

2 d i"" sin ').pi e 

- -d d'). -- d~ cos ').U(~) = rpo· 
7T po'). 0 

Again exchanging the order of integration gives 

2 d i e i"" d'). - -d d~f(~) - sin ').p cos ').~ = rpo, 
7T P 0 0 '). 

(5) 

in which the'). integral is recognizable as the "Dirichlet 
Discontinuous Factor." Therefore, we have 

f(p) = rpo, 

and A(').) of (2) can now be substituted into (1). 

3. THE SLAB PROBLEM 

Exactly the same method is now employed for the 
slab, with the modification that the vanishing of the 
normal derivative at the plates is brought about by 
assuming infinitely many equidistant image plates 
held at alternate potentials. (See Fig. 1.) Let a potential 
of the following form be assumed: 

rp = - d').(' .. + e-1Z+3aI A. _ e-1z+alA. 2 I"" 
7T 0 

+ e-lz-alA. _ e-1z- 3aI A. •• -)Jo(p').)A(').) (6) 

with A(').) given by (2). This can be summed to be 

2 I"" sinh ').z rp = - d'). 1 Jo(p').)A(').), -a ::::;; z ::::;; +a. (6a) 
7T 0 cosh Aa 

With solutions of this form we now seek to satisfy the 
boundary conditions on each of the plates. Let 

rp = +rpo for z = (4m + I)a, 

rp = -rpo for z = (4m - I)a. 

Substituting these conditions into (6) leads to results 
such as the following: For 

z = -3a: +rpo = - ( ... + 1 - e-2a
A. 2 I"" 

7T 0 

+ e+4aA. _ e-8aA + .. ')JoA d')., 

z = - a: - rpo = - ( ... + e-2aA. - 1 2 I"" 
7T 0 

+ e-2aA. _ e-4aA.· • ')JoA d')., 

z = +a: +rpo = - ( ... + e-4aA. - e-2aA. 21"" 
7T 0 

+ 1 - e-2aA.· • ')JoA d').. 

These and all other boundary conditions are seen to be 
identical, and give after summing 

2 I"" Ie - dU o( A.p) tanh aA. d~ cos Mf (~) = rpo. (7) 
7T 0 0 

I I I I 
I I 
I 

~$. t·-$. ~.$. ~-t. ~-$. ~.$. 

Z 
I I I I I 
I I I 

-50 -30 0 50 
I 
I 
I 
I 
I 

FIG. 1. Geometry of the image system for the two-disk problem. 

This equation, which should be compared with (3) of 
the previous section is now subjected to the same 
transformations, which in the previous section led 
from (3) to (5). The result is 

d fe f"" d'). 
dp Jo dU(~) Jo ;: tanh a'). sin ').p cos M = rpo· (8) 

In order to perform the differentiation with respect to 
p with complete safety, let the hyperbolic tangent be 
split by writing 

tanh a'). = 1 - 2/(e2a
A. + 1). 

This results in the integral equation 

f(~) - ~ f~cd~lK(~~l)f(~l) = rpo, 

with the symmetric kernel 

(8a) 

K(U
l
) = f"" d'). cos ').~ cos Ml . (8b) 

Jo e2a
A. + 1 

The range of integration with respect to ~ was extended 
to -e by assumingf(~) to be even. 

4. EXPANSION IN LEGENDRE POLYNOMIALS 

We introduce dimensionless variables into the inte­
gral equation by writing 

~ = ex, ~1 = exl , '). = p,j2a, f(~)jrpo = F(x) (9) 

and later also into the equation for rp itself as 

pje = (1, zja = ,. (10) 

Equations (8a, b) are now 

2 i+l 

F(x) - - *' dXlF(Xl)K(x, Xl) = 1, 
7T -1 

(lla) 

with 

K( ) - I ""d cos *'p,x cos ep,xl X,Xl - P, • 
o eI'+1 

(lIb) 

The constant 
*' = ej2a 

is the important ratio of the problem. For infinite 
plate distance (Ila) reduces to F(x) = 1, and the 
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potential cp(z, p) becomes the original Weber expres­
sion 

cp(z, p) = ~ CPo (00 dA. sinh ZA sinh Aa Jo(PA.). 
'IT Jo cosh aA A 

Because of the range of the variables x and Xl , it 
was found most convenient to expand the unknown 
function F(x) into a series of even Legendre polyno­
mials 

00 
f(x) = ! AsmPsm(x). (12) 

o 

The integral equation (lla) now becomes an infinite 
system of linear equations for the expansion coeffi­
cients Asm 

(4n + 1)-lAsn - (E/'IT)!AsmMsm,sn = bo,2n, 
m 

with the matrix elements 

M am,2n = L:ldX f~ldXlP2m(X)P2nCXJK(XXl)' 
In the paper referred to in Ref. 4, we have reported 
the calculations necessary to obtain actual solutions 
and have shown that not only the matrix M decreases 
satisfactorily with increasing m and n, thereby making 
early truncation possible, but also the A2n decrease 
rapidly. 

5. THE FIELD FOR p > c AS A RAPIDLY 
CONVERGING FOURIER SERIES 

The expression for the complete potential cp(p, z) 
is using (6a), (2), (9), and (12) 

1. = (2E)t! (-I)mAsm 
CPo 'IT m 

fOO dp, sinh tP,' 
x t Jo(aEp,)JSm+!(Ep,). 

o p, cosh tP, 

The appearance of the half integer Bessel functions is 
explained below. The occurrence of the hyperbolic 
cosine in the denominator shows that in the complex 
p, plane there is a string of first-order poles along 
the imaginary axis located at 

p, = (2n + 1)'lTi. 

This, therefore, invites one to decompose Jo into two 
Hankel functions H~ll and HJ21 and draw the integral 
containing the former into the upper, and the one 
containing the latter into the lower half-plane. (The 
integrals along the two large quarter circles in the 
first and fourth quadrants do not contribute, as can be 
shown readily.) Each integral of the m series thus 
becomes the sum of an integral from zero to ioo 
containing H~l) and a second one from zero to -;00 

(a) (b) 

r 
r 

<D 
I 
I 
I + --+-­
I 
I 
I 
I 
i 
I , 

(e) 

FIG. 2. Decomposition of the path of complex 
integration for the potential. 

with HJ21. Due to the circulation relation 

H~l)(iz) = _H~2I( -iz), 

we cancel these integrals, as soon as the paths become 
symmetrical with respect to the origin. As the "pictorial 
equation" Fig. 2 shows this can be achieved while, at 
the same time, the residues at the poles along the 
positive imaginary axis have to be taken into account. 
The result, 

1 = (2E)\'IT! (_1)m AIm i (-I)nH~11[iaE(2n + 1) 'IT ] 
CPo 'IT m n=O 

J 2m+![iE(2n + I)'IT] . ~(2 I) r 
X sm ~ n + 'IT", 

[i(2n + I)'IT]! , 

although a double series, should be very useful for the 
numerical calculation in the space outside the cylinder 
formed by the two plates a > I, where it converges 
rapidly. The appearance of the imaginary unit is only 
apparent. No corresponding expression for a < 1, 
i.e., p < a seems to exist. 

6. THE NORMAL DERIVATIVE FOR z = a 

A more detailed calculation of the normal derivative 
nets us the surface charge on the plates and also serves 
as a check on the fulfillment of the boundary condition 
for p > c. We have, from (2) and (6a) and using (9) 
and (10). 

(
a(CPNo)\ = ~ (00p, dp,Jo(Eap,) 

a, "=1 'IT Jo 
x fdX cos Ep'X ! AsmPsm(x). 

The X integration can be performed and leads to 
spherical Bessel functions, so that we have 

(
acpNo \ _ _ I_!A a, k=l - (2'ITE)! 2m 

(00 t 
X Jo P,l dp,lJO(ap,1)J2m+t(Pl), 

where, for the sake of simplicity, P,1 = Ep, is introduced 
as variable of integration. The integrals which appear 
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here belong to the family of the Sonine-Schafheitlin 
discontinuous integrals.6 They all represent different 
hypergeometric functions of a, according as this 
variable is less or greater than one. What is of interest 
to us here is that for a > 1 they all vanish, so that we 
have the result 

[o( cP/rfoo)/O']'=1 = 0, P > c. 

It is therefore seen that our form of solution does 
indeed satisfy the boundary condition outside the 
disks. 

On the disks, i.e., for a < 1 the reduction of these 
integrals to hypergeometric series would not constitute 
a particular advantage, were it not for the fact that 
these series can all be summed and reduced to Jacobi 
polynomials.? The result for the normal derivative is 
therefore, for a < 1, 

( 
o(cP/cPo) \ = _1 f 22m (m - I)! A

2m 
0' },=1 27TEm=0 (2m-1)! 

X (:Tf[Tm(l - T)2m-l/2], (13) 

where T = a2• For m = 0, unity should be substituted 
for the quotient of the two factorials. The ratio of 
Eq. (13) to Eq. (14) is plotted in Fig. 3. 

To calculate the total charge, or for the current 
problem, the reciprocal resistance, the normal 
derivative has to be integrated over the disk surface. 
Because of the appearance of the m fold derivative 
with respect to T = a2

, it is immediately seen that the 
contributions of all series terms with m > ° vanish. 
The result is 

f1ada(O(cP/cP0) \ =_1 Ao. (14) 
Jo 0' }'=1 27TE 

7. THE PROBLEM OF IMPERFECT INFINITE 
ELECTRODES 

Case I: A Single Plate 

The family of inverse problems to those just solved 
presents interesting aspects. We consider first the case 
of a single infinite plate with a circular hole in it in a 
partially conducting medium, the hole being closed by 
a nonconductor. Here, the boundary conditions are 

cP = 0, p > c, z = 0, 

ocP/oz = 0, p < c, z = 0. 

6 N. Nielsen, Handbuch der Theorie der Cylinderfunktionen (B. G. 
Teubner, Leipzig, 1905), formulas (4) and (11) of Sec. 74, p. 191 
et seq. See also G. N. Watson, Theory of Bessel Functions (Cambridge 
University Press, Cambridge, England, 1958), Sec. 13.4, Eq. (2), 
p.401. 

7 See R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik (Julius Springer, Leipzig, 1924), Vol. I, p. 74. 
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FIG. 3. The surface density of charge on either disk of 
the two-disk problem. 

We introduce 
cP = -kz + w. 

Then the new function w fulfills the boundary con­
ditions 

w = 0, p > c, z = 0, 

(ow/oz) = +k, p < c, z = 0. 

This time, we propose to find the function ow/oz, and 
to make it satisfy the condition outside automatically. 
We assume that 

ow = 1 roo dAe-AzJo(pA)A(A) 
OZ 7T Jo 

with the new Ansatz that 

A(A) = AL"sin Mf(~) d~. 
Once again we rename p as "', and now operate on 
both sides with a new choice of operator, namely: 

- - '" d",(/ - ",2) • 
1 d fP l 
pdp 0 

Then 

kp = -- '" d",(p2 - ",2) 2 d lP l 
7Tp dp 0 

X L1) A, dU 00..",) L" sin Mf(~) d~. 
The integral over", can be performed by use of the 
discontinuous integrals of Weber and Schafheitlin. It 
yields 

kp = l:....!!... r<Xl A, dA,(07T)l P: Ji(PA») r"sin A,~f(~) d~. 
7Tp dp Jo A, Jo 
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The A integral, after interchanging with ~ integration, 
can be reduced to 

i ('" ;1- Jo dA.Ji(pA)Jt(~A), 

and this is one of the generalized Dirichlet factors 
whose value is I or 0 according as ~ < p or ~ > p. 
Therefore, the equation reduces to 

kp =!~ (PU(~) d~, 
pdp Jo 

the solution of which is f(~) = M. When this is 
returned to the equation for A(A), the ~ integration can 
be performed, yielding 

ow/oz = (l'nicik L'" e-AZJo(pA)Ji(AC)At dA. 

Hence 

w = -01T)tci k e-AzJo(pA)Jt(AC) """7 , 1'" dA 
o A· 

and it can be shown that this integral does indeed have 
the desired property that it is zero for p > c, z = O. 

Case U. Two Plates 

The second case is that of two electrodes with 
opposite holes closed with a nonconductor. Here, the 
generalization employed in moving from the one-disk 
problem to the two-disk problem can be carried out 
again. We again imagine an infinite set of image plates 
so charged that our problem repeats between each 
pair of plates. As in the previous case, we note the 
need for a uniform field in the case of infinite plates, 
and let 

4> = -kz + w. 

Then the boundary conditions are 

z= 0, p < c, (o4>loz) = 0, (owloz) = k, 

(I Sa) 

Z= -0, P < c, (o4>loz) = 0, (owloz) = k, 

(ISb) 

Z= 0, p> c, 4> = 4>0' w = 4>0 + ka, 
(ISc) 

Z= -a, p > c, 4> = -4>0' w = -4>0 - ko. 
(ISd) 

If now we choose 4>0 = -kia, then w = 0 at z = ±o. 
An examination of the possibilities shows that the 

solution of the Laplace equation which fits the need 

to have the function be antisymmetrical, and zero at 
Z = ±o, while its derivative is symmetrical over the 
region -a::::;; Z ::::;; 0 is 

ow = ~ ('" dA c~sh AZ Jo(pA)A(A) (16) 
oz 1T Jo smh AQ 

and 

w = ~ ('" dA s~nh AZ Jo(pA)A(A). 
1T Jo A smh AO 

Following the method of the single plate case, we 
search for an equation for A(A) which will satisfy 
(lSa) and (ISb). This leads to the integral equation 

4iG 

f(p) + - d~f(~)Ka(P~) = -kp, 
1T 0 

where 

K ( ~) =J"'dA sin AP sin M 
\I P BaA 1 o e-

is again a symmetric kernel with properties analogous 
to those of the two-disk kernel. 

Once more, with the introduction of the dimension­
less variables used before, the integral equation can be 
solved in terms of Legendre polynomials, this time of 
odd order. Letting 

'" F(x) = ! BamHPamH(X), 
o 

one finally obtains the formal solution 

(
2C)t '" w(p, z) = - k! (-I)mBamH 
1T m=0 

('" dA sinh AZ 
x Jo At sinh Aa Jo(Ap)Jam+!(AC). 

When z = ±a, the integral over A is a discontinuous 
function for all m, which has a zero value for p > c, 
so that the boundary conditions (lSc) and (ISd) are 
fulfilled identically. 

8. CONCLUSION 

The application of this method to hydrodynamical 
problems of interest such as counterflowing liquids 
that might be present in heat exchangers or reaction 
cells is evident. Our method has certain points in 
common with a paper by Sommerfeld8 in which he 
employs a series of discontinuous integrals as the 
starting point for the solution of the problem of an 
oscillating disk. 

8 A. Sommerfeld, Ann. Physik 42, 389 (1943). 
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The problem of small oscillations about a state of steady motion of a Lagrangian system is considered. 
Upper and lower bounds for the growth rates of unstable systems are obtained; sufficient conditions for 
instability are given for finite dimensional systems; an existence theorem for stable modes for systems 
with. an ~ite .number of degrees of freedom is presc:nted (valid when the operators are completely 
contmuous m Hilbert space); and finally the orthogonalIty and completeness properties of the modes of 
stable finite dimensional systems are discussed. 

I. INTRODUCTION 

T AGRANGIAN formulations of the equations of 
L motion have been given for a wide class of 
hydrodynamic and plasma systems,I-3 as well as for 
classical mechanical systems with a finite number of 
degrees of freedom.4-7 The problem of the stability 
of stationary states of such systems often leads to an 
equation of the form"'-lo 

HI17 + 2AI1J + H2'YJ = o. 
Assuming a time dependence exp (iwt), one obtains 
the following eigenvalue problem4- lo : 

W2Hl'YJ - 2wiAI'YJ - H2'YJ = 0, (1) 

where HI and Hz are linear Hermitian operators 
(usually real) defined on some complex linear vector 
space E, Al is a linear anti-Hermitian operator (usually 
real or pure imaginary) on E, HI is positive definite, 
and the eigenvector 'YJ corresponding to the eigenvalue 
w is a nonzero member of E. 

The most comprehensive discussions of the solutions 
of Eq. (1) (for nontrivial AI) appear to be due to 
Routh"'-6 and Whittaker.7 Both authors were con­
cerned only with finite dimensional systems and 
relied heavily on the theory of determinants; Routh 
derived a number of eigenvalue properties for positive 

• The work presented here was supported by the U.S. Atomic 
Energy Commission under Contract AT(30-1)1480. 

1 F. E. Low, Proc. Roy. Soc. (London) A248, 283 (1958). 
I P. A. Sturrock, Ann. Phys. (N.Y.) 4, 306 (1958). 
• A. H. Taub, Proc. Symp. Appl. Math. 1, 148 (1949). 
, E. T. Routh, The Advanced Part of a Treatise on the Dynamics 

ofa System of Rigid Bodies (The Macmillan Company, New York, 
1905), 6th ed., Chaps. 3, 6, 7. 

5 E. T. Routh, Essay on the Stability of Motion (1877). 
• J. W. Strutt (Lord Rayleigh), The Theory of Sound (Dover 

Publications, Inc., New York, 1945), Chap. 5, 2nd ed. 
? E. T. Whittaker, A Treatise on the Analytical Dynamics of 

Particles and Rigid Bodies (Cambridge University Press, New York, 
1937), 4th ed., Chap. 7. 

8 F. E. Low, Phys. Fluids 4, 842 (1961). 
• G. Laval, R. Pellat, M. Cotsaftis, and M. Trocheris, Nucl. 

Fusion 4, 25 (1964). 
10 E. M. Barston, Phys. Rev. 139, A394 (1965). 

or negative definite operators (in particular, both he 
and Whittaker demonstrated stability for HI and H2 
positive definite), and gave a necessary and sufficient 
condition for stability (the Routh-Hurwitz criterion) 
valid for real HI, AI, and Hz; Whittaker obtained 
the general solution for HI and H2 positive definite 
by directly integrating the equations of motion in 
Hamiltonian form. The problem seems to have 
received little further attention, outside of discussions 
of marginal stability8.9 and forced oscillations.ll In 
this paper we present a number of new results, many 
of which are valid when E is a Hilbert space, and 
extend some of Routh's results for finite dimensional 
space to Hilbert space. In particular, in Sec. II we 
obtain upper and lower bounds for complex eigen­
values; sufficient conditions for instability are given 
in Sec. III, valid for finite dimensional systems; Sec. 
IV consists of an existence theorem for real eigen­
values and corresponding eigenfunctions for com­
pletely continuous operators in Hilbert space; and 
Sec. V concerns itself with orthogonality relations 
and completeness properties of the eigenvectors for 
H2 positive definite. 

ll. BOUNDS FOR COMPLEX EIGENVALUES 

In this section we derive upper and lower bounds 
for the real and imaginary parts of an eigenvalue w, 
assuming that 1m w F O. It proves to be convenient 
to assume that HI = l. Indeed, if HI is a bounded 
positive definite linear Hermitian operator with a 
bounded inverse H1I, then Eq. (1) can be cast into the 
form 

(w21 - 2iwA - H)~ = 0, (2) 

where A == SA1S, H == SH2S, ~ == S-1'YJ, and S == 
(HII)!, S-l = (HI)l. The operator S is Hermitian, so 
that iA and H are Hermitian if iAI and H2 are 

11 R. E. D. Bishop, G. M. L. Gladwell, and S. Michaelson, The 
Matrix Analysis of Vibration (Cambridge University Press, New 
York, 1965), Chap. 5. 

S23 



                                                                                                                                    

524 E. M. BARSTON 

Hermitian. We restrict our attention to Eq. (2), and 
assume throughout that Hand iA are linear Hermitian 
operators defined on a linear vector space E with a 
complex inner product (f, g) defined for all f and g 
in E. Further assumptions are introduced as required. 

A sufficient (but not necessary) condition for all 
the eigenvalues W of Eq. (2) to be real is that H be 
nonnegative definite.4-10 Indeed, suppose that Eq. 
(2) holds. Forming the inner product of (2) with ~ 
and solving for W we obtain 

W = (~, iA~) ± {[(E, iAE)J2 + (E, HE)}!. (3) 
(;, E) (E, E) (;, ;) 

The operators are Hermitian, so that the inner prod­
ucts are real. Defining WI == Re w, W 2 == 1m w, Eq. 
(3) and W2 :;e 0 then imply 

WI == (;, iA~)/(;, ;), 

IwI2 = w~ + w: == -(;, H;)/(;, ;). 
Therefore, for W 2 :;e 0 

Iwl'" :s;; - Ao, Ao == infa, H'). 
E (',0 

(4) 

(5) 

(6) 

The complex eigenvalues of Eq. (2) all lie in a circle 
of radius 11011 centered at the origin of the complex 
W plane. Assuming that Ao is an eigenvalue of Eq. (2) 
for A == 0 (this will be the case, for example, if E is 
a Hilbert space and H is completely continuous), we 
see that the introduction of a nonzero A into Eq. (2) 
does not increase the maximum growth rate of the 
system. In fact, we show that WI tends to zero as 

inf(A', AO 
E a, {) 

approaches infinity. Suppose that Eq. (2) holds, so 
that Ha>E = 0, where Ha> == w21 - 2wiA - H. Then 

{H! + 2[2wiA + R]Ra>}; == 0 (7) 

negative root of (11) gives 

w~ == [y2 + (E, H 2E)!(E, E)]! - y - w:, 
where 

(12) 

(13) 

Equation (4) and the Cauchy-Schwarz inequality 
imply that y ~ O. The following results can now be 
easily established: 

Theorem I: Assume that Eq. (2) holds and that 
W2 :;e O. Then the following inequalities hold: 

w~ :s;; IIAII2, (14) 

[411A1I4 + ,uH]! - 211AI12 :s;; IwI2 ::::;; IIHII 2/,uA, (15) 

-AOl,uH - 4 IIAI12 :s;; w~ ::::;; [x2 + IIHII2]! - x, (16) 
where 

Proof: Equation (14) is obtained by applying the 
Cauchy-Schwarz inequality to Eq. (4). Equation (12) 
gives 

IwI2 == (y2 + (E, H2E)/(;, E)]t - y ~ (y2 + ,uH]! - y. 
(17) 

For ,uH fixed, the last term of (17) is a monotone 
decreasing function of y; therefore since y ::::;; 2 IIAII2 
by Eq. (13), we obtain the left-hand side of Eq. (15). 
Equation (4) and the Cauchy-Schwarz inequality 
imply w~ ::::;; (AE, AE)/(E, E). Equation (11) then gives 
,uA Iwl2 ::::;; IlHIl 2

, which is the right-hand side of 
Eq. (15). 

From Eqs. (11) and (6) we obtain 

w: == [(E, H2;)/(;, m Iwr2 + 3w~ - 4[(A;,A;)/(;,;)] 

~ -AOl,uH - 4 IIAII2. (IS) 
or Equation (12) leads to 
{w4

J + 4w2
AlI - 2w[HiA + iAR] - R2}E == O. (S) w~ :s;; [y2 + IIHI/2]! _ y. 

Taking the inner product with ;, and equating the 
real and imaginary parts of the resulting expression 
equal to zero, we obtain 

([w~ - W:]2 - 4w~wn(E, E) + 4(w~ - w=>(E, AlIE) 

- 2Wl(E, [HiA + iAR]E) - (E, RZE) = 0, (9) 
W",{2Wl(W~ - w=>(;, ;) + 4w1(;, AlE) 

- (E, [HiA + iAH]E)} = O. (10) 

Assuming W2 :;e 0, and eliminating (E, [HiA + iAH]E) 
from Eq. (9) by means of (10), we find 

IwI2{w~ - 3w~ + 4(AE, AE)/(E, ;)} 

- (E, H"E)!(E, E) = O. (11) 
Equation (11) is quadratic in w:' and the only non-

(19) 
The right-hand side is a monotone decreasing function 
of y, so that, since Eq. (6) and (13) imply x ::::;; y, we 
obtain 

w~ :s;; [x2 + IIRW']! - x. (20) 

This completes the proof of Theorem I. 

Corollary: Suppose that 

~ == inf({' -H{) > 0, 
E a,,) 

i.e., H is negative definite. Then if ~,uA > IIHII2, all 
the eigenvalues ware real. 

Proof: Let ~,uA > IIHIII, and suppose that there 
exists an eigenvalue w == WI + iW2 with wll:;e O. 
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Equation (5) implies Iwl2 ~ <5, and Eq. (IS) then 
yields IIHI12 ~ <51'..4.' which is a contradiction. 

Equation (16) can be used to infer the existence of 
a complex eigenvalue w(w2 =F 0) if Ao < 0, Ao is an 
eigenvalue of H, and if w depends continuously on the 
operator A, for fixed H. Indeed, if we replace A by 
EA in Eq. (2), and suppose that wee) is a continuous 
curve in the complex w plane for 0 :::;;; E :::;;; 1 (this 
certainly is the case if E is a finite dimensional 
Euclidean space), then it follows at once from Eq. 
(16) that if IIAI12 < -pH/4Ao, we have W2 =F 0, 
o ~ E:::;;; 1. Under these circumstances, a somewhat 
sharper condition can be given. Suppose that wee) = 
W1(E) + iWp.(E) became real for somee in [0, 1], and 
let EO be the smallest such E. Then w~(o) = -A.o, 
EO> 0, w(eo) = Wl(EO), w2(eo) = 0, and w 2(e) =F 0 for 
o ~ E < Eo. Due to the assumed continuity of wee), 
Eq. (11) must hold with A replaced by 1'== eoA, 
WI = w1( EO)' and W 2 = 0, so that 

w2 = ~ (A~, A~) ± {[2(A~, A~)J2 _ (~, H2~)}*. 
1 3 (~,~) 3(~, ~) 3(~, ~) 

A real solution for w~ is possible only if 

[I 111'11 2]2 ~ lpH· 
Hence 

IIAII' < !pH 
implies W2 =F O. 

(21) 

(22) 

ill. SUFFICIENT CONDmONS FOR INSTABILITY 
FOR FINITE DIMENSIONAL SYSTEMS 

We restrict our attention in this section to the case 
where E is an n-dimensional unitary space. We begin 
with the following result: 

Theorem II: Let P, iA, and H be n X n Hermitian 
matrices. Then the coefficients of the polynomial 

P2n(x) == det (x2P - 2xiA - H) (23) 

are all real and the eigenvalues w of the system 

(w2P - 2wiA - H)~ = 0 (24) 

occur in complex conjugate pairs. 

Proof: w is an eigenvalue of Eq. (24) if and only if 
w is a root of the 2nth-degree polynomial P2n(x) 
defined by Eq. (23). Using a bar to denote complex 
conjugation, and a superscript T to denote the 
transpose, we have 

Ps,.{x) = det (x1p + 2xiA - 8) 
= det (x2 pT + 2xLIT _ 8 T) 
= det (XSp - 2xiA - H) = P2n(x) (25) 

since P, iA, and Hare all Hermitian. Thus P2n(W) = 0 
implies P2n(ro) = O. 

Theorem III: Let iA and H be n x n Hermitian 
matrices, and suppose that Ao < 0 and HAil' < 13pH. 
Then the system described by Eq. (2) is unstable. 

Proof: Theorem II implies that the eigenvalues w 
of Eq. (2) occur in complex conjugate pairs, and must 
be roots of the polynomial 

P2n(x) == det (x2I - 2xiA - H). 

But the roots of P2n(x) are continuous functions of 
the elements of A; the theorem then follows at once 
from the last paragraph of Sec. I. 

It proves to be convenient for the following theorem 
to assume that the matrix H is diagonal. This may be 
done without loss of generality; indeed, referring to 
Eq. (1), it is well known that for HI and H2 Hermitian 
and HI positive definite, there exists a nonsingular 
transformation S such that S* HIS = I and S* H2S = 
H, where H is diagonal (S* is the adjoint of 8). 
Furthermore, S is real if HI and H2 are real. Equation 
(1) can then be cast into the form of Eq. (2), where 
A = S*A1S, H = S*H2S, and ~ = 8-1",. Clearly iAl 
Hermitian implies that iA is also Hermitian. 

Theorem IV: Let A be a real antisymmetric n x n 
matrix and H be diagonal with (real) eigenvalues 
AI> A2,···, An. Suppose that II~l Ak < 0 (i.e., H 
has an odd number of negative eigenvalues, and no 
eigenvalue is zero). Then the system described by 
Eq. (2) is unstable, possessing (at least) the complex 
eigenvalues ± iW2 where W2 satisfies the inequality 

[x2 + IIHI12]* - X ~ w: ~ [4 HAil' + pH]* - 2I1AH~ 
(26) 

where all quantities are as defined in Theorem I. 

Proof: The polynomial P2,.{w) defined by Eq. (23) 
takes the following form, for P = I and H diagonal: 

P2n(w) 

w2 
- Al -2iwa12 -2iwa13 - 2iwa1n 

2iwa12 w2 
- As -2iwa23 - 2iwa2n 

= 2iwalS 2iwa23 w2 - As - 2iwa8n 

2iwaln 2iwa2n Wll - An 

(27) 

where the ail are the elements of the real antisym­
metric matrix A, ail = -au, and Ak (k = 1,2, ... , n) 
are the eigenvalues of H. Clearly P2n(W) = P2n(-w), 
since the value of the determinant is unchanged if rows 
and columns are interchanged, so that P2,.(w) is a 
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polynomial of degree n in w2• Therefore 
n 

P2 .. (W) = II (w2 - Ok), 
k=l 

and since .. 
P2 .. (0) = II (-Ak), 

k=l 
we have .. .. 

II Ok = II Ak < O. (28) 
k=l k=l 

Let C denote the set of all integers k such that 

1m Ok :;6 0 (1 :::;; k :::;; n). From Eq. (25), P2n(w) = 
P2n(w), so that C can be decomposed into disjoint sets 
of pairs of integers {p, q} such that (2) = OQ and 
C = U {p, q}. Therefore IIkinC Ok > 0, if C is non­
empty. Equation (28) then implies the existence of a 
real Ok < O. Therefore P2n(w) has roots ±i( -Ok)!' 
Equation (26) follows immediately from Eqs. (15) 
and (16). 

This result shows that if we confine our attention to 
real operators, there exist systems unstable for A = 0 
which cannot be stabilized by the introduction of a 
nonzero A, no matter how large. However, by Theorem 
I, the growth rate may be made arbitrarily small by 
taking f'A sufficiently large. Note that there is no 
conflict between Theorem IV and the Corollary to 
Theorem I, as f'A = 0 for a real antisymmetric 
n x n matrix for odd n. 

IV. AN EXISTENCE THEOREM 

We now turn our attention to the case where iA 
and H are completely continuous Hermitian operators 
defined on a Hilbert space E, and present an existence 
theorem for stable solutions to Eq. (2), valid whenever 
H admits of one or more positive eigenvalues. 

We have seen in Sec. II that Eq. (2) can possess an 
unstable mode (1m w < 0) only if the system de­
scribed by Eq. (2) with A == 0 is itself unstable-; 
furthermore, the maximum growth rate of unstable 
modes of Eq. (2) for A :;6 0 never exceeds that for the 
system with A == 0, and can be made arbitrarily small 
( or zero) provided A is sufficiently "large" [i.e., 

inf(A', A') 
E (', ') 

is sufficiently large]. The operator A can therefore be 
thought of as a stabilizing influence. We now demon­
strate that A also preserves stable modes with real 
eigenfrequencies. [For E finite dimensional, we can 
state that Eq. (2) with A :;6 0 has at least the same 
number of stable modes as does Eq. (2) with A == 0.] 
For every positive eigenvalue A of H, the system 
(w2[ - H)' = 0 admits of two modes, with eigen­
frequencies ±At; for each such positive A (counted 

as often as its degeneracy) we can guarantee the exist­
ence of two stable modes of Eq. (2) for A :;6 O-one 
with w > 0, the other with w < o. 

Theorem V: Let Hand iA be completely continuous 
Hermitian operators on the Hilbert space E. Let H 
have N positive eigenvalues 

Al ~ A2 ~ A3 ~ ... ~ AN > 0 

with associated eigenvectors 'fJ; (j = 1,2, ... , N), 
('fJ;, 'fJk) = ~;k' Then Eq. (2) admits of N real positive 
eigenvalues wt (j = 1,2, ... , N) (with corresponding 
eigenvectors ~t) and N real negative eigenvalues Wi 
(with corresponding eigenvectors ~i).12 If wt = wt' 
forj:;6 k, then at, ~t') = O. 

Proof: Since iA and H are completely continuous 
Hermitian operators, Kw == H + 2wiA is a completely 
continuous Hermitian operator on E for each w on the 
real line. For each such w, w :;6 0, we define 

F ( ) - 1 a, K w'> 
1 w = w 2 s~p (', ') . 

(29) 

Then we have 

iF1(W) I :::;; -\ IIKwl1 :::;; IIH211 + 2 IIIAIIi 
w w w 

(30) 

so that F1(W) -4- 0 as w -4- ± 00. 

Now H'fJ1 = A1'fJ1, Al > 0, so that 

('fJ1' Kw'fJ1)/('fJ1, 'fJ1) = Al + 2W('fJ1' iA'fJ1)/('fJ1, 'fJ1) 

~ Al - Iw1211AII. (31) 
Thus 

F1(W) ~ (l/w2)(tA1) for Iwl < A1/(4 IIAII). (32) 

We now show that F1(w) is continuous on (- 00,0) 
and (0, (0). For future reference we define 

Gn(w) == inf ( sup (', K w
')}, 

1=1.t.J
•
E.l'!.n_1 1=:~2~!~~?n-1 (t ') 

- 00 < w < 00 n = 1,2, 3, . .. (33) 
and we have I Gn(w)1 :::;; IIKwll. In particular, F1(W) = 
W-2G1(W). Since KW+4 = Kw + 2~iA, Eq. (33) yields 

G..(w ±~) 

= inf ( sup [a, K w,) ± 2~a, iAn]) 
l=l.t.J'!!C.. n-1 l=l<~~I~~.o,.-l (', ') a, ') 

:::;; inf ( sup a, Kw')} + 21~IIIAIl 
"'lEE <'."'1)=0 a, ') 

1=1,2, .. 'J n-l ;=1,2.··· ,n-l 

so that 

11 Routh has proved a similar theorem (using determiRMts) for 
E finite dimensional. See Ref. 4. 
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Replacing £0 by £0 1= fl. in Eq. (34), there results 

Gn(w) ~ Giw 1= fl.) + 21fl.IIIAII. (35) 

Equations (34) and (35) imply 

IGiw + fl.) - Gn(w) I ~ 21fl.IIIAII (36) 

so that Gn(w) is a continuous function of £0 on 
(- 00, (0) for all n. Therefore Fl(W) is continuous on 
( - 00, 0) and (0, (0), so that by Eqs. (30) and (32), 
there exist al > 0 and bl < 0 such that FI(al) = 
FI(bl) = t, and FI(w) ~ t for 

£0 E SI == (0, al) U (bl , 0). 

Since Km is completely continuous and Hermitian, 
there exists ~1(W) E E such that 1I~I(w)11 = 1 and 

w2FI(W)~I(W) = Km~I(W) (37) 

for all £0 E SI' By Eq. (32), there exists wi E (0, al) 
and £01 E (bl , 0) such that FI(w/:) = 1. Hence 

[(wi')21 - 2wtiA - H]~ = 0, (38) 

where ~t == ~1(Wt)· 
Let 

(39) 

Flw) ~ FI(w), £0 E SI (40) 

and in particular, 

F2(wi') ~ FI(wi') = 1. (41) 

Now H'YJi = Ai'YJi' j = 1,2; Al ~ A2 > 0; ('YJi' 'YJk) = 
(Jik' Then for any vector x, Ilxll > 0, in the linear 
manifold M2 spanned by 'YJI and 'YJ2' we have 

(x, Hx)/(x, x) ~ As > O. 

Given ~I(W) £0 E SI' there exists xl(w) E M2 such that 
IlxI11 = 1 and (XI' ~I) = O. Therefore 

(XI' Kmxl) ~ A2 - 21wliiAII ~ A2/2 > 0 (42) 

for 1£01 ~ A2/41IAII, so that 

Flw) ~ A2/2w2 for 1£01 < ~. (43) 
-411AII 

We shortly show that w2F2(W) = G2(w) on SI, so 
that F2( (0) is continuous on SI' Thus there exist real 
numbers a2 and b2 such that 0 < a2 ~ al , 0 > b2 ~ bl , 

F2(a2) = F2(b2) = t, F2(W) ~ t for £0 E S2 == (b2, 0) U 

(0, a2). Note that S2 c SI' For every £0 E S2' since 
Km is a completely continuous Hermitian operator, 
there exists ~2(W) E E, 1I~211 = 1, satisfying 

w2F2(W)~2 = Km~2' (~2' ~I) = O. (44) 

By the continuity of F2(W) on S2' and Eqs. (40) and 
(43), there exists wt E (0, aJ and £0; E (b2 , 0) such 

that wi ~ wt > 0, £01 ~ £0; < 0, and Fs(wi) = 1, 
so that 

[(w~)SI - 2wi'iA - H]~ = 0, (45) 

where ~t == ~2(Wt)· Note that by construction, 
w± = w± implies that (I:± I:±) - 0 2 I S"2 'S"I - • 

Suppose now that we have constructed 2p (p < N) 
eigenvalues wi ~ wt ~ ••• ~ wt > 0, £01 ~ £0; ~ 
••• ~ £0; < 0 and eigenvectors~!, k = 1,2,' .. ,p, 
so that we have for n = 1,2, ... ,p: 

F (£0) = -.l sup (', Km') £0 E S (46) 
n 2 (Y r' .. -I' £0 (C.bl=O ~, ~) 

k=1,2, .. . ,n-l 

w2Fn(w)~n(w) = KoJ .. , £0 E Sn, (47) 

S .. == (0, an) u (b .. , 0); 0 < af) ~ a1)-1 ~ ••• ~ al < 
ao = 00; -00 = bo < bl ~ ••• ~ b1)-1 ~ bf) < 0; 
Fn(an) = Fn(bn) = t; Fn(w) ~ t for £0 E S .. ; Fiw) ~ 
Fn_l(w) on Sn-I; 

lim Fn(w) = 00; 

Fn(w) continuous on S .. _I; (~l' ~,J = (jIm; Fiw;) = 
1; and ~; = ~n(w;). Then we define 

F2>+I(w) == ~ sup a(tZ)') ' £0 E Sf)' (48) 
£0 ('.bl=O , 

k=1,2,··· ,~ 

Therefore 
F2>+I(w) ~ Fiw), £0 ESf)' (49) 

Let M2>+1 be the linear manifold spanned by {'YJI' 
'YJ2" . " 'YJ2>+I}' Then for any X E M2>+I' Ilxll > 0, we 
have (x, Hx)/(x, x) ~ A2>+1 > O. Given the p ortho­
normal vectors ~1(W), ~2(W), •. " ~iw), there exists 
xf)(w) EM2>+1 such that IIxf)11 = 1 and (xf)' ~k) = 0, 
k = 1,2, ... ,po Therefore 

F2>+I(W) ~ (l/W2){(Xf) , HXf) - 21w111AII} 

~ A2>+I/2w2 > 0 (50) 

for 1£01 ~ A2>+I/41IAII. Assume for the moment that 
w2F2>+I(W) = G2>+I(W) on Sf)' so that F2>+I(W) is con­
tinuous on Sf)' Then there exist real numbers a2>+1 
and b2>+1 such that 0 < a2>+1 ~ af)' bf) ~ b2>+1 < 0, 
F2>+I(a2>+l) = F2>+I(b2>+l) = t, and F2>+I(W) ~ t for 
£0 E Sf)+I == (b2>+I' 0) U (0, a2>+J. For each £0 E S2>+I, 
Km is a completely continuous Hermitian operator, 
so that there exists ~2>+I(W) E E, 11~2>+111 = 1, satisfying 

w2F2>+I(W)~2>+1 = Km~2>+I' (E2>+I' ~m) = 0, 
m=I,2,···,p. (51) 

Continuity of F2>+I(W) on Sf) and Eqs. (49) and (SO) 
imply that there exist w!u E (0, a2>+l) and £0;+1 E 

(b2>+1 , 0) such that w~ ~ W!t-l > 0, £0; ~ £0;+1 < 0, 
and F 2>+1(£0;:"1) = 1, so that 

[(£0;+1)21 - 2w~liA - H]~ = 0, (52) 

where ~;:"I == E2>+I(W;:"I)' 
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It remains to show that w"F .. (w) = G .. (w) on S1l-1' 

Clearly Eqs. (33) and (46) imply that G .. (w) ::;; w'F .. (w) 
on S1I-l' so that it suffices to show that G .. (w) ~ 
wIF .. (w) for wE S .. _I' Now for any n - 1 vectors 
4>1,4>2" . ,,4> .. -1 in E, 

(', K",'L... (', K",,) IF ( ) sup .::: sup = w .. w , 
<',4>,)=0 (', ') <',s,)=O (', ') 

,1 .... 1,2, ...• n-I 1 ..... 1,2, ... ,11-1 

WE S .. _I' (53) 

Indeed, let, E E such that II '" = 1 and <', ~k) = 0, 
k = 1,2, ... ,n - 1. By construction, the ~k (k = 
1,2, ... ,n - 1) are orthonormal eigenvectors of Kw 
(for each fixed w) and <', K",,) ::;; (~k' Kw~k)' k = 
1, 2, "', n - 1, since <', EJ = 0, k = 1, 2, "', 
n - 1. The linear manifold spanned by the n ortho­
normal vectors ~o == " ~1' ••• , ~1I-l is n dimensional, 
so that there exist constants OCk (k = 0, 1, ... ,n - 1) 
such that y == !k:~ OCk~k satisfies lIyll2 = !k:~ lockl 2 = 
1 and (y, 4>k) = 0, k = 1,2, ... , n - 1. Then 

.. -1 11-1 

(y, K",y) = ! ockocMk' K"'~/) = !(~k' K"'~k) lockl2 

k,!=O k=O 
.. -1 

~ (', K w,)! lockls = (', K",,). 
k=0 

Hence Eq. (53) holds, and G .. (w) ~ wIF .. (w), wE 

S .. _I, follows at once. This completes the proof of 
the theorem. 

V. ORTI:lOGONALITY AND COMPLETENESS 
RELATIONS FOR STABLE FINITE­

DIMENSIONAL SYSTEMS 

We now consider the orthogonality and complete­
ness properties of the eigenvectors of Eq. (2), re­
stricting our attention primarily to the case where H 
is positive definite and E is a finite-dimensional 
unitary space. 

The time-dependent counterpart of Eq. (2) is 

i7 + 2AiJ + H'YJ = O. (54) 

Jhis second-order differential equation allows the 
initial displacement 'YJ0 and velocity iJo to be arbitrarily 
prescribed vectors in E. Thus, if the set of eigenvectors 
{'''} of Eq. (2) is sufficiently large, the most general 
solution of Eq. (54) would be given by (assuming 
that A'YJ = 0 and H'YJ = 0 implies 'YJ = 0) 

'YJ(t) = ! oc .. ~ .. ei",,,t (55) .. 
with 

'YJ0 = !oc .. ~ .. , (56) 

definition: We say that a set of eigenvectors {'''} of 
Eq. (2) is complete if for any two vectors 'YJo and -iiJo 
in E, there exist constants oc .. such that Eqs. (56) and 
(57) hold. In the circumstance that H is positive 
definite and E is an N-dimensional unitary space EN' 
we show that 

(1) there exists a complete set of 2N eigenvectors 

{'''}:!1; 
(2) the coefficients oc .. are given by 

oc .. = w .. ~~ .. , -iiJo) + (~ .. , H'YJo); (58) 
w .. (~ .. , ~ .. ) + (~ .. , H~ .. ) 

(3) (iJo, iJo) + ('YJo, H'YJo) 
2N 

=! loc .. 12{w!(~n' ~n) + (~ .. , H~ .. )}; (59) 
n=1 

(4) {~ .. }!~1 = {~}~=1 U {~}~=1' 
where t:; is an eigenvector with positive eigenvalue 
w~ , t;; is an eigenvector with negative eigenvalue w~ , 
and each of the sets {~;=}~=1 spans EN; 

(5) for each of the sets {~;=}~=1' there exists a 
linear operator Q± and an inner product ( , )± de­
fined on EN with the following properties: Q+ is a 
positive-definite Hermitian operator with respect to 
( , )+; Q- is a negative definite Hermitian operator 
with respect to ( , )-; Q+t:; = w~t:;, Q-t;; = w~~; 
(n = 1,2, ... , N); and (~i, ~!.)+ = 0 = (", E;;J- for 
m 7': I. 

In establishing the results to follow, we assume 
throughout that Hand iA are linear Hermitian 
operators defined on a linear vector space E with a 
complex inner product (f, g) defined for all f and g 
in E. 

Lemma I: Let Wk and WI be eigenvalues of Eq. (2) 
with corresponding eigenvectors ~k and ~/' Then 
wk 7': WI implies 

wkwMk' ~I) + (~k' H~/) = 0, (60) 

(wk + W')(~k' ~,) - 2('k' iA~/) = O. (61) 

Proof: We have 

W~(~k' ~/) - 2wMk' iA~/) - (~k' H~/) = 0, (62) 

W:(~/' ~k) - 2Wk(~/' iA~k) - (~/' H~k) = O. (63) 

Subtracting the complex conjugate of Eq. (63) from 
Eq. (62), and using the fact that Hand iA are 
Hermitian, we obtain .. 

-iiJo = !ot .. w .. ' .. , (57) .. 
(WI - Wk)[(Wk + WI)(~k' 'I) - 2(~k' iA~/)] = O. (64) 

wk 7': WI therefore implies Eq. (61). Equation (60) 
where the oc .. are constants, determined by 'YJo and iJo. now follows by substituting (~k' iA~/) = !(wk + WI) X 

Equations (56) and (57) lead us to the following (Ek , ~,) into the complex conjugate of Eq. (63). 
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When H ~ 0, the eigenvalues of Eq. (2) are all 
real, so that Eqs. (60) and (61) hold (with Wk = £oJ 
whenever £Ok ~ WI. If we are given any set of eigen­
vectors {;k}, Eq. (60) holds for k ~ I provided £Ok 
~ WI. If the {;k} contains a subset of p linearly in­
dependent eigenvectors all having eigenvalue £Ok' 
one can always take linear combinations of these so 
as to form a new set of p linearly independent eigen­
vectors (with eigenvalue £Ok) which themselves satisfy 
Eq. (60) for k ~ 1 (see Lemma II). Thus for H ~ 0, 
given any set of eigenvectors {;~}, we can construct 
from them (if necessary) a new set of eigenvectors 
{;k} such that Eq. (60) holds for k ~ I and which 
possesses for each £Ok the same number of linearly 
independent eigenvectors. 

Lemma II: Let E be a Hilbert space and M( (0) be 
the linear subspace spanned by p linearly independent 
eigenvectors of Eq. (2) having the eigenvalue w. Then 
there exists p orthonormal vectors ;k (k = 1, 2, ... ,p) 
in M(w) such that 

1£012 ($1' ;",) + (;1' H;m) = 0, I ¢ m. (65) 

Each ;k is an eigenvector of Eq. (2) with eigenvalue w. 

Proof: By hypothesis, M(w) is a p-dimensional 
unitary space, and every nonzero vector in M( (0) is 
an eigenvector of Eq. (2) with eigenvalue w. Let P 
be the projection onto M(w), i.e., P; is the projection 
of ; onto M(w) for all ; in E. Then R == PHP is 
Hermitian (since P is Hermitian) and maps M(w) 
into itself. Therefore there exist p vectors ;k (k = 1, 
2, ... ,p) in M(w) satisfying 

R;k = Ak;k, k = 1,2,·· . ,p, (66) 

(;" ;m) = 151m , 1, m = 1,2,· .. ,p, (67) 

where Ak is a real constant and 151m is the Kronecker 
delta. Therefore 1 ~ m implies 

1£012 (;" ;m) + (;" H;m) = (P;" HP;m) = (;" R;m) 
= Am(;" ;m) = O. (68) 

Suppose that H is positive definite on E, so that all 
the eigenvalues £Ok of Eq. (2) are real and nonzero. 
We then make the following definitions. 

Definition 1: A set of eigenvectors {;k}~1 of Eq. (2) 
is said to be canonical if, for all k, I = 1,2, ... , n 

wkwMk' ;,) + (;k, H;,) = Ekdk' , (69) 
where 

Ek == W:(;k' ;k) + (;k' H;k) > 0, k = 1,2, ... ,n. 
(70) 

Definition 2: Let {;k}:=l be a canonical set of eigen­
vectors of Eq. (2), and let x and x be any two vectors 
in E. The generalized Fourier cQefficient ock[x, x] is 

defined by 

IXk[X, x] == {Wk(;k' x) + (;k' HX)}E;1. (71) 

The next theorem shows that our generalized 
Fourier coefficients play much the same role in the 
representation of the two vectors x and x by sums 
of canonical eigenvectors of the form of Eqs. (56) 
and (57) as do the ordinary Fourier coefficients in the 
approximation of a vector by a sum of orthonormal 
vectors. 

Theorem VI: Let H be positive definite on E, 
{;k};=1 be a canonical set of eigenvectors of Eq. (2), 
and x and x be any two vectors in E. Let {Pk}~1 be 
any n complex numbers. Then 

II x - ~ PkWk;k W + II x - ~ Pk;k II: 
= II x - ~ OCkWk;k W + II x - ~ OCk;k II: 

+ II ~ (ock - Pk)Wk;k 112 + II ~ (OCk - Pk);k II: 
~ II x - ~ OCkWk;k W + II x - ~ IXk;k II: 

n 

= (x, x) + (x, Hx) - ~ lockl2Ek , (72) 
1 

where the IXk are defined by Eq. (71) and Ilxll~ == 
(x, Hx). 

Proof" Let 
" n 

j == X - ~ IXkWk;k, / == x - ~ OCk;k' 
1 1 

" n 
g == ~(OCk - Pk)Wk;k' g == ~(OCk - Pk);k, 

1 1 
then 

n n 

X - ~PkWk;k = j + g, x - ~Pk;k =/ + g, 
1 1 

so that 

II x - ~ PkWk;k 112 + II x - ~ Pk;k II: 
= (j,f> + (f, Hf) + (g, g) 

+ (g, Hg) + 2 Re {(j, g) + (f, Hg)}. 
But 

(j, g) + (f, Hg) 

= (x - ~ IXkWk;k, ~ (IX, - P,)wz;,) 

+ (x - ~lXk;k' H[~(IX' - P,);,]) 

" = ~ (OC I - P,){wl(x, ;,) + (x, H;,)} 
1 

" - ~ a.k(OCZ - P,){wkwMk' ~,) + (;k' H;,)} 
k,,-1 

" " = ~ (OC, - P,)a.IEZ - ~ a.,(OCI - P,)EI = 0, 
1 1 



                                                                                                                                    

530 E. M. BARSTON 

where we have used Eqs. (69)-(71). Now 2n in x, and is real by Theorem II. Now 

" = (x, x) + (x, Hx) - I IXk{Wk(X, ek) + (x, HE/c)} 
I 

" - Ioc/c{w/c(ek, x) + (E/c, Hx)} 
1 

" + I OCklX,{wkwM/c, E,) + (E/c, HE!)} 
/c.!=l 

" " = (x, x) + (x, Hx) - 2 I 11X/cIIE/c + I 11X/clsE/c 
1 1 

" = (x, x) + (x, Hx) - I 11X/cIS Ek· 
I 

This completes the proof of Theorem VI. 

Note that the last line of Eq. (72) gives a Bessel 
inequality for the IX/c' viz., 

(x, x) + (x, Hx) ~ I 11X/cIS E/c. (73) 
/c 

Furthermore, we see that a denumerable canonical 
set of eigenvectors {E/c} is complete if and only if the 
equality sign holds in Eq. (73) for arbitrary x and x 
in the Hilbert space E, for H bounded and positive 
definite, with a bounded inverse H-I. 

Lemma III: Let w! (l = 1,2, ... ,n) be n eigen­
values of Eq. (2) with corresponding eigenvectors 
E, (/ = 1,2, ... ,n), where the n vectors E, are 
linearly independent. Suppose that Q is an eigenvalue 
ofEq. (2) with eigenvector" where' = I:!.l aiEl ~ o. 
Then Q and w, (/ = 1,2, ... , n) are all roots of the 
real polynomial P2,,(x) of degree 2n defined by 

Pz,,(x) == det F(x), (74) 

where F(x) is the n x n matrix given by 

F(x) == x'l.G - 2xiA' - H' (75) 

with Gk, == (ek, E,), A~I == (e/c, AE,), and H;! == 
(EI:> HE,). The matrices G, iA', and H' are all 
Hermitian, and G is positive definite. Furthermore, 
if H is positive definite, then P2,,(x) has precisely n 
positive and n negative roots. 

Proof· The matrices G, iA', and H' are clearly 
Hermitian since iA and H are Hermitian. For any 
column vector p with components hi (i = 1,2,· .. ,n) 
we have (1],1]) = (P, GP), where 1] == I;"l hkE/c 
and (IX, P) == I;"l ii~k (the usual inner product in 
E,,). The E/c (k = 1,2, ... , n) are linearly independent, 
so that 1] = 0 if and only if P = o. Thus G is positive 
definite. The polynomial P2,,(x) is clearly of degree 

k = 1, 2, ... , n, (76) 
so that 

P2,,(W I) = 0, / = 1,2, ... , n. (77) 

Suppose that Q is an eigenvalue of Eq. (2) with 
eigenvector ,= If=l alE, ~ o. Then the column 
vector IX with components a/c (k = 1,2, ... ,n) is 
nonzero (the EI are linearly independent) and 

(e/c,{Q21 - 2QiA - Hg) 

" = I a l {Q2(e/c, E,) - 2Q(e/c, iAE,) - (E/c, HE,)} = 0 
1=1 

(78) 

for k = 1, 2, ... ,n, i.e., F(Q)IX = O. Thus IX ~ 0 
implies P2,,(Q) = O. 

Finally, suppose H > 0, so that H' > O. We define 

P 2,,(E; x) == det F.(x), 0 ~ E ~ 1, (79) 
where 

F.(x) == xlG - 2EXiA' - H', (80) 

so that P I ,,(I; x) = PI,,(x) and FI(X) = F(x). Now 
each root of Pg,,(E; x) is an eigenvalue of the system 

F.(x)1] = 0 (81) 

with a nonzero eigenvector 1]. Therefore H' > 0 and 
Eqs. (3)-(6) imply that all the roots of P2n(E; x) are 
real and nonzero for all real E. Since the roots of 
P2,,(E; x) are continuous functions of E, 0 ~ E ~ 1, 
the number of positive and negative roots of P 2,,(E; x) 
must be independent of E, 0 ~ E ~ 1. But P2,,(0; x) 
has precisely n positive and n negative roots, and the 
proof is complete. 

Lemma IV: Suppose H is positive definite. Then 
any set of eigenvectors {Ek}~l of Eq. (2) with dis­
tinct positive (negative) eigenvalues W/c (i.e., W/c ~ WI 
for / ~ k) is linearly independent. 

Proof· We begin by demonstrating that if the 
{e/c}l=l are q linearly independent eigenvectors of Eq. 
(2) having distinct positive (negative) eigenvalues W/c' 
then the set {~/c}i!~ is also linearly independent, where 
eq+!is an eigenvector ofEq. (2) with positive (negative) 
eigenvalue wq+!' and Wq+l ~ W/c' k = 1, 2, ... , q. 
Indeed, if the set {e/c}i!~ were linearly dependent, we 
would have p,ttiWq+J = 0 [see Eq. (74)] by Lemma 
III, so that P2ix) would have at least q + 1 distinct 
positive (negative) roots. But this is impossible, as H 
is positive definite (see Lemma III). Thus {Ek}Z=l 
linearly independent implies that {E/c}i!~ is also line­
arly independent. Since one eigenvector constitutes a 
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linearly independent set, Lemma IV follows by 
induction. 

definite with respect to ( , )-. 

(2) Q±~ = wNt k = 1, 2, ... , N. 
Theorem VII: Let H be positive definite, and 

{ek}Z=1 be a canonical set of eigenvectors of Eq. (2) 
with positive (negative) eigenvalues. Then the set 
{ek}~=1 is linearly independent. 

Proof: We denote the distinct elements of the set of 
eigenvalues corresponding to the eigenvectors e

k 

(k= 1,2,"',n) by W1 ,w2,"',wL, where L~n 
(wk :F w! for k:F 1). Let Sew!) be the subset of 
{ek}Z=1 containing precisely those eigenvectors pos­
sessing the eigenvalue W!' We relabel the ek as ~)') 
where e~!) E (Sw!) and j = 1,2, ... , m! ~ n. We have 
{ek}Z=1 = Uf=1 Sew!), Lemma IV implies sew!) f"'I 

S(wk) = cp for k :F I, and n = II::1 m!. Now suppose 
{ek}Z=1 is linearly dependent, so that 

(82) 

for some a<j') :F O. Let CPt == Ii,,!1 a)l)e~l), 1 = 1, 2, 
... , L, so that CPt is an eigenvector of Eq. (2) with 
eigenvalue w! if CP!:F O. Since the set {ek}Z=l is 
canonical, a~P) :F 0 implies cp1J :F O. [Note that Eq. 
(69) states that if ek and e! both have the eigenvalue 
w, then (ek, [w 2I + H]e!) = 0 for k :F 1.] Equation 
(82), which takes the form 

L 

I CPt = 0 
!=1 

contradicts Lemma IV. Thus {ek}Z=1 is linearly 
independent. 

Theorem VIII: Let H be positive definite and E = 
EN (an N-dimensional unitary space). Then there 
exists a canonical set C of 2N eigenvectors of Eq. 
(2); C = {enf=1 u {~k}f=1' where et is an eigen­
vector with positive eigenvalue, ek has a negative 
eigenvalue, and each of the sets {U}f=1 spans EN' 

Proof: The existence of C is an immediate conse­
quence of Theorem V and Lemma II. Theorem VII 
implies that the sets Rt}f=l are each linearly inde­
pendent and therefore span EN . 

Theorem IX: Let H be positive definite on E = EN, 
and {et}f=1 and {ek }f=1 be the sets of eigenvectors 
of Eq. (2) (with corresponding eigenvalues wt, wk ) 
introduced in Theorem VIII. Then there exist linear 
operators Q+ and Q- defined on EN and inner prod­
ucts ( , )+ and ( , )- with the following properties: 

(1) Q+ is Hermitian positive definite with respect 
to the inner product ( , )+; Q- is Hermitian negative 

(3) (et, e-iY = 0 = (t,;, ~)- for k:F I. 

Proof: Since {U}f=1 is linearly independent and 
spans EN' the following expressions uniquely define 
the linear operators Q+ and Q- on EN: 

Q+{~ ak~) == ~ akwt~, 
Q-{~ ak~} == ~ akw;e;. (83) 

In particular, we have Q±~f = wfU'. We define, for 
all~,'YJEEN' 

a, 'YJ)+ == (Q+t Q+1J) + a, H'YJ), 

a, 'YJ)- == (Q-~, Q-1J) + a, H'YJ), (84) 

and it is clear that ( , )± possesses all the requirements 
of an inner product. Now 

(~, et)± = (Q±e;, Q±e~) + a;, Het) 

= w~w~(~, et) + (e;, Het) = ENkh (85) 

[Ek is defined by Eq. (70)] since the sets {ei}f=l are 
canonical. Finally, for any two vectors 

N N 
~ = I aNt, 1J = I bt~ 

in EN, we have 
k=1 !=1 

N N 
(~, Q*rj)* = I ii;btwt(et et)± = I a;b;wtE; 

k.!=1 k=l 
N 

= I w;ii;bt(~, et)± = (Q±~, 'YJ)±, (86) 
k.!=1 

N 

a, Q±')± = 2E;W; la/!'12
, (87) 

k=1 
which proves statement (1). 

Theorem X: Let H be positive definite on E = EN, 
and let C be the canonical set of eigenvectors of Eq. (2) 
introduced in Theorem VIII. Then C is complete, and 
we have 

N N 

X = I {Ottwtet + Ot;;wk"f,;}, 
k=1 

X = 2 {Ottet + Ot;ek}, 
k=l 

N 
(88) 

(x, x) + (x, Hx) = 2 {\Ottr~ Et + 10t;12 Ek"}, (89) 
1 

for all x, x in EN, where 

Ott= {w~~, x) + (et,HX)}[Et]-t, 

Et= [w/!,]2(~,~i)+(~,H~). (90) 

Proof: We begin by noting that Eqs. (88) and the 
fact that C is canonical imply that the Otf are neces­
sarily given by Eqs. (90), i.e., the Ott are uniquely 
determined. Indeed, if we insert Eqs. (88) into the 
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quantity (wtu, x) + (u, Hx), Eqs. (69) and (70) 
lead immediately to Eqs. (90). It therefore suffices 
(by Theorem IX) to demonstrate the existence of the 
vectors y+( = If (1.t et) and y-( = If (1.i" e;;) satis­
fying the simultaneous equations 

y+ + y- = X, Q+y+ + Q-y- = x. (91) 

Equations (91) possess the unique solution 

y+ = K-l[X - Q-x] , y- = K-l[Q+X - x] (92) 

provided K-l exists, where K == Q+ - Q-. We com­
plete the proof by showing that Ky = 0 implies y = O. 
Suppose Ky = O. There exist 2N constants rt such 
that y = If rt et = -If r;; ei" by Theorem VIII, 
so that Ky = 0 leads to 

N 

0= I {rtwUt + rk"w;;e;;}, 
1 

N 

0= I {rt~t + r;;e;;}. (93) 
1 

JOURNAL OF MATHEMATICAL PHYSICS 

Equations (93) are of the form of Eqs. (88) with 
x = 0, x = 0, (1.t = rt, so that the rt are uniquely 
given by Eqs. (90), i.e., rt = 0 for all k, and y = O. 

Note added in proof: The extension of many of the 
results obtained in this section to positive completely 
continuous Hermitian operators H in Hilbert space 
has been obtained by reducing Eq. (2) to a linear 
eigenvalue problem in the Hilbert space E x E. This 
analysis will be presented in a forthcoming paper. 
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The lowest-order vertex correction, the exchange counterpart of the polarization correction, is evalu­
ated for all values of the energy and momentum transfer variables and for an arbitrary rotationally 
invariant two-body interaction. The method employs a dispersion theory technique and an angular 
expansion of the interaction in spherical harmonics. For any partial wave, the result is expressed as a 
one-dimensional integral over a c1os~d interval that can easily be evaluated numerically once the form 
of the interaction is specified. Explicit expressions can be obtained for the long wavelength limit, and 
for an expansion in powers of the momentum transfer variable. In this case the result depends on the 
value of the interaction and its momentum derivatives when one of the momentum variables lies on the 
Fermi surface. 

1. INTRODUCTION 

THE vertex function plays an important role in the 
investigation of many-fermion systems. It deter­

mines, for example, the weak response of the system 
to an external agent. 1 Furthermore, the Landau 
theory of the normal system can be re-expressed in 
terms of the vertex function. 2 

The complete vertex function, r, can be factored 
into the inverse dielectric constant, c 1, and the proper 
vertex function, r. The former takes account of the 
polarization screening of the interaction. The latter 
incorporates exchange effects. 

Although the perturbation value of r is not ade-

1 A. Layzer, Ann. Phys. (N.Y.) 35, 67 (1965). 
2 P. Nozieres, Proprietes generales des gaz de fermions (Dunod Cie., 

Paris, 1963). 

quate for realistic calculations, it does provide a very 
rough estimate of the result. Moreover, it gives a clue 
to the mathematical properties of more accurate 
nonperturbative approximations. 

The perturbation expression for E-l, in other words 
the evaluation of the familiar "bubble" diagram is 
well known and has been given in explicit form.u 
Somewhat surprisingly, the perturbation expression 
for r, corresponding to the triangle diagram of Fig. 
1, has not been evaluated to the same degree of 
completeness, although partial evaluations have been 
given. 

This has been partly the result of a lack of interest 

a J. Lindhard, Kg\. Danske Videnskab. Selskab. Mat-Fys. Medd. 
28, 8 (1954). 

, D. V. Dubois, Ann. Phys. (N.Y.) 7, 174 (1959); 8, 24 (1959). 
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x 

FIG. 1. Triangle diagram for lowest­
order vertex correction. The cross de­
notes an external potential or inter­

action. 

arising from the common but overly optimistic belief 
that ex~h~nge corrections are not really important. 
Partly, It IS due to the somewhat increased mathe­
ma~ical complexity of the evaluation. In particular, 
unlike the bubble diagram, the integration now 
depends explicitly on the particular form of the 
interaction. The increased complexity, however, 
turns out to be fairly minor when one makes use of 
dispersion relation techniques and a partial wave 
analysis of the interaction. 

In the wO.rk below, with the aid of these techniques, 
the ~valuatton of the triangle diagram of Fig; 1 is 
carned through to the point of one-dimensional 
integrations over a closed domain of integration, for 
all momentum and energy transfers. 

To increase the region of validity of the result 
somewhat beyond that of ordinary perturbation 
theory, we have allowed the two-body interaction v 
to be an arbitrary nonlocal, but still instantaneous 
potential. As in the perturbation case, we assume tha~ 
v is real and symmetric in momentum space, though 
the symmetry property is not actually used. 

In the static long wavelength limit, the results for 
the vertex correction agree with those obtained 
earlier from the use of a Ward's identity.5 

2. EVALUATION OF f IN LOWEST ORDER 

The diagram for the lowest-order vertex correction, 
", is shown in Fig. 1. According to the Feynman 
rules, we can write r in the form 

r(P, q) == r - 1 = ci f d4kGo(k_)Go(k+)V(P, k), (1) 

where 
c = (27T)-4, 

k± == k ±!q (2) 
and Go is the free propagator, 

Go = [ko - k2J(2m) + iE sgn (Ikl - kF)]-l. (3) 

The invariance of r under time reversal is expressed 
by the symmetry property, evident from (1) 

,,(P, -q) = ,,(p, +q). (4) 

Provided only that v is instantaneous r is inde­
pendent of E == Po. For rotationally invariant v, " 
then depends on only four variables which we take to 

6 A. Layzer, Phys. Letters 13,121 (1964). See also Ref. 1. 

be the quantities Iql, Ipl, x f.I!l == cos (p, q), and w == qo' 
Instead of w it is more convenient to deal with the 
ratio u == wlql since the vertex function is not uniquely 
defined in the q -+ 0, W -+ 0 limit unless the ratio u 
is also specified. 

In the following, we obtain explicit results, with no 
remaining nontrivial integrations, for several cases: 
the q = 0 limit for all u and for arbitrary interaction 
v; corrections to this of order q2 and, for the special 
case of the delta function interaction, results for all 
q and u. In the case of the general interaction away 
from q = 0, the reduction is carried to the point of 
one-dimensional integrals over a closed interval. 
These integrals can easily be evaluated numerically 
once the form of the interaction is specified. 

It turns out that the calculation is simplified by 
employing a formal dispersion relation technique 
with respect to the energy-transfer variable w or u, 
considered as a complex variable. Thus, we first 
evaluate the simpler quantity 1m r(u) and then express 
Re r(u) in terms of this result by a Cauchy principal­
value integral. As might be expected we need to 
know 1m r only "on the energy shell," when w is 
equal to the energy of intermediate particle-hole 
pairs with the momenta (IL, ~). 

Our reduction also utilizes a "partial wave" 
expansion of v(p, k) in Legendre polynomials in the 
variable Xflk == cos (p, k). In the static q -+ 0 limit 
only the s-wave term contributes to the result. 

We begin the evaluation of (1) by performing the 
ko integration, closing the contour of integration in 
the upper half of the complex ko plane. We then 
obtain two terms, a time-reversed pair, one pro­
portional to O(kp - k_)O(k+ - kF) due to a pole 
at (k_)o = T(k_) + iE, the other proportional to 
O(kp - k+)O(k_ - kp ) due to a pole at (k+)o = 
T(k+) + iE. Here T(k) = k2/2m. The result is 

r = r+ + r-, (Sa) 

r-(P, q) = r+(p, -q), (5b) 
where explicitly 

r+ = 27Ti2Cfd3kV(P, k) 0(1 - k_)O(k+ - 1) (6) 
w - q. k + 2iE 

with the units 
Ii = m = k p = 1. (7) 

The imaginary part of this expression is somewhat 
easier to evaluate than the real part. We wish to take 
advantage of this situation by using a Kramers­
Kronig type of dispersion relation to express the real 
part in terms of the imaginary part. Let us observe. 
however. that ,,+ and r- have different analytic 
properties as a function of w or u regarded as a 
complex variable: the former is analytic in the upper 



                                                                                                                                    

534 AR THUR LA YZER 

half-plane, the latter in the lower half-plane. Thus, 
we must treat y+ and y- separately as far as the 
dispersion relations are concerned. 

From the preceding discussion, we can write for 
real u 

1m y+(u) = f±(u)O(±u), 

1 100 du'f+(u') Re y+(u) = + - , , 
170 u-u 

- 1 fO du'f-(u') 
Re y (u) = - - , . 

17 -00 U - U 

(8) 

(9a) 

(9b) 

Equation (8) expresses the fact that y+ and y- are 
also the positive and negative frequency parts of y. 
In the integrals in (9), principal values are understood. 

From (6), 1m y+ has the value 

1m y+ = 2172C f d3kv(p, k)O(l - k_> 

X O(k+ - l)(j(w - q • k). (10) 
Note that, in agreement with (8), this is nonvanishing 

only for 
w = q·k = T(k+) - T(k_) ~ O. (11) 

In order to facilitate the evaluation of y, it is 
convenient to expand it in Legendre polynominals of 
the cosine of the angIe between p and q, 

00 
y = ! y1P1(XPIl)' 

1=0 
and similarly for f 

(12) 

For this purpose we introduce the corresponding 
expansion coefficients VI according to 

00 
v(p, k) = ! v1(p, k)PlxPk)' (13) 

1=0 

As far as the angular k integration is concerned we 
can now make the replacement 

P,(xpk) ~ P1(x'P/l)P,(xllk). (14) 

This yields the desired expansion (12). The angular 
k-integration is now trivial due to the delta function in 
(10). We obtain for II the expression 

1 i1+w-1l
1
/4 

ft = 2173C - I d(k~Vl(P, k)Pz(ujk)O(k2 
- u2

), 
q l-w-q /4 

and from (Sb), for negative u 
(15) 

f,(q, u) = (-l)'fi(q, -u), (16) 

where now q == Iql. 
This last relation allows us to express Yl in terms of 

It alone through the dispersion relations (9). These 
take different forms according to whether 1 is even or 
odd, 
for even 1: 

1m y,(u) = ft(lul), (17a) 
2};00 u'du' 

Re Yl(U) = - fi(u') 2 2 ; 
17 0 U' - U 

(18a) 

for odd I: 

1m Yl(U) = fiClul)e(u), 

2U£00 du' 
Re Yl(U) = - fi(u')'2 2 ' 

17 0 U-U 

(17b) 

(18b) 

where e(u) = O(u) - O( -u). The slash through the 
integral sign indicates that the principal value must be 
taken. 

3. THE LIMIT q ~ 0 

It is useful at this point to consider special cases in 
which exact final results can be obtained analytically 
without too much effort. One of these is the important 
limiting case q ~ 0 with u held finite, the long wave­
length or semi-classical limit. 

In connection with the q ~ 0 limit, we first note 
that Ii, given in (15), is finite in this limit: as q ~ 0, 
the upper and lower integration limits coincide (since 
w = qu) preventing a divergence due to the factor 
q-l. To show this more explicitly it is convenient to 
eliminate the k integration in favor of a parametric 
z integration through the substitution 

k 2 = I + quz _ !q2. (19) 

We then obtain, from (15) 

fi = 2173CU fl dzv1(p, k)P1(ujk)O(k2 - u2
). (20) 

In the limit q ~ 0, the function k may be replaced by 
unity: 

Limfi(q, u) ==fi(O, u) 
q-+O 

= 4173CUV1(p, l)Pl(u)O(l - u2). (21) 

We see that 1m Y vanishes in the static limit, u ~ 0, 
and also if the absolute value of u is greater than unity. 

From (21) we can obtain Re Y via the dispersion 
relations (18). The u' integration is trivial for any 
fixed value of I. Let us concentrate attention on the 
1 = 0 term. 

We obtain then in the q ~ 0 limit 

Re Yo(O, u;p) = 4173CVO(P, I)J(u), (22) 
where 

leu) = ~ ~l ~'2 du' = ~[1 _ lu In 11 + u IJ. (23) 
17':lou 2-U2 17 l-u 

Let us note that I has an integrable, logarithmic 
singularity at u = 1. 

We see that Re Y vanishes for u ~ 00 as it should 
but not in the static limit, u ~ O. In the static limit, 
(22) yields 

1 
Yo(O, 0, p) = -2 Vo(p, 1). 

217 
(24) 

One easily verifies that, due to the orthogonality 
properties of the Legendre polynomials, only the 1 = 0 
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term contributes to Re y in the q, u ~ 0 limit. 
Equation (24) agrees with the value of yeO, 0; p) 
obtained earlier on the basis of gauge invariance.5 

4. DELTA-FUNCTION INTERACTION 

There is at least one form of interaction v simple 
enough to allow us to evaluate the vertex correction 
y exactly for all q and u. This is the case of a delta­
function interaction with strength a. 

v(p, k) = a (25) 
or 

vex, x') = ar53(x - x'). (26) 

Clearly v(p, k) has only an 1 = 0 component, v = Vo. 
When we substitute (25) for v into (20) we obtain 

1m y~ = 271'3cau fldzO(1 + quz - tq2 - u2
), (27) 

where y ~ is the value of y for the delta-function inter­
action (25). 

The z integration is trivial and yields the result 

(471')-la lui, lui + !q < 1, (28a) 

(871')-la ! [(1 - (lui _ !q)2], 
Imy~ = q 

/Iul - !q/ < 1 < lui + !q, (28b) 

0, /Iul - iq/ > 1. (28c) 

To calculate Re y we employ the dispersion relation 
(18a). After carrying out the elementary u' integration 
we obtain 

Re y~ = (471'2)-la{1 + .! [1 - (u + tq)2] 
2q 

x In /1 + tq + u 1+ .! [1 - (u - tq)2] 
1 - tq - u 2q 

X In 11 + tq - u I}. (29) 
1 - tq + u 

The result (28) and (29) for y ~ has a familiar 
mathematical appearance. Aside from a numerical 
factor, it agrees precisely in form with the well-known 
value of the polarization loop. This is hardly sur­
prising since for a delta-function interaction the dotted 
line of the vertex diagram is effectively collapsed to a 
point (in position space). Thus, it is clear that for a 
delta-function interaction the lowest-order polariza­
tion correction, a71', should have the same value as 
the proper vertex correction except for a factor of 
- 2 arising from the exchange nature of the vertex 
correction: 

a71' = -2y~, 
which is indeed true. 

(30) 

5. GENERAL FORM OF INTERACTION 

Equation (18) cannot be explicitly evaluated for all 
q and u for the general interaction, v. One can, 

however, further reduce the expression for Re y by 
eliminating one of the two remaining integrations. 

According to (18) and (20) we can write Re y in the 
form 

Reyz = 271'2c [CO du ,[_I_ + (-I)Z_I_J 
10 u' - u u' + u 

x L:1

u' dz{vz(P, k)PzCu'jk)O(JC2 - U,2)}, (31) 

where 
k2 == 1 + qu' z - tq2 ~ O. (32) 

We make the substitution of variables z ~ y, where 

y == u'z - tq. (33) 
Then, we have 

(34) 

where k is now independent of the variable u'. Inter­
changing the order of integration in (31) we obtain 

f
+l 

Re yz = 271'2c -.1 vz(p, k)FzCy)dy, (35) 

where 

FzCy) = c: dU'Pz(U'jk)[-,_I- + (-li -,_I_]. 
1111+ial u - U U + U 

(36) 
From (34) we see that 

key = ±1) = 1±1 + tql (37) 

and therefore 
(38) 

The integration for Fly) is trivial for any value of I. 
Therefore only one nontrivial integration remains, as 
in the case ofIm y. 

For I = 0, F z has the value 

I JC2 - u
2 I Fo(Y) = 2ln 2 2' 

(y + tq) - u 
(39) 

We can easily verify that the previous results for the 
q ~ 0 limit and the delta-function interaction follow 
from (35) and (39). In the static limit, one finds for the 
coefficient of the q2 term the following result, which 
agrees with (29) for the case of the delta-function 
interaction 

yo(q, 0, p) - yeO, 0, p) = ~ a(p)q2 + 0(>q2), (40) 
271' 

2a(p) = -i-vo(p, 1) - iv~l)(P, 1) + l8V~2)(p, 1), (41) 

where 
v(n)(p, 1) == Lim (dnjdkn)v(p, k). (42) 

k-+l 

In general, the expansion of y in powers of q 
involves higher-order derivatives of the various 
vz(P, k) at the Fermi surface, k = 1. In the static 
limit, u = 0, one sees from (18), (19), and (20) that 
only even powers of q and even values of I can occur. 
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Relationship of the Internal and External Multiplicity 
Structure of Compact Simple Lie Groups* 
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As a preliminary step in a program aimed at developing the Racah algebra of an arbitrary compact 
simple Lie group L, this paper gives a unified review with various extensions of the work of Biedenharn, 
Speiser, and others on the relationship between the internal and external multiplicity structures of L, 
the former being that of the weights of the representations of L, the latter being that of the terms of the 
Clebsch-Gordan series of L. 

1. INTRODUCTION 

I N view of the present preoccupation of particle and 
other physicists with symmetry groups of various 

types, it is undoubtedly desirable that the Racah 
algebra of such groups be developed as extensively as 
is the Racah algebra of SU2 , i.e., the familiar quantum 
theory of angular momentum. If L denotes a compact 
simple Lie group, then, as stressed by Wigner, Racah 
and Biedenharn,l a variety of problems have to be 
solved before the Racah algebra of L can be systemat­
ically investigated. The first problem, which is closely 
related to the labeling of the irreducible representa­
tions (IR's) of L, is the construction of the invariants 
or Casimir operators of L. This problem has already 
been solved.2 The second problem concerns the 
determination of operators whose eigenvalues yield 
a complete characterization of the states of the IR's 
of L. A given IR of L is specified by its eigenvalues of 
the invariants of L, or else equivalently and more 
usually, by the components of its highest weight. 
From this highest weight all the weights of the IR can 
be directly deduced.3 However, the weights other than 
the highest are not in general simple but rather of 
multiplicity greater than one. In this context, we 
speak of the internal multiplicity structure (of the 

• Research supported in part by u.s. Atomic Energy Commission. 
t On leave of absence from Dublin Institute for Advanced Studies. 
1 See L. C. Biedenharn, J. Math. Phys. 4, 436 (1963). 
2 G. Racah, Rend. Lincei 8, 108 (1950); G. Racah, Lecture Notes 

on Group Theory and Spectroscopy (Institute for Advanced Study, 
Princeton, New Jersey, 1951), reprinted as CERN report 61-8, 
CERN, Geneva (1961), and published in Ergebnisse der Exakten 
Naturwissenschaften (Springer-Verlag, Berlin, 1965) Vol. 37; L. C. 
Biedenharn, Ref. I; B. Gruber and L. S. O'Raifeartaigh, J. Math. 
Phys. 5, 1796 (1964); M. Umezawa, Nucl. Phys. 48, III (1963); 
53,54 (1964); 57, 65 (1964); Strasbourg Preprint; T. S. Santhanam, 
I CTP reprint 65-86, Trieste (1965). 

• G. Racah, in Lectures on Lie Groups in Group Theoretical Concepts 
and Methods in Elementary Particle PhYSiCS, F. Gursey, Ed. (Gordon 
and Breach Science Publishers, Inc., New York, 1964); A. Salam, 
Formalism of Lie Groups in Proceedings of the 1962 Trieste 
Seminar in Theoretical Physics (IAEA, Vienna, 1963); J. P. Antoine 
and D. R. Speiser, J. Math. Phys. 5, 1226, 1560 (1964); D. R. 
Speiser, Helv. Phys. Acta 38, 73 (1965); R. E. Behrends, J. Dreitlein, 
C. Fronsdal, and B. W. Lee, Rev. Mod. Phys. 34, 1 (1962). 

IR's) of L. The various states belonging to the multiple 
weights are to be distinguished by the operators 
mentioned above and we refer to the problem of 
determining these operators as the internal labeling 
problem. The third problem is that of the Clebsch­
Gordan series and coefficients of L. Its solution 
involves the explicit reduction of direct products of 
IR's of L. Most of the difficulties here stem from the 
fact that such products are not in general simply 
reducible; i.e., the repeated occurrence of IR's in a 
direct product is possible. We refer to the multiplicity 
structure of the reductions of direct products of IR' s of 
L as the external multiplicity structure of L. Asso­
ciated with it there is an external labeling problem, 
that of determining operators whose eigenvalues can 
distinguish the multiple occurrences of IR's of L in 
reductions of direct products. 

At present the internal multiplicity structure of any 
compact simple Lie group is either known4 or at 
least accessible from Kostant's formula,S but the 
internal labeling problem has been solved only for 
unitary groups6 and orthogonal groupS.7 An implicit 
determination of the external multiplicity structure is 
contained in the formulas of Steinberg and Strau­
mann,s while more explicit knowledge can be obtained 
by a rather wide variety of methods, for example, 
by using tensorial methods9 or by using Speiser's 

, See the papers cited in Ref. 3, especially that of Racah. 
, See N. Jacobson, Lie Algebras (Interscience Publishers, Inc., 

New York, 1962), p. 261. In connection with Kostant's formula, 
see J. Tarski, J. Math. Phys. 4, 569 (1963). 

6 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1499 (1963). 
See also H. Weyl, Theory of Groups and Quantum Mechanics 
(Methuen and Company, Ltd., London, 1931). S. Gasiorowicz, 
Argonne National Laboratory Report No. 6729 (1963) (unpub­
lished). 

7 G. Racah has obtained but not published a solution of internal 
labeling problem for orthogonal groups (private communication). 

8 Steinberg's formula is discussed in Jacobson, Ref. 5, p. 262. N. 
Straumann [Helv. Phys. Acta 38, 56 (1965») has discussed its use in 
practical situations and obtained an alternative formula, CERN 
preprints 65 320 5 Th. 527, (1965). 

• See R. E. Brehends et al. or N. Mukunda and L. K. Pandit, 
Pro gr. Theoret. Phys. (Kyoto) 34,46 (1965). 
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method,10 or else, in the case of unitary groups, by 
using Young diagrams.ll So far no published work of a 
general nature on the external labeling problem is 
available, although it has been solved in the case of 
SUa by Moshinsky.12 Finally, as far as Clebsch-Gordan 
coefficients are concerned, progress of a general nature 
has been made by Derome and Sharpe, 1awho recognize 
the existence of the external multiplicity problem but 
perform their investigation without considering any 
special solution of it. Explicit work on coefficients for 
situations in which the external multiplicity question 
enters nontrivially has already been performed in 
special cases, especially the case of SUa .14 

The present paper is designed to serve as an intro­
duction to a program aimed at solving both the 
internal and external labeling problems for arbitrary 
compact simple Lie groups. The idea of this approach 
is first to solve the external labeling problem explicitly 
and then to proceed to a solution of the internal 
labeling problem by exploiting the intimate relation­
ship between the internal and external multiplicity 
structures. We have constructed the operators­
polarized Casimir operators-which solve the external 
multiplicity problem for the classical groups.15 The 
present paper is a unified review which contains, how­
ever, some new results and new proofs and which 
places emphasis suitably for later parts of our pro­
gram on the work of Biedenharn, Speiser, and others 
(whose contributions are cited below) on the relation-

10 D. R. Speiser, in Lectures on Theory of Compact Lie Groups in 
Group Theoretical Concepts and Methods in Elementary Particle 
Physics, F. Gursey, Ed. (Gordon and Breach Science Publishers, Inc., 
New York, 1964), and Speiser, Ref. 3. 

11 D. E. Littlewood, Theory of Group Characters (Oxford Uni­
versity Press, New York, 1950), p. 94. See also A. R. Edmonds, 
Proc. Roy. Soc. (London) A268, 567 (1962); and C. Itzykson and 
M. Nauenberg, Rev. Mod. Phys. 38, 95 (1966). 

12 (a) M. Moshinsky, J. Math. Phys. 4, 1128 (1963) and (b) 
private communication to A. J. Macfarlane. 

13 J. R. Derome and W. T. Sharpe, J. Math. Phys. 6, 1584 (1965); 
see also A. J. Macfarlane, N. Mukunda, and E. C. G. Sudarshan, 
J. Math. Phys. 5, 576 (1964). 

14 K. T. Hecht, Nucl. Phys. 62, 1 (1965); J. G. Kuriyan, D. Lurie, 
and A. J. Macfarlane, J. Math. Phys. 6, 722 (1965); T. A. Brody, 
M. Moshinsky, and I. Renero, J. Math. Phys. 6, 1540 (1965); 
G. E. Baird and L. C. Biedenharn, Duke University preprint (1965); 
M. Resnikoff, Ph.D. thesis, Michigan (1965), and J. Math. Phys. 
8, 63, 79 (1967); L. Banyai, N. Marinesen, I. Raszillier, and V. 
Rittenberg, Phys. Letters 14, 156 (1965), and Bucharest preprint 
(1965); Hou Tei-yu, Sci. Sinica 14, 367 (1965); G. Ponzano, Torino 
preprint (1965). See also M. Moshinsky, Rev. Mod. Phys. 34, 813 
(1962), and Ref. 12(a); J. J. deSwart, Rev. Mod. Phys. 35, 916 (1963); 
Refs. 14-18 of the paper by J. G. Kuriyan et al. noted above; 
I. S. Gerstein and K. T. Mahanthappa, Nuovo Cimento 32, 
239 (1964); L. K. Pandit and N. Mukunda, J. Math. Phys. 6, 1574 
(1965). For C-G coefficients of groups other than SUs and SUs, 
see J. C. Carter, J. J. Coyne, and S. Meshkov, Phys. Rev. Letters 
14, 523, 1850(E) (1965); C. L. Cook and G. Murtaza, Nuovo 
Cimento 39, 532 (1965) for SUs, and K. T. Hecht, Nucl. Phys. 63. 
177 (1965), and J. N. Ginocchio, Rochester preprint UR875-75 
(1965) for R i . 

10 A. J. Macfarlane, L. O'Raifeartaigh, and P. S. Rao (to be 
published). Preliminary accounts of this work have been given by 
L. O'Raifeartaigh. Bull. Am. Phys. Soc. 10, 483 (1965). 

ship of the internal and external multiplicity structures 
of an arbitrary compact simple Lie group L. In Sec. 2, 
we state and prove the following lemma which we 
call Biedenharn's lemma. The lemma was first given 
by Kostant18 and was later rediscovered by Bieden­
harn,18 who was the first to realize its value for 
physical applications. 

Lemma: Let Rand R' be two IR's of a compact 
simple Lie group L with highest weights A and A', 
respectively. Let m with multiplicity I'm denote the 
weights of R. If A' is so much higher than A that 
A' + m is a dominant weight of L for each mER, 
then in the reduction of R X R' the IR of L of highest 
weight A' + moccurs exactly I'm times for each 
mER. 

Despite the restriction of the type of direct product 
R X R' to which this lemma applies, this is the 
fundamental result for our purposes, as is explained 
below. We have proved it very simply using only 
general properties of an arbitrary compact simple 
Lie group. In Sec. 3, we obtain necessary and sufficient 
conditions on A' for fixed A, for each compact simple 
Lie group, which ensure that A' + m is dominant for 
each mER. The content of Secs. 2 and 3 has 
been discussed in detail by M ukunda and Pandit,9 

and by Preziosi, Simone, and Vitale17 in the case 
of SUa. These discussions given by these authors 
use specific details of SUa representation theory and 
these results are obtained much less directly than ours 
are here. Later Vitale18 extended the discussion of 
Preziosi, Simone, and Vitale to the other rank two Lie 
groups. Also, Nussinov19 has obtained results agree­
ing with those of Sec. 3 for SUn, and very recently 
Zaccaria20 has done likewise for the classical groups. 
Our results were obtained independently of those of 
Zaccaria; since our approach is purely algebraic and 
in the spirit of the rest of our paper, whereas Zaccaria 
has used intuitive geometrical notions, we feel justified 
in presenting our method in detail. In Sec. 4 we state 
and prove the generalization of Biedenharn's lemma 
to the case of a general direct product R X R'. In 

16 B. Kostant, TIans. Am. Math. Soc. 93. 53 (1959); L. C. 
Biedenharn, Phys. Letters 3. 254 (1963); G. E. Baird and L. C. 
Biedenham, J. Math. Phys. 5, 1730 (1964). For the classical groups 
the content of the lemma is implicitly contained in H. Weyl. 
Classical Groups (Princeton University Press, Princeton. New 
Jersey, 1946), p. 231, Theorem (7.10A). We are indebted to Pro­
fessor A. J. Coleman for informing us that the general idea of the 
lemma had already occurred to him in 1957 and apparently was 
known to R. Brauer and H. Weyl as early as 1930. 

17 B. Preziosi, A. Simone, and B. Vitale, Nuovo Cimento 34, 
1101 (1964). See also A. Simone and B. Vitale, ibid. 38. 1199 (1964). 

18 B. Vitale, University of Wisconsin preprint (1965). 
18 S. Nussinov, University of Washington preprint (1965). 
10 A. Zaccaria, Napoli preprint (1965). 
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view of the facts (a) that the form of our result has 
been given already by Racah,3 and (b) that it is essen­
tially an algebraic statement of the result underlying 
Speiser's geometrical methodlo•3 for reducing direct 
products, we refer to the generalization of Bieden­
harn's lemma as the Racah-Speiser lemma. The first 
available discussions of Speiser's method to be found 
in the literature were those of Antoine2l and de­
Swartl4 both of which deal with the case of SU3 • Some 
details regarding the application of Speiser's geo­
metrical method to other cases are given by Speiser 
himself. In view of the difficulty of applying geometri­
cal techniques in spaces of more than two (even three!) 
dimensions, the desirability of the algebraic statement 
should be apparent. Finally, it should be mentioned 
that the work of Sec. IV-D of the paper by Behrends, 
Dreitlein, Fronsdal, and Lee22 is essentially equivalent 
to Speiser's method. 

Sections 2-4 contain the basic results of the relation­
ship between the external and internal multiplicity 
structures of an arbitrary compact simple Lie group. 
We conclude this Introduction by explaining our view 
that it is Biedenharn's lemma rather than the Racah­
Speiser lemma which has the more fundamental 
significance. The view stems from the fact that we 
hope to proceed to the development of the Racah 
algebra of an arbitrary compact simple Lie group L 
and in particular to define a complete set of Clebsch­
Gordan coefficients of L as matrix elements of a 
complete set of irreducible tensor operators. We thus 
regard such operators as fundamental entities in the 
Racah algebra of L and explain how Biedenharn's 
lemma rather than the Racah-Speiser lemma is 
exploited in classifying them. The basic irreduc­
ible tensor operators of L possess, in addition 
to the representation labels and internal labels which 
specify their transformation properties under L, 
external labels which specify the changes they induce 
on the representation labels of states of IR's of L. 
Let'IR' i' m') be a state of the irreducible representa­
tion R' of L with highest weight A', with weights m' 
and eigenvalues i' of the operators which solve the in­
ternal multiplicity problem for L. Let T~ be an irre­
ducible tensor operator which transforms like IRj q) 
under L. If A' is high enough with respect to A then 
T~ can, according to Biedenharn's lemma, induce on 
IR' i' m') any or all of the changes 

R' - R" = R' + m, 

where m is a weight of R, on the representation labels 

n J. P. Antoine. Ann. Soc. Sci. Bruxelles 77, 150 (1963). 
22 R. E. Behrends. J. DreitIein. C. Fronsdal. and B. W. Lee. Rev. 

Mod. Phys. 34, 1 (1962). See also C. Fronsdal. 1962 Brandeis 
Lectures (W. A. Benjamin. New York. 1963). Vol. I. 

R' of the state IR' i' m'). Let us then define for each 
weight m of R, tensor operators T~.Jq which induce 
only the change R' - R" + m, i.e., such that the re­
duced matrix elements 

(R"II T~ IIR') 
vanish unless R" = R' + m. By the lemma again there 
are Y m independent such operators for each mER 
since R' + m occurs Y m times in R ® R', so that in all 
there are dim R independent components T~.iq for 
fixed R, j, q. Thus Biedenharn's lemma-giving us the 
m label-is of vital significance in the classification of 
tensor operators of L. Of course, our discussion has 
related only to A' "high enough" with respect to A; 
i.e., it applies only when T~.iq acts on states IA' i' m') 
of high enough A'. If A' is not high enough, the 
situation of Sec. 4 obtains and for any given allowed 
set of values R', i', m', R,j, q, i" there are less than 
dim R nonvanishing matrix elements, 

(R' + m i" m" = m' + ql T~.iq IR' i' m'.) 
Information as to how many and which ones these are 
is contained implicitly and somewhat awkwardly in 
the Racah-Speiser lemma. This, however, does not 
concern us here. The point is that it is not that any of 
the dim R independent tensor components T~.;q with 
fixed R, j, q are identically zero, but simply that some 
of them annihilate certain states IR' i' m') whose 
highest weights are not high enough.23 In other words, 
Biedenharn's lemma features significantly in the 
classification of the dim R independent tensor 
operators TR. with fixed R, j', q, and the Racah-m.,q 
Speiser lemma simply describes edge effects of minor 
importance regarding the vanishing of certain matrix 
elements of such operators. It is for this reason that 
we have not only stated and proved Biedenharn's 
lemma, which is after all no more than a special case 
of the Racah-Speiser lemma, but also stressed it over 
and above the general discussion. The simplicity and 
vital significance of the lemma could easily be lost 
within the complication of the general treatment. It 
should also be mentioned that the philosophy ex­
pounded here is in obvious agreement with that of 
Biedenharn. Further, it might be convenient to 
illustrate the argument by means of the case of SU2 • 

In familiar notation, if j' ~ j, then the tensor operator 
t:" has nonvanishing matrix elements 

(i" m' + ml t:" Ij'm') 
for j" = j' + A, A = -j, -j + 1," . ,j, since the 
Clebsch-Gordan series of SU2 can be written as 

DJ' X D; = Di'+; + Di'+;-l + ... + Di'-; 
; 

= 2 DJ+4, 
4=-; 

28 This point should be clarified by the example discussed below. 
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which is an explicit statement of Biedenharn's lemma. 
Accordingly, we may define, for fixed jm, dim Di = 
(2j + 1) tensor components tim such that 

(j"m' + ml tim Ij'm') 

vanishes unless j" = j' + 6.. The set t!m, j = 0, t, 
1 ... , - j ~ 6., m ~ j, is a complete set of tensor 
operators, whose matrix elements yield all Clebsch­
Gordan coefficients of SU2 • If j' < j, i.e., if j' = 
j - p, 0 < p ~j, then 

Di' x Di = Di+i' + ... + Di-i' 

with 
- j < - j + 2p ~ j, 

and 
(j"m' + ml tim Ij'm') 

vanishes for j" = j' + 6. with - j ~ 6. < - j + 2p. 
Clearly this does not imply the identical vanishing of 
any component tim and does not carry any relevance 
to the tensor operator classification question. Tensors 
of the type tim occur in Schwinger's theory of 
angular momentum24 and will be discussed in a 
forthcoming paper by one of the authors.25 

2. BIEDENHARN'S LEMMA FOR AN ARBITRARY 
COMPACT SIMPLE LIE GROUP 

In this section we establish Biedenharn's lemma for 
an arbitrary compact simple Lie group L and discuss 
its geometrical interpretation. 

We precede a statement of Biedenharn's lemma with 
a convenient definition. Let Rand R' be the IR's of L 
with highest weights A and A'. We say that R' 
dominates R if (A' + m) is a dominant weight of L 
for each weight m of L. 

Biedenharn's lemma: Let Rand R' denote two IR's 
of a compact simple Lie group L. Let A and A' be the 
highest weights of Rand R', and let m of multiplicity 
I'm denote the various weights of R. If R' dominates 
R, then in the reduction of the direct product repre­
sentation R x R' of L: 

(a) only those IR's of L with highest weight A' + m 
occur, 

(b) the IR of highest weight A' + m occurs I'm 
times. 

Proof: We have two distinct but equivalent formu­
las for the character XR(cp) of any IR of L. One of 
these is 

XR(cf» = I I'm exp [i(m, cp)], (2.1) 
m 

1& J. Schwinger, "On Angular Momentum," NYO-3071 (1951). 
15 A. J. Macfarlane (to be published). 

which follows directly from the definition of the 
character. 

The other is the Weyl character formula26 

XR(cp) = XA(cp)/XO(cf», 

XA( cf» = I CJs exp {i[S(A + CJ), cp]}. (2.2) 
s 

Here the superscript zero refers to the identity IR of 
L whose highest (and only) weight is zero. Also S 
denotes an element of the Weyl group of L, and 
CJs = ± 1 according to whether an even or odd number 
of Weyl reflections are needed to obtain S, and CJ is 
half the sum of the positive roots of L. The crucial 
point of our proof of Biedenharn's lemma is to use 
(2.1) for Rand (2.2) for R' in forming the character 
of the direct product R X R'. More precisely, from 
the general theory of characters, we have 

XRXR'(cf» = XR(cp)XR'(cf» 

= I I'm exp [i(m, cp)] 
m 

X I CJs exp {i[S(A' + CJ), cp]}JXO(cp) 
s 

= I CJs I I'm 
S m 

X exp {i[S(A' + CJ) + m, cp1}/xO(cf». 

(2.3) 

But, since the weight diagram, including multiplicities, 
of any IR of L is invariant under any element S of the 
Weyl group of L and since the sum Im runs over all 
distinct weights m of R, we have 

I I'm exp [i(S(A' + CJ) + m, cp)] 
m 

= I I'm exp {i[S(A' + CJ) + Sm, cp]} (2.4) 
m 

for each S separately. Inserting this into (2.3) and 
using 

Sa + Sb = S(a + b) (2.5) 
we obtain 

XRXR'(cp) 

= I CJs I I'm exp {i[S(A' + CJ + m), cp]}/XO(cp) 
m S 

= I Ym{I CJs exp {i[S(A' + CJ + m), cp]}JXO(cp)}. 
m S 

(2.6) 

It is at this point that the condition that R' dominates 
R enters. When the condition is satisfied, we can 
immediately write 

I CJsexp {i[S(A' + CJ + m), cp]}/XO(cp) = xR<A'+m)(cp), 
S (2.7) 

18 H. Weyl. Z. Math. 24, 328 (1924), reprinted in H. WeyJ, 
Selecta (Birkhauser, Basel, 1956). See also G. Racah, Lecture notes 
(1951)2; B. R. Judd, Operator Techniques in Atomic Spectroscopy 
(McGraw-Hill Book Company, Inc., New York, 1963), p. 131. 
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where R(A' + m) is the IR Qf L with the highest 
weight A' + m, fQr all m. Then (2.6) and (2.7) yield 

XRXR'(1)) = .! YmXR(A'+m)(1». (2.8( 
m 

Hence by the general theQry Qf characters, the reduc­
tiQn Qf R x R' contains Qnly thQse IR's Qf L with 
characters XR<A'+m) and these with multiplicities Ym' 

This establishes the lemma. NQte that the cQnditiQn 
that R' dQminates R is a necessary as well as sufficient 
cQnditiQn fQr the validity Qf the lemma, since, if 
N + m is nQt a dQminant weight Qf L, it cannQt be 
the highest weight Qf any IR Qf Land XR(A'+m) is a 
meaningless expressiQn. 

The geQmetrical interpretatiQn Qf Biedenharn's 
lemma in weight space is fairly QbviQus. Let the PQint 
Qf weight space which cQrresPQnds to' the highest 
weight Qf any irreducible representatiQn R Qf L be 
called the site Qf R. TO' find which IR's Qf L are CQn­
tained in R X R' and with what multiplicity, we begin 
by drawing the weight diagram Qf R, i.e., we plQt the 
weights Qf R tQgether with an indicatiQn Qf their 
multiplicities in weight space. We refer to' the Qrigin 
Qf weight space which mayor may nQt cQrresPQnd to' a 
weight Qf R as the center Qf the weight diagram Qf R. 
NQw, if we translate the weight diagram Qf R rigidly 
and withQut rQtatiQn until its center lies at the site Qf 
SQme representatiQn R' which dQminates R, then the 
weights Qf the translated weight diagram lie at the 
sites Qfthe IR's Qf L CQntained in R X R', each IR QC­
curring a number Qf times equal to' the multiplicity Qf 
the weight Qf L which it has at its site after translatiQn. 
It is to' be stressed that this geQmetrical picture is nQt 
identical to' that Qbtained by direct specializatiQn to' 
the case when R' dQminates R Qf the geQmetrical 
methQd Qf Speiser for reducing R X R'. In fact the 
picture just described is simpler. It defines the site Qf 
any IR Qf L in weight space to' be the PQint which 
cQrresPQnds to' its highest weight, whereas in Speiser's 
methQd the site Qf R is defined to' be the PQint A + b 
in weight space. Apart frQm this simplificatiQn, which 
clearly dQes nQt affect the result, Qur picture agrees 
with that Qbtained frQm Speiser's methQd. Of CQurse, 
Speiser's definitiQn must be adQpted in the general 
case Qf R X R' and Qur simplificatiQn applies Qnly 
when R' dQminates R. HQwever, it is in keeping with 
Qur general philQSQphy (which regards the case in 
which R' dQminates R as being Qf paramQunt im­
portance) to' find it wQrthwhile to' use the simplified 
definitiQn Qf site in this case. Further use Qf the general 
definitiQn Qf site WQuid be Qne aspect, sQmewhat 
innQcent, Qf hQW the cQmplicated detail Qf the general 
case can Qbscure the simplicity Qf the impQrtant case 
in which R' dQminates R. All this shQuld in nO' way 

be construed as criticism Qf the excellent wQrk Qf 
Speiser. It rather reflects Qur different mQtivatiQn: 
Speiser's being to' reduce general direct prQducts, Qurs 
to' prQceed tQward the Racah algebra Qf L. 

We cQnclude this sectiQn with SQme simple illustra­
tiQns. FQr SU2 , if we refer to' IR's by means Qf their 
j value, sO' that the IRj has weights m = -j, -j + 1, 
... ,j, then Biedenharn's lemma applies to' j X j' 
with j' ~ j, in which case the Clebsch-GQrdan series 

j xj' = (j' + j) + (j' + j - 1) + ... + (j' - j) 

can be written as 
j 

j X j' = .! (j' + A), 
d~-j 

explicitly illustrating the lemma. FQr SUa, reductiQn 
Qf the general prQduct27 (A, p) X (A', p') has been 
studied by many authQrs.28 The cQnditiQns that 
(A', p') dQminate (A, p) are satisfied if and Qnly if 
A', p' ~ A + p.29 Since the highest weight Qf any 
(~, (J) is [!(~ + (J), 1(~ - (J)], the prQduct (A, p) X 

(A', p') with A', p' ~ A. + p can be seen frQm Bieden­
ham's lemma to' cQntain (A.", p") with 

A." = A.' + (M + !Y), 

"," = p' + (M - !Y), (2.9) 

a number Qf times equal to' the multiplicity Qf the 
weight (M, Y) Qf (A., p) fQr each weight Qf (A, p). 
Mukunda and Pandit have Qbtained this result by 
applying tenSQr methQds to' the direct product in 
questiQn, while PreziQsi et, al. have Qbtained an 
equivalent Qne by Y Qung diagram manipulatiQn. 
While nO' very cQnvenient fQrmula exists fQr the 
multiplicity Qf (M, Y) in (A., p), in any special case 
this can be readily inferred as fQllQws. The IR (A., p) 
cQntains thQse pairs Qf (/, Y) eigenvalues given by30 

/ = l(f - g), 

Y = f + g - I(A. + 2p), 

fQr f, g integers with ranges A. + p ~f ~ p ~ g ;;::: 0, 
and each pair Qf eigenvalues (/, Y) is associated with 
(2/ + 1) states IA. p / MY), with -/ S M S Y. FQr 
example, the quark IR (1,0) cQntains the simple 
weights (i, 1), (-i, 1), and (0, -I), and (2.9) tells us 
that, as IQng as A, p ~ 1, we have (1,0) X (A, p) = 
(A + 1, "') + (A., p - 1) + (A. - 1, P + 1), a well-knQwn 

27 Notation (J., p) for SU. IR's is explained, for example, by R. E. 
Behrends et al. in Ref. 22. 

18 See H. Goldberg, Nuovo Cimento 27, 532 (1963); V. B. 
Mandelsveig, Zh. Eksperim. i TeoT. Fiz. 47. 1836 (1964) [English 
trans!. Soviet Phys.-JETP 10, 1237 (l965)J; S. Coleman, J. Math. 
Phys.5, 1343 (1964), as well as the papers of Refs. 9,17, and 18. 

28 This result has been given by Mukunda and Pandit, Ref. 9, 
as well as by the authors of the papers cited in Refs. 17-20. See 
also Sec. 3 of this paper. 

30 A simple proof ofthis result is given by C. R. Hagen and A. J. 
Macfarlane, J. Math. Phys. 5, 1335 (1964), 
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result.31 In the case of the octet (1, 1) the simple 
weights are(±!, 1), (±!, -1), and(± 1, 0), and thereis 
one double weight (0, 0). From this (2.9) tells us that, 
as long as A, I-' ~ 2, we have32 

(1, 1) x (A,I-') = (A + 2, I-' - 1) + (A + 1, I-' - 2) 

+ (A - 1, I-' + 2) + (A - 2, I-' + 1) 

+ (A + 1, I-' + 1) + (A - 1, I-' - 1) 
+ 2(A, 1-'). 

Kuriyan et al.14 have not only used this result in their 
tabulation of SU3 Clebsch-Gordan coefficients for 
(A,I-') x (1, 1), but also have actually sharpened it by 
placing the two orthogonal sets of coefficients con­
necting (A, 1-') X (1, 1) to (A, 1-') in 1: 1 correspondence 
with the I = 1 and I = 0 states of weight (0, 0) in the 
IR (1, 1). While the actual correspondence is made in a 
somewhat ad hoc manner, such a correspondence is 
expected to emerge as a general feature in the study of 
CG coefficients of SU3 or indeed mutatis mutandis of 
any other group. 

3. EXPLICIT CONDITIONS FOR THE 
VALIDITY OF BmDENHARN'S LEMMA 

In the preceding section we derived Biedenharn's 
lemma which relates to a direct product representation 
R X R' of a compact simple Lie group L in which 
R' dominates R. More precisely, the necessary and 
sufficient condition for Biedenharn's lemma to be 
valid is that A' + m must be a dominant weight of L 
for all weights m of R, where A' is the highest weight of 
R'. It is clearly of interest to express this condition in 
more explicit form. 

We first reca1133 that if L is rank I, any IR of L can 
be denoted by 

and realized as the leading34 IR in the reduction of the 
direct product 

DI X DI X ••• DI X D2 X D2 X ••• D2 X ••• 

I- Al factors -II+- A2 factors -I 

DI X DI x··· D I, 
I- Az factors-I 

where Dk (k = 1,2' .. 1) are the fundamental IR's of 
L. Thus the irreducible representation R == {AI' ... , AI} 
of L has highest weight 

A == A(AI ,' • " A. /) 
I 

=IA.~(k), 
k=1 

81 H. A. Jahn and H. Van Wieringer, Proc. Roy. Soc. (London) 
Al09, 502 (1951). 

so D. Lurie and A. J. Macfarlane, J. Math. Phys. 5, 565 (1964). 
.s See G. Racah's lecture notes, Ref. 2, and R. E. Behrends et al., 

Ref. 22. 
" The one which has the highest weight. 

where A(k) is the highest weight of Dk , and the highest 
weight A' of R' == {A~, ... ,A~} 

I 

A' = ~;A~(k) • 
k=1 

It is our purpose in this section to express the con­
dition that A' + m be a dominant weight of L for 
each weight m of R as an explicit statement in terms 
of Ak , A~ ,(k = 1, ... , I) for all of the classical groups 
and G2 • Our results are collected into the accom­
panying table. 

As a preliminary we state and prove Lemma A. 

Lemma A: Any weight m of the IR of L with highest 
weight A can be written in the form 

m = A - I c"r(O(), (3.1) 

" 
where the reO() are the positive roots of L and the c" 
are nonnegative integers. 

Proof: In any IR, the highest weight state IA) is the 
only state such that35 

E" IA) = 0, for all positive 0(. 

Hence given any state 1m), either m = A or else there 
is at least one E" with positive 0( such that 

1m + r(O(» = E" 1m). 
Similarly either m + rep) = A, or else there is at 
least one Ep with positive p such that 

1m + reO() + rep»~ = Ep 1m + r(O(» = EpE" 1m). 

If we proceed in this way, the fact that all IR's are of 
finite dimension implies that we eventually reach 

1m + reO() + r(p) + ... r(y» = Ey ' •• EpE" 1m) 

such that 

E61m + reO() + rep) + ... + r(y» = 0 

for all E6 with positive ~. In this case, we have 

A = m + reO() + r(p) + ' . , + r(y) (3.2) 

and since any given r( T) can occur on the right c, 
times, c, = 0, 1,2, .. " we see that (3.2) is equiv­
alent to the statement (3.1) of the lemma. 

We now study the four families of classical groups 
one at a time.36 

SUn (n = I + 1): For this group, the positive roots 
are the n-component vectors r(ij), n ~ i > j ~ 1, with 
ath components 

(3.3) 

s. Notation E" etc., explained in G. Racah's lecture notes, Ref. 2. 
In this proof, kets denote unnorrnaJized states with the indicated 
weight. 

.6 See G. Racah's lecture notes Ref. 2 for most of the back­
ground information regarding the roots and weights of compact 
simple Lie groups used in this section. 
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and similarly r(ij) with n ~ j > i ~ I gives the nega­
tive roots (i.e., pairs of number i,j, n ~ i > j ~ I 
play the role of the single label IX of Lemma A). The 
Weyl group of SUn consists of all permutations of the 
components Wi of any n-component vector W. 

From the definition of the Weyl group, it follows 
that A' + m, for any given mER, is a dominant 
weight of SUn if and only if 

(A' + m)l ~ (A' + m)2 ~ •.. ~ (A' + m)n 

or, equivalently. if and only if 

A~ - A~ ~ m2 - ml , 

A~_l - A~ ~ mn - mn- 1 • (3.4) 
Hence the conditions that A' + m be a dominant 
weight for all mER are that A~ - A; exceed the 
maximum value of m2 - ml as m ranges throughout 
R, and that A; - A~ exceed· .. etc. But the fact that 
the Weyl group permutes the components mi of m 
implies that max (m. - mj ), i > j, is independent of 
i and j, so that (3.4) may be replaced by 

A~ - A~, ... , A~_l - A~ ~ max (ml - mn). (3.5) 

But now the definition (3.3) of the positive roots yields 

rl(ij) ~ 0 ~ r n(ij), 
i.e., 

rl(ij) - r n(ij) ~ 0 

and Lemma A yields 

Al - An = ml - mn + ! c .. [rl(lX) - rn(IX)] .. 
~ ml - mn 

so that the maximum value of ml - mn is attained for 
m = A. Hence (3.5) can be given as 

A~ - A~, ... , A~_l - A~ ~ Al - An. (3.6) 

These are the required conditions in terms of the 
highest weights A and A' of Rand R'. To write them 
in terms of the numbers Ak , A~ (k = 1, ... , I), we use 
the familiar relationss7 

Al - A2 = Al , A2 - As = A2 , ••• , An- l - An = Al 

and the results displayed in the table emerge directly 
from (3.6). 

0 21+1: For this group, the positive roots are the 
I-component vectors r(i), I ~ i ~ I, and r(ij), r'(ij), 
I ~ i > j ~ I, with ath components given by 

raCO = bai' 
raCij) = bai + baj , 

"~(ij) = bai - baj' (3.7) 
., In this and the corresponding equation below our notation is 

essentially that of the paper by Dynkin [Am. Math. Soc. Transl. 17, 
(1950), Table 24]. See also Eq. (94) of Racah's lecture notes, Ref. 2. 

and the Weyl groups consists of all permutations of 
and changes of sign of the components Wi of any 
I-component vector W. It now follows that A' + m. 
for any given mER, is a dominant weight of 0 21+1 if 
and only if 

(A' + m)1 ~ (A' + m)2 ~ .•. ~ (A' + m)l ~ 0 

or, equivalently, if and only if 

A~ - A~ ~ m2 - ml, 

Ai_l - A~ ~ mz- m1-t, 
Ai ~ -mz, (3.8) 

Validity of (3.8) for all mER implies its validity 
when the quantities on the right sides of these in­
equalities attain their maximum values in R. From 
the definition of the Weyl group, it is clear that 

max (ml - m2) = max (m2 - ma) 
= ' .. max (ml - mZ- l ) 

= max (m. + mj ) = max (ml + m2) 
and 

max (-mz) = max mi = max mI' 

Hence, the conditions for validity of (3.8) for all 
mER become 

A~ - A~,··· A;_l - Ai ~ max (ml + m2), 

Ai ~ max mI' (3.9) 
Now the definition (3.7) of positive roots '(IX) yields 

'l(lX) ~ 0 and 'l(lX) + '2(1X) ~ 0 

so that, from Lemma A, we get 

Al = ml + ! cb(lX) ~ m, 
« 

Al + A2 = ml + m2 + ! c .. [rl(lX) + r2(1X)] 

~ ml + m2 • 

Hence (3.9) becomes 

« 

A~ - A~, ... A;_l - Ai ~ Al + A2, Ai ~ At. 
(3.10) 

To rewrite (3.10) in terms of Ak , A~ (k = 1, ... ,l) we 
use the standard relations7•38 

Al - A2 = AI' .. " AZ- l - Az = AZ-l' Az = tAz 
(3.11) 

The results then appear as in the table. The factor i 
in the last part of (3.11) reflects the fact that lth 
fundamental IR of 02Z+1 is a spinor representation 
with highest weight (t, t ... t). 

38 This is essentially Eq. (96) of Racah's lecture notes, Ref. 2. 
We have taken the spinor IR as D, instead of Racah's D 1 • 

See also H. Boerner, Representations of Groups (North-Holland 
Publishing Company, Amsterdam, 1963), Chap, VII, Sec. 14, and 
Chap. VIII, 3-5. 
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Sp2!: In this case the positive roots are the same as 
for 02!+1 except that nii) = 26ai . Furthermore the 
Weyl group of Sp2! is the same as for 02!+1. It there­
fore follows exactly as for 0 21+1 that (3.10) also gives 
the condition that A' + m is a dominant weight of 
SP2! for all mER. However, the standard relations37•39 

Al - A2 = AI'···' A!_I - A! = A!_I, A! = A! 
(3.12) 

for SP2! differ from (3.11) in the absence of the factor 
t in the last equality, so that the final results for Sp21' 
as displayed in the table, differ from those for 0 21+1 • 

The reason for the difference between (3.11) and 
(3.12), of course, stems from the different nature of 
the lth fundamental IR's in the two cases, that for 
SP2! being a tensor representation of highest weight 
(1,1···1) 

0 21 : For this group, the positive roots are the 
I-component vectors 

r(ij), rf(ij), I ~ i > j ~ 1, 

with ath components 

r aCij) = 6ia + 6;a' 

raCij) = 6ia - 6;a. (3.13) 

The Weyl group consists of all permutations and all 
changes of sign in pairs of the components Wi of an 
I-component vector W. It follows that A' + m, for 
any given mER, is a dominant weight of 0 21 if and 
only if 

(A' + m)1 ~ (A' + m)2 

~ ... (A' + m)H ~ I(A' + m)!I, 

or, equivalently, if and only if 

A;_I - N! ~ m! - m!_I, 

A;_1 + A; ~ -ml - mH • (3.14) 

The departure from pattern in the last inequality 
is to be noted. As before, from the properties of the 
Weyl group we deduce that, for (3.14) to hold for all 
mER, we must have 

M - A~,··· Ai-I - Ai ~ max (ml + m2), 

A;_I + Ai ~ max (mi + m2). (3.15) 

Again as before, we can use (3.13) and Lemma A 
to show that max (ml + m2) is attained for m = M. 

31 L. O'Raifeartaigh, "Lectures on Local Lie Groups and Their 
Representations," Matscience Report 25 (1964). 

TABLE I. Conditions for compact simple Lie groups L of rank 
I that the IR (Ai, I.;, ... , I.;) dominate the IR (1.1, I.. , ... , I.,). 

L 

SU(n) 
(n = 1+1) 

0(21 + 1) 

Sp(2/) 

0(2/) 

Conditions 

Ai, A~, 1.;-1 ~ Al + 2(1.. + ... + 1.'-1) + AI> 
I.; ~ 2(1.1 + ... + 1.1-1) + I., 

Ai, A~, 1.;-1 ~ Al + 2(1.. + ... + I.,), 
I.; ~ Al + I.. + ... + I., 

Ai, A~, ... I.; 

~ Al + 2(1.. + ... A,_.) + 1.'-1 + I., 
G. Ai ~ 21.1 + 31.. 

Hence (3.15) reads as 

A~ - A~, ... Ai-l - NI ~ Al + A2, 

Ai-l + NI ~ Al + A2. (3.16) 

These inequalities are translated into terms of Ak , 

A~ (k = 1, ... , l) by means 0[37.40 

Al - A2 = AI'···' A!_2 - A!_I = A!_2, 

A!_I - Al = A! , A 1- 1 + Al = AI-I, (3.17) 

the final results being given in Table I. The inverted 
order of A!_I and Al in the second line of (3.17) stems 
from the fact that the fundamental IR's Dl-l and 
Dl of 0 21 are spinor representations, respectively, 
with highest weights (t, t ... t) and (t, t ... t, -t)· 

G2 : G2 is a rank two group with positive roots41 

C~3 ' 0) , (:3, ± !) , (4~3 ' ± !), (0, ;) . 
(3.18) 

The Weyl group is conveniently specified by saying 
that, if W = (WI' W2) is any two component vector, 
the vectors equivalent to it are 

(±WI , ±W2), 

[±t(WI + .j3W2), ±t(.j3w1 - W2)], 

[±t(WI - .j3W2), ±t(.j3W1 + W2)], (3.19) 

where all possible combinations of sign are to be 
taken. The vector (WI' W2) can be seen from (3.19) 
to be dominant if and only if 

WI ~ .j3W2 ~ 0 

so that (A' + m), for fixed mER, is a dominant 
weight of G2 if and only if 

A~ - .j3 A~ ~ .j"j m2 - ml' A~ ~ -m2. (3.20) 

40 See H. Boerner, Ref. 38. 
U For information regarding Gs , see R. E. Behrends et al., Ref. 22. 
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As before, we find that, as m ranges through R 

max (/3m 2 - ml) = max mi , 

max (-m2) = max H""3ml + m2), (3.21) 

and use (3.18) and Lemma A to prove the maxima on 
the right are attained for m = A. Hence (3.20) 
becomes 

A~ - /3A2;;;:: AI, 
A2;;;:: !(""3 Al + A2). (3.22) 

This translates into the results displayed in the table 
when one uses 

Al = (1/2~)()'1 + l;'2), 
(3.23) 

which follow from the fact the seven-dimensional 
fundamental IR DI of G2 has highest weight 

(1/2""3)(1, 0), while the fourteen-dimensional funda­
mental IR D2 has highest weight H3, 1). 

4. THE RACAH-SPEISER LEMMA 

In Sec. 2 we stated and proved Biedenharn's lemma 
relating to a direct product representation R X R' 
of a compact simple Lie group L when R' dominates 
R. In this section we turn to the case of the general 
product R X R', and prove that this case can be 
described by the following lemma, which, for reasons 
given in the Introduction, we call the Racah-Speiser 
lemma. 

Racah-Speiser lemma: Let L, R, R', A, A', m and Y m 

be defined as in our statement of Biedenharn's lemma. 
Let A' + md denote those weights of the set of weights 
A' + m which are dominant weights of L. In the 
reduction of the general product representation 
R X R' of L 

(a) only those IR's of L of highest weight A' + md 
can occur, and 

(b) each of these occurs with multiplicity 

r(md) = 2 Ym(-I)nm, (4.1) 

where the summation 2 extends over all those 
weights m (including md itself) for which a succession 
of Weyl reflections of A' + m + b yields A' + md + b, 
and where nm is the number of reflexions required. 
r(md) may turn out to be zero, but is never negative. 

We precede the proof with two lemmas, which we 
call Lemmas Band C. 

Lemma B: Let m be a weight of Rand m' a weight 
of R'. Let S" be the Weyl reflection in the hyperplane 
perpendicular to the root r(ex) of L. If S" is such that 

S,.m' ~ m', 
S,,(m' + m) > m' + m, (4.2) 

then there exists in R a weight m(lX) such that 

m(lX) ;;;:: m, 

S,,(m' + m) = m' + r(lX) + m(ex). (4.3) 

Proof of Lemma B: From (4.2), there exists in R' 
and R, respectively, the strings of weights42 

m', m' - r(ex), ... m' - qr(ex) = S"m', 

m, m + r(ex), ... m + pr(ex) = S"m, (4.4) 
with 

p >q;;;:: O. (4.5) 
Hence, we have 

S,.(m' + m) = S"m' + S"m 

= m' + r(lX) + m + (p + q - l)r(IX), 

and from (4.5) it follows that m(ex) given by 

m(ex) = m + (p - q - l)r(ex) (4.6) 

is a weight of R which satisfies (4.3). 

In Lemma C, we need to introduce the primitive 
roots43 of L. If L is of rank I, its primitive roots are a 
set of I positive roots r(k) (k = 1,2, ... , I) such that 
each positive root r( IX) can be written in the form 

! 

r(ex) = 2ck(lX)r(k), (4.7) 
k=1 

where the Ck(lX) are nonnegative integers. We refer to 
the Weyl reflection Sk in the hyperplane orthogonal 
to rk as a primitive Weyl reflection. We now state and 
prove Lemma C. 

Lemma C: If any weight vector W of L satisfies 

SkW~ W (4.8) 

for all k = 1,2' . ·1, then W is a dominant weight of 
L. 

Proof of Lemma C: We have 

S W = W - 2W' r(k) r(k) k = 1 2 ... I (4.9) 
k r(k) . r(k) , '" , 

whence, using (4.8) and the positive nature of the r(k), 
we get 

W'r(k) ;;;:: 0, k = 1,2, ... ,I. 

But then from (4.7) it follows that W' r(lX) ;;;:: 0 for 
all ex, so that S" W ~ W for all ex; i.e., W is a dominant 
weight. 

Proof of the Racah-Speiser lemma: We recall that in 
proving Biedenharn's lemma we reached (2.6) without 
using the assumption that R' dominates R. Hence 
Eq. (2.6) is valid even when the assumption is dropped; 
it is used as a starting point in the present discussion. 

41 See G. Racah's lecture notes, Ref. 2, Lecture 2, Sec. 2, and Lec­
tures 3 and 4, Sec. 1. 

,a For properties of primitive roots used here, see B. Gruber and 
L. O'Raifeartaigh, Ref. 2. 
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Suppose that for some mER, A' + m is not a 
dominant weight. Then by Lemma C, there exists at 
least one primitive Weyl reflection Sk such that 

Sk(A' + m) > (A' + m). (4.10) 

On the other hand, A' is a dominant weight so that 

S0'~A. (4.11) 

However, (4.10) and (4.11) are just the conditions for 
the validity of Lemma B, and it follows there exists in 
R a weight m(k) such that 

m(k) ~ m; Sk(A' + m) = A' + m(k) + r(k). (4.12) 

We now use the fact that Sk is a primitive reflection 
to write43 

S/) = 15 - r(k), (4.13) 

where 15 as before is half the sum of the positive roots 
of L. 

Now (4.12) and (4.13) may be combined to give for 
the quantity (A' + m + 15) occurring in (2.6) the 
result 

Sk(A' + m + 15) = A' + m(k) + 15 ~ A' + m + 15. 
(4.14) 

In other words Sk reflects A' + m + 15 into a vector 
of the form A' + m' + 15 at least as positive as 
A' + m + 15. 

Let us rename k as k1 • If A' + m(k1) is neither 
equal to A' + m nor dominant, we can repeat the 
process and reflect A' + m(k1) + 15 onto A' + 
m(k2) + 15, where m(k2) ~ m(k1). It is easy to see that 
by repeating the process a sufficient number of times, 
we eventually reach a situation wherein one of two 
possibilities obtains 

(a) Sk (A' + m(kp--l) + 15) = A' + m(kp--l) + 15, 
~ 

(b) A' + m(k~) is a dominant weight of A. 

We examine cases (a) and (b) separately. 

Case (a): In this case A' + m(kp--l) + 15 lies in the 
Weyl hyperplane orthogonal to r(k~). On the other 
hand, it is obtained from A' + m(kp--2) + 15 by means 
of the Weyl reflection in the hyperplane orthogonal to 
r(k'IJ-l)' Hence A + m(kp--2) + 15 lies in the hyperplane 
obtained from the Weyl hyperplane orthogonal to 
r(k~) by reflection in the Weyl hyperplane orthogonal 
to r(kp--l)' But the Weyl reflection of a Weyl hyper­
plane is itself a Wey1 hyperplane. Hence A' + 
m(k'IJ-J + 15 lies in a Weyl hyperplane, and we prove 
by repeating the argument that the original A' + 
m + 15 does also. 

Suppose A' + m + 15 belongs to the Weyl hyper-

plane orthogonal to r(j), say. Then, using the group 
property of Weyl reflections we get 

! t5s exp {i[S(N + m + b), .p]} 
S 

= ! t5SSi exp {i[SS;(A' + m + b), .p]} 
S 

= !(-t5s )exp {i[S(N + m + b),.p]} 
S 

=0. 
Hence any term mER such that A' + m + 15 lies in 
a Weyl hyperplane makes zero contribution to, and 
can hence be omitted from the summation over m 
in (2.6). 

Case (b): In this case, we have 

! t5s exp {i[S(A' + m + 15), .pJ} 
S 

= ! t5SSk ••. Sk exp {i[SSkl ... Sk 
S 1 .. .. 

x (N + m + 15), .p]} 
= (-)~! tJs exp {i[S(A' + m(k,,) + tJ), .p]}. 

S 

(4.15) 

Now, since A' + m(k~) is a dominant weight, we can, 
by (2.2) write the contribution to XRXR' from the 
weight m of R from which we set out as 

(_)~X[RA·+m(k,,)l(.p). (4.16) 

Substitution of (4.16) into (2.6) gives rise now to the 
Racah-Speiser lemma. Note, however, that each 
m(k~) is to be identified with some one of the ma of 
the above statement of the lemma. 

Also the numbers of primitive Weyl reflections is 
equal modulo two to the number of Weyl reflections 
of any kind. 

Some comments regarding the nature and applica­
tion of the Racah-Speiser lemma are now given. First, 
we should emphasize that while IR's that can occur 
in R x R' are determined by the dominance or non­
dominance of the A' + m, the multiplicity of their 
occurrence, which can be zero, is determined by the 
Weyl reflection properties A' + m + tJ. Second, we 
note that in forming the sequence of weights 
A' + m + 15, A' + m(ki ) + 15, i = 1 ... p, it is not 
necessary to check at each step whether A' + m(ki ) 

is dominant, but only whether A' + m(ki ) + tJ is 
dominant. This follows because, after the m's of case 
(a) have been dropped, dominance of A' + m(ki ) 

implies and is implied by dominance of A' + m(ki ) + 
15. This observation affords considerable simplification 
of practical calculation of r(ma)' Finally, we turn to 
the question of geometrical significance. 

The Racah-Speiser lemma in fact affords an ex­
plicit proof of the geometrical rules given by 
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Speisera•lo for the reduction of R x R'. A very clear 
statement of these rules can be obtained by paral­
leling the discussion given by deSwart14 of the 
application of Speiser's method to SUa. For SUa 
deS wart starts with a suitable preparation of the 
weight space of SUa for the performance of the 
geometrical operations associated with Speiser's 
method. We describe this preparation as follows. 

The highest weight points of the IR's of the rank two 
group SUa lie on the boundaries of or within that region 
of SUa weight space, which is bounded by the two lines 
(Weyl hyperplanes) perpendicular to the primitive 
roots of SUa and which contains the vector <5 which 
is half the sum of the positive roots of SUa. Call 
this region the fundamental domain Do of SUa weight 
space. Define the siteH of the irreducible representation 
R of SUa of highest weight A to be the point A + <5 
of weight space. The sites of all IR's of SUa lie strictly 
inside Do. We prepare Do by attaching to the site of 
each R the label +R. Any other domain D of SUs 
weight space is bounded by lines (Weyl hyperplanes) 
perpendicular to some pair of positive roots of SUa. 
Its points are equivalent under some number k of 
Weyl reflections to the points of Do. We prepare 
the interior of D by attaching the label ( - )k R to the 
points of D equivalent to the site of R in Do. Prep­
aration of weight space is completed by attaching 
the label 0 to any allowed weight point of SUs lying 
on a Weyl reflection axis. Now to reduce R x R', we 

(a) construct the weight diagram of R', which 
involves not only specification of the m but also the 
Ym' and 

(b) translate it rigidly without rotation so that its 
center moves from the origin of weight space to the 
site of R' in Do. Then, if m is a weight of R of multi­
plicity Y m' m now lies at a point of weight space 
labeled by (_)k R" or 0, and corresponding to this m 
there is a contribution ( - )ky mR" or 0 to the reduction 

44 Note this is not the same definition of the site of an IR of L, 
which we use in Sec. 2. 

of R x R'. Adding the contribution from each m 
of R leads to the reduction of R x R'. This statement 
has been written so that its generalization to arbitrary 
compact simple L of rank I is immediate and, this being 
done, it is surely clear that it corresponds exactly to 
the Racah-Speiser lemma. We refrain from exhibiting 
examples due to their availability in the papers of 
deSwart14 and Speiser.3•lO Finally, we are indebted to 
Dr. C. Anderson for pointing out that an equivalent, 
but in practice somewhat simpler, method of carrying 
out the construction of this paragraph is to identify 
the site R with A (instead of A + <5) and then to 
carry out the reflections in a set of Weyl planes 
intersecting at -<5 (instead of 0). 

We conclude with a final reminder of our idea of 
the relative importance of the Racah-Speiser lemma 
and Biedenharn's lemma. We regard the former not 
so much as a proof of Speiser's rules, but rather as a 
means of making these rules understandable as edge 
effects when the simple picture provided by the latter 
breaks down. Indeed, one hardly needs to know the 
rules explicitly for the development of the Racah 
algebra of L. One needs Biedenharn's lemma as a 
vital structural ingredient of the Racah algebra and 
one uses it as one computes the CG coefficients of 
L for R x R' with R' tacitly assumed to dominate 
R. All that happens if R' does not dominate R is that 
certain sets of the CG coefficients so constructed 
automatically drop out-one does not need to get rid 
of them in advance. Thus, the role of the Racah­
Speiser lemma is that it gives a simple explanation of 
why these sets of CG coefficients drop out in the 
actual calculation.45 
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The Chapman-Enskog-Hilbert expansion is a method for describing a gas in the "hydrodynamical 
stage," beginning from the Boltzmann equation. The present paper is devoted to the analog of this 
expansion for the problem op/ot + eop/ox = p(-e) - p( +e), where e = ±1 and xE Ri. Though the 
situation is vastly simpler than in the Boltzmann case, new and amusing mathematical phenomena are 
encountered. One studies solutions of op/ at + eop/ ox = E-i[p( -e) - p( +e)] which are (formal) power 
series in E (Hilbert solutions): such a solution solves op/ot = c i [(1 + E"OI/OXI)t - 11p (hydrodynamica1 
equation) and is completely determined by the initial value of p( -e) + p( +e) (Hilbert paradox). Also, 
every solution of the original problem comes very rapidly close to a Hilbert solution which is actually 
convergent (hydrodynamical stage). 

1. INTRODU('TION 

CONSIDER a dilute gas of molecules of mass 1, 
filling the whole of 3-dimensional space R3, 

subject to an external field f. The corresponding 
molecular distribution function p = pet, x, v) [t ~ 0, 
X E R3, V E R3] is a solution of Boltzmann's problem: 

Op + v op + f op = B[P ® p], (Ll) 
at Ox ov 

in which B stands for special quadratic functional of 
pas afuncticm ofv E R3 only.l 

Chapman-Enskog-Hilbert's development of p de­
scribes the so-called hydrodynamical stage. Hilbert's 
recipe2 is, first, to expand p as a formal power series 
Po· + EPl + E2p2 + ... , which is required to solve 

and, second, to put E = 1, hoping for convergence to 
an actual solution of (Ll). This is clearly a very 
radical thing to do. Equation (1.2) means that 

[
0 a OJ ;- + v;- + f;- Pn-l =. ~ B[Pi ® Pi]' 
ut uX uV H,=n 

n ~ 0, P-l == 0, (1.3a) 

especially, for n = 0, B[po ® Po] = 0, and this turns 
out to be the same as to say that Po is a (local) 
Maxwellian function [cl exp (-c2 Iv - uI 2)] depending 
upon 5 unknown functions of(t, x) E [0, (0) X R3: the 

1 G. Ford and G. E. Uhlenbeck, Lectures on Statistical Mechanics 
(American Mathematical Society, Providence, Rhode Island, 1963), 
p.77. 

2 D. Hilbert, Grundzuge einer allgemeinen Theorie der Unearen 
Integralgleichungen (B. G. Teubner, Leipzig, 1912), p. 270. See also 
Ref. 1, p. 108. 

5 hydrodynamical moments 

J vnpo dv (n = 0, 1,2). 

At the stage n ~ 1, it is required to solve 

[
0 a OJ ;- + v ;- + f;- Pn-I - ~ B[Pi ® Pn-i] = C[Pn] 
ut uX uV l!5i<n 

(1.3b) 

for Pn with C[f] == B[f ® Po] + B[po ® fl. C turns 
out to be a nice integral operator with null space 
comprising the 5 functions vn (n = 0, 1, 2), and to 
continue the recipe, it is necessary to meet the terms 
of the Fredholm alternative by making the left side of 
(l.3b) perpendicular to this null space. Doing this for 
n = 1 gives the Eulerian hydrodynamical equations 
for the 5 hydrodynamical moments of Po; for n = 2, 
it gives the Navier-Stokes equations for the hydro­
dynamical moments of Po + PI; etc. The curious thing 
about this expansion is that the formal power series 
for p is completely determined by the initial values of its 
5 hydrodynamical moments J vtp dv (n = 0,1,2).3 
Ford and Uhlenbeck4 call this the Hilbert paradox. 
This seemingly accidental feature of the recipe is 
highly satisfactory, as it substantiates, in part, the 
following possibly over-optimistic diagram (Fig. 1) 
of what is going on. For any solution p of Boltzmann's 
problem with initial dataf, there is (or should be) a 
Hilbert solution po with initial data fO which is closest 
to p, i.e., for which p - po becomes small most 
rapidly. r should be a projection of f, and this 
projection should commute with the Boltzmann 
streaming so that po is the same projection of p. 

a D. Hilbert, Ref. 2, p. 280. 
4 Reference 1, p. 110. 
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FIG. 1. A schematic 
view of the connec­
tion between hydro­
dynamics and Boltz­
mann's problem. 

Hilbert's paradox implies the existence of a (very 
complicated) functional expressing fO by means of its 
S hydrodynamical moments [Chapman-Enskog de­
velopment]. This functional should also commute with 
the Boltzmann streaming so that pO stands in the same 
relationship to its hydrodynamical moments. Hilbert's 
paradox also implies the existence of a self-contained 
parabolic problem governing the hydrodynamical 
state J vnpo (n ~ 2). 

Except for the existence of formal power series 
solutions of (1.2) exhibiting the Hilbert paradox and 
the (formal) computation of the Chapman-Enskog 
development, we think it is fair to say that all this is 
up in the air and very difficult to verify. 

The purpose of this paper is to verify this picture in 
a very simple case, replacing (1.1) by 

~P + e ~P = D[pJ = p( -e) - p( + e), (1.4a) 
ut vX . 

limp=j, 
HO 

(l.4b) 

with t ~ 0, X E RI, e = ± 1, and nice data f; this is 
the same as the telegraph equation 

a2 a a2 

at! p + 2 at p = ax2 p (1.Sa) 

with initial data (l.4b) and 

lim ap = r = -eJ' + D[f]. 
H at 

(1.Sb) 

Ka~5 found a nice probabilistic model for (1.4): if # 
is a Poisson process with rate 1 and jumps + 1 and if 
z(O) = [x, eJ is distributed according to f = f(x, e) 
with 

f ~ 0, r If = 1, 
JR1 e=±1 

& M. Kay, Some Stochastic Problems in Physics and Mathematics 
(Magnolia Petroleum Company, Dallas, Texas, 1956). 

then z(t) = [x + e f~ (-1)# ds, e( -1)#] is distributed 
according to p, especially, p ~ 0 if f ~ 0 [see (2.2) 
in Sec. 2]. 

Hilbert's recipe for (1.4) would be to find a formal 
power series solution p = Po + "Pt + ,,2P2 + ... of 

i.e., 

op + e op = 1 D[p), 
at ax " 

lim p = a formal power series f, 
ao 

limPn =fn' n ~ O. 
HO 

(1.6a) 

(1.6b) 

(1.7b) 

For n = 0, (1.7a) states that D[po] = O. This means 
that Po is an even function of e, and the Fredholm 
condition for solving Po + ep~ = D[pt] is that the left 
side should be an odd function of e. Thus, Po = 0 
[Eulerian equation], and Po =fo' ep~ = D[pl1 is now 
solved for the odd part of PI [(Pl)Odd = -tef~], and the 
Fredholm condition for solving Pi + ep~ = D[P2], 
i.e., Pi + ep~ odd, permits us to compute the even 
part of PI [(Pl)even = (fl)even + tif~], etc. 

The actual facts can be expressed much more 
compactly and elegantly: a formal power series 
f = If,,"" with coefficients from6 C"'(RI X Z) gives 
rise to a formal power series solution p of (1.6) if and 
only if7 

(1 + E2
(

2)t - 1 
-efodd = "a feven 

= ! (t) ("a?m-1feven, (1.8) 
m=l m 

in which case6 

op = ,,-1[(1 + ,,2(2)t _ l]p =! (t),,2m-Ia2mp 
at m=1 m 

(1.9a) 
and 

(1 + ,,2(2)t - 1 
-epodd = "a Peven t ~ 0, (1.9b) 

especially, the odd and even parts of p propagate 
separa(ely, and p is completely specified by the data 

!even (Hilbert paradox). Equation (1.9a) plays the role 
of the hydrodynamical equations and (1.9b) the role 
of the Chapman-Enskog development. 

Now, suppose feven = /0.8 Then the formal power 
series -efodd = (1.8) converges in COO(RI X Z) for 
1,,1 < 1 if and onZy if fo is an integral function of 

6 Z stands for the 2-point space e = ± I. 
7 fOdd [feven] always denotes the odd [even] part off as a function of 

e. a stands for %x. 
8 By Eq. (1.8), fo is automatically even. 
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exponential type S 1, in which case p converges to an 
integral function of the same type for any t ;;::: O. Under 
the additional condition li/evenill < 00, p is continuous 
for 11:1 ::::;; 1 and is a bona fide solution of(1.4) at I: = 1. 
Any solution p of (1.4) with data9 fE Cf(Rl X Z) 
rapidly comes close to a Hilbert solution po. The correct 
recipe for the data of po is 

fO =i+1eiY'" .![1 + 1 + D - iye]] dy (1.10a) 
-1 2 (1 _ y2)t 

with 

] = 1-. i+
co 

e-iY"'j dx. (1.10b) 
21T -co 

This map is a projection onto the class of functions 
satisfying (1.8) for I: = 1, and the corresponding 
Hilbert solution 

pO = f:1 

exp (iyx) exp t[(1 - y2)t - l]r dy (1.11) 

differs from p by terms of magnitude e-t
, roughly. 

Unfortunately, the projection f -+ r does not preserve 
positivity, though nonnegative summable Hilbert 
solutions do exist. 

CarlemanlO proposed a less artificial caricature of 
(1.1)11 : 

(1.12) 

A nice description of its formal power series solutions 
would bring us quite close to a satisfactory picture of 
the Chapman-Enskog-Hilbert development for the 
actual Boltzmann problem, but we were unable to 
form any simple picture of them. 

Grad111 studied the Chapman-Enskog-Hilbert de­
velopment for the linearized Boltzmann problem: 

op + v op + f op = C[p] 
at ax ov (1.13) 

and also for a problem isomorphic to (1.4), verifying 
the presence of a Hilbert paradox. Grad's statement is 
not very explicit, especially the analog of (1.9) is not 
proved, but he did find that actual solutions must be 
functions of exponential type. 

2. CLASSICAL SOLUTIONS 

Because the solution of r + ep' = 1:-1 D[p] (I: > 0) 
coincides with the solution of r + ep' = D[p] at 

8 cf (Rl X Z) is the class of rapidly decreasing functions from 
Cco(Rl X Z). 

10 T. Carieman, Problemes mathematiques dans la theorie cinetique 
des gaz (Almqvist Wiksells, Uppsala, Sweden, 1957). 

11 I. I. Kolodner has proved that Eq. (1.l2) is well-posed. See I. I. 
Kolodner, Ann. Mat. 73 , 11 (1963). 

11 H. Grad, Phys. Fluids 6, 147 (1963). 

(t/I:, x/I:, e), it suffices to discuss the case E = 1: 

r(+I) + p'{+I) = pC-I) - p(+I), (2.la) 

p'(-I) - p'C-I) = p(+I) - p(-I). (2.Ib) 

This problem has just 1 solution p E cn([o, 00) X 

Rl X Z) with data fE cn(Rl x Z) for any 1::::;; 
n ::::;; 00.13 Kac;5 noticed that if # is a standard Poisson 
process with rate 1, jumps + 1, and expectation E, 
then 

pet, x, e) = E{f[X - e Lt( -1)#<tl-#(s)ds, e( _1)#W]}, 

(2.2) 

especially, p ;;::: 0 iff;;::: o. The fact that (2.2) solves 
(2.1) is easily proved by an explicit computation of 
op/ot. A more concrete formula for p can be obtained 
from the transform14 : 

1 f+co sinh (1 - y2)tt 
I = - t cos yx dy 

1T -co (1 _ y2) 

__ {Io(t2 - X2)t t;;::: lxi, 
(2.3) 

o t < Ixi-
Define f' = -ef' + D[f] as before. Then15 

p = e-tI * ur + f] + e-t.E.. 1* f/2. (2.4) at 
3. FORMAL POWER SERIES SOLUTIONS 

Consider a formal power series f = !fnl:n with 
coefficients from CCO(RI X Z) and let us ask if there 
exists a formal power series p = ! Pnl:n with coeffi­
cients from CCO([O, 00) X Rl X Z) that solves 

op + e op = .! D[p], (3.1a) at ax I: 

lim p = f, (3.1b) 
1+0 

or, what is the same, 

P~-l + ep;._l = D[Pn]' n 2: 0, P-l == 0, (3.2a) 

lim Pn = fn' n;;::: O. (3.2b) 
HO 

Define an operator Q on such formal power series 
f by the rule: 

Q = ! [(1 + 1:2( 2)1 - 1] = ! (I) 1:2m-l02m 

E m=l m 

and let us verify the following facts. f gives rise to a 

18 The standard proof is given by I. G. Petrovskii, Lectures on 
Partial Differential Equations (Interscience Publishers Inc., New 
York, 1954). 

16 10 below is the usual modified Bessel function; see H. Bateman, 
Tables of Integral Transforms, A. Erdclyi, Ed. (McGraw-Hill Book 
Company, Inc., New York, 1954), Vol. 1. 

16 The sign. below is the customary convolution on Rl. 
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formal power series solution p of (3.1) = (3.2) if and derive (3.3b) from (3.3a), take even and odd parts in 
only if (3.3a) to obtain 

r == -ef' + 1. D[f] = Q[f], (3.3a) 
€ 

or, what is the same, 

-efodd = Qo-'Ijeven = i: (!)(£0)2m-lfeven. (3.3b) 
m=1 m 

In this case, the coefficients of p are polynomials in t 
with coefficients from e""(RI X Z), and 

~: = Q[p1, -epodd = Qo-lpeven (3Aa, b) 

for any t ;;::: 0, especially,p is completely specified by the 
knowledge of leven (Hilbert paradox; see Sec. 1 for 
comment). 

A number of simple examples are tabulated below; 
the proofs occupy the rest of this section. 

TABLE I. A brieflist of special solutions of (3.1). 

[even -efOdd p 

0 1 
X fi/2 X - (e12 
Xl fiX X + fit 

-fiex 

Given a formal power series solution p, it follows 
from (3.1) and the rules 

D2 = -2D, eD + De = -2e (3.5a,b) 
that 

[~ + ~~ - ~Jp = 0, (3.6a) 
ot2 

£ at axil 
which can be re-expressed as 

{olot + £-1[1 + (1 + £2(2)1]) 

X {olot + £-1[1 - {l + £1l(2)1]}p = 0 (3.6b) 

with {l + £2( 2)1 expanded according to the binomial 
series as before. Drop the first operator. What is left 
is the formal power series r - Q[p ], so 

(olot + £-1[1 +../1 + €2a2])q = 0 (3.7) 

has the formal power series solution q = r - Q[p]. 
Equation (3Aa) follows from the fact that the only 
formal power series solution of (3.7) is q = O. 

Proof' A formal power series solution q of (3.7) 
satisfies 0 = -qi = 2qo, so q/€ is likewise a formal 
power series solution of (3.7), ql = 0 by the same 
argument, etc. 

Comparison of(3.1) and (3Aa) at t = 0 gives (3.3a), 
and (3.4b) follows as soon as it is proved that (3.3b) 
is the same as (3.3a). The proof is as follows: To 

-ef~dd = Qfeven, -ef~ven - ~ fOdd = Qfodd, 
E 

(3.8a, b) 

and then substitute f:dd from (3.8a) into QIodd in 
(3.8b) to obtain (3.3b): 

-efOdd = ~ [ef~ven + QfOdd] 

= e€ [ef~ven - eQ2o-lfevenl 
2 

= ~ {J~ven - £-2[1 + £2a2 

2 

- 2(1 + £2(
2)!- + 1]0-Yeven} 

= QO-'Ijeven. 

Now begin with (3.3b). Equation (3.8a) is immediate, 
so to prove (3.3a), it suffices to derive (3.8b) as follows: 

QfOdd = -eQ2o-'Ijeven 

= -lie [1 + £2a2 
- 2(1 + £2( 2)1"+ l]a-'Ijeven 

£ 

= -ef~ven + ~eQo-'Ijeven 
£ 

= -ef~ven - ~ fOdd. 
E 

The problem is now to prove that any formal power 
series f subject to (3.3) gives rise to just 1 formal power 
series solution p of(3.1). The coefficients ofp should be 
polynomials in t with coefficients from eW(R! X Z). 
Put n = 0 in (3.2a). P-l == 0, so D[po] = 0, i.e., po is 
even. Now put n = 1, take even parts, and conclude 
that Po = 0, i.e., Po is!o. Beginning with Po = 10, 
compute the rest of p from (3.4a), expressed in the 
form 

p~ = ~ (1)02mpt, n;;::: 1. (3.9) 
2m-I+t=n m 

m:2::1 
O$t<n 

This gives a formal power series solution of (3Aa) 
which turns out to be a solution of (3.1) also. The 
fact that this is the only possible formal power series 
solution with data f is trivial. Also, it is clear from 
(3.9) that Pn is a polynomial in t (of degree n) with 
coefficients from eOO(Rl X Z). 

To prove that p solves (3.1), consider the expression 
q = -ep' + c1Dfp] - Q[pJ. Because Po is even, this 
is a formal power series. Also, it solves (3.4a), it 
vanishes at t = 0 since f satisfies (3.3a), and since 



                                                                                                                                    

CHAPMAN-ENSKOG-HILBERT EXPANSION 551 

from (3.9): 

pi = p~/2, i.e., PI = II + tI~/2, 
and from (3.3b): 

-e(f1)odd = 1M2, 
it develops that 

qo = -ep~ + D[P1] = -ef~ + D[fl] 

= -ef~ - 2(ft)Odd = O. 

But now (3.9) implies that q == 0, so ap/at = Q[p] = 
-ep' + e-1D[p], as stated. 

4. REGULAR SOLUTIONS 

Consider a formal power series solution p of (3.1) 
with data 

/even =/0' (4.1a) 

-e/odd = Qa-Yeven = i (t)(eo)2m-Yeven, (4.1b) 
m=1 m 

and let us verify that fodd converges in16 Coo(Rl X Z) 
for lei < 1 if and only iffeven = fo is an integral function 
of exponential type ~ 1, in which case p also converges 
in Coo([O, 00) X Rl X Z) for lei < 1 to an integral 
function of the same exponential type. 

The formal power series (4.1b) converges In 

C oo(Rl X Z) for lei < 1 if and only if 

lim sup m-Ilg 110m
/ oil 00 ~ 0 

mtoo 
on compact figures of Rl X Z, so the first statement is 
plain. The statement about p is easily proved by 
expressing the integral function !even in Polya's 
fashion17 : 

Ieven =!. e~1even dz, R > 1, (4.2a) :t!.I=R 
with leven regular outside Izl = 1. Then 

f (1 + e2z2)i - 1 
/Odd = -exp e~1even dz, 

ez 
Riel < 1, (4.2b) 

andputtingJ= (1 - (e/ez)[(1 + e2z2)i - l]lieven' the 
statement about p can be read off from the formula 

p = f exp {te-l[(l + e2z2)i - In e~r dz, Riel < 1. 

(4.2c) 

5. APPROXIMATION BY HILBERT SOLUTIONS 

Now add 
Ilfeven 111 < 00 (S.I) 

to the conditions (4.1). Then the Polya integrals in 

18 f is convergent in C oo (R1 X Z) if each of the formal power 
series ;}mf (m ~ 0) converges uniformly on compact figures of 
R1 X Z. 

17 R. Boas, Entire Functions (Academic Press Inc., New York, 
1954). 

(4.2) can be replaced by Fourier integrals for lei < 1: 

(S.2a) 

(S.2b) 

(S.2c) 

with 

J= {I - e(ieYr1[(1 - e2y2)i - I]}Jeven, (S.3a) 

Jeven = ~ f+ooe-iY~feven dx. (S.3b) 
27T -00 

Because leven E C[ -1, + 1], P is not only convergent 
on the open disk lei < 1, but is also continuous on the 
closed disk lei ~ 1, and p at e = 1 is a bona fide 
solution of 

P' + ep' = DCp]· (S.4) 

Now, consider any solution p of (S.4) with data 
fE Ci(RI X Z). By (2.3) and (2.4), 

_ -tf+oo iy~ sinh (1 - y2)tt [J' J) d 
p - e -00 e (1 _ y2)t + I' 

+ e-tL+oooo eiY~ cosh (1 - l)tti dy (S.5) 

with/, = -ef' + D[f]. Define 

r = ![1 + 1 + D - iye];, 11'1 ~ 1, 
2 (1 _ y2)t 

= 0, 11'1 > 1. (S.6) 
Then, for 11'1 ~ 1, 

2(1 - r2)tJ~ven = [(1 - y2)t + 1]Jeven - ire/odd, 

(S.7a) 

2(1 - y2)~gdd = [(1 - y2)t - l]Jodd - iye/even, 

(S.7b) 
and the map f -+0 fO is a projection onto the class of 
functions satisfying (3.3a) = (3.3b) for e = 1, as a 
little algebra will verify. The corresponding Hilbert 
solution 

pO = L:1eiY~ exp {t[(1 - y2)t - In r dr (S.8) 

differs from p = (S.5) by 

e-t r eiy~ sinh (1 - r2)tt r]' + J] 
Jlyl>1 (1 _ y2)t 

+ e-t r eiY~ cosh (1 - r2)t tJ 
Jlyl>l 

+ e-tf+leiY~e-t(l- y2)t![1 _ 1 + D - iye];, 
-1 2 (1 _ y2)t 

(S.9) 
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and all this is of magnitude e-t, roughly. This is the 
best fit that could be expected. Because a positive­
definite function has to be continuous, it is obvious 
from (5.6) that the projectionf -+ fO does not preserve 
positivity. 

6. POSITIVE HILBERT SOLUTIONS 

An example will settle the existence of nonnegative 
summable Hilbert solutions. 

Example 1: Define 

!even = [(1 - y2)t + 1](1 - lyl)2, Iyl ~ 1, 

= 0, Iyl> 1. 

Then !even = (5.2a) is an integral function of expo­
nential type ~ 1, and, with !odd defined by (5.2b), 
f~ 0 (see proof below), p ~ 0 by (2.2), and since 

p = exp {t[(1 - y2)t - In[1 - e (1 - y;t - IJ 
X [(1 - y2)t + 1](1 - Iyl)z 

is finite at y = 0, f p < 00. 

Proof that f ~ 0: 

1 = [1 - e (1 - ~;t - IJ [(1 _ y2)t + 1](1 _ lyl)2 

= [(1 - y2)! + 1 + eiy](1 _ lyl)2, Iyl ~ 1, 

is split into 2 pieces: A = (1 - y2)1(1 - lyl)2 and 
B = (1 + eiy)(1 - IYI)2. A is positive-definite since 

A" = (1 - Y)\2 + 6y - (1 + y)-l], 0 < y < 1, 
l+y 

so that 

[+let1"'A = 2 [ICOS yxA 
J-l Jo 

= 2x-2 Ll [1 - cos yx ]A" ~ O. 

B is also positive-definite, but the proof is not so 

cheap. 

[+1ei1"'B = (1 + ey)x-3(x - sin x) 
J-l 

= x-3[(1 - 3e/x)(x - sin x) + e(1 - cos x)], 

and by a trivial manipulation, it is enough to verify 

(1 =F 3jx)(x - sin x) ± (1 - cos x) ~ 0, x > O. 

But for 0 < x ~ 3, 

(1 - ~)(X - sin x) + 1 - cosx 

~ (1 _ ~) x3 + xl! _ x' 
x 6 2 4! 

= ~3 (1 _~) ~ ~3 (1 _ !) > 0 

and 

(1 + ~)(x - sin x) -1 + cos x 

~ (1 + ~) (X3 _ X
5
) _ x

2 

X 6 5! 2 

= x3(! _ x 2 

_ -=-) ....... x3(.l. _ A) > 0 
6 5! 40 Co 6 ",u , 

while the same bounds are obvious for x> 3. This 
completes the proof. 

Example 2: A simpler example is available if RI is 
replaced by the circle 0 ~ x < 217'. Now, !even is both 
periodic and of exponential type ~ 1, so it has to be 
of the form a + b cos x + e sin x, and 

f = {I - e[(1 + a2)t - l]a-1}!even 

= a + (b + ee) cos x + (e - eb) sin x 

is nonnegative if and only if a ~ [2(b2 + e2)]! 
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Derivations of Hierarchies for N-Particle Systems and Vlasov 
Systems by Means of the Functional Calculus 
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The methods of the functional calculus are applied to the Klimontovich equation and to the Vlasov 
equations. The equation for the generating functional is derived for both cases. By taking moments of 
t~e~ eqll;ations, t~e BB~KY hierarchy is obtained for the case of the Klimontovich equation, and a 
slmllar hierarchy IS obtamed for the case of the Vlasov equation. The two hierarchies are identical, 
except for some terms involving individual particle interactions. Methods of solving the Vlasov hierarchy 
are discussed and it is shown how quasi-linear theory can be obtained. 

I. INTRODUCTION 

POR studies of nonequilibrium systems a basic 
starting point has been the Liouville equation. 

Because of its mathematical complexity and because 
of one's interest in functions of only a few dynamical 
variables, the main problem in nonequilibrium statis­
tical mechanics is that of finding equations for reduced 
distribution functions. In recent years much progress 
has been made in this field. A diagrammatic expansion 
method originated by Prigogine and his school! has 
been successfully employed in deriving equations for 
the reduced distribution functions. However, this 
method has the disadvantages that it is complex, it is 
difficult to prove that all the important diagrams have 
been included, and it is difficult to verify the conver­
gency of the series involved. 

A second approach has been to employ the so­
called BBGKY hierarchy2 for the reduced distribution 
functions. This hierarchy is open and must be trun­
cated by making some assumptions and approxima­
tions. One such truncation scheme is to assume 
that three-particle correlations are negligibly small. 
This approach has been successful in deriving the 
Boltzmann equation for low-density gases of neutral 
particles3 and for the derivation of the Fokker-Planck 
equation for plasmas.4 

• Permanent address: Plasma Physics Laboratory, -Princeton 
University, Princeton, New Jersey. 

1 For example, see I. Prigogine, Non-Equilibrium Statistical 
Mechanics (Interscience Publishers, Inc., New York, 1963); R. 
Balescu, Statistical Mechanics of Charged Particles (Interscience 
Publishers, Inc., New York, 1963). 

2 Among many works, see, for example, N. N. Bogoliubov, in 
Studies in Statistical Mechanics, translated by E. K. Gora, J. de 
Boer and G. E. Uhlenbeck, Eds. (North-Holland Publishing 
Company, Amsterdam, 1962). 

3 J. G. Kirkwood, J. Chem. Phys. 15, 72 (1947). 
4 N. Rostoker and M. Rosenbluth, Phys. Fluids 3, I (1960); 

N. Rostoker, ibid. 3,922 (1960); A. Lenard, Ann. Phys. (N.Y.) 10, 
390 (1960). 

In 1957, Klimontovich5 proposed to study the N­
body problem through the use of an equation which 
is identical in form with the Vlasov6 equation, but in 
which he took the distribution function to be that 
due to a discrete set of particles (therefore, a set of 
delta functions whose arguments are specified by the 
classical laws of mechanics). Starting from the 
Klimontovich equation, one can derive the BBGKY 
hierarchy by averaging the solutions over a distribu­
tion of initial positions and velocities.7 This method 
has been successfully applied to a number of problems. 

Another area of nonequilibrium phenomenon which 
has been receiving considerable attention recently is 
the field of turbulence. This is particularly true in the 
field of plasma physics. Here, also, it appears that a 
statistical approach is called for and some success has 
been achieved in developing such theories.s.9 

It is the purpose of the present paper to first show 
how the functional calculus can be used to derive the 
BBGKY hierarchy of statistical mechanics and second 
to derive a similar hierarchylo.ll which is applicable to 
turbulences of a Vlasov fluid (a plasma, for example). 

Our starting points for the derivation of these hier­
archies are the Klimontovich equation and Vlasov 

5 Iu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 33, 982 (1957) 
[English trans!.: Soviet Phys.-JETP 6, 753 (1958)]. 

• A. A. Vlasov, Many-Particle Theory and Its Application to 
Plasma (Gordon and Breach Science Publishers, Inc., New York, 
1961). 

7 E. P. Gross, J. Nuc!. Energy C2, 173 (1961). Also, see reports 
by W. E. Brittin et al., University of Colorado; the most complete 
self-contained work with many references is found in W. R. 
Chappel, Ph.D. thesis, University of Colorado (1965). 

8 W. Drummond and D. Pines, Ann. Phys. (N. Y.) 28,478 (1964); 
A. A. Vedenov, J. Nucl. Energy C5, 169 (1963). 

• B. Kadomtsev, Plasma Turbulence, translated by L. C. Ramson, 
M. G. Rusbridge, trans. Ed. (Academic Press Inc., New York, 1965). 

10 The authors have recently learned, from private communication, 
that Von P. Graff of the Institute fUr Plasmaphysik, Kernfor­
schungsanlage Julich, has also obtained this hierarchy (unpublished 
work). 

11 C. Oberman, Bull. Am. Phys. Soc. 6, 185 (1961). 
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equations. Because these equations are formally 
identical, the same techniques work for both. The 
derivation of the BBGKY hierarchy simply gives 
another method of obtaining this hierarchy. However, 
the observation that a similar hierarchy applies to the 
Vlasov equation gives us another method for attacking 
problems of plasma turbulence. In fact, by making 
suitable approximations one can obtain the "quasi­
linear theory" of plasma turbulence. By making dif­
ferent approximations, one could obtain different 
theories of plasma turbulence. Finally, we might point 
out that this approach may shed some light on the 
question which has often been raised, "is it sufficient 
to consider only the Vlasov equation when dealing 
with unstable plasmas or do we need to take into 
account particle correlations through the BBGKY 
hierarchy." It has been argued that since particle 
correlations become very large in such plasmas, we 
should include their effects. However, since a very 
similar hierarchy holds for the Vlasov equation, we 
may argue that the correlations due to instabilities are 
to a large degree already contained in the Vlasov 
equation and that it is sufficient to consider only this 
equation (perhaps including some appropriate initial 
disturbances). 

II. FUNCTIONALS AND 
FUNCTIONAL EQUATIONS 

A. Review of the Functional Calculus 

Our approach in many ways follows the treatment 
by Hopf12 of hydrodynamic turbulence. The details 
of the formalism can be found in his work. However, 
we include a brief account of the derivation of the 
functional equation for the sake of clarity and 
completeness. 

Consider a function of x and t, lex, t), which 
satisfies a deterministic equation, 

o/(x, t)/ot = L(f). (1) 

Here L is a polynomial function of / only and is 
assumed not to depend explicitly on time t. This equa­
tion may describe the time development of some 
system, as for example, it might be the Vlasov equa­
tion for a plasma. In place of (1) we may define a 
time-development operator Tt such that Tt acting on 
lex, 0) gives lex, t), 

rt/(x, 0) = lex, t). (2) 

This is simply another way of writing (l). 
Now denote the space spanned by the solutions of 

11 E. Hopf, 1. Rat!. Mech. Analysis 1, 87 (1952); E. Hopf and 
E. W. Titt, ibid. 2, 587 (1953). 

Eq. (1) by n and introduce the probability peA) of 
finding/ in the region A, A en. 

Since P is a probability we must have 

peA) ~ 0, pen) = 1. (3) 

If the probability is conserved following the motion 
(no systems are added to or removed from those under 
consideration), then 

(4) 

where pt denotes the probability at time t, and T-tA 
denotes the region in which / must be at t = 0 to be 
in A at time t. 

Define an average of any function of f, F(/), by 

(F(f»av = In F(f)pt(df)· (5) 

By making use of Eq. (4) we have 

(F)av = In F(f)pt(df) = L F[T'l(x, O)]po[df(x, 0)]. 

(6) 

With this preparation we now introduce the follow­
ing generating functional: 

<D(y, t) = In exp i(y,j)pt(df) 

= In exp {i[y, T'l(x, O)]}po[d!(x, 0)], (7) 

where/satisfies Eq. (1) and we have made use of Eq. 
(6). Here, y(x) is an arbitrary continuous function of 
x and does not depend on time; the bracket quantity 
(y,/) stands for the scalar product of y and f, 

(y,j) = I y(x)!(x) dx. 

Differentiating both sides of (7) with respect to t and 
making use of Eq. (1) gives 

0<D~, t) = I{I dxy(x) °a:t!(X, O)J 
exp {i[y, T'l(x, O)J}pO[df(x, 0)] 

= I {I dxy(x)L[f(x, t)]J 
exp {i[y,j(x, t)]}pO[df(x, 0)] 

= if Y(X)LC:) <D(y, t) dx. (8) 

Here the notation l5/il5y denotes functional differ­
entiation with respect to y(x) and is adopted from 
Bogoliubov. A rigorous proof of Eq. (8) is given by 
Hopf.12 
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B. Application of the Functional Calculus 
to the K1imontovich and VIasov Equations 

An exact equation for the dynamics of a single 
system of N identical particles is given by the 
Klimontovich equation.5 This description sometimes 
leads to a better understanding of the physics of many­
body problems.5 •7 •l3 

Klimontovich considers the distribution function 
for a single system of N identical particles, 

N 

f(x, t) = I <5[x - xlt)]. (9) 
i=l 

Here x stands for a set of coordinates and associated 
canonical momenta of a particle (q, p) and the delta 
function is a six-dimensional one. The Xi(t)'S are the 
classical orbits of the particles and are determined 
by solving Hamilton's equations of motion. The 
Hamiltonian for the system under consideration is 

H = f :;f(X, t) dx + tf dx dx'cfo(lq - q'l) 

X [f(x, t)f(x', t) - <5(x - x')f(x, t)], (10) 
where cp is the two-body potential (the only one 
assumed present). The term <5(x - x')/(x, t) is sub­
tracted in (10) because it is assumed that a particle 
does not interact with itself. 

The equation which / satisfies is the Klimontovich 
equation, 

af(x, t) = _ .P.. • af(x, t) +f acp(lq - q'l) • af(x, t) 
at m aq aq ap 

x [f(x', t) - <5(x - x')] dx'. (11) 

This is most simply verified by direct substitution. 
Under some circumstances (particularly when 

dealing with plasmas), we may treat the system as a 
continuous Vlasov fluid rather than a set of discrete 
particles. In this case we treat/as a continuous func­
tion and we drop the <5(x - x') terms from Eqs. (10) 
and (11). Thus in this case the Hamiltonian is given by 

H = f :; f(x, t) dx + t f dx dx' cfo(lq - q'l) 

X f(x, t)f(x', t), (12) 
while the Vlasov equation is 

af(x, t) p af(x, t) --=--.---
at m aq 

+f acp(lq - q'l) • af(x, t) f(x', t) dx'. (13) 
aq ap 

We now identify the/appearing in the Klimontovich 
and Vlasov equations with the / appearing in Eq. (1) 
and the right-hand sides of Eq. (11) or (13), depending 

18 J. M. Dawson and T. Nakayama, Phys. Fluids 9, 252(1966). 

on which system is under cOllSideration, with L(f) 
appearing in Eq. (1). 

1. Application to the Klimontovich Equations 

For the case of the Klimontovich equation, we 
must, however, note that the space n is not the whole 
space spanned by the solutions of Eq. (11), but is the 
subspace spanned only by f's of the form of Eq. (9). 
Because of the special nature of this n space, we 
first consider a few examples to obtain a better under­
standing of the following sections. 

The average of /(Xl) is simply 

(f(Xl»=.s,<5(f)( )1 =( f(xl)exP[i(y,J)]pt(df)1 
wy Xl 11=0 Jo. 1/=0 

= Nfl(Xl, t). (14) 
In the above and hereafter the subscript on/indicates 
the reduced function in the usual sense (the one­
particle distribution function in the above). The last 
step in the above equation follows by considering the 
meaning of P(d/). This is the differential increment of 
the probability due to changing the function! In this 
case the change is a change in the delta functions due 
to changes in initial positions and momenta. The 
average in Eq. (14), thus, is nothing, but an average 
over initial values of the coordinates and momenta 
of the particles. Thus it is equivalent to the average 
Klimontovich and others take. 

In a similar manner, one can compute the second 
moment of/by operating on (f) with the second-order 
functional derivatives with respect to y(xJ and y(x2), 

<5
2
(f) 1 <f(xl)f(x2»av = .s, ( ).i ( \ 

IUY Xl UY Xv 11=0 

= L f(x1)f(x2) exp [i(y,f)Pt(df)] Lo' (15) 

The average </(XI)/(X2»av, however, differs from the 
usual two-particle distribution function by the amount 
<5(XI - X2)/(XI) since we do not wish to correlate a 
particle with itself. Thus for hex} , x2 , t), we write 

N(N - 1)/2(x1 , X2, t) 
= </(Xl)/(X2»av - N<5(XI - XJ/l(X1 , t). (16) 

In general, to extract the correct s-particle distri­
bution function from the generating functional, we 
operate with 

1 
N(N - 1) ... (N - s + 1) My(x1) 

X (-. _<5 - - <5(X2 - Xl») ... 
I <5y(x2) 

X (_._<5_ - I <5(x. - Xi»)' (17) 
I <5Y(X8) i<8 

and then set all y's equal to zero. 
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The equation for the characteristic functional for 
the case of the Klimontovich equation is obtained 
as shown in Subsection A and is given by Eq. (8) 
making use of the identification of L from Eq. (11). 
This equation is 

oct>(y, t) = -iIy(X) ~ • .E. -. -~- ct>(y, t) dx 
at m oq I~Y(x) 

+ ifJy(X) o<P(lq - q'I)(-~- - ~(x - X'») 
oq i~y(x') 

x (%p)[~/i~y(x)]ct>(y, t) dx dx'. (18) 

It should be noted that the functional equation derived 
here is somewhat different from that derived by 
Bogoliubov2 since the functional (7) contains an extra 
functional, 

ct>(y, t) = 1 +!!...- ... N(N - 1)" . (N - s + 1) (')8I I 
82: IS! 

X fix l , X2 , ••• , X
8

, t)y(XI )Y(X2) ... 

X y(x.) dXI dX2 ... dx, + O(y, t) 

= £,(Nig, t) + O(y, t) (in the limit of N --+ (0). 

(19) 

Here C is the one used by Bogoliubov2 and O(y, t) is 

O(y, t) = 8~ ~~"f' . J[Uf(Xi ) - N' 

x f. (Xl' ... , X,, t) ] Pt(df) 11 y(Xi ) dxi . (20) 

2. Application to the Vlasov Equation 

In like manner, we obtain the equation for the 
characteristic functional for the case of the Vlasov 
equation by identifying L as the right-hand side of 
Eq. (13). The functional equation in this case is 

oct> (y, t) = -iIy(X) ~ • .E.. . ~ct> (y, t) dx 
at m oq I~Y(x) 

+ ifJy(X) o~(lq - q'l) -~ -
oq My(x') 

a ~ct> 
• - -- (y, t) dx dx'. (21) op i~y(x) 

ill. DERIVATION OF THE HIERARCHIES 

A. BBGKY Hierarchy 

Since Eq. (18) is different from Bogoliubov's, the 
derivation of the hierarchy in this formalism is given 
here. To obtain the first member, we operate on Eq. 
(18) with the functional derivative with respect to 

iy(xl ) and set all y's equal to zero. The left-hand side 
then becomes 

-~_.£.ct> I =.E. I-~- exp [i(y,f)]PI(df) I 
i~Y(XI) at 11=0 at i~Y(Xl) 11=0 

a (f(xl»a.v 
= at 

The first term on the right-hand side of Eq. (18) 
becomes 

M I po ~ I - -- y(x) - - • -- ct>(y t) dx 
i~Y(XI) m oq i~y(x) , 11=0 

= - Pl. ~ ff(X I ) exp [i(y,f)]Pt(df) I 
m Oql 11=0 

'I po ~ ~ I -I y(x)-·----- ct>dx 
m oq i~Y(XI) My(x) 11=0 

PI o(f(xI»av = --. 
m 

In a similar way, the second term on the right-hand 
side of (18) becomes 

~ fJY(X)[o~(lq - q'l) (-~- - ~(X' - X»)] 
i~Y(XI) oq My(x') 

a ~ct> I ·---dxdx' op i~y(x) 11=0 

=I O<P(lql - q'l) [f(x') - ~(x' - Xl)] 
Oql 

x ~ f(xl ) exp [i(y,f)]pt(df) dx' I 
OPI 11=0 

+fJy(X) o~(lq - q'l) _~_ 
oq i~Y(XI) 

X (-~- - ~(x - X'») • .E.~dXdx'l 
i~y(x') op i~y(x) 11=0 

=I OCP(lql - q'l) • ~ 
oq OPI 

X ([f(x') - ~(x - xl)]f(xI»av dx', 

where the following relation has been used: 

I! 1jJ{q, q')~(x' - x).E. ~(x - Xi) dx' 
i op 

=J! 1jJ{q, q')~(x' - Xt).E. ~(x - X') dx' 
i op 

-I~ ( ') o~(x' - Xi) .Q( ') d ' - k "P q, q ~ u X - X X 
i up' 

=J"P(q, q')~(x - x,).E. ! ~(x - Xi) dx. op i 
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Thus we obtain the first member of the hierarchy, 
which can be found in many texts, 

afl(Xl) + PI • ~ fl(Xl) 
at m aql 

- Nf a4>(lql - q'l). af2(Xl ,X') dx' = O. (22) 
aql apl 

In a similar way, one can obtain the sth member of 
the hierarchy by operation of the functional derivative 
(17), 

af. + ~ Pi. ~ f. _ ~ a(lq. - qil) • af. 
at i m aqi i.* i aqi api .c. 

iC. 

where the third term on the left-hand side as well as 
the terms on the right-hand side arise from the delta­
function term in Eq. (18). 

B. Hierarchy for the V1asov Equation 

We may employ exactly the same procedure to the 
Vlasov equation using Eq. (21) for the characteristic 
functional in place of Eq. (18). Everything goes 
through in exactly the same manner except that the 
terms. resulting from the delta functions are now 
absent. We thus obtain a hierarchy very similar to the 
BBGKY hierarchy. The first member of this hierarchy 
is obtained by operating on Eq. (21) with ~/itJY(XI) 
and is given by 

a (f(Xl , t»av + Pl. a (f(Xl , t»av 

at m aql 

x f 04>(lql - q2D • o(f(xl t)f(X2' t»av dX2 = O. (24) 
aql apl 

The sth member is given by operating on Eq. (21) 
with the functional derivative, 

(N - s)! ~ ~ ~ 
..>...--~--.-- .... --

N! i~Y(Xl) i~Y(X2) i~y(x.) , 
and is 

a(f(XI ) ... f(x.»av + i Pi. a(f(x1) ... f(x.»av 

at i=lm aqi 

-f~ a4>(lqi - q.+11) • a<!(x1)' . ·f(x.)f(xs+1»av dXs+1. 
t Oqi apt 

(25) 

Here, </(x1) ... I(X.)av is equivalent to the s-particle 
correlation function in the BBGKY hierarchy. It is, 
in fact, the correlation function for I at the s phase 

points, Xl , X2, ... , x., which amounts to correlations 
of s particles with positions and momenta given by the 
x's. The difference between J. and </(x1) ... I(x,) )av 
arises only from the interpretation off, that is, only 
from interpreting I as either the singular functions 
associated with systems of discrete particles or as the 
continuous functions associated with a Vla'sov fluid. 
The interpretation of I [hence of Eq. (13) as the 
Klimontovich equation or the Vlasov equation] speci­
fies the functional space n spanned by f 

Equations (25) should apply when colJective or 
many-particle interactions dominate. It can, in fact, 
be obtained from the BBGKY hierarchy by neglecting 
the interactions between the individual particles 
belonging to the group s. This result can be obtained 
by subdividing the particle into smaller and smaller 
units.14 

It thus appears that for unstable plasma where 
collective effects certainly play a large role, the s­
particle correlations should be obtainable from Eq. 
(25) when some suitable initial conditions are em­
ployed. Since Eq. (25) has as its base the Vlasov 
equation, this equation should be sufficient for study­
ing unstable situations even though particle correla­
tions become large. The only thing missing is the 
excitation of disturbances by the particles. However, 
once the instabilities get going, further excitation of 
them should make little difference. Also, if turbulence 
develops and is self-maintaining, this weak tickling 
should not play much of a role. There will, of course, 
be some unstable situations where individual particle 
interactions are important, for example, situations 
where collisions play an important role in the growth 
of an instability. 

N.~THQDSFORSOL~G 
THE VLASOV HIERARCHY 

A. Exact Solution 

We may first note that the hierarchy allows a 
product solutionl4 of the form 

, 
(f(xl) ... f(x.»av = II/(xi ), (26) 

i=1 

where /(Xi) satisfies the nonlinear Vlasov equation, 

a/(X) + !. . a/(x) 
at m aq 

-f a4>(lq - q'i) • aj(x) j(x) dx' = O. (27) 
aq ap 

Direct substitution of Eq. (26) into Eq. (25) verifies 
this. This form is a natural consequence of the form 

14 N. Rostoker and M. Rosenbluth, Phys. Fluids 3, 1 (1960). 
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of Eq. (25). Physically we see that such a solution 
should result if P(d/) is a delta function, i.e., zero 
everywhere except at </(x) )av, and the integral of 
P(d/) over a small volume of function space con­
taining </(x»av is 1. 

While (26) is a solution, it is not the most general 
one. However, the general solution can be built up 
from (26). This must be so since all the averages can 
be found in terms of the general solution to the Vlasov 
equation. To show this, consider the average value of 
/(x1) ••• /(x.), 

<Uf(Xi»av = ff(X1)" ·f(xs)pt(df) 

= f U T'l'(xi , O)PO(df). (28) 

The integral is, in fact, simply a sum of product solu­
tions of the form of (26) with appropriate weighting 
for their occurrence. Now compute the time derivative 

of <U/(Xi»av' 

:t<11f(X1» av = f t Of(;~, t) 11 T'l'(x i , O)po(dj). 

(29) 

Substituting for the time derivative of /(x;, t) from 
the Vlasov equation gives 

8 

X II T'l'(x i , 0) dXs+1PO(df) 
i=l 

0<8+1 ) 
• OPi !J f(Xi) av dXs+l' (30) 

Equation (30) is just Eq. (25), and this, in fact, gives 
another derivation of the hierarchy. 

Although all solutions can be built up from those 
of the form of (26), to proceed in this way would gain 
us nothing. We should have to solve the full nonlinear 
Vlasov equation, and if we could do that we should 
know everything there is to know about the problem. 
The advantage to be gained from a statistical ap­
proach-that it gives us only the information we are 

interested in and ignores the great mass of details 
which are present-would then be lost. Our primary 
aim, thus, is to find approximate solutions to (25). 
There are many approximations which one can make, 
and to a large extent one's success depends on the 
accuracy and simplicity of the approximation. The 
most obvious things to try are the approximations 
which have been made in treating the BBGKY 
hierarchy. 

B. No Correlations 

The simplest thing one could do is to neglect all cor­
relations and assume that all disturbances are small. 
One then simply obtains the linearized Vlasov equation 
forf 

C. Weak Correlations Quasi-Linear Theory 

The next simplest thing to do is to include two­
point correlations but assume they are small and 
neglect three-point correlations. We thus write for 
</(X1)f(X2»av and </(X1)f(X2)/(xS»avas, 

</(X1)f(X2»av = </(X1»av(j(X2»av + G(X1' x2), (31) 

(j(X1)f(X2)/(xa) )av 

= (j(X1)f(X2)/(Xa»av + G(X1' X2)</(Xa»av 

+ G(X2' xa)</(X1»av + G(X1' xa)</(X2»av. (32) 

Substituting these expressions into Eq. (25) gives the 
following equation for <J) and G: 

F(q) = f 01>(I~; q'l) (f(X'»av dx'. (35) 

Equation (33) is quite similar to the usual Fokker­
Planck equation for a plasma. Equation (35) is similar 
to the usual two-particle correlation function, except 
that the driving terms, due to discrete particles, are 
absent. 
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Equation (34) may be solved by the method of 
separation of variables. First we note that 

because 

Thus we could write Eq. (34) in the form 

OG(XI' x2) + (Pl. ~ + P2 • ~) G(XI' X
2

) 

ot m Oql m Oq2 

- (F(ql)'~ + F(q2).~)G(XI'X2) 
OPI OP2 

- o(f(XI»av .f 04>(lql - qal) G(x X) dx 
::l ::l a, 2 3 
UPI uql 

_ o (f(x2) )av .f 04>(1 q2 - q31) G(XI' Xa) dXa = O. (37) 
OP2 Oq2 

Now assume (37) has a solution of the form 

G(XI' x2) = XI(XI)X2(X2). (38) 

Substitution of (38) into (37) gives 

_1_(OXI(XI) + Pl. ~ XI(XI) _ F(ql)' OXI(XI) 
X I(XI) ot m Oql OPI 

_ o(f(XI»av .f 04>(lql - qal) XI(X3) dxa) 
OPI Oql 

+ _1_(OX2(X2) + P2. ~ X2(X2) - F(q2) 
X 2(X2) ot m Oq2 

• OX2(X2) _ 0(f(X2»av J Oc/>(lq2 - q31) 

OP2 OP2 Oq2 

X X2(X3) dX3) = O. (39) 

Equation (39) is a sum of two factors, one depending 
on Xl and the other on X2' Thus, one of these factors 
must be equal to the constant y and the other to -yo 

We may write (39) in the form 

~ XI(XI)\ = OXI(XI) + PI • ~ XI(XI) 
dt evaluated along 0 ot m Oql 

- F (ql)' OXI(XI) 
OPI 

= o(f(XI»av .f 04>(lql - q31) 
OPI Oql 

X XI(X3) dXa - yXI(XI), 

dX2(X2)/ = 0(f(X2»av .f 04>(lq2 - q31) 
dt evaluated along 0 OP2 Oq2 

X X'J,{X3) dXa + yX~xJ. (40) 

Here 0 represents the trajectories which give </(X»av. 
Integrating gives 

f exp [-y(t - t')] 

integrating along 
trajectories 

exp [yet - t')] 

integrating along 
trajectories 

X (0(f(X2»av .f 04>(lq2 - q31) X2(xa) dX
3

) dt'. (41) 
OP2 Oq2 

Since we are only interested in the product 
XI(XI)X2(X2), we see we may choose y to be zero,l5 
Equations (40) and (41) then just give the solutions to 
the linearized Vlasov equation. 

It should, perhaps, be noted here that the product 
XI(xl)Xlx2) is not symmetric in Xl and X2. However, 
it is easy to construct symmetric solutions from these 
products, i.e., [XI(xl)Xlx2) + XI(x2)Xlxl)]. We must 
allow only symmetric combinations in the final solu­
tion. If we start with symmetric solutions, they 
remain symmetric. 

We may build up the solution to the general initial­
value problem for Eq. (37) from these product solu­
tions. First we write the initial value of G as a sum 
of products of delta functions, 

G(XI' X2 , t = 0) = ff G(x', x", t = 0) 

X b(XI - x')b(x2 - x") dx' dx". (42) 

Next let X(xI , t; x') and X(x2, t; x") be the solutions 
given by (41) for which XI(XI , 0) and X2(X2, 0) are 
b(XI - x') and b(X2 - x"), respectively. Then the 
general solution to Eq. (37) is given by 

G(XI' X2, t) = ff G(x', x", t = 0) 

X X(xI , t; x')X(x2 , t; x") dx' dx". (43) 

If G(XI' X2, t = 0) is symmetric in Xl, X2, then (43) 
will be too. 

We may note that the above solution holds even 
if <J(X»av is a function of t. If </(XI»av is time inde­
pendent or slowly varying with t the above method is 

16 Note added in proof: This is perhaps most easily seen by noting 
that the solutions can be written as X1(X 1 , t) = e-yt;1(X1, t). 
Xa(xa, t) = eyt;,(xa, t), where;1 and ;, are the solutions for'l' = O. 
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equivalent to Dupree's16 operational method for 
solving the second member of the BBGKY hierarchy. 
In fact the same method of separation of variables may 
be employed to obtain his result. The only difference 
is that there are source terms due to the discrete par­
ticles. These are, however, readily included once we 
know the solutions of the homogeneous equation. 

As given above, Eqs. (33) and (34) would be difficult 
to solve, for they apply to the general case where 
<!(X»av may be spatially nonuniform and time 
varyi,rig. However, they can be applied to many types 
of systems; uniform and nonuniform plasmas, and 
clusters of stars. One case which is very often con­
sidered is that in which <!(X»av is spatially uniform 
and is either stationary in time or varies only slowly 
in time. In this case G may be solved for adiabatically 
in terms ofthe variations of <!(X»av, and one obtains 
quasi-linear theory without mode coupling. 

D. Other Approximations 

There are many other methods of terminating the 
hierarchy which one can think of. One such method 
is to employ the superposition approximation which 
Kirkwood originally proposed for use in statistical 
mechanics. Here one approximates the three-point 
distribution function in terms of the two by 

(f(Xl)!(X2)!(Xs»av 

= (f(xl)!(xa) )av(f(Xl)!(xs) )av <!(xs)!(xa»av (44) 
(f(Xl»av(f(xa»av(f(Xa»av 

We may write 

<!(xJ!(XJ)av = <!(Xl»av<!(X2»av[1 + G(Xl' x2)]. 
(45) 

Equation (44) then becomes 

<!(Xl)!(X2)!(xa) )av 

= <!(X1»av<!(XJ)av<!(Xa»av[1 + G(Xl' x2) 

+ G(XI' xa) + G(X2' xs) + G(Xl' xJG(xl , xs) 

+ G(XI' X2)G(X2' xa) + G(Xl' Xa)G(X2' xa) 

+ G(XI' X2)G(XIXS)G(X2xa)]. (46) 

One further approximation we could make is to 
assume that G is relatively small and neglect terms 
containing three G's. If we make this approximation 
and further assume that <!(X»av is spatially uniform, 

18 T. H. Dupree. Phys. Fluids 4, 696 (1961). 

the first two members of the hierarchy become 

a (f(Xl»av 
at 
-f a~(lql - qal) ~ f( )!( )G( ) d 

a . Xl Xa Xl' X2 Xa 
ql apl 

a 
x at (f(Xl»av(f(X2»avG(Xl, Xa) 

( PI a P2 a)! ! + -. -a + - . -a < (Xl»av< (X2» avG(xl , XS) 
mpi mqa 

-f a~lq2 - qsl) • ~ 
aqz aps 

x (f(XI»av(f(X2»av(f(Xa»avG(Xl' Xs) dXa 

-f a~lq~q~ qsl) (f(Xl»av<!(X2»av<!(Xa»av 

x G(Xa, xs) dXa 

_f(a~(lql - qaD. ~ + a~lqa - qaD. ~) 
aql apl aqa aps 

x (f(XI»av(f(XJ)av(f(Xa»av. (47) 

! G(Xi' x;)G(x;. Xk) dXa. (48) 
iik 
i>#; 
i>#k 
i>#k 

If terms quadratic in G are neglected, then this 
reduces to the previous case. When these terms are 
kept, they give mode coupling terms. If it is further 
assumed that <!(X»av varies slowly with respect to 
G, then this equation should be similar to quasi­
linear theory with mode coupling (the equivalence 
has not been shown, however). 
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Phase Problem in Coherence Theory 
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For a class of quasi-monochromatic spectra, including Lorentzian and Gaussian line shapes, it is 
shown that knowledge of the modulus of the complex degree of temporal coherence y( 7') does not suffice 
to reconstruct the spectrum. This is due to the existence of zeros of y( 7') in the complex 7' plane, giving 
rise to a significant contribution to the phase of y( 7'). The position of the zeros and their physical inter­
pretation are investigated. The case of band-limited spectra is also treated, and some general properties 
of the distribution of zeros in this case are given. 

I. INTRODUCTION 

TET a light beam be split into two parts, which are 
L later reunited, after a time delay T has been 
introduced into one of them. A sufficiently accurate 
measurement of the resultant intensity as a function 
of T would enable one to determine the energy spec­
trum of the light beam. This is the basis of Michelson's 
method of interference spectroscopy.! 

In fact, we havel - 4 

y(-r) = LXl g(w)e-'Olr dw, (Ll) 

where yeT) is the complex degree of temporal coherence 
of the light beam and g(w) is the spectral density, 
which is real and nonnegative: 

g(w) ~ O. (1.2) 

The experiment described above would lead to a 
measurement of Re yeT). According to (Ll), g(w) 
might then be obtained by taking the inverse cosine 
transform. This corresponds to the Wiener-Khintchine 
theorem for stochastic processes: the autocorrelation 
function and the power spectrum are Fourier trans­
forms of each other. 

The function yeT) is usually normalized so that 

y(O) = 1. (1.3) 

The integral in (Ll) extends only over positive 
frequencies. In the classical theory of coherence, this 
arises from the fact that the field is real, so that, in its 
Fourier representation, the negative-frequency com­
ponents are the complex conjugates of the positive­
frequency ones. This allows one to eliminate negative 
frequencies by working with analytic signals. l In the 
quantum theory of coherence,2.4 the same restriction 

• On leave of absence from Centro Brasileiro de Pesquisas 
Fisicas, Rio de Janeiro, Brazil. 

1 M. Born and E. Wolf, Principles of Optics (Pergamon Press, 
London, 1959), Sees. 7.5.8 and 10.4.1. 

• L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965). 
8 E. Wolf, Japan. J. Appl. Phys. 4, Suppl. I, 1 (1965). 
, R. J. Glauber, Phys. Rev. 131, 2766 (1963), Eq. (10.16). 

arises from the preferential role played by the an­
nihilation operators for the field in the photoelectric 
detection process. 

For a quasi-monochromatic beam, Re Y(T) is a 
rapidly oscillating function, with mean period given 
by the average beam frequency. Thus, direct measure­
ments become quite difficult at high frequencies, 
although they have been performed in the far 
infrared.5•6 

It is much easier to measure the envelope of the 
rapid oscillations, which is a slowly varying function 
(it is proportional to the visibility of the interference 
fringes l ). If we write 

Y(T) = IY(T) I exp [iq:{T)], (1.4) 

it is readily seen that IY(T)I can be taken as defining 
the envelope, while cp(T) gives the phase of the 
oscillations. 

Even for very narrow spectra, it is often possible 
to employ correlation techniques, such as the Hanbury 
Brown-Twiss effect,'·8 to measure lyl, but it would 
be very difficult to measure cp. 

The question then arises whether knowledge of lyl 
alone is sufficient to reconstruct the spectral density 
g(w). This is analogous to the well-known phase 
problem in x-ray diffraction, 9 and similar problems 
arise in the theory of image reconstructionlO and in 
the Fock-Krylov formulation of the quantum theory 
of decay.n 

When the spectrum is known to be symmetric 

• J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959). 
• P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960). 
7 L. Mandel, in Proceedings of the Symposium on Electromagnetic 

Theory and Antennas (Pergamon Press, London, 1963), p. 811. 
8 M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev. 

142, 25 (1966). 
9 M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev. 

132, 2764 (1963). 
10 A. Walther, Opt. Acta 10, 41 (1963). 
11 L. A. Khalfin, Zh. Eksperim. i Teor. Fiz. 33, 1371 (1957) 

[English transl.: Soviet Phys.-JETP 6, 1053 (1958)]. 
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about its mean frequency W, it is possible to recon­
struct it if 11'1 and ware known, because the phase is 
then given essentially by a trivial factor exp (-iWT) 
(cf. Sec. III). 

It has been suggested by WOlf12 that it may be 
possible to solve the phase problem also in more 
general cases, by taking into account the analytic 
properties of y(r) that follow from (1.1) and the 
nonnegative definiteness condition (1.2). 

Since the integral in (1.1) contains only positive 
frequencies, 1'( T) can be analytically continued as a 
regular function of T in the lower half of the complex 
T plane L(T). The fact that gem) is real implies 

1'( -T) = Y*(T*). (1.5) 

If we assume that the Paley-Wiener condition 

f"" !..-lln....:..:ly,--,-( T..:..;..J)1j 
- II dT < IX) 

-00 1 + T 

(1.6) 

is satisfied, it is possible to express the phase tp(r) in 
terms of In 1 Y(T) 1 by a dispersion relation12 

tp(T) = tpM(T) + tpB(T), (1.7) 
where 

( ) 2 pi"" In IY(T')I d ' tpM T = - T 2 II T, 
1T 0 T' - T 

(1.8) 

the symbol P denoting the Cauchy principal value, 
and 

where the sum is extended over all the zeros Tn of 
yeT) in L(T). This corresponds to the representation 

y(r) = 11'(1')1 exp [itpM(T)] II (T - T;). (1.10) 
nT-Tn 

The last factor, which represents the contribution 
from the zeros, is known as a Blaschke product, and 
we call tpB(T) the Blaschke phase. 

Since tpB(T) ~ 0 with a proper definition of the 
phase (cf. Sec. II), the function tpM(T) given by (1.8) 
represents the minimal phase. Furthermore, 

dtpB ImT -=2I n <0, (1.11) 
dT n (T - ReTn)1I + (ImTn)2-

so that 
(1.12) 

The phase problem is therefore reduced to the 
determination of the zeros Tn' According to (1.5), if 
Tn is a zero, so is -T:, so that the distribution of 
zeros is symmetrical with respect to the imaginary 

12 E. Wolf, Proc. Phys. Soc. (London) SO, 1269 (1962). 

axis. It follows from (1.2) that there cannot be any 
zeros on the imaginary axis,13 so that all the zeros 
must occur in pairs. 

It has been conjectured by Wolflll that, for light 
emitted by ordinary sources, yeT) may have no zeros 
at all in 1_, or at least in that part of L which would 
significantly affect the reconstruction of the spectrum. 
On the other hand, if zeros are present, they should 
have some physical significance, the understanding 
of which would be of considerable importance for 
interference spectroscopy. In the absence of zeros, 
the solution to the phase problem would be given by 
the minimal phase. 

This conjecture was supported by an explicit 
calculation of yeT) for blackbody radiation.!4 It was 
shown that there are no zeros in L in this case, so 
that knowledge of IY(T) 1 suffices to reconstruct the 
spectrum, in spite of its not being symmetric. 

It has also been shown15 that, in the case of com­
plete coherence, i.e., if 1 Y(T) 1 = 1 for all T, condition 
(1.2) leads to a unique solution, namely a perfectly 
monochromatic beam: yeT) = exp (-imOT). 

These examples correspond to extreme cases: a 
very broad spectrum (blackbody radiation) and an 
infinitely narrow one (monochromatic radiation). The 
case of greatest practical interest is that of quasi­
monochromatic radiation, such as that from an 
optical maser. 

The following questions arise in the quasi-mono­
chromatic case: (i) Are there any zeros? If so: (ii) 
What is their location? (iii) What is their physical 
interpretation? (iv) Do they give a significant contri­
bution to the phase or is the minimal phase a good 
approximation for reconstructing the spectrum? 

The present paper is concerned with the investiga­
tion of these questions. There are two quite different 
approaches that may be taken in such an investigation. 
The first one is to deal with specific classes or ex­
amples of quasi-monochromatic spectra given a priori 
and assumed to be physically realizable. The second 
and far more ambitious approach would be trying 
to derive the relevant features of the spectrum from 
a physical model of the source, taking into account 
the statistical features implied in the definition of the 
spectral density. As a further refinement, the effect of 
the measurement process might also be considered. 

Only the first approach is taken here. The classes 
of spectra that are treated include the Lorentzian and 
Gaussian line shapes as special cases, and particular 

13 P. Roman and A. S. Marathay, Nuovo Cimento 30,1452 (1963). 
14 Y. Kano and E. Wolf, Proc. Phys. Soc. (London) SO, 1273 

(1962). 
15 C. L. Mehta, E. Wolf, and A. P. Balachandran, J. Math. Phys. 

7, 133 (1966). 
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attention is devoted to them. In all the cases treated, 
it is shown that there exists a large number of zeros. 
Their location is determined and their physical 
interpretation discussed. It turns out, in all these 
cases, that most of the phase information is con­
tained in the zeros and very little in the minimal phase, 
so that knowledge of IY(T) I alone is not sufficient to 
reconstruct the spectrum. 

The classes of spectra to be considered certainly 
do not encompass all possible quasi-monochromatic 
spectra, so that the results need not apply to all cases. 
However, they indicate that, in general, one cannot 
expect the minimal phase to be a good approximation 
to the solution of the phase problem. To determine 
to what extent these results can be applied to actual 
light beams, and to make further progress in the solu­
tion, a deeper investigation, based on the second 
approach, would seem necessary. 

The distribution of zeros depends not only on the 
behavior of the spectrum near the main peaks, but 
also far away from them, and in particular on its 
behavior near the end points of the region where 
it is nonvanishing. In Sec. II, we consider quasi­
monochromatic spectra extending over all frequencies, 
from zero to infinity. In Sec. III, we consider the case 
of band-limited spectra, which is of particular im­
portance in connection with the phase problem in 
x-ray diffraction. Some general theorems about the 
distribution of zeros are given. The main conclusions 
are summarized in Sec. IV. 

II. QUASI-MONOCHROMATIC SPECTRA 

A spectrum is called quasi-monochromatic if the 
spectral density g(w) takes on appreciable values only 
for 

(2.1) 

that of a band-limited spectrum, treated in Sec. III, 
as a more faithful representation of an actual situation. 
We shall see that the basic results are very similar in 
both cases. 

To determine the number of zeros of yeT) in L, 
we apply the well-known theorem16 according to 
which the number of zeros of the regular analytic 
function yeT) within a contour Cis 

N = /).0 arg Y(T)/27T, (2.3) 

where /).0 arg Y denotes the variation of arg Y round 
the contour C. We take as contour C the segment 
- T ~ T ~ T of the real axis, closed by a half-circle 
of radius Tin L(T), where T -* 00. 

Let us rewrite (1.1) as 

yeT) = exp (-i01OT) LX) g(01o + 'f) exp (-iT'f}) d'f). 

-roo (2.4) 

According to (2.1) and (2.2), during the time interval 
for which yeT) is appreciable, i.e., for ITI .,; TO, with 

(2.5) 

where Tc is the coherence time, the integral in (2.4) is 
a slowly varying function as compared with the 
exponential factor, so that most of the phase variation 
is given by this factor: 

/). arg y(T)~ -01O/).T (-TO"; T .,; TO)' (2.6) 

The asymptotic behavior of yeT) for very large 
times depends on the behavior of g(01) for 01 -* O. 
We assume for the sake of simplicity that 

g(w) ~ A01" for 01 -* 0, (2.7) 

where IX ~ 0 and A are constants. It then follows 
from the Abelian theorem on the asymptotic behavior 
of Laplace (Fourier) transforms17 that 

101 - 01 01 .,; 15, 

where 010 is the midfrequency, and 

€ = 15/010 « 1. (2.2) Y(T)""" Ar(1X + l)/(iT),,+1 for ITI-* 00 in L. (2.8) 

In typical cases, € .,; 10-6 for thermal light; for laser 
light, it can be several orders of magnitude smaller. 

We consider in this section several examples of 
quasi-monochromatic spectra for which yeT) has a 
large number of zeros in L. Before discussing them 
in detail, we shall give a simple argument that relates 
the existence of these zeros to some common features 
of the spectra. 

The spectra considered have a (very small) tail 
extending down to 01 = O. In practice, the low­
frequency behavior of the spectrum will be affected 
by the frequency response of the measuring device, 
which acts as a bandpass filter. It is largely a matter 
of taste whether one considers the present model or 

Thus, for sufficiently large times, we no longer have 
oscillatory behavior, but only a slowly varying 
(algebraic) decay. It follows from (2.8) that the varia­
tion of arg Y around the half-circle of radius T, 
for T -* 00, is 

/). arg yeT) = -(IX + I)/). arg T = (IX + 1)7T. (2.9) 

If we now assume that the transition from oscil­
latory behavior to the asymptotic behavior (2.8) 
takes place smoothly, for T ~ TO, without intro­
ducing large additional phase variations, it follows 

18 E. C. Titchmarsh, The Theory of Functions (Oxford University 
Press, London, 1939), 2nd ed" p. 116, 

17 O. Doetsch, Handbuch der Laplace-Transformation (Verlag 
Birkhauser, Basel, 1950), Vol. I, p. 473. 
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from (2.3), (2.6), and (2.9) that 

N,,-, (WOTO/1T) - t(OC + 1). (2.10) 

According to (2.5) and (2.2), 

(2.11) 

and we have, typically, e-1 ;.. 106• Thus, unless IX is 
also of this order of magnitude in (2.7), the number 
of zeros N is very large. We assume that IX is much 
smaller; in fact, IX = 0 in the examples to be con­
sidered, but nothing would be essentially changed if 
we took oc» 1, provided that oc « c 1• 

It should be emphasized that the above result gives 
only an order-of-magnitude estimate of the number 
of zeros, based on the assumption that there are no 
compensating phase changes for ITI ;.. TO' This as­
sumption is verified in the examples discussed below. 
The large number of zeros then arises from the large 
phase change that takes place within a few coherence 
times. It is by no means implied, however, that the 
same result is valid for any arbitrary quasi-mono­
chromatic spectrum. 

Within this approximation, one can also say 
something about the distribution of zeros: most of 
them must be located within a half-circle with radius 
of the order of TO, centered at the origin. To see this, 
it suffices to take T,,-, TO in the contour C considered 
above. 

To find out more about the location of the zeros 
and their effect on the phase of Y(T), we now turn to 
specific examples. 

Example 1: Lorentzian Peak. This corresponds to 
taking 

(2.12) 

in (1.1). This spectrum is usually associated with the 
emission of a single line. The constant B js deter­
mined by the normalization condition (1.3), which 
gives B I":::i 1/1T for e = b/wo « 1; we take B = 1/1T 
for simplicity. 

Let us investigate the behavior of Y(T) in L(T). 
According to the symmetry relation (1.5), it suffices 
to consider the behavior in the fourth quadrant. 
Substituting (2.12) in (2.4), and introducing the 
dimensionless variables 

WOT = Z = x + iy, e = b/wo, (2.13) 
we find 

y(z) = ~ e-i·foo e-iU• duo 
1T -1 u2 + e2 

(2.14) 

The evaluation of this integra1 is undertaken in 
AppendixA. 

The behavior of y(z) for Izl « 1 follows from (A3)­

(A6): 

y(z) = 1 + (ie/1T)zln z 

- i{1 + (e/1T)[1 - C - !i1T - tin (1 + e2)]}z 

+ O(z2 1n z) (Izl« 1). (2.15) 

For Izl » 1, employing (A7), we find 

y(z) = e-i
.-

EZ 
- [ie/1T{l + e2)z] 

X {I - [2i/{l + e2)z] + O(Z-2)} 

for z E 1, Izl »1. (2.16) 

For z E 2, the first term on the right-hand side is to be 
omitted (regions 1 and 2 are defined in Appendix A). 

In particular, along the positive real axis (z = 
x > 0), (2.16) gives the behavior of Y(T) for times much 
larger than the mean period (T » W (

1). !he first te~m 
has the familiar exponentially decaymg behavIOr 
associated with the Lorentzian spectrum, with life­
time Tc = b-1 (coherence time). The remaining terms 
represent corrections to the exponential decay law, 
arising from the restriction of (1.1) to positive fre­
quencies only. The correction terms decay much more 
slowly than the exponential, following an inverse 
power law, so that they must ultimately become 
dominant. 

According to (2.16), the transition from one decay 
law to the other takes place for exp ( - exo) R:i (1TXO)-le 
or, since e « 1, for 

x = Xo R:i e-1 In (1Te-2). (2.17) 

Thus, the transition time is given by TO"""""' In (1Te-2)Tc , 

which agrees with (2.11). For e ,,10-6, we find 
TO ;.. 30Tc , so that the degree of coherence would be 
unobservable, in practice, for T ;.. TO' 

The nonexponential nature of the decay law for 
very large times as a consequence of the one-sidedness 
of the spectrum is a well-known effect in the decay of 
unstable particles.ll ,18-2o 

Let us now determine the zeros of y(z) in the fourth 
quadrant. It is readily seen that there are no zeros 
with Izl " 1 and no zeros in region 2, so that it 
suffices to consider Izl » 1 in the region 1. For e « 1, 
according to (2.16), the zeros are approximately given 
by the roots 

zn = xn + iYn = r" exp (iOn) (-t1T < On ~ 0) 

of 
exp (-iz - ez) = ie/(1Tz). (2.18) 

18 M. Levy. Nuovo Cimento 14, 612 (1959). 
18 G. Beck and H. M. Nussenzveig, Nuovo Cimento 16, 416 

(1960). 
20 1. Schwinger, Ann. Phys. (N.Y.) 9, 169 (1960). 
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FIG. 1. The zeros of the complex degree of coherence 
for a Lorentzian peak. • -zeros. 

Equating modulus and phase of both sides, we get 

EX - Y = In (7T/E) + i In (x2 + y2), (2.19) 

x .. + ey .. = 2n7T - i7T + 0.. (n = 1,2,3, ... ). 

(2.20) 

The zeros21 are located at the intersections of the 
curve (2.19), drawn in full line in Fig. 1, with the 
family of curves (2.20), drawn in broken line in Fig. 1. 
They are approximately equally spaced, with spacing 
1&1'" 27T. The total number of zeros N is given by 

N", XO/7T R:I -2(7TE)-1In E » x. = E-l, (2.21) 

in agreement with (2.10). 
For x " x., the zeros are relatively far from the 

real axis, but a large number of them falls within this 
interval, so that they can have a large effect on the 
phase of the degree of coherence. This indeed happens, 
as will now be seen. 

The evaluation of the minimal phase tpM(X) is 
carried out in Appendix B. The results are contained 
in (BS)-(B7), and they are represented by the curve 
in broken line in Fig. 2. 

The actual phase tp(x) is given by (BS)-{BIO) and 
it is represented by the curve in full line in Fig. 2. 
The only points it has in common with tpM(X) are the 

N .. 

-------

FIG. 2. Behavior of the actual phase (-) and the minimal 
phase (- - -) for a Lorentzian peak. 

21 L. A. Khalfin, Dokl. Akad. Nauk SSSR 141, 599 (1961) 
[English transl.: Soviet Phys.-Doklady 6, 1,010 (1962)], asserts 
that a function essentially identical to (2.16) has no zeros at all in 
the lower half-plane. His result seems to arise from an incorrect 
analytic continuation. 

vertical tangent at x = 0 and the asymptotic limit 
-i7T as x -- 00 (however, tp approaches this limit 
much faster than tp M)' The nearly linear behavior of 
tp(x) up to x,....., Xo is due to the near symmetry of the 
spectrum. Note that tpM ~ tp and dtpM/dx ~ dtp/dx, 
in agreement with (1.12). 

Since tp and tp M have very little in common, most 
of the phase information must be contained in the 
Blaschke phase tpB' How does this affect the recon­
struction of the spectrum? 

It follows from (1.1) and (1.5) that 

1 foo g(w) = - Re 1 Y(T) 1 exp [itp(T) + iWT] dT. (2.22) 
7T 0 

Let gM(W) denote the function obtained when tp(T) 
is replaced by tpM(T) in the above integral. According 
to (2.16), the main contribution to the integral arises 
from x « Xo, so that, by (BS), 

tpM(x) R:I (2E/7T)[X In x - (1 + In xo)x + O(X3/X~)]. 
(2.23) 

The coefficient of the linear term determines the 
center frequency of the peak. By comparison with 
(B9), we see that there is a large frequency shift. 
However, we can always assume that the center fre­
quency is independently measured and adjusted. We 
are interested mainly in the shape of the peak, which 
depends on the curvature of the phase, rather than 
its slope. 

The shape will be distorted mainly by the first term 
of (2.23). This term has a large curvature and gives 
rise to a large phase variation in the interval (0, xc), 
so that it should produce appreciable distortion. 

This is confirmed by a numerical evaluation, as 
shown in Fig. 3, where g(w) (curve in full line) and 
gM(W) (curve in broken line) are plotted22 as a func­
tion of (w - wo)/b. The results were adjusted so that 
the maxima of the two peaks would coincide. 

Although the height and half-width of the peak in 
gM(W) do not differ too much from the correct 
values, there is considerable distortion. It would be 
a far better approximation in this case to omit the 
minimal phase altogether, employing only the phase 
factor exp ( - iWot) corresponding to the center fre­
quency. 

It should be stressed that the term in the minimal 
phase that is mainly responsible for the distortion 
[first term of (2.23)] arises precisely from the range of 
values of x in the dispersion integral [first integral of 
(Bl)] where the exponential decay law is approxi­
mately valid, i.e., where IY(x) 1 would be measurable 

22 Since both ly(x)1 and the first term of (2.34) depend only on 
EX in the relevant part of the domain of integration, one obtains a 
universal curve (independent of E) as a function of this variable. 
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FIG. 3. The functions g(oo) (-) and gM(oo) (- - -) as 
a function of (00 - 000)/6. 

in practice. This result therefore depends only on the 
Lorentzian shape of the spectrum in the neighborhood 
of the peak, and is insensitive to the low-frequency 
behavior. 

We conclude that the reconstruction procedure by 
means of the minimal phase would lead to incorrect 
results in the present example. 

Example 2: Gaussian Peak. Let us now take 

g(w) = Bexp {-[(w - wo)j2b]2}, (2.24) 

which might be regarded as a representation of a 
Doppler-broadened spectral line. Again with e = 
bjwo «1, the normalization condition (1.3) gives 
B ~ (27Tt b)-I. 

The corresponding function y(z) is given by (CI) 
(cf. Appendix C). Taking into account the asymptotic 
expansion of the error function,19 we find 

. exp [_(4e2)-I] 
y(z) ~ exp (-IZ - e2z2

) + --"-:-''---''--~=-
2i(7Tt)(ez + ij2e) 

X [1 + 1 + ... J 
2(ez + ij2e)2 

for 1m Z > _(2e2)-I. (2.25) 

This approximation is valid, in particular, along the 
real axis. Thus, y(x) decays according to a Gaussian 
law which, for very large times, is replaced by an 

inverse power law, in agreement with (2.8). The 
transition between the two types of behavior takes 
place for x,...., xo, where 

(2.26) 

According to (Cl)-(C4), the zeros of y(z) in the 
fourth quadrant of the z plane are approximately 
given by 

i ei1t
/
4 1-

Zn ~ - - + - [(2n - !)7T] 
2e2 e 

x exp {-i In [27T(2n - !)t]}. (2.27) 
27T(2n - !) 

The distribution of zeros is shown in Fig. 4. The 
distance between two successive zeros decreases as 
n-t, in contrast with the uniform spacing found in 
Fig. 1. The total number of zeros is again given by 
(2.10). 

For x ".; xc, the zeros are far from the real axis 
and far apart. This suggests that the minimal phase 
may be a better approximation here than in the pre­
vious example. This is confirmed by the expressions 
for IpM(X) and Ip(x), given in (C6)-(C9). 

If we replace Ip by Ip M in (2.22), the reconstructed 
spectrum will be approximately Gaussian, although 
the center frequency still suffers a large shift. Thus, 
assuming the center frequency to be independently 
adjusted, we get a reasonably good approximation 
to the spectrum. However, we would again get a 
better approximation by omitting the minimal phase 
altogether, since the correction to the linear term in 
(C6) is entirely different from that in (C8). 

Example 3: A Pair of Lorentzian Peaks. The ex­
amples hitherto considered correspond to nearly 
symmetric spectra. Since the phase problem becomes 
trivial for an exactly symmetric spectrum (cf. Sec. 
III), it is of interest to consider also larger departures 

y 

o Xc 

I 
-2.7 

FIG. 4. The zeros of the complex degree of coherence 
for a Gaussian peak .• -zeros. 
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from symmetry. For this purpose, let us take 

g W = - + ---=--~-() Bt5[ 1+1X I-IX ] 
27T (w - wd + b2 (w - (2)2 + b2 • 

(2.28) 

This spectrum corresponds to a pair of Lorentzian 
peaks, centered at W1 and W2, and taken, for sim­
plicity, to have the same width b. Their intensity ratio 
is (1 + IX)/(l - IX). For definiteness, we take W1 < W2 
and 0 ~ IX < 1. The asymmetry is measured by IX. 
Let us also introduce the dimensionless parameters 

z = t(W1 + (2)T, E = 2b « 1, 
W1 + W2 

f3 = W2 - W1 « 1. (2.29) 
W2 + W1 

Then, it follows immediately from (2.16) that 

y(z) R; B{te- iZ
-

CZ [(1 + lX)eiPZ + (1 - lX)e-iPZ
] - ~:} 

for Z E 1, Izl »1. (2.30) 

The zeros can be obtained by equating modulus and 
phase of both sides, as in Example 1. We find a 
family of curves (shown in broken line in Fig. 5) 
similar to those in (2.20), but the curve corresponding 
to (2.19) (shown in solid line in Fig. 5) has a different 
behavior. It has been drawn in Fig. 5 for the case of 
two wel~-separated peaks, f3» E, and we have also 
assumed that fJ In (c1) » 1. The curve is tangent to 
that of Fig. 1 (shown in dash-and-dotted line in Fig. 5) 
at the points Xi = j7T/fJ (j = 0, 1,2, ... ). 

The oscillations of this curve, which are reflected in 
the positions of the zeros, correspond to beats be­
tween the center frequencies of the two peaks. The 
beat frequency is measured by the parameter fJ. In 
the limiting case of two identical, infinitely narroW 
lines, all the zeros would be located on the real axis, 
at the points x; = (j + t)7T/fJ (j = 0, 1,2, ... ). 

The amplitude of the oscillations is determined 
by the asymmetry parameter IX. It is largest for IX = 0 
(two identical peaks) and it vanishes, as it must, for 
IX = 1 (single peak). 

The explicit evaluation of the minimal phase is 
more difficult in the present example. However, it 

FIG. S. The zeros of the complex degree of coherence for 
a pair of Lorentzian peaks .• -zeros. 

should be clear, by comparing Fig. 5 with Fig. 1, 
that the Blaschke phase must be even more significant 
here, since the zeros are located closer to the real axis. 
The shape and asymmetry of the spectrum are 
directly reflected in the distribution of zeros, so that 
most of the information must be contained in the 
Blaschke phase, and not in the minimal phase. 

ill. BAND-LIMITED SPECTRA 

If we assume that the bandpass filtering effect of 
the measuring device can be adequately represented 
by a sharp cutoff, the resulting spectrum is band­
limited: 

g(w) = 0 for Iw - wol > a, (3.1) 

where 2a is the bandwidth and Wo is the central 
frequency of the band. This case is also of consider­
able importance in connection with the phase problem 
in x-ray scattering,9 where the band limitation is due 
to the finite size of the crystal. 

According to (Ll) and (3.1), 

f
(l)o+a 

yeT) = g(w) exp (-iWT) dw 
(l)o-a 

= exp (-iWOT)G(W), (3.2) 
where 

G(T) = fa g(wo + u)e- iUT duo (3.3) 

We assume that (-a, a) are the effective cutoff points 
in (3.3), so that the domain of integration cannot be 
reduced without altering the value of the integral. 

It then follow,) from (3.3) and the Paley-Wiener 
theorem23 that G(T) is an entire function of exponential 
order I and type a, i.e., 

I G(T) I ~ A exp (a lTD (3.4) 

as ITI - 00 in any direction. 
If we make the additional assumption that the 

spectrum is symmetric, i.e., g(wo - u) = g(wo + u), 
Eq. (3.3) becomes 

G(T) = 2 I:g(wo + u) cos (UT) du 

= G(-T) = ±IY(T)I. (3.5) 

Thus, apart from a sign factor, the phase of yeT) is 
given just by the factor exp ( - iWOT) in (3.2). The sign 
may be determined by arguments of physical plausi­
bility, so that knowledge of lyl and Wo would enable 
us to reconstruct the spectrum in this case, by taking 
the inverse cosine transform of (3.5). 

This does not imply, however, that yeT) has no 

28 R. P. Boas, Entire Functions (Academic Press Inc., New York, 
1954), p. 103. 
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zeros for symmetric spectra; on the contrary, it 
follows from (3.5) that it has an infinite number of 
them. In fact, since G( -T) = G(T), we see that G(T) 
is an entire function of T2 of order t [according to 
(3.4)], and an entire function of nonintegral order 
has an infinite set of zeros. 24 According to Theorem 1 
below, this result is valid for any band-limited 
spectrum, symmetric or not. For a symmetric spec­
trum, according to (3.5), the distribution of zeros is 
symmetric not only with respect to the imaginary 
axis, but also with respect to the real axis: if T; is a 
zero, so are -Tj, -T; and Tj. 

The zeros of entire functions of the form (3.2) have 
been investigated by several authors. 2s- 27 We quote 
below some of the most significant results that have 
been found, adapted to the present case. 

The following theorems have been proved by 
Titchmarsh26 : 

Theorem 1: The function yeT) given by (3.2) has an 
infinite set of zeros. 

Let T1 = t1 exp (i()1), T2 = t2 exp (i()2), . .. be the 
zeros, arranged in order of increasing modulus: 
o < t1 ~ t2 ~ ... (according to (1.5), this implies that 
the zeros Tn and -T: will always be paired together). 

Theorem 2: The series 2~1 r;;t is divergent, but 
2;:'=1 r;;t sin On is absolutely convergent. 

This implies that the zeros tend to be located near 
the real axis for large n. Note that, since Tn and 
-T: are paired together, 

"" -1 . () . ~ -1 "'" tn SIn n = l "'" Tn . 
n n 

(3.6) 

Theorem 3: If net) denotes the number of zeros 
having ITI ~ t, we have 

net) R:; 2at/7T as t -+ 00. (3.7) 

Thus, the spacing between two adjacent zeros must 
approach 7T/a for large n. 

Theorem 4: We have 

yeT) = eXP(-iWOT)g (1- :J' (3.8) 

where the product is extended over all the zeros. 
Furthermore, we have the sum rule 

00 

2T-;;-1 = -iwo - y'(O) = -i(wo + w), (3.9) 
n=1 

24 cr. Ref. 23, p. 24. 
•• G. P6lya, Math. Z. 2, 352 (1918). 
28 E. C. Titchmarsh, Proc. London Math. Soc. (2) 25, 283 (1926). 
.7 M. L. Cartwright, Quart. J. Math., Oxford Ser. (I) 1, 38 (1930) 

and 2,113 (1931). 

where 

w =JCDo+aWg(W) dw (3.10) 
Q)o-a 

in the mean frequency. This gives the sum of the 
series (3.6). 

The product expansion (3.8) is simpler than the 
Hadamard canonical product representation employed 
in Ref. 9. This expansion brings out the artificial 
character of the separation (1.7) into minimal phase 
and Blaschke phase in the present case. 

In fact, since y (T) is now an entire function, there 
is no reason to assign a preferential role either to the 
lower or to the upper half-plane. If we arbitrarily 
decide to split the phase into a Blaschke phase as­
sociated with the zeros in L(T) and a minimal phase, 
as in (1.10), it is clear, by comparison with (3.8), that 
the minimal phase corresponds to just another 
Blaschke product, involving also the zeros in the 
upper half-plane I+(T). 

Thus, all the zeros, both in 1+ and in L , are relevant 
to the phase problem. It has been shown by Walther10 
(cf. also Ref. 9) that, given IY(T)I, the positions of all 
the zeros Tn are determined up to a reflection on the 
real axis. All possible solutions differ only by "zero 
flips" of the type Tn -+ T! (accompanied by -T!-+ 
-T n for the other member of the zero pair, in order 
to preserve the symmetry relation (1.5». This result 
is essentially due to the fact that a Blaschke factor 
(T - T n)/( T - T!) introduces a pole in the opposite 
half-plane, unless T! also is a zero; for a representa­
tion restricted to a half-plane, this would not matter, 
but here yeT) is an entire function. 

So far no use has been made of the nonnegative 
definiteness condition (1.2). This condition entails 
new restrictions on the distribution of zeros, as 
illustrated by the following theorems25 : 

Theorem 5: If g(w) ~ 0 is a nonincreasing (non­
decreasing) function, all the zeros of y( T) have positive 
(negative) imaginary part, except possibly when g(w) 
is piecewise constant. 28 

An example is 

g(w) = A exp (bw) (3.11) 

in (3.2). The corresponding zeros are 

Tn = (n7T/a) - ib. (3.12) 

This can also be taken as an illustration of the "zero 

28 C. L. Mehta and E. Wolf (private communication) have de­
rived the same result independently, by a simple SJ:ap.hical argument 
based on interpreting the integral (3.~) as the h~lt o.f a sum of 
complex vectors. The exceptional case I~ that. of p~ecewlse const.ant 
g(w) with a finite number of jump discontInUIties at the POints 
Wi = 000 - a + pp/q where Pi and q ar~ integers. In this case, there 
are infinitely many zeros on the rea1llX1s. 
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flip" ambiguity: Aexp(bw) and Aexp(-bw) give 
rise to complex conjugate zeros, but to the same 
value of IY(T)I. More generally, I Y(T) I does not allow 
us to distinguish between g( w) and the "inverted" 
spectrum g(2wo - w). 

Theorem 6: If g(w) ~ 0 is continuous and (except 
perhaps at a finite number of points) differentiable, 
and if 

ex ~ -g'(w)/g(w) ~ fl (wo - a < w < Wo + a), 

(3.13) 
then, all the zeros of yeT) lie in the open strip 

ex < 1m T < fl, (3.14) 

the only exception being the example (3.11) (for 
which the strip reduces to the line 1m T = -b). 

The result contained in Theorem 3 can be made 
more precise by specifying the behavior of g( w) near 
the endpoints of the interval (wo - a, Wo + a), which 
determines the asymptotic behavior of the Fourier 
integra12D (3.2), and consequently also the asymptotic 
distribution of zeros. As an example, we have2? 

Theorem 7: If g(w) is continuous within the interval 
(wo - a, Wo + a) and g(wo ± a) ~ 0, and if g'(w) is 
integrable, the zeros of y(r) are asymptotically given 
by 

rn ~ - + -In + €n' (3.15) n17 i [g(wo - a)] 
a 2a g(wo + a) 

where €n -- 0 as n -- 00. 

It is clear from Theorems 3 and 7 that the asymp­
totic distribution of zeros is determined by the 
properties of the cutoff, and therefore contains no 
information about the shape of g( w) within the 
interval (wo - a, Wo + a). This information must be 
contained in the zeros that are located closer to the 
origin.30 

As an illustration of these results, we close this 
section by reconsidering the example of a Gaussian 
peak, but now with band limitation: 

Example 4: Band-Limited Gaussian Peak. Let 

g(w) = -+ exp [- (W - WO)2] (lw - wol < a), 
2(17 )15 215 

= 0 (Iw - wol > a). (3.16) 

Since this is a symmetric spectrum, the corresponding 
phase problem is trivial, but we are interested only 
in the distribution of zeros. We assume that the band-

It A. I. Erdelyi, Asymptotic Expansions (Dover Publications, Inc., 
New York, 1956), p. 46. 

80 A related conclusion was reached in Ref. 9, by a different 
argument. 

width is much larger than the width of the peak, so 
that 

x = 15/a« 1. 

Introducing the dimensionless variable 

ar = , = ~ + ir;, 
we find, similarly to (2.25), 

(3.17) 

(3.18) 

y(r) ~ B exp (-iWoT){exp (_l,2) + exp (-t~o) 
2i(17~) 

x [eXP(i') eXP(-iO]} 
X, + (i/2X) X, - (i/2X) 

for 'YJ > -~o, (3.19) 
where 

(3.20) 

For r; < - ~o, the first term within the curly brackets 
is to be omitted, so that there are no zeros in this 
region. All the zeros are contained within the strip 
1r;1 < ~o, in agreement with Theorem 6. The distri­
bution of zeros is symmetric with respect to both 
the real and the imaginary axis, so that it suffices to 
consider, in the fourth quadrant. 

Within the strip, for I" « ~o, we find, just as in 
(2.27), that the zeros are located very close to 

i ei1T
/
4 i 'n = - - + - [(2n - 1)17] 

2X2 X 

{ 
. In [217(2n _ 1)i]} 

X exp -l ("nl «~o). (3.21) 
217(2n - i) 

Their distribution is very similar to that shown in 
Fig. 4, with the variables appropriately relabeled. 

On the other hand, for 1'1» ~o, the zeros are 
located on the real axis, very close to the points 

(3.22) 

in agreement with Theorem 7. 
These results also illustrate the remarks about the 

role of "distant" and "nearby" zeros. It is clear that 
information about the shape of the spectrum is con­
tained primarily in the zeros (3.21), and not in the 
distant zeros (3.22). 

Finally, expressing the zeros in terms of the vari­
able Z = WOT = wo'/a, we see that (3.21) differs from 
(2.27) only by the replacement: (2€2)-1 __ (2€X)-1. 
Thus, if the admitted band extends down to fre­
quencies well below Wo (X"'" €), the distribution of 
nearby zeros is almost unaffected by the cutoff, in 
agreement with the remarks made at the beginning of 
Sec. II. 

IV. CONCLUSION 

In all the examples of quasi-monochromatic spectra 
that have been considered here, it has been found that 
y(r) has a large number of zeros. Their location has 
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been determined and it has been shown that they 
play an important role in the phase problem. The 
spectral reconstruction procedure based on the 
minimal phase does not lead to satisfactory results in 
these cases. 

What is the physical interpretation of the zeros that 
have been found? For spectra with a single peak, the 
behavior of the degree of coherence from T = 0 up to 
several coherence times is determined mainly by the 
behavior of the spectrum in the neighborhood of the 
peak. This is the region ordinarily accessible to 
experiment; it corresponds to the domain of validity 
of the exponential or Gaussian decay law in Examples 
I and 2, respectively. However, this domain is limited 
by the restriction of the spectrum to positive fre­
quencies. The asymptotic behavior of Y(T) for T» To 
is determined by the low-frequency behavior of the 
spectrum. 

The zeros that have been found in this case arise 
from the interference between the initial and the 
asymptotic decay laws, so that they depend both on the 
shape of the peak and on the low-frequency behavior. 
The latter affects most strongly the distribution of 
distant zeros. 

In the case of multiple peaks, as in Example 3, the 
beats arising from the combination frequencies give 
rise to zeros close to the real axis; in the limiting case 
of infinitely narrow lines, these zeros must tend to the 
real axis. 

For band-limited spectra, there is an infinite num­
ber of zeros in the T plane, but only the nearby ones 
contain information about the shape of the spectrum. 
The distant zeros arise from the band limitation and 
depend mainly on the behavior of the spectrum near 
the end points of the band. In this case, there is no 
reason to give a preferred role to either the lower or 
the upper half-plane, so that the splitting into minimal 
phase and Blaschke phase seems quite artificial. 

As was emphasized in the Introduction, the above 
results need not apply to arbitrary quasi-monochro­
matic spectra. It is even possible to construct examples 
of such spectra81 for which Y(T) does not have any 
zeros in L(T). The assumptions that led to the exist­
ence of a large number of zeros in the examples 
considered here have already been discussed in Sec. II. 

In particular, changes in the low-frequency behavior 
of the spectrum can modify considerably the distri­
bution of zeros. This is related to the well-known fact 
that small changes in the value of a function on the 
real axis can produce a large effect on its analytic 
continuation into the complex plane. 

81 D. Dialetis, 1. Math. Phys. (to be published). 

On the other hand, the minimal phase depends 
only on the behavior of IY(T)I along the real axis. 
Changes in the low-frequency behavior of g(w) affect 
mainly the asymptotic behavior of Y(T) for very large 
T, where it would not be measurable in practice. We 
have seen in Example I that it is precisely the domain 
where Y(T) is measurable that gives rise to distortions 
in the spectral reconstruction by means of the minimal 
phase; this result is independent of the low-frequency 
behavior. 

One can make the dispersion relation less sensitive 
to the high-T behavior by making additional sub­
tractions at T = O. However, this would require 
knowledge of higher-order moments of the spectrum 
(e.g., the mean frequency, for one subtraction). While 
this should improve the accuracy of the reconstruc­
tion, there is no reason to believe that the subtracted 
minimal phase would be a useful approximation to 
the remainder. 

As was mentioned in the Introduction, a more 
ambitious approach would be to attempt a theoretical 
derivation of the spectrum associated with a given 
quasi-monochromatic source. However, even for a 
single emission process, the asymptotic decay law is 
not uniquely defined; it is known not to be exponen­
tial, but its exact form depends on the details of the 
measurement process.18- 20 The effect of taking an 
ensemble average to obtain the degree of coherence 
is unknown. One would also have to take into ac­
count the effect of the measuring apparatus, e.g., 
its frequency response and the limitations due to 
noise. 

In practice, if the spectrum is known to be nearly 
symmetric, one may obtain a good first approxima­
tion by assuming complete symmetry (in which case 
the phase problem can be trivially solved), and one 
may then investigate the effects of a small departure 
from symmetry. If the spectrum is strongly asym~ 
metric, it may still be possible to represent it by a 
superposition of symmetric spectra, e.g., when there 
are several peaks. The number and relative position 
of the peaks may be inferred by analyzing the resulting 
beat pattern, which also appears in 11'1. This seems 
to have been the procedure originally applied by 
Michelson.32 

In conclusion, we see that the determination of 
IY(T) 1 alone does not seem to suffice, in general, for 
the unambiguous reconstruction of quasi-monochro­
matic spectra, even when the requirements of analy­
ticity and nonnegative definiteness are taken into 
account. This is perhaps not very surprising, since the 

at A. A. Michelson, Phil. Mag. 31, 338 (1891); 34, 280 (1892). 



                                                                                                                                    

PHASE PROBLEM IN COHERENCE THEORY 571 

y 1m t 

.... 
/ 

/ 
~1 .. 
I 

FIG. 6. (a) Division into regions -ii------3::»:e:=-:=---­
of the fourth quadrant of the z 
plane. (b) Corresponding paths of 

-----~~~~~---~R.t 

integration in the t plane. 

(a) 

analytic properties of y(-r) do not originate from any 
far-reaching physical principle, such as causality 
(cf. Sec. I). 

Additional information, either in the form of 
theoretical restrictions derived from a physical model 
of the source or by further measurements,33.34 seems 
necessary to solve the phase problem. It is not clear 
at the present time which procedure would be most 
suitable for this purpose. 
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APPENDIX A. EVALUATION OF y(z) FOR A 
LORENTZIAN PEAK 

It follows from (2.14) that 

() e u -t -u -t -iz [SiZOO dt fiZOO 
dt] yz =-.- e e --e e -, 

2/7T (E-i). t -(.+i)z t 
(AI) 

where the paths of integration are straight lines 
parallel to t = iZA. The integrals can be reduced to 
the exponential integral, defined by35 

Joo dt 
El(U) = e-t - (Iarg ul < 7T), 

" t 
(A2) 

II H. Garno, J. Appl. Phys. 34, 875 (1963) . 
.. C. L. Mehta, Nuovo Cimento 36, 202 (1965). 
16 Handbook of Mathematical Functions (National Bureau of 

Standards, Washington, D.C., 1964), p. 228. 

(b) 

where it is assumed that the path of integration 
avoids the origin and does not cross the negative 
real axis. 

To perform the reduction, we must subdivide the 
fourth quadrant of the Z plane into the regions 1 and 
2 shown in Fig. 6(a). In region 1, 

-7T < arg (-EZ - iz) < -t7T; 

in region 2, t7T < arg (-EZ - iz) < 7T. For a point 
ZI E 1, the path of integration in the second integral 
of (AI) crosses the negative real axis [cf. Fig. 6(b)] , 
so that it has to be taken across the pole at the origin 
to reduce it to (A2). This does not happen for a point 
Z2 E 2, nor does it happen in the first integral, so that 
we finally get 

y(z) = 0(1, 2)e-iZ- U + (e-iZj27Ti) 

x [e"E1(Ez - iz) - e-U E1(-EZ - iz)], (A3) 
where 

0(1,2) = 1 if z E 1, 0(1,2) = 0 if Z E 2. (A4) 

We have35 

El(U) = Ein(u) - In u - C, (AS) 

where C is Euler's constant and 

Ein(u) = (1 - e-t
) - = - ~ (A6) i" dt 00 (-Itu" 

o t ,,_I nn! 

is an entire function. The discontinuity across the 
cut of the logarithmic term in E1( -EZ - iz) com­
pensates the discontinuity (A4), so that (A3) represents 
a regular, single-valued function in the fourth quad­
rant of the z plane. Note, however, that it has a 
logarithmic branch point at the origin. 

To find the behavior of y(z) for Izl » 1, one can 
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employ the asymptotic expansion of El(U): 

EI U = - - - + ... + + u , () e-U [1 1 (-I)nn! O( -n-I)J 
u U un 

(A7) 
where the remainder is smaller than the first neglected 
term. 

APPENDIX B. EVALUATION OF THE PHASE 
FOR A LORENTZIAN PEAK 

It follows from (1.8), (2.IS), and (2.16) that the 
minimal phase, for x» 1, is approximately given by 

tp~x) ~ - - €P 2x [ iillo x' dx' 
TT 0 X'S - X S 

where N is the total number of zeros. Taking into 
account (2.1S) and (2.16), we get 

tp(x) ~ NTT + (€/TT)X In x + O(x) (0 < x :;:; I), (B8) 

tp(x) ~ NTT - X - (xo/x) cos x exp [- €(xo - x)] 
(1 « x «xo), (B9) 

tp(x) ~ -tTT + (x/xo) cos x exp [-€(x - xo)] 
(x» xo). (BI0) 

APPENDIX C. EVALUATION OF y(z) FOR 
A GAUSSIAN PEAK 

Substituting (2.24) in (1.1), we find, in terms of the 
dimensionless variables (2.13), 

y{z) = t exp (-iz - ESZS) erfc (w), (eI) 
where 

w = iEZ - I/2€ (e2) + In (:!!) Pf."" ,sdx' s + Pf."" l~sx' dX:] 
€ iIlo X - X iIlo X - x and 

= _ €X In 11 _ x~ 1_ .! In (TTXo) In I Xo + x I 
TT X 7T € Xo - X 

where 

f(x) = -Lilly-lin 11 - yl dy 

is the dilogarithm function.36 We have 

"" f(x) = 1>n-2x n (Ixl:;:; 1) 
,,=1 

(B1) 

(B2) 

(B3) 

I(x) - I( -x) + I{x-I) - I( -x-I) = t TT2 (x > 0). 
(B4) 

These relations allow us to obtain rapidly con­
vergent expansions of (BI) both for x «xo and for 
x» Xo: 

tpM{X) = - €X In I x~ - 11 
TT X

S 

- ~(1 + €Xo)~ + o (x:) 
TT Xo Xo 

(e3) 

is the error function, which is an entire function of w. 
Thus, y{z) in this case is an entire function of z. 

The zeros of erfc (w) are symmetrically distributed 
with respect to the real axis and they are contained 
in the half-plane Re w < O. Those located in the 
second quadrant are approximately given by38 

. 1 { In [2TT(2n _ ~)!]} w" ~ e3 
... /4[(2n - 1)7T]· exp -i "I" • 

2TT{2n - 1) 
(e4) 

According to (2.2S), the minimal phase is given by 

tp~x)~ -- €2p ,2 2+ 2+ ln (2{TT-)E) 2X{ fillo x,sdx' [ 1 ~ ] 
TT ox-x 4€ 

f. "" dx' f."" In x' dX'} xP +P 
iIlo X,2 - xl! "'0 X,2 _ x2 

2x { 1 E2 ( S 2 I x + Xo I = - - - - - x - xo) In --
TT 2 .2x X-Xo 

+ 2~ [f(~) -f( - :J ]}, (CS) 

for l«x«xo, (BS) where I(x) has been defined in (B2). It follows that 

tp~x) = - - - -(€Xo - 2)- + 0 -TT 1 Xo (X~) 
2 TT X x3 

for x» Xo . (B6) 
Finally, for x - 0, we find 

tpM{x) = (€/TT)X In x + O{x) - 0 as x - O. (B7) 

These results are to be compared with the actual 
phase tp{x). It follows from (1.S) and (2.9) (with 
IX = 0) that we must take tp{ (0) = -tp{ - (0) = -tTT, 
and (2.3) then implies that tp{O+) = -tp(O-) = NTT, 

II K .. Mitchell, Phil. Mag. 40, 351 (1949). 
n This result follows from term-by-term subtraction of equatiom 

(4.2) (with x replaced by -x) and (4.3) in Ref. 36. 

2x 2x3 

tp~x) ~ - - + - + . .. (x« xo), (e6) 
TT 37TX~ 

TT 2x~ 
tp~x) ~ - - - - + . . . (x» xo), (e7) 

2 3TTX 
whereas, according to (2.2S), the actual phase is 
given by 

tp{x) ~ NTT - X - (E/TT!) sin x exp [-(x~ - x~/2xo] 
(O < x «xo), (e8) 

tp{x) ~ -tTT - tan-1 (xo/x) + .. , (x» xo). (C9) 

.8 This follows from the asymptotic expansion of erfc (w) given 
in Ref. 19,p. 33. Similar results for erf(w) = 1 - erfc (w) are 
given in Ref. 35, p. 329. 
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Equations of Motion in Classical Nonlinear Field Theories 
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A Rayleigh-Ritz procedure is outlined for deriving approximate equations of "particle" motion 
(the over-all motion of a singularity-free particlelike solution) in a superimposed small-amplitude 
external field. The method is illustrated here for a classical nonlinear model scalar field theory. A 
relativistic generalization of the approximation procedure is described. 

I. INTRODUCTION 

DIGOROUS particlelike solutions to Lorentz­
R covariant nonlinear model field theories, solu­
tions which are spatially localized, time-independent, 
singularity-free, and of finite energy, have been the 
subject of recent papers.1.2 Our purpose in the present 
paper is to outline a systematic Rayleigh-Ritz approxi­
mation procedure for deriving the motion of such a 
"particle" in a superimposed external field, more 
precisely, the over-all motion of a particlelike solution 
induced by the nonlinearity of the field equations 
with the addition of a small-amplitude wave solution. 
This Rayleigh-Ritz approximation method appears to 
be ideal for obtaining unambiguous equations of 
"particle" motion from any nonlinear field theory 
associated with an action principle that admits a 
singularity-free particlelike solution of finite energy, 
the method applying irrespective of whether the field 
theory features Einsteinian general covariance and 
concomitant Bianchi identities.3 We also sketch an 
analogous approximation theory for the quantum 
motion of the particlelike solution, application of a 
standard canonical quantization to the dynamical 

10. Rosen, J. Math. Phys. 6, 1269 (1965). 
• O. Rosen, J. Math. Phys. 7, 2066 (1966). 
3 For obtaining the equations of motion in a general relativistic 

field theory which does not admit a singularity-free particlelike 
solution, one must use either the Einstein-Infeld-Hoffman method 
[e.g., L. Infeld, Rev. Mod. Phys. 29, 398 (1957)] or the Fock method 
[e.g., V. A. Fock, Theory of Space, Time, and Gravitation (Pergamon 
Pres~, Inc., New York, 1962)]. Each of the latter methods, depending 
in an essential way on general covariance and the concomitant 
Bianchi identities, involves a series expansion and iterative solutional 
procedure which is certainly not justifiable in a rigorous sense, for 
close to the mass point (or field singularity) the field equations are 
essentially nonlinear. Furthermore, unambiguous equations of 
motion are obtainable with an Einstein-Infeld-Hoffman or Fock 
method only if supplemented with certain suitable coordinate 
conditions {e.g., H. Wojewoda, Zh. Eksperim. i Teor. Fiz. 45, 2051 
(1963) [English transl.: Soviet Phys.-]ETP 18, 1408 (I964)]} and 
certain additional "nonradiative" conditions on the mass point 
itself [e.g., A. Peres, Phys. Rev. 137, B1126 (1965)]. It is for these 
reasons that the Rayleigh-Ritz approximation procedure discussed 
here would be preferable mathematically for a singularity-free 
particlelike solution in the context of an Einsteinian general 
relativistic theory, notwithstanding the venerability of the Einstein­
Infeld-Hoffman and Fock methods. 

theory based on the "reduced Lagrangian" of the 
classical Rayleigh-Ritz procedure. The approximation 
theory is illustrated here for the rigorous particlelike 
solutions to a nonlinear mbdel scalar field theory, and 
a relativistic generalization is described. 

II. CLASSICAL AND QUANTUM 
NONRELATlVISTlC EQUATIONS OF MOTION 

Let us consider a Lorentz-covariant nonlinear field 
theory with the invariant Lagrangian density, 

(1) 

and the action principle, 

b f Ldt = 0, L == f I: d3x, (2) 

where c/> = c/>(x, t) is a generic (multicomponent) real 
field. Suppose that the field equations derived from 
(2) admit a spatially localized time-independent 
singularity-free particlelike solution, 

(3) 

and also a (nonlocalized) small-amplitude singularity­
free wave solution, 

(4) 

With additive superposition of the right members of 
(3) and (4), we seek an approximate solution of the 
form 

(5) 

where the coordinates I; = I;(t) locate the center of 
the "particle." Keeping terms at most quadratic in 
c/>ex, the Lagrangian density (1) is evaluated with (5) 
and the resulting function of i;, ~, x, and t is integrated 
over x. Thus, the Lagrangian in the definition part of 
(2) is expressed explicitly as 

L = L(i;, t, t) (6) 

by dropping an additive function of t alone. Note that 
the Lagrangian (6) is suitable for describing the 

573 
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dynamics of a particle with coordinates 1;. Indeed, 
the action principle (2) supplemented with a Rayleigh­
Ritz argument guarantees the approximate validity of 
the Euler-Lagrange equations derived from (6). 
Hence, the Euler-Lagrange equations derived from 
(6) are approximate classical equations of motion for 
a particle with the coordinates I; in a superimposed 
small-amplitude external field. It also follows that the 
"reduced Lagrangian" (6), representing the particle 
system accurately to within the approximation of 
three principal degrees of freedom, can be used to 
formulate a corresponding Schrodinger equation for 
the approximate quantum motion of the particle. 

In order to illustrate this Rayleigh-Ritz approxi­
mation method for the motion of a particle in an 
external field, consider the solvable nonlinear model 
field theoryl based on the Lagrangian density, 

(7) 

with () = ()(x, f) a real scalar field and g a positive 
physical constant. The field equation associated with 
(7) admits rigorous singularity-free spherically sym­
metric static solutions of the form 

in which the "size parameter" Z is a free nonzero 
constant of integration. For a solution of the form 
(8) the total field energy or "particle rest mass" is 

f
[(V()0)2 - g()~] d3x = 7T: == rno, (9) 

2g 

a quantity independent of Z. The particlelike solutions 
(8) are dynamically unstable, but the characteristic 
time for dissolution of such a solution is of the order 
Z2g t and is therefore arbitrarily large for IZI suffi­
ciently large. 

Now let ()ex = ()ex(X, f) denote a small-amplitude 
singularity-free wave field which satisfies the linearized 
field equation, Oex - V'2()ex = 0. With ()ex super­
imposed additively on the rigorous particlelike 
solution (8), we seek an approximate solution in 
which (8) is generalized dynamically, 

() = ()o(x - 1;) + ()ex(X, f), I; = I;(f). (10) 

Evaluated with (10) the Lagrangian density (7) works 
out to give 

!: r<v (~ • V()o)2 - 2(~ • V()o)Oex + (Oex)2 - (VOO)2 

- 2V()0' VOex - (VOex)l1 

+ g(O~ + 6()~Oex + 150~():J (11) 

up to terms of quadratic in Oex and where the argu­
ment of 00 is understood to be (x - 1;). We simplify 

the integration of (11) over all x by making use of the 
formulas 

V'20o + 3 gog = 0, 

f (VOO)2 d3x = f 3g0~ d3x = !rno, 

f V';00V' JOO d3x = irnob;i' (12) 

Discarding the term f[(l.iex)2 - (VOex)2] d3x, an addi­
tive function of f alone, we thus obtain 

L ~ ~ rno(~)2 - 2~ ·f(VOo)l.iex d3x - rno 

- 2 f V • (OexVOo) d3x + 15g f 6g()~x d3x. (13) 

The three integral terms in (13) can be evaluated easily 
with explicit integration provided that IVOex/l.iexl and 
IV6ex/6ex l are small compared to (Z2gt)-1 in the 
neighborhood of the particle. With the latter con­
ditions satisfied by 6ex , we have 

f . 3 
(V60)6ex d x "-' 0, 

f V • «()exV6o) d
3x.:::::: -47TZ6ex(l;, f), 

f 0~6~x d3x = 7T2Z2g-t6ex(l;, f)2, (14) 

and hence (13) becomes 

L "'" irno~2 - rno - V(I;, f), (15) 
in which 

V(I;, f) == -87TZ6ex(l;, f) - 157T2Z2gt6ex(l;, f)2. (16) 

Thus the external field acts on the particle through 
the "effective potential" (16). In view of the particle­
like solution (8), Z is analogous to an electric charge 
with 6 analogous to an electrostatic potential, and 
so the linear (dominant) term in (16) is of an "anti­
Coulombic" character, similar to an electrostatic 
potential energy except for the minus sign. Finally we 
note that the Euler-Lagrange equations derived from 
(15) 

rno~ = -VV(I;, f) (17) 

give the approximate classical motion of the particle. 
The reduced Lagrangian (15) also leads to the 
Schrodinger equation, 

ilia"" = [_ ~(~)2 + rno + V(I;, t)] 'P (18) 
at 2rno a; 

for the corresponding quantum motion. 
In the case of two particles separated by a distance 
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large compared to their radii, the field equation 
admits an approximate solution of the form 

(J = (Jo(l) + (Jo(2), (Jo(i) == Z(;)(Zti)g + Ix - ;wI2r t , 

in place of (10). Straightforward integration over all 
x of cross terms in the Lagrangian density (7) produces 
the potential energy of interaction 

V = -817Z(1)Z(2) 11;(1) - ;(2)1-1 

- 30172Z~1)Z~2)gt 1;(1) - ;(2)1-2 

+ (higher-order terms in the reciprocal 

of the separation distance 1;0) - ;(2)1). 

The leading potential energy term is of an anti­
Coulombic character, two particles with Z(1)Z(2) > 0 
attracting each other with a force proportional to the 
product of their size parameters divided by their 
separation distance squared, the particles repelling 
each other if their size parameters have opposite 
signs; on the other hand, the potential energy term 
proportional to the reciprocal of the separation 
distance squared is of a manifestly attractive short­
range character, two particles attracting each other 
with a force proportional to the product of their 
radii ("particle radius" "-' Z2gt) divided by their 
separation distance cubed. Owing to the large numer­
ical prefactor 30172, the latter short-range attractive 
force is one or two orders of magnitude greater than 
a value suggested by naive dimensional considerations. 
Note that the leading anti-Coulombic term in the 
potential energy for two interacting particles follows 
from the linear term in expression (16) by evoking the 
elementary algorithm of mechanics: "To obtain the 
potential energy of interaction for two particles, 
evaluate the potential field due to the first particle at 
the location of the second particle and multiply the 
result by an appropriate physical constant (a 'charge' 
or mass) associated with the second particle." 
However, the elementary algorithm of mechanics 
applied to (16)withZ(Jex(l;, t) -- Z(1)Z(2) 1;(1) - ;(2)1-1 

does not produce a numerically correct expression for 
the potential energy beyond the leading anti-Coulom­
bic term. For example, the term proportional to the 
reciprocal of the separation distance squared contains 
an extra factor of 2, reflecting the symmetrical 
contributions to the integral over all x from the 
neighborhoods of both particles. We suspect that the 
elementary algorithm of mechanics is in general only 
valid for long-range 1;(1) - ;(2)1-1 type potential 
fields. 

m. RELATMSTIC GENERALIZATION 

The preceding Rayleigh-Ritz approximation method 
yields nonrelativistic equations of particle motion, 
valid for ~2 small compared to unity. It is easy to 
generalize the method to obtain relativistic equations 
of particle motion, valid for larger values of ~2 «: 1. 
In place of (5) we seek a more general approximate 
solution of the form 

cP = SCPo(x) + cpex(X, t), (19) 

where x is related to x at any instant of time by an 
inhomogeneous Lorentz transformation, 

x == A(x - ;), 

(A)ii = ()ii + [1 - ~2 + (1 - ~2)t]-lt~i' (20) 

and S in (19) is a generic matrix function of A 
that mixes the components of cP according to their 
Lorentz transformation character. The eigenvalues 
of the 3 x 3 time-dependent matrix A are 1, 1, 
and (1 - ~2)-t, A being the spatial part of a 4 x 4 
homogeneous Lorentz transformation; thus we have 
d3x = (det A)-l d3x = (1 - ~2)t d3x. Since A changes 
slowly with time if cpex is relatively small (for then ; 
is relatively small), it follows that 

f f.(¢o, $0' V¢o) d3x"-' -rno(1 - ~2)t, (21) 

where ¢o == Scpo(x) and use is made of the Lorentz 
invariant character of the Lagrangian density and the 
expression for the "particle rest mass," 

rno = - f C( CPo, 0, V CPo)d3x, (22) 

with CPo = CPo(x). Hence, by substituting (19) into the 
Lagrangian density, expanding the result up to terms 
quadratic in CPex(x, t), and discarding an additive 
function of t alone, we obtain the reduced Lagrangian 
in relativistic form 

where the generic "effective potential," V(;, t), is in 
general composed of terms linear and quadratic in 
cpex(;, t) and Lorentz transforms as an invariant. For 
the nonlinear model scalar field theory, the reduced 
Lagrangian (23) is the relativistic generalization of 
(15) with V(;, t) in (23) working out to give (16) 
unaltered. 
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Random Walk with an Excluded Origin 
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The mean square end-to-end distance R1 is calculated for the subset of all random walk configurations 
on a D-dimensional simple cubic lattice which do not return to the starting point. Explicit results are 
obtained in the limit N» 1 for the one-, two-, and three-dimensional lattices. The values of the first two 
terms in the asymptotic series for R". are, respectively, N + N, N + N/log N, and N + 0.435/N-t. An 
unexpected relation is obtained between R1 and S N , the average number of different lattice sites visited in 
an N-step random walk on a perfect lattice. It is R} = SN(SN+1 - SN)-l. 

1. INTRODUCTION 

I N this paper we calculate R~, the mean square 
end-to-end distance, for a particular subset of all 

N-step random walk configurations on the one-, two-, 
and three-dimensional simple cubic lattices. The 
subset consists of those random walk configurations 
which satisfy the N - I restrictions that the 2nd, 
3rd, ... , and Nth steps cannot overlap the first step. 
This restricted random walk, or excluded origin 
problem is a special case of the problem in which no 
step can overlap any other step. This latter problem 
arises in lattice models of long polymer chain mole­
cules which account for the self-excluded volume of 
the polymer chain.1 Some time ago,2 we determined 
the increase in the mean square end-to-end distance 
for a D-dimensional random walk which results from 
the introduction of the single restriction that the jth 
and kth steps cannot overlap. The method employed 
there is not useful in the present problem where the 
number of overlap restrictions is large and the restric­
tions are "nested" in the sense that, for a given pair of 
interacting steps, intermediate steps are involved in 
other overlap restrictions. The method of solution 
which we use is based on a one-to-one correspondence 
between the excluded origin random walk configura­
tions and a set of random walk configurations on a 
lattice containing an absorbing point at the origin. 

The problem of calculating the probability distri­
bution of the end-to-end distance is formulated in 
Sec. 2 and solved formally in Sec. 3. The absorbing 
point is treated as a defect in an otherwise perfect 
lattice. The method used is similar to that used by 
Rubin3- s in treating random walk models of polymer 

1 There is an extensive and growing literature on this problem. 
See, e.g., M. E. Fisher and M. F. Sykes, Phys. Rev. 114,45 (1959); 
C. Domb, J. Chern. Phys. 38, 2957 (1963); S. F. Edwards, Proc. Phys. 
Soc. (London) 85, 613 (1965); J. Mazur, J. Chern. Phys. 43,4354 
(1965). 

• R. J. Rubin, J. Chern. Phys. 20, 1940 (1952). 
• R. J. Rubin, J. Chern. Phys. 43, 2392 (1965). 
• R. J. Rubin, J. Res. Natl. Bur. Std. (U.S.) 69B, 301 (1965). 
• R. J. Rubin, J. Chern. Phys. 44,2130 (1966). 

chain adsorption on plane solution surfaces and thin 
rods, and is equivalent to the method presented by 
MontroU6.7 and MontroU and Weisss for discussing 
random walk problems on slightly defective lattices. 
Lifshitz9 appears to have made the earliest use of 
these methods in lattice vibration problems. 

The expression for R~ is evaluated in Sec. 3 in the 
limit N» 1. The formal expression which is obtained 
for Rh is unexpectedly given in terms of S N, the 
average number of different lattice points visited in 
a random wa1k of N steps on a perfect lattice. The 
relation is 

R~ = SN/(SN+l - SN)' 
In obtaining the asymptotic value of R~ in the one­
and three-dimensional lattices, we have used the 
asymptotic series for SN given by MontroU and Weiss.s 

The necessary analysis is also carried out for the 
two-dimensional lattice. 

Some aspects of the results are discussed in Sec. 4. 

2. RECURRENCE EQUATIONS 

We consider restricted random walks on a D­
dimensional simple cubic lattice such that the walker 
steps between nearest-neighbor lattice points only 
but cannot return to the starting point. Let C( D; N) 
denote the set of aU N-step random walk paths on a 
D-dimensional lattice which originate at the origin; 
and let Co(D; N) denote the subset of Co(D; N) which 
do not return to the origin. We wish to calculate the 
mean square displacement at the Nth step for the 
subset Co(D; N) in the limit N» 1 for the one-, two-, 
and three-dimensional lattices. A simple one-to-one 
correspondence can be established between the ran­
dom walk paths in Co( D; N) and random walk paths 

8 E. W. Montroll, Applied Combinatorial Mathematics (John 
Wiley & Sons, Inc., New York, 1964), Chap. 4. 

, E. W. Montroll, Proc. Symp. Appl. Math. Am. Math. Soc. 16, 
193 (1964). 

8 E. W. Montroll and G. H. Weiss, J. Math. Phys. 6,167 (1965). 
• Lifshitz's work appeared in the Russian literature in the 1940's. 

A summary appears in I. M. Lifshitz, Nuovo Cimento Suppl. 3, 
716 (1956). 
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on the same lattice in case the origin is an absorbing 
point. It is clear that if the origin is an absorbing point, 
all (N - I)-step random walk paths which start from 
the 2D nearest-neighbor lattice points to the origin 
and which are notlocated at the origin at the(N - l)th 
step are in one-to-one correspondence with the paths 
in Co(D; N). Consequently, we now consider the 
random walk problem when the origin is an absorbing 
point. 

For simplicity of exposition, we treat the two­
dimensional lattice explicitly. The result for the D­
dimensional lattice is similar and is obtained in an 
identical manner. If P(ml' ma; N) denotes the prob­
ability that the random walker is located at lattice 
site (ml' mJ at the Nth step, then P(m} , ma; N + I) 
is related to the probabilities one step earlier by the 
expression 

P(m!, ma; N + 1) = HP(ml - I, ma; N) 

+ P(ml + 1, ma; N) + P(m!, ma - 1; N) 

+ P(ml' ma + 1; N)} (1) 

provided that (ml, m2) is not a nearest-neighbor to 
the origin, i.e., (m!, ma) :;I: (± 1,0) and (ml' m2) :;I: 
(0, ± 1). The probabilities P(± 1,0; N + 1) and 
P(O, ± 1; N + 1) are related to the probabilities one 
step earlier by expressions analogous to (1) 

P(±l, 0; N + 1) = HP(±2, 0; N) 

+ P(±l, 1; N) + P(±l, -1; N)}, 

P(O, ±1; N + 1) = HP(I, ±l; N) 

+ P(-I, ±1;N) +P(O, ±2;N)}. 

(2) 

For convenience, we assume that the probability of 
being at the origin at the (N + l)st step is the sum of 
the probabilities of arrival from neighboring sites plus 
the probability of having been at the origin at the 
preceding step, 

P(O, 0; N + 1) = HP(I, 0; N) + PC-I, 0; N) 

+ P(O, 1; N) + P(O, -1; N)} + P(O, 0; N). 

(3) 

The recurrence equations (1)-(3) have the property 
that the total probability is conserved, i.e., 

ao 00 

~ ~ P(ml,ma;N+l) 
00 

= ~ 
ml=-CO m.=-oo 

In the next section we solve the recurrence equations 
(1)-(3) for the starting conditions 

P(I, 0; 0) = PC-I, 0; 0) = P(O, 1; 0) 

= P(O, -1; 0) = t, (4) 

with all other P(ml , ma; O)'s equal to zero. Once the 
solution P(ml' m2 ; N) has been obtained, the mean 
square displacement at the Nth step is determined 
from the expression 

00 00 

~ ~' (m~ + m~)P(ml' ma; N) 
R~ = ml=-OO m:=-oo 00 ' (5) 

.L ~' P(m!> ma; N) 
tnl=-OO tnl=-OO 

where the primes on the double sums indicate that the 
P(O, 0; N) term is omitted. 

3. SOLUTION OF RECURRENCE EQUATIONS 

The recurrence equations (1)-(3) can be solved for 
the initial condition (4) by introducing a generating 
function. Multiply the equation for P(ml' ma; N + 1) 
by (21T)-1 exp (i01m1 + iOama) and sum over all values 
of m1 and mil' The result is 

G(OI, 02; N + 1) = !(cos 01 + cos 0JG(OI. 02; N) 

+ (1/21T)[1 - t(cos 01 + cos OJ] P(O, 0; N), 

(6) 
where 

1 00 ao 
G(OI, 02; N) = - I I P(mu ma; N) 

21T ml~oo ms~oo 
X exp [iOl ml + Wilma]' 

Next, multiply the equation for G(OI, O2 , N + 1) by 
.0'+1 and sum from N = 0 to N = 00 to obtain 

-G(01, 02; 0) + r(Ol, O2 ; y) 

= !y(cos 81 + cos 0Jr(OI, 01l;Y) 

+ (1/21T)y[I - t(cos 01 + cos OJ]h(O, O;y), (7) 

where 
00 

r(81 , O2 ; y) = ~ yNG(Ol. 02; y), (8) 
N=tJ 

00 

h(m!, m2; y) = I yNP(m l • ma; N). (9) 
N=O 
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When the starting values (4) are substituted in 
G«()l' ()2; 0) in Eq. (7), one obtains, after some 
rearranging of terms, 

r(01'0; ) = t(cos ()1 + cos ()2) + (y - 1) h(O, 0; y) 
2 y 21T[1 - iy (cos ()1 + cos ()2)] 

1 
+ 21Tyh(O, O;y). (11) 

Equation (11) is an implicit equation containing 
h(O, O;y) on both the right- and left-hand sides. An 
equation for determining h(O, 0; y) can be obtained 
by multiplying Eq. (11) by (21T)-1 and integrating with 
respect to ()1 and ()2 from -1T to +1T. The result is 

h(O, 0; y) = 1(11.0 + L1.O + 10•1 + 10._1) 

+ yh(O, 0; y)[lo•o - 1(11.0 + L1.O + 10.1 + 10.-1)], 

(12) 
where 

I - (~)2J" d() J" d() exp (irn()l + in()2) m." - 1 2 . 
21T -" -" 1 - ty(cos 01 + cos ()2) 

The integral 10,0 in (12) is evaluated as 

10.0 = 2F1[t, i; 1; y2], 

(13) 

(14) 

where 2F1[a, b; c; x] denotes the hypergeometric 
function; and the integrals l±l,O and 10,±1 are equal 
and expressible in terms of 10,0 as5 

(15) 

As a consequence, the explicit expression for h(O, 0; y) 
can be written as 

h(O, 0; y) = y-1(1 - yr1(1 - IO:~), (16) 

and that for r(Ol' 02;y) as 

1 1 
r(Ol' ()2; y) = ---

217 1 - Y 

X {I _ 1 - t(cos ()1 + cos ()2) • J...} (17) 
1 - ty(cos ()1 + cos ()2) 10.0 • 

The generating function r«()l, ()2;y) in (17) is a 
weighted sum of all the P(rn1' m2 ; N)'s. In order to 
obtain an explicit expression for Riv, the mean square 
displacement defined in terms of the P(m1' m2 ; N)'s 
in Eq. (5), we first subtract (1/21T)h(O,0;y) from 
r«()l, ()2;y) and then select the coefficient of yN 

1 f dy [ . 1 . ] 
2
--: N+l r«()l' ()2' y) - -2 h(O, 0, y) 

1Tl coy 1T 

1 0000 

= -! !' P(rnl' rn2; N) exp (i()lrnl + i()2rn2), 
21T ml=-oo m2=-oo 

(18) 

FIG. 1. Cuts and inte­
gration contours Co and 
C1 in the complex y 
plane. 

where Co is a counterclockwise contour around the 
origin in the complexy plane (see Fig. 1). The explicit 
expression for Riv in the case of the 2-dimensional 
lattice is 

1 r dy 1 
21Ti Jco yN+2 (1 - y)lo•o 

(19) 

where 10,0 is the hypergeometric function (14). The 
expression for Riv in a D-dimensional lattice is 
identical with (19) except that 10,0 is replaced by 

10 ..... 0 = (-.!.)DJ" dOl' .. 
21T -1T 

X r d()D[1 - n-1y(cos ()1 + ... + cos ()D)]-l. 
-1T (20) 

The solution of our random walk problem on a 
slightly defective lattice has led to a result involving 
l o .... ,o(y), the generating function for a random 
walk on a perfect lattice, a well-known connection.3- 9 

However, the particular form of the result is some­
what unexpected. It is the ratio of two quantities 
appearing in the paper of Montroll and Weiss8 

where, in the notation of Montroll and Weiss, SN is 
the average number of different lattice points visited 
in an N-step walk; and /IN' an auxilliary function, is 
the average number of new lattice points visited when 
the (N + l)th step is taken. Montroll and Weiss have 
studied the function S N in considerable detail, and 
we can utilize their results in one and three dimensions 
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to calculate RJ..,. In the case of a one-dimensional 
lattice, where the asymptotic series for SN is 

S.v""-' (SN/7T)!{l + (l/4N) - ... }, 

we obtain the well-known result 

R~ ""-' N!{1 + (l/4N)} 

(N + 1)!{1 + [1/4(N + l)]} - N!{1 + (1/4N)} 

,...., 2N, D = 1. (22) 

In the case of the three-dimensional simple cubic lat­
tice, where the asymptotic series for SN is 

SN""" (N/uo) + (2Ul/U~)(N/7T)! + . . . (23) 

and uo = 1.51639 and U1 = 1.16955, we obtain the 
result 

,...., N[l + (0.4351/N!)], D = 3. (24) 

Montroll and Weiss have only obtained the leading 
term in the asymptotic series for S N in two dimensions 
using a Tauberian theorem. We have carried out the 
required analysis for SN in this case in the Appendix; 
and the value of RJ.., is 

RF,r ,...., N[l + (1/1n N)], D = 2. (25) 

4. REMARKS 

Although the calculations in this paper have been 
carried out explicitly for simple cubic lattices, it ap­
pears from an analysis along the lines used by 
Montro1l6•7 that Eq. (21) for RJ.., is valid on face­
centered and body-centered cubic lattices as well. 
Montroll and Weiss8 have obtained the asymptotic 
series for S N in these two lattices; and they only 
differ from the simple cubic lattice result (23) in the 
numerical values of uo and Ul . 

The denominator ~N+1 in Eq. (21) for RJ.., is 

ffll=-OO tns=-oo 

the probability of not visiting the origin up to the 
Nth step. The asymptotic values which we have 
obtained for this quantity are 

D = 1, 

D =2, 

D = 3. 

(26) 

These values are consistent with the results of Polya10 

that the probability of eventual return to the origin 
on a D-dimensional cubic lattice is unity in the infinite 
one- and two-dimensional lattices and 1 - (l/uo) for 
the three-dimensional lattice. The results in Eq. (26) 
show the rate of approach to the limiting values. 

It is of interest to compare the contribution to the 
mean square end-to-end distance of the N - 1 nested 
overlap restrictions considered in this paper with the 
contributions of N - 1 independent or separate 
overlap restrictions. It was shown in Ref. 2 that b., 
the increase in RJ.., resulting from the single restriction 
that the kth and the (k + s)th steps cannot overlap, is 
proportional to s!, so, and s-! in the case of the one-, 
two-, and three-dimensional random walks, respec­
tively. Thus, in the case of the 2-dimensional random 
walk, the quantity N-l 

L bs 
8=1 

is proportional to N, whereas the actual contribution 
of the set of nested overlap restrictions to RJ.., is N/ln N. 

APPENDIX. ASYMPTOTIC EXPRESSIONS FOR 
R~ = SN/AN+1 FOR N» 1 IN THE 2-

DIMENSIONAL LATTICE 

Montroll and Weiss8 and Dvoretsky and Erdosll 

have given an asymptotic formula for SN in the case 
of the 2-dimensional lattice. We use the contour 
integral expressions for SN and ~N and obtain the 
first two terms in the asymptotic series for SN/~N+1' 
First consider the integral for ~N 

~ - _1 I d Y 1 (AI) 
N - 2' N+l (1 ) F [1. 1. l' 2]' 7T1 coy -Y2 12,"2, ,Y 

The integrand contains logarithmic branch points at 
y = ± 1. Introduce cuts in the complex y plane which 
start at y = ± 1 and extend out to ± 00 respectively 
as shown in Fig. 1. The contour Co can be deformed 
into the contour C1 shown in Fig. 1. The dominant 
asymptotic contribution of the line integral around 
C1 to ~N for N» I comes from the portion of the 
contour between Q and R in the immediate vicinity 
of y = 1, where there is a pole superimposed on the 
logarithmic branch point (see Fig. 1) 

~N ,...., _1_ IR .!!L 1 . (A2) 
27Ti Q y N +1 (1 - Y)2Fl[l, i; 1; y2] 

For our purposes it is sufficient to set the distance of 
Q and R from y = 1 equal to N-! and assume that 

10 G. Polya, Math. Ann. 84, 149 (1921). 
11 A. Dvoretzky 'and p, Erdos, in Proceedings of the Second 

Berkeley Symposium on Mathematical Statistics and Probability 
(University of California Press, Berkeley, California, 1951), p. 353. 
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In N» 1. It is then possible to replace the hyper­
geometric function 2Fl[t, t; 1 ;y2] by its analytic 
continuation12 where, in the interval of integration, 
the only significant term. is 

2Fl[t, t; 1 ;y2],...., 17-1 In [1/(1 - y)]. (A3) 

The phase of the logarithm is chosen so that the 
logarithm is real on the real axis between y = 0 and 
y = 1. Thus, we have for the value of 2Fl[t, t; 1; y2] 
on the lower and upper sides of the cut 

{

17-1{ln [1/(y - 1)] - i17}, lower, 
2Fl[t, t; 1 ;y2],...., 

17-1{ln [1/(y - 1)] + i17}, upper. 

(A4) 

Substituting (A4) in (A2), one obtains the following 
expression for D.N 

D.N ,....,_1 {II dy _1_ 17 
217i l+N-i yN+11 - yIn [1/(y - 1)] - i17 

-l + (l+N dy _1_ 17 } 
Jl yN+11 - yIn [1/(y - 1)] + i17 

(l+N-1 dy 1 1 

,...., 17 Jl yN+l Y _ I1n2 [1/(y _ 1)] + 172 . 
(A5) 

Replacing y by 1 + x/N in (A5), neglecting 172, and 
integrating by parts, one obtains 

D.N ,...., 17 (Nt dx 1. (A6) 
Jo [1 + (X/N)]N+2 In N - In x 

Now, consider the corresponding integral for SN 

SN,....,_I- (R dy 1 17. (A7) 
217i JQ yN+1 (1 - y)2 In [1/(1 - y)] 

Integrate (A 7) by parts using the fact that 

- :y E{ -In C ~ J] = (1 ~ y)2ln [1/(: _ y)]' 

where 

and obtain 

SN,....,~{- (1 ~ El[-In (_1 ) + i17] 
21 Jl+N-i yN+2 Y - 1 

- (1 -t %2El[-ln (_1 ) - i17]}. 
Jl+N Y Y - 1 

(A8) 

In the interval of integration in (A8), one can replace 

11 A. ErdeJyi, W. Magnus, and F. Oberhettinger, Higher Trans­
cendental Functions (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. I, p. 110. 

the exponential integraIs13 

E{ -InC ~ 1) ± i17J ,....,E{ -In C ~ I)J 

+ _1_ { 2 + 2 ± i17 
Y - 1 In [l/(y - 1)] In2 [1/(y - 1)] 

+ 4 - 17
2 ± 2i17 + ... }. 

In3 [l/(y - 1)] 
The result is 

il+N -
t dy 1 

SN,....,N17 -----
1 yN+2 Y - 1 

x { 1 + 2 + ... }. 
In2 [1/(y - 1)] In3 [1/(y - 1)] 

(A9) 

Finally, as in Eq. (A5), replace y by 1 + x/N, and 
integrate by parts 

S N dx i
N! 

N""" 17 0 [1 + (X/N)]N+3 

X + + ... {
I (1)2} 

In N - In x In N - In x . 

The expression for R'j." from (A6) and (AlO) is 

R'j., = SN/D.N+1 

(AlO) 

(N! dx ( 1 )2 
,...., N + N Jo P + (X/N)]N+3 In N - In x 

(N dx ( 1 ) 
Jo [1 + (x/N)]N+3 In N - In x 

(All) 
In arriving at Eq. (All), we have consistently neglected 
terms of higher order in (InN )-1. We must now estimate 
the value of the two integrals in (All). This can be 
done by splitting the interval of integration into three 
parts: from 0 to (In N)-I, from (In N)-1 to In N, and 
from In N to Nt. It is a simple matter to show that 
for the denominator 

__ ::.:.x~_ < (In N)-2, i
(lnN)-1 d 1 

o [1 + (x/N)]N+3ln N - In x 

[In N + In (In N)]-1 

t nN dx 1 
<J(lnNl-1 [1 + (x/N)f1/+3In N -In x' 

[In N - In (In N)r\ (AI2) 
(~N ~ 1 

> J(lnN)-1 [1 + (x/N)]N+3In N - In x' 

13 A. ErdeJyi, W. Magnus, and F. Oberhettinger, Higher Trans­
cendental Functions (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. 2, p. 145. 
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and 

(Nt dx 1 

JnN [1 + (x/N)]N+31n N - In x 

< 2(ln N)-\l + N-1ln N)-(N+2). 

Therefore, the dominant contribution of the denom-
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inator is (In N)-l. The same procedure can be used 
for the numerator to give 

f
~ d 2 

_--=..:.:...:...x __ ( 1 '\ (l N)-2 
o [1 + (X/N)]N+3 In N _ In xl""" n . 

Thus, we finally arrive at the following estimate 

R~""" N[l + (In Nrl]. (A13) 
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A one-sentence nonalgebraic evaluation of averages, such as occur in the theory of the Debye-Waller 
factor, is given, which is valid for certain types of anharmonic modes and also for ensembles more general 
than the canonical ensemble. 

I N a recent paper, Mermin1 reconsidered 
evaluation of the average 

<es) == tr pes/tr p, 
where 

S = ! (cia; + dia!>, p = exp (-fJ! wia;ai), 
i i 

the 

fJ = l/kBT, (1) 
and the ai and a; are boson annihilation and creation 
operators. He has given an algebraic derivation of the 
well-known result 

(2) 

in one sentence, albeit a rather long one, using the 
identity eA+B = eAeBe-trA,Bl ([A, B] a c-number). 

Here, we offer another (and shorter) one-sentence 
derivation which, though restricted to a macroscopic 
lattice (i.e., very many nonvanishing c;'s and/or d/s), 
is more general than the usual algebraic proofs in that 
we assume only that the density operator p has the 
form 

p = IT Pi(ni), ni = a;ai 
i 

(3) 

with the Pi any reasonably general probability density 
functions [i.e., Pi(ni) should be a positive semi-definite 
operator with unit trace]. 

DERIVATION 

If we calculate (es) in the representation in which 
all the operators Xi == ciai + dial are diagonal, the 
diagonal elements of Pi define a normalized set of 

1 N. D. Mermin, J. Math. Phys. 7, 1038 (1966). 

classical probabilities and the Central Limit Theorem 
of probability theory,2 which is then applicable, 
states that the sum S==!Xi 

has a Gaussian distribution (in this case with mean 
zero, because (Xi) == 0), from which we deduce 

<~) = exp l(S2) = exp t ! (X~) 
i 

= exp [! Ci di«ni ) + t)], for general Pi(ni), 
i 

= exp [t! ci di coth tfJwi ], if p;(ni ) oc e-PWini. 

(4) 
REMARKS 

It should be emphasized that all other proofs, 
including Mermin's, implicitly or explicitly make use 
of the fact that each normal mode amplitude has a 
Gaussian distribution at any temperature (the utiliza­
tion of this fact is the aim of all the various algebraic 
maneuvers), a fact which is unnecessary in treating a 
macroscopic system provided only that no small set 
of modes contributes to <eS ) out of proportion to its 
number. The derivation is thus valid for independent 
but anharmonic modes, and for independent modes 
not at thermal equilibrium, but not, for example for 
the Mossbauer effect whenever the emitting (or 
absorbing) nucleus produces a localized mode in the 
lattice. 

• See any book on probability theory, such as R. v. Mises, 
Mathematical Theory of Probability and Statistics (Academic Press 
Inc., New York, 1964), p. 294; or W. Feller, Probability Theory and 
Its Applications (John Wiley & Sons, Inc., New York, 1950), 
Vol. I, p. 201. 
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Quaternionic Representations of Compact Metric Groups 

S. NATARAJAN AND K. VISWANATII 
Indian Statistical Institute, Calcutta, India 

(Received 7 April 1966) 

Representations of compact metric groups in Hilbert spaces over the quaternions are studied. A 
generalization of the Peter-Weyl theorem is formulated and proved. The problem of finding all the 
irreducible quaternionic representations of an arbitrary compact metric group is solved, and a rule is 
given for computing the "Q-characters" of all the irreducible quaternionic representations once the 
characters of all the irreducible complex representations are known. For the Abelian case, it is shown that 
every irreducible quaternionic representation is equivalent to a complex representation and hence one 
dimensional. An example is given of a non-Abelian group whose irreducible quaternionic representations 
are all one dimensional. 

I. INTRODUCTION 

I T is well known (see, e.g., Birkhoff and von 
Neumann,1 Yang,2 Mackey,3 Michel4) that the 

lattice of closed linear manifolds of a quaternionic 
Hilbert space is a possible candidate for the logic of 
propositions (see Varadarajan5) of a quantum me­
chanical system, and that there is nothing canonical 
about the (classical) choice of the complex number 
system for the development of quantum mechanics. 
But, in spite of the wide-spread knowledge of this 
fact, very little work has been done toward setting 
up a theory of quaternionic quantum mechanics apart 
from the fundamental work6- 9 of Finkelstein, Jauch, 
Speiser, and Schiminovitch. We hope that our 
present work is of some help in this context, as the 
theory of group representations is indispensable for 
the exposition of quantum mechanics and compact 
metric groups are an important special case. 

II. PRELIMINARY IDEAS 

We present this section in some detail as our 
orientation differs from that of Finkelstein et al. 

Let Q denote the division ring of real quaternions. 
We denote an arbitrary element q of Q by q = qo + 
q1i + q2j + qak , where qo' ql' q2' qa are real. We 

1 G. Birkhoff and J. von Neumann, Ann. Math. 37, 823 (1936). 
• C. N. Yang, in Proceedings of the Seventh Annual Rochester 

Conference (lnterscience Publishers, Inc., New York, 1957), p. IX-26. 
3 G. w. Mackey, The Mathematical Foundations of Quantum 

Mechanics (W. A. Benjamin, Inc., New York, 1963), p. 73. 
• L. Michel, Invariance in Quantum Mechanics and Group Ex­

tension, Group-Theoretical Concepts and Methods in Elementary 
Particles (Gordon and Breach Science Publishers, Inc, New York, 
1964), p. 148. 

5 V. S. Varadarajan, Indian Statistical Institute preprint (1965), 
p.207. 

6 D. Finkelstein, J. M. Jauch, and D. Speiser, "Notes on Quater­
nion Quantum Mechanics I, II, and III", CERN (1959). 

7 D. Finkelstein, J. M. Jauch, S. Schiminovitch, and D. Speiser, 
J. Math. Phys. 3, 207 (1962). 

8 D. Finkelstein, J. M. Jauch, S. Schiminovitch, and D. Speiser, 
J. Math. Phys. 4, 788 (1963). 

• D. Finkelstein, J. M. Jauch, and D. Speiser, J. Math. Phys. 4, 
136 (1963). 

identify the reals with the set of all quaternions q 
with ql = qa = qa = 0 and the complex numbers with 
the set of all quaternions q with q2 = qa = O. Every 
q E Q may be written in the form IX + {lj, where IX 

and {3 are complex. We denote by q* the conjugate 
of the quaternion q. 

1. Vector Spaces 

By a vector space over Q (to be called a Q-space) 
we always mean a left-vector space over Q. A Q­
Banach space is a complete normed Q-space. If X 
is a topological space, we denote by CQ(X) the Q­
Banach space of all bounded quaternion-valued 
continuous functions on X with the supremum norm. 

An inner product on a Q-space V is a quaternion­
Valued function on V x V, denoted by ( ... ), with 
the properties: 

(i) (x, y) = (y, x)*, 

Oi) (px + p'x',y) = p(x,y) + p'(x',y), 

(iii) (x, x) ~ 0, = 0 if and only if x = 0, 

where x, x', y E V, and p, p' E Q. From (i) and (ii) we 
have 

(x,py + p'y') = (x,y)p* + (X,y')p'*. 

It is easy to prove that, on an inner product Q-space, 
Ilxll = (x, x)i defines a norm.7 A Q-space V is called 
a Q-Hilbert space if there exists an inner product on 
V such that the induced norm makes V a complete 
normed Q-space. The concepts of orthogonality, 
basis, etc., for Q-Hilbert spaces are defined in the 
usual way. In what follows H denotes a Q-Hilbert 
space. 

An operator on H is a bounded linear transforma­
tion of H into itself. An automorphism of H is a 
bijective operator on H. For every automorphism A, 
there exists an unique automorphism A-I such that 
AA-I = A-IA = I. The set of all automorphisms is 
a group in a natural way. 

582 
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The elementary theory of Q-Hilbert spaces can now 
be developed as in the complex case. We note in 
particular that, for every operator A on H, there 
exists a unique operator A * on H such that (Ax, y) = 
(x, A *y) for all x, y E H. A * is called the adjoint of A. 
An operator A on H is called Hermitian if A = A * 
and unitary if AA* = A*A = [. 

The spectral theory of Hermitian operators in Q­
Hilbert spaces parallels the theory in the complex 
case.6 •7 

Let now Y be a finite-dimensional Q-space. (Note 
that Y may be endowed with a Q-Hilbert space 
structure.) Given a basis (e l ,"', en) of Y, every 
linear transformation A on Y has a matrix representa­
tion (ars), defined by 

If A and B are two linear transformations with 
matrices (ars) and (hrs), respectively, then the matrix 
of AB is given by (crs), where 

Crs = ~ btsart · 
f 

Observe that our rule for matrix multiplication differs 
from the usual rule for matrices over a field. 

If A has the matrix (ars) with respect to an ortho­
normal basis (er), then ars = (Aes, er ). The matrix of 
A * with respect to the same basis is then (hrs), where 
hrs = (A *es' er) = a;r' If A is Hermitian, then A = A * 
and hence ars = a;r' If A is unitary, A * A = AA * = [ 
and hence 

~ a;art = ors = 2 atsa:r • 
t t 

We note here that, if A has the matrix (ars) with 
respect to a basis (er ), then 

Re (tr A) = Re (2 arr) 
r 

is defined independently of the basis (er ). 

2. The Symplectic Picture 

It is convenient for our purposes to restate the 
usual definitionlo in geometric language. 

If Y is a Q-sp'ace, then the additive group of Y can 
be considered as a C-space (i.e., a vector space over 
the complex numbers). This we denote by ya and 
call the symplectic picture of Y. If (el , ••• , en) is a 
basis for Y, then (el , ••• , en ,jel , ••• ,jen) is a basis 
for ya. Hence Yc is of dimension 2n. A linear trans­
formation A on Y is also a linear transformation on 
Yc. This we denote by AC. If the matrix of A with 
respect to the basis (el , ••• ,en) is Al + Ad, where 

10 C. Chevalley, Theory of Lie Groups, I (Princeton University 
Press, Princeton, New Jersey, 1946), p. 18. 

Al and A2 are complex matrices, then the matrix of 
AC with respect to the basis (el , ••• , en, jel , ••• ,jen) 
IS 

I 
~l A_21' 

-A2 Al 

where ii denotes the complex conjugate of the com­
plex number oc and B = (hr.) if B is the complex 
matrix (hrs). 

3. Integration Theory 

Let (X,~, fl) be a measure space. We always 
identify functions which differ only on fl-null sets. 
A quaternion-valued measurable function 

on X, where /r [r = 0, I, 2, 3, are real-valued (meas­
urable) functions on X] is said to be integrable with 
respect to fl if and only if!o, /1 , h '/3 are integrable 
with respect to fl. If / is integrable, the integral of / 
with respect to fl is defined as 

If dfl = I fo dfl + (I fl dfl ) i 
+ (If2dfl)j + (If3 dfl)k. 

The following properties of the integral are easily 
verified (q E Q is arbitrary): 

(i) I (f + g) dfl = If dfl + I g dfl, 
(ii) I(Pfq)dfl = P(Ifdfl)q, 

(iii) (If dfl r = I1* dfl, 
(iv) I Ifdfli ~ Ilfl dfl· 

The only nontrivial relation is (iv). This may be 
proved by a slight modification of Cramer's proofll 
for the complex case. 

We define L~lX) as the set of all quaternion-valued 
measurable functions / such that 1/12 is integrable 
with respect to fl. It follows that / E L~(X) implies 
that /* E L~(X). If we define for / and g in L~(X) 

(f, g) = S /g* dfl then L~(X) becomes a Q-Hilbert 
space with (. , .) as inner product. 

If f, g E L~(X) and S /*g dfl = 0, we say that / and 
g are left orthogonal. If/and g are also orthogonal, 
we say that / and g are bothways orthogonal. 

11 H. Cramer, Mathematical Methods of Statistics (Princeton 
University Press, Princeton, New Jersey, 1946), p. 65. 
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We note that iff E L~(X) and P E Q, then Ip E L~(X). 
If I and g are left orthogonal then Ip and gq are left 
orthogonal for any p, q E Q. 

III. Q-REPRESENTATIONS 

In what follows, we denote by G a compact metric 
group and by ft the unique normalized Haar measure 
on :2:, the class of Borel sets of G. 

Let H be a separable Q-Hilbert space and A(H) 
the group of automorphisms of H. Bya Q-representa­
tion9 A of G in H we mean a homomorphism g -+ Ag 
from G to A(H) such that g --+ Agx from G to H is 
continuous for every fixed x E H. The Q-representa­
tion A is called unitary if Ag is unitary for every 
g E G. An example of a Q-representation of G in 
L3(G) is the right regular representation. This is, in 
fact, unitary. 

When H is finite-dimensional, we may, on occasion, 
regard the Ag as matrices with respect to some fixed 
basis of H. 

The notions of equivalence, irreducibility, etc., of 
Q-representations are defined in the usual way.I2 

We now state some basic theorems. The departure 
from the complex case is only slight and so we omit 
the proofs. 

Theorem 1: Any Q-representation A of G in H is 
equivalent to a unitary Q-representation. 

Theorem 2: Every unitary Q-representation of G 
is a direct sum of irreducible unitary Q-representations 
of G. Every irreducible Q-representation of G is 
finite-dimensional. 

The irreducible unitary Q-representations of G 
split up into equivalence classes in a natural way. We 
shall index these equivalence classes by oc. (It follows 
from our analysis that the set of all oc's is countable.) 
Let n~ be the dimension of any irreducible Q-repre­
sentation of type oc. 

Consider now a unitary Q-representation of G in 
H. Let 

be a direct sum decomposition of H into irreducible 
subspaces and let the irreducible subspaces St of type 
oc be indexed by a set of cardinality c~. We call c~ 
the multiplicity of type oc in the decomposition 

12 G. W. Mackey, "Theory of Group Representations," Lecture 
Notes, The University of Chicago (1955), p. 3. 

Theorem 3: In any decomposition of H into irre­
ducible subspaces the same types occur with the 
same multiplicities. 

Schur's Lemma9: Let HI and H2 be two finite­
dimensional Q-spaces. Let (A~) and (Bp) be irreducible 
collections of linear transformations on HI and H2, 
respectively. If M is any linear transformation from 
HI to H2 such that (BpM) = (MA",), then M is either 
o or an isomorphism. 

Corollary 1: If U and V be two inequivalent irre­
ducible unitary Q-representations of G in Q-Hilbert 
spaces HI and H2, respectively, then 

J(VgMU;lX, y) dg = 0, X E HI' Y E H2 

for any linear transformation M from HI to H2 • 

Corollary 2: Let U be an irreducible unitary Q­
representation of G in a Q-Hilbert space H of di­
mension n. Then for any Hermitian operator M of H 
into itself 

J Re (tr M) 
(UgMU;IX, y) dg = n (x, y). 

Remark: Note that with our geometric approach 
Corollary 2 may be proved directly without invoking 
the ersatz determinant used by Finkelstein et al. 9 

IV. ORTHOGONALITY RELATIONS AND THE 
PETER-WEYL THEOREM 

We now begin an analysis of the irreducible (and 
hence finite-dimensional) Q-representations of a com­
pact metric group G. 

Let A be an irreducible Q-representation of G in H 
of dimension n and let far/g)] be the matrix of Ag 
with respect to an orthonormal basis (er). The func­
tion ars(g) = (Ager , es) is a continuous function on G 
for every r, s; i.e., the matrix entries [a1's(.)] of A with 
respect to an orthonormal basis are continuous. It 
follows that the matrix entries of A with respect to 
any basis of H are continuous, i.e., are elements of 
CQ(G) and hence of L~(G). 

We know that (see Theorem 24 in Ref. 13) in the 
complex case the matrix entries of two inequivalent 
irreducible unitary representations are orthogonal. 
A similar result holds in the quaternionic case. To see 
this, let U and Vbe inequivalent irreducible unitary Q­
representations acting on Q-Hilbert spaces Hand K, 
respectively, and let urs(g) [respectively vrs(g)] be the 
matrix entries of Ug(Vl1 ) with respect to the ortho­
normal basis (es) [(fs)]· If M: H -+ K is the linear 

13 L. Pontrjagin, Topological Groups (Princeton University Press, 
Princeton, New Jersey, 1958). 
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transformation defined by Met = /w, Mes = 0 
s '" t, then by Corollary 1 to Schur's Lemma 

0= f(VgMU;len f s) dg 

= f u~(g)vsw(g) dg, 

if Then the representation g i -- U i is unitary and, 
moreover, irreducible, because the only vector sent 
into a multiple of itself by all the Ui is the null vector. 
Since in each matrix the two elements in the principal 
diagonal are equal, two of the matrix entries are 
identical. 

and also by the invariance of the integral, 

= f(V;lMUger,fs) dg 

= f utlg)v!,(g) dg. 

In words, every matrix entry of U is bothways orthog­
onal to every matrix entry of V. 

To study the orthogonal relations between the 
matrix entries of a single representation U, let 
M: H -- H be the linear transformation defined by 
Met = ew and Me, = 0 if s '" t. Then we have, as 
above, 

f(UgMU;ler , e.) dg = f u:t(g)usw(g) dg 

= f utlg)u!,(g) dg. (A) 

In case r:::::: sand t = w, M is Hermitian with 
Re (tr M) = I and so, from Corollary 2 to Schur's 
Lemma, it follows that 

fIUw,<g)12 dg = ~ for all w, s. 

Further, Eq. (A) shows that the n2 matrix entries are 
mutually orthogonal if and only if they are mutually 
left orthogonal. However, in contrast to the complex 
case, it is not necessary that they be orthogonal, as 
the following example shows. 

Example 1.' Let G be the symmetric group of degree 
3. The elements of G are 

go = (~ 
I 

~), gl = (~ 1 
~), g2 = G 1 

~), 1 2 0 

gs= G 1 
~), g4 = G ~), go = G ~). 2 0 1 

Let/= I~ o I ' J = I 0 1 I and define 
1 -1 0 

Uo =1, Ul = [(i + j)/.j2]J, 

U2 = [(.j3" - l)i/2.j2 - (.j3" + 1)j/2.j2]J, 

Us = [(-1 + .j3k)/2]I, U4 = [(-1 - .j3"k)/2]I, 

Us = [-(/i + 1)i/2.j2 + (.j3 - 1)j/2.j2]J. 

Let Ag = [ar.(g)] be any irreducible Q-representa­
tion of G of type IX. Define 

FIX = Span [a,ig)q: 1 S r, s S n", q E Q]. 

It is easy to check that F" depends only on the type IX 

of the representation and not on the particular repre­
sentation chosen. We call F", the space of matrix 
entries of type IX. Since every element of the generating 
set of F" is a (real) linear combination of the 4n! 
elements of the type 

ar.(g), a,ig)i, a,.(g)j, a • .(g)k, 1 S r, s S n"" 

F" is a closed linear manifold of L~(G) of dimension 
at most 4n! (see also Theorem 11, this paper). 

The following theorem generalizes the Peter-Weyl 
theorem to the quaternionic case. 

Theorem 4: The subspaces F" and Fp are bothways 
orthogonal if IX '" p. If I,.F" denotes the set of finite 
sums of elements of U"F", where IX ranges over all 
types and ~"F " the uniform closure of ~"F", then 

~ F" = CQ(G) and EElF" = L~(G). 
" " 

Proof: Let [ur.(g)], [vr.(g)] be unitary representations 
of types IX and p respectively. For any p, q E Q 

f [urs(g)p] [vtw(g)q]* dg 

= pq* f [(pq*)-lU.s(g)pq*]v:w(g) dg = 0, 

by the orthogonality relations proved earlier, since, 
for any quaternion q, the representation [q-1ur.(g)q] 
is equivalent to [u.s(g)]. Since the elements of F" and 
F p are linear combinations of elements of the form 
[ursCg)p] and [vtw(g)q], respectively, we have shown 
that F" and Fp are orthogonal. To prove that F" and Fp 
are left orthogonal, it is enough to show that, for 
p, q E Q, purs(g) and qvtw(g) are left orthogonal. But 

f [pur.(g)]*[qvtw(g)] dg 

= f u:.(g)[p*qvtw(g)(p*q)-l] dg(p*q) = O. 

For the second part, let us denote by ~ the set of 
all real functions arising from all possible real repre­
sentations of G. Then (Ref. 13, p. 119) the finite real 
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linear combinations of elements of Ll are dense in 
CR(G), the Banach space of real-valued continuous 
functions on G. It follows that finite quaternion linear 
combinations of elements of Ll are dense in CQ(G). 

Therefore, to prove that 

it is enough to show that every function in Ll is a 
linear combination (and hence a finite sum) of 
functions in U"F". But since every real representation 
A is equivalent to a direct sum of irreducible Q­
representations and since the matrix entries of 
irreducible Q-representations belong to U"F", it 
follows that every matrix entry of A and hence every 
element of Ll is a linear combination of elements of 
U,.F" . 

Since CQ(G) is dense in L3(G) and uniform con­
vergence implies L2-convergence and since the F" are 
mutually orthogonal subspaces of L3(G), we have 

Corollary: There exists at most a countable number 
of inequivalent irreducible Q-representations of G. 

Proof L3(G) is separable. 

The following theorem (cf. Ref. 13, p. 120) may 
now be proved exactly as in the complex case. 

Theorem 5: We select one representative from each 
equivalence class of irreducible Q-representations of 
G and denote them by 

u(1), ••• , u(n), ••.• 

Then for every elementg E G distinct from the identity, 
there exists an n such that u~n) is not the identity 
transformation. 

V. Q-CHARACTERS 

Let Ag = [ar.(g)] be a Q-representation of G of 
degree n. Define 

X(Ag) = Re [~ arr(g)]. 
r 

Then it is easy to see that if A and B are equivalent 
Q-representations, then X(Ag) = X(Bg). In this way 
we may associate with every equivalence class of 
Q-representations a real-valued function X(g) which 
we call (see also Finkelstein, Jauch, and Speiser9) its 
Q-character (to distinguish it from the usual defini­
tion of the character of a complex representation 

which we call the C-character). We denote by Xlg) 
the Q-character of any irreducible 0representation 
of type IX. Note that if Ag is of type IX, then 

X,,(g) = t! [arr(g) + iarr(g)i* + jarr(g)j* 
r + karrCg)k*] E F". 

Thus we have the following theorem. 

Theorem 6: Two irreducible Q-representations are 
equivalent if and only if they have the same Q­
character. Moreover, Q-characters of inequivalent 
irreducible Q-representations are orthogonal. 

VI. CLASSIFICATION OF IRREDUCmLE 
Q-REPRESENTATIONS 

We now proceed to study the inter-relations between 
the irreducible Q-representations and the irreducible 
C-representations of G. Let B be an irreducible C­
representation of G and Bits contragredient.14 Recall 

that (if X denotes the complex character) X(Bg) = X(Bg). 
B satisfies exactly one of the following three con­
ditions15•16 : 

(a) B is not equivalent to B. 
(b) There exists a matrix M such that M = M'l' 

(the transpose of M) and MBgM-l = Bg for all g E G. 
(c) There exists a matrix M such that M = _MT 

and MBgM-l = Bg for all g E G. We say (cf. Ref. 16) 
that B is nonreal, potentially real or pseudoreal 
according as it satisfies (a), (b), or (c). 

Note that every C-matrix representation B may be 
considered to be a Q-matrix representation since we 
have identified the complex field with a fixed subfield 
of the quaternions. However, even if B is irreducible 
as a C-representation, it need not be irreducible as a 
Q-representation. The following theorem9 gives a 
necessary and sufficient condition. 

Theorem 7: An irreducible C-representation B is 
an irreducible Q-representation if and only if B is 
not pseudoreal. If B is pseudoreal, then B decomposes 
over Q into the direct sum of two equivalent irre­
ducible Q-representations. 

Consider now an irreducible Q-representation A 
of G. We say that A is (i) of class R if it is equiv­
alent to a real representation, (ii) of class C if it is 
equivalent to a C-representation but not equivalent 

14 H. Weyl, The Theory of Groups and Quantum Mechanics (Dover 
Publications. Inc., New York, 1931), p. 123. 

15 G. Frobenius and I. Schur, Sitzber. Akad. Wiss. Berlin KI. 
Phys. Math. 186 (1906). 

16 E. P. Wigner, Group Theory and Its Application to the Quantum 
Mechanics of Atomic Spectra (Academic Press Inc., New York, 
1959), p. 285 et seq. 
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to any real representation, and (iii) of class Q if it is 
neither of class R nor of class C. The following three 
theorems establish correspondences between the 
various classes of irreducible Q-representations and 
C-representations. 

Theorem 8: A Q-representation is of class R if and 
only if it is equivalent to a potentially real representa­
tion. Two potentially real representations are Q­
inequivalent if and only if they are C-inequivalent. 

Proof" Since a C-representation is potentially real 
if and only if it is equivalent to a real representation,16 
the first part follows. For the second part, we have 
only to note that the C-character of a potentially real 
representation is real and hence equal to its Q­
character. 

Theorem 9: A Q-representation is of class C if and 
only if it is equivalent to a nonreal representation. 
Two nonreal representations Band Care Q-inequiv­
alent if and only if B is C-inequivalent to both C 
and C. 

Proof" If A be a Q-representation of class C, Q­
equivalent to a C-representation B, then it is clear 
that B cannot be potentially real. Also, since B is 
Q-irreducibk, B cannot be pseudo real by Theorem 7. 
Hence B must be nonreal. To prove the converse, we 
have only to show that a nonreal representation B 
cannot be Q-equivalent to a potentially real repre­
sentation D. But this is evident, since X(By) = 
UX(By ) + X(By)] is orthogonal to X(Dy) = X(Dy), 
using the classical orthogonality relations. 

If Band Care Q-inequivalent, then X(Bg) is not 
equal to X( Cg) and hence X(Bg) is not equal to either 
x( Cg) or X( Cg), i.e., B is C-inequivalent to both C and 
C. Conversely, if B is C-inequivalent to both C and 
C, then X(Bg) = UX(By) + X(Bg)] is orthogonal to 
X(Cg ) = Ux(Cg ) + X(Cy)] and hence Band Care 
Q-inequivalent. 

We now turn our attention to pseudoreal represen­
tations. If B is one such, then by Theorem 7, B = 
Bl EB B2 where Bl and B2 are equivalent irreducible 
Q-representations. Since X(B) is real, X(B!) = h(Bg) 
and hence the equivalence class of Bl is uniquely 
determined by B. We call any member of this equiv­
alence class a Q-representation induced by B. 

Theorem 10: A Q-representation A is of class Q if 
and only if it is induced by a pseudoreal representa­
tion. Two pseudoreal representations are C-inequiv­
alent if and only if their induced Q-representations 
are Q-inequivalent. 

Proof: Let the Q-representation of class Q of 
dimension n act on the Q-space Y. We may assume 
that A is unitary. Then g -+ A~ is a unitary C­
representation of G in yo. 

We first prove that g -+ A~ is irreducible. If it is 
not, let (el' ... , er ) be a basis in yo of some invariant 
subspace S for AO. Since AO is unitary, by replacing 
S by S1. if necessary, we may assume that r :$; n. The 
Q-subspace spanned by (el ,"', er) in Y is then 
invariant under A. Since A is irreduCible, we can 
conclude that r = n. But then the matrix of Ag with 
respect to (el' ... , en) is the matrix of A~ restricted 
to S with respect to (el, ... , en) which is complex­
a contradiction since A is of class Q. Hence AO is 
irreducible. 

We show next that AO is pseudoreal. If Au has the 
matrix A! + A:j (where A! and A: are complex) with 
respect to some basis in Y, then with respect to the 
corresponding basis in yo, A~ has the matrix 

I A; A:I· 
-A; A; 

Since A~ is unitary, A~ has the matrix 

1 
A; .4;1· 
-A~ A! 

The matrix 

M= I~ ~II 
has the properties M = _MT and MA~M-l = ~, 
i.e., AO is pseudo real. 

Since the equality X(Ag) = tx(A~) is evident by 
looking at the matrices of Au and A~, we conclude 
that A is induced by AO. 

Conversely, if B is a pseudoreal representation 
inducing the Q-representation A, then A has to be of 
class Q. For, if not, we may assume, by what has been 
proved so far, that A is either a potentially real 
or a nonreal representation. In either case X(A) is 
orthogonal to X(B) = 2X(A) = 2 Re [X(A)]-a con­
tradiction. 

The second part is proved by a comparison of 
characters. 

To sum up, the situation is as follows: There is a 
one-to-one correspondence between the equivalence 
classes of potentially real (respectively pseudoreal) 
representations and the equivalence classes of Q­
representations of class R (class Q). There is a one-to­
one correspondence between pairs of equivalence 
classes of nonreal representations, each pair consisting 
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of the equivalence classes of a representation and its 
contragredient, and the equivalence classes of Q­
representations of class C. 

This leads us to the following rule for the computa­
tion of irreducible Q-characters. Recall that an 
irreducible C-representation with character X is non­
real, potentially real or pseudoreal according as 

or 
= -1. 

(1) 

(2) 

(3) 

Rule: Every real irreducible C-character X(g) deter­
mines an irreducible Q-character X(g) = X(g) or 
-beg) according as X satisfies (2) or (3). Every nonreal 
irreducible C-character X(g) determines an irreducible 
Q-character X(g) = Re [x(g)]. All the irreducible 
Q-characters are obtained in this way. 

In the complex case, a C-character X is irreducible 
if and only if its (L2_) norm is unity. For the quater­
nionic case, we may show that the square of the norm 
of an irreducible Q-character is 1, t, or ! according 
as the corresponding representation is of class R, C, 
or Q. This does not in general give us a criterion for 
deciding the irreducibility of an arbitrary finite­
dimensional Q-representation, but if the square of the 
norm of its Q-character is t, we can conclude 
that the representation is irreducible and is of class 
Q. 

Every Q-character X(g) is an invariant function, 
i.e., X(g) = X(hgh-1) for all h E G. In contrast to the 
complex case, it is not in general true that the irreduc­
ible Q-characters form a basis for the subspace of 
invariant functions I in L~(G). In Example 2 of Sec. 
VII, for instance, there are only five irreducible Q­
characters, whereas L~(G) is of dimension 8. However, 
since, as is easily checked, the irreducible C-characters 
form a basis for I, we may conclude from our analysis 
that the irreducible Q-characters form a basis for I 
if and only if every irreducible C-character is real. 
This happens, for instance, when G = SO(3). 

In passing we note that SO(3) does not admit of any 
irreducible Q-representation of class Q, since it does 
not admit of any irreducible C-representation of even 
degree. 

We conclude this section with the following result. 

Theorem 11: If A is an irreducible Q-representation 
of type a; and degree n, then the subspace FIX has 
dimension n2, 2n2, or 4n2 according as A is of class 
R, C, or Q. 

Proof: If A is of class R, we may assume that A is 
real and orthogonal. Since the (real-valued) matrix 
entries of A are then orthogonal and the reals com­
mute with all the quaternions, FIX is of dimension 
n2• 

If A is of class C, then again we may take A to be 
complex and unitary. If Au has the matrix [arlg)], its 
contragredient has the matrix [orlg)]. By definition, 
every element of F CI is a linear combination of ele­
ments of the form ar.(g)(f3 + yj) = f3ar.(g) + yjor.(g), 
where f3 and yare complex. Again using the classical 
orthogonal relations, we may conclude that Fa is of 
dimension 2n2• 

Now, let A be in class Q. Consider AG. By 
Theorems 7 and 10, there exists a matrix M such that 

MA;M-
1 = 1 By 0 I' 

o Cg 

where Band C are equivalent to A. Therefore, FIX is 
spanned by the right Q-multiples of the matrix 
entries of MAGM-l and hence of AG. But the set 
of matrix entries of AG is closed (except possibly for 
sign) with respect to complex conjugation and by the 
same method used earlier in the proof, we can con­
clude that FIX is spanned by the matrix entries of AG. 
But, by Theorem 10 again, AG is an irreducible C­
representation. Invoking the classical orthogonal 
relations once more, we conclude that FIX is of 
dimension 4n2• 

VII. ABEUAN GROUPS 

Let now G denote a compact metric Abelian group. 
Since every irreducible C-representation of G is one 
dimensional, it follows from Theorem 10 that G does 
not admit of any irreducible Q-representations of 
class Q, i.e., every irreducible Q-representation of G 
is equivalent to a C-representation. It follows im­
mediately that every irreducible Q-representation of 
G is one dimensional. However, in contrast to the 
complex case, it is not true that if every irreducible 
Q-representation of a compact metric group G is 
one dimensional, then G is Abelian, as the following 
example shows. We denote by GO the group opposite 
to G (i.e., the elements of GO are those of G and the 
group operation in GO is given by g . h = hg). 

Example 2: Let G be the quaternion group, i.e., 
G = [±l, ±i, ±j, ±kJ. Consider GO. We show that 
every irreducible Q-representation of GO is one 
dimensional. 

If q E Q, let Rq denote the linear transformation of 
the Q-space Q, given by Rip) = pq for all p in Q. 
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Consider the representations: 

(1) g~Rg; 

(2) g ~ Ag = Rl for all g EGo; 

(3) g ---+ Ag = Rl if g = ± 1, ± i, 
= R_l otherwise; 

(4) g---+Ag = Rl if g = ±1, ±j, 
= R_l otherwise; 

(5) g---+Ag = Rl if g = ±1, ±k, 

= iLl otherwise. 

It is easy to verify that the above five (one-dimen­
sional and hence irreducible) Q-representations are 

JOURNAL OF MATHEMATICAL PHYSICS 

mutually inequivalent. If Fr is the subspace in 
L~(GO) = Q(S) associated with the rth-representation 
above, then Fl has dimension four and each of the 
remaining Fr has dimension one. It follows that GO 
cannot have any irreducible Q-representation in­
equivalent to all the five above and in particular that 
GO does not have any Q-representation of degree 
greater than one. 
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This paper extends to three-dimensional vector electromagnetic scattering problems our previous 
development of the scalar problems. We introduce a vector-dyadic formalism that facilitates exploiting 
the previous results, and derive analogous integral equations which specify the multiple-scattering 
amplitudes for many objects in terms of the corresponding functions for isolated scatterers. One 
representation is in terms of the dyadic analog of Beltrami's operator. For arbitrary configurations, 
the multi-scattered amplitudes are developed as series in inverse powers of the separations of scatterers 
(with coefficients in terms of isolated scatterer amplitudes and their derivatives); for two scatterers, 
we derive a corresponding closed form in terms of a differential operator. Another representation is a 
system of algebraic equations for the many-body multipole coefficients in terms of the isolated scatterer 
values. Explicit closed forms are derived for two arbitrarily spaced elementary scatterers (electric 
dipoles, magnetic dipoles, etc.) both by separations of variables, and by working with elementary dyadic 
fields. 

1. INTRODUCTION 

I N previous papersl - 3 we considered the two- and 
three-dimensional scalar problems of multiple 

scattering of waves by arbitrary configurations of 
arbitrary scatterers. In the present paper, the results 
are extended to the three-dimensional electromagnetic 
case. We parallel our previous analysis of the three­
dimensional scalar case,3 and exploit as much of that 
development as feasible; similarly, because recent 

• Present address: Department of Mathematics, University of 
Illinois at Chicago Circle, Chicago, Illinois. 

1 V. Twersky, in Electromagnetic Waves, R. E. Langer, Ed. (Univer­
sity of Wisconsin Press, Madison, Wise., 1962), pp. 361-389. 

• J. E. Burke, D. Censor, and V. Twersky, J. Acoust. Soc. Am. 
37, 5 (1965). 

3 V. Twersky, J. Math. Phys. 3, 83 (\962). 

surveys of the literature of scattering by more than 
one object are available4•5 we restrict citations to 
explicitly related work. Conventional integral and 
series scalar-vector representations which are adequate 
(although not particularly convenient) for isolated­
scatterer problems, are too cumbersome for multiple 
scattering problems. We therefore work with vector­
dyadic representations essentially as in Morse and 
Feshbach,6 and in Saxon7•8 ; we supplement these with 

• J. E. Burke and V. Twersky, Radio Sci. 68D, 500 (1964). 
$ V. Twersky, J. Res. Natl. Bur. Std. MD, 715 (\960). 
• P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Company, Inc., New York, 1953), particularly 
p. 1897 and Chap. 13. 

7 D. S. Saxon, "Scattering of Light," Scientific Report No.9, 
Department of Meteorology, UCLA (\955). 

8 D. S. Saxon, Phys. Rev. 100, 1771 (1955). 
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results of Hansen,9 Stratton,I° Silver,u and Wilcox,12 
as well as with additional representations and theorems 
derived in the course of the present development (e.g., 
by separating variables in the vector wave equation). 
We use dyadic surface integral forms, complex 
integral dyadic plane-wave representations, inverse 
distance series involving the vector scattering ampli­
tudes acted on by the dyadic analog of Beltrami's 
operator, series for dyadic fields in terms of dyads of 
vector harmonics, etc. To facilitate discussion we 
start with a relatively conventional vector formalism, 
and then switch to dyadic representations. 

In the following we always indicate dyadics by 
using a tilde-g, ii, ip, etc., and write vectors as g, u, cp, 
etc.; a caret always indicates a unit vector-g, X, 9, 
etc., but we also define some special symbols (0, i, e, 
D, etc.) to represent unit vectors. For brevity, we regard 
the numbered equations and figures of Ref. 3 as part 
of the present text, and cite them as Eq. (3 :8), Fig. 3 :1, 
etc. 

2. ONE SCATTERER 

2.1. Vector Fields 

The three-dimensional scattering of a plane electro­
magnetic wave (with e- irot suppressed) is specified in 
the external region by a solution of 

v x V x I./J - k21./J = 0, V· I./J = 0, 

k = Ikl = 27T/)., (1) 

subject to prescribed conditions on the scatterer's 
surface, and subject to the condition that I./J consist of 
a plane wave cp plus a radiated wave u. With increasing 
distance from the scatterer (r -+ 00) the function I./J 
(which represents either the E or H field) reduces to a 
plane wave 

cp(i: e) = eeik .r , k = ki, r = ro, (2) 

where e, i, and 0 are unit vectors. Because of the 
divergence condition V· cp = 0, the "polarization 
vector" e is perpendicular to the direction of incidence, 
e • i = 0; to make this explicit, we write 

cp(i: e) = e • (i - ii)eik.r = e • ip(i), 

ip(i) === (i - ii)eiki.r , (3) 

where i is the unit dyadic, and ip is a dyadic plane wave. 
The difference I./J - cp = u, the scattered wave, may 

9 W. W. Hansen, Phys. Rev. 47, 139 (1935); see also Physics 7, 
460 (1936); J. Appl. Phys. 8, 282 (1937); W. W. Hansen and J. G. 
Beckerly, Physics 7, 220 (1936); Proc. IRE 24, 1594 (1936). 

10 J. A. Stratton, Electromagnetic Theory (McGraw-Hili Book 
Company, Inc., New York, 1941). 

11 S. Silver, Microwave Antenna Theory and Design (McGraw-Hili 
Book Company, Inc., New York, 1949). 

12 C. H. Wilcox, Commun. Pure Appl. Math. 9,115 (1956). 

be specified by the Sommerfeld-Silver radiation 
condition11. 12 

lim r[o X (V X u) + iku] = 0, as r -+ 00. (4) 

For concreteness, we may take the origin of coordinates 
of r as the center of the smallest sphere which com­
pletely encloses the scatterer; we use the same 
geometry as in Fig. 3: 1. 

From (4) and Green's theorem it follows12 that for 
r f"o..I 00, 

U f"o..I g(o, i: e)h(kr), her) === h~l)(r) = eiT/ir, (5) 

where the normalized "scattering amplitude" g(o, i: e) 
specifies the "far-field" response in the direction of 
observation 0 to plane-wave excitation of direction 
of incidence i and polarization e. Since V • u = 0, we 
have 0 • g = 0, and we may write 

g(o, i: e) = (i - 00)' g(o, i: e). 

In general, we take I./J = E, and V x I./J = Hiw,uo = 
Hiw. At the surface of a perfect conductor, 

o x I./J = 0 x (cp + u) = 0, (6) 

where 0 is the surface normal. For a scatterer specified 
by relative electrical constants € and ,u we introduce 
the internal field I./J' such that 

V x V X I./J' - k'2I./J' = 0, V .I./J' = 0, 

k' = k(€,u)!, (7) 

and use the surface conditions 

o xl./J = 0 xl./J', 0 x (V xl./J) = 0 x (V xl./J'/,u). 

(8) 

Surface integral representation: Introducing the 
free-space dyadic Green's function13,7,6 

I'(r, r') = (i + V~) kh(k Ir :- r'l) , 
k 47T1 

V X V x r - k2r = -io(r - r'), (9) 

we apply Gauss' theorem for dyadics to construct 

f [(V x V x u) • r - U· (V x V x r)] dV 

= Io • [(V x u) x r + u x (V x r)] dS 

= - f [(V x u) • (0 x r) - (0 x u). (V x r)] dS. 

(10) 

In the region external to the scatterer, we use (1), (9), 

13 H. Levine and J. Schwinger, Commun. Pure Appl. Math. 3, 
355 (1950). 
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and (10) to reduce the dyadic form of Green's theorem 
(10) to 

u(r) = I [(V x u) • (0 x f') - (0 x u) • (V x f')] dS, 

(11) 

where now 0 points away from the scatterer, and 
where the integral is over any surface enclosing the 
scatterer and excluding r. We rewrite (11) as 

u(r; i: E) = ~ I[(v x u) • (0 x ii) 
47Ti _ (0 x u) • (V xii)] dS 

== {ii(k Ir - r'l), u(r'; i: E)}; 

li(k Ir - r'l) = (i + VV/k2)h(k Ir - r'l) = r47Ti/k, 

her) = eir/ir. (12) 

If we replace r by r . e in the above, where e is an 
arbitrary constant vector, then (10) reduces to the 
usual vector form of Green's theorem [say (10)· e] 
and the left-hand sides of (11) and (12) reduce to 
U· e. 

Since {1i(k Ir - r'l), cp(r')} = 0 for r outside S, we 
may also write 

u(r) = {1i(k Ir - r'I), ~(r')}. (13) 

From (13), (9), and (8), we obtain 

~ = cP - J [ (:2 - k2)~' • r 

+ (1 - ;)(V x ~') . (V x r)] dV, (14) 

which also holds for an interior point, in which case 
~ = ~' is supplied by the internal (instead of the 
external) singularity of r. The case fh = 1 is discussed 
in detail by Saxon,? and a generalization of (14) is 
considered in Ref. 14. 

If k Ir - r'l » 1 and r » r', then 

ii(k Ir - r'l) "" (i - oo)e-iko.r'h(kr) = p( -o)h(kr), 

(15) 
and (12) reduces to the far-field form (5) with 

g(o, i: E) = {(i - oo)e-ikO.r', u(r'; i: E)} = {p(-o), u}. 

(16) 

For any unit vector y perpendicular to 0 we have 

y. g(o, i: E) = {cp( -0: y), u(i: E)}, (17) 

where r' has been suppressed. If y = g = gig, then 
the left side of (17) reduces to g(o, i: E). 

Scattering theorems: To facilitate subsequent appli­
cations we use the present formalism to derive certain 
theorems which g fulfills. See Saxons for derivation 
based on a tensor scattering matrix. 

14 V. Twersky, J. Math. Phys. 3, 716 (1962). 

Consider two solutions of a scattering problem for 
two different incident waves, say ~l = CPl + Ul and 
~2 = CP2 + u2, such that CPl = CP(il: E1)' etc. Since 
~1 and ~2 satisfy the same conditions at the scatterer 
[Le., (6), or (7) plus (8)], we have {~l' ~2}.s, = 0 on its 
surface S, and since ~l and ~2 fulfill (1) in the external 
region, it follows from (10) • e that 

{~1' ~2} = {(CP1 + Ul)' (CP2 + u2)} = 0 (18) 

for any surface (including the surface at infinity Soc,) 
surrounding the scatterer. Since 

{CP1, CP2} = {ul , u2}soo = 0, 
(18) reduces to 

{CP1, u2} = -{Ul' CP2} = {CP2, Ul}' (19) 

where the last equality follows from the explicit form 
of the operator in (12). Thus since CP1 = CP(i1: E1) = 
E1 • p(i1), we use (17) in (19) to obtain the reciprocity 
relation 

E1 • g( -iI' i2: E2) = E2 • g( -i2' i l : El)' (20) 

This holds for the relatively weak surface condition 
{~1' ~2}S = 0, which includes (6), etc. 

If ~1 is replaced by its complex conjugate ~i ' then 
for lossless scatterers 

{~i, ~2} = {(cpi + ui), (CP2 + u2)} = O. (21) 

We have {cpi ' CP2} = 0, and 

{ui, u2} = ~ 2ikJ(0 x g2h). (0 x glh)* dS oo 
4m 

= .l Jg(O; i2 : E2)· g*(o, i1: E1) dno, (22) 
27T 

where dno is the differential solid angle around 0, 

and the integration is over all angles of observation. 
Since cp* = E*e-iki*'r = cp( -i*: E*), we reduce (21) to 

Ei • g(ii, i2 : E2) + E: • g*(i:, il : El) 

= -1 fg(O, i2 : E2) • g*(o, il : E1) dno ' (23) 
27T 

In particular, in the forward scattered direction, such 
that all i's reduce to i, and all E'S to E, we obtain the 
"energy theorem" 

-Re E· g(i, i: E) =.l Jlg(o, i: E)12 dno 47T 

k2 

= -Q(i: E), 
47T 

(24) 

where Q is the total scattering cross section. If the 
scatterer is not lossless, then 47TJk2 times the left-most 
form of (24) equals the sum of scattering plus absorp­
tion cross sections. 
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Plane-wave representation: If u is known, then (16) 
gives g by integration. An inverse relation follows 
from (14) by using15 

h(k Ir - r'l) = J... feikP.(r-r,) d0'P' (25) 
217 

where the limits of the complex paths of the angles 
associated with the unit vector p(-r, fJ) (each path 
analogous to one in Sommerfeld's integral for HJ1» 
are chosen to ensure 1m p • (r - r') > O. See additional 
discussion in NoetherI5 and after (3 :8). 

Substituting the corresponding dyadic 

h(k Ir - r'l) = (1 + ~)h(k Ir - r'l) 

= 2~ f (1 - pp)eikp.(r-r') dO'P (26) 

into D of (12), and using definition (16), we obtain the 
vector analog of (3 :9): 

u(r; i) = J... feikP.r{(1 - pp)e-ikpor
', u(r'; i: E)} dO'P 

217" 

= ..!.. feikP'rg(p, i: £) d0'P' 
217 

(27) 

which holds at least for r > r;"ax == a. (See Ref. 3 for 
weaker condition.) 

Cartesian representation in inverse powers of r: The 
asymptotic form given in (5) is the leading term of a 
series expansion of D in inverse powers of r which 
converges for r > r;"ax = a; see WilcoxI2 for a detailed 
discussion. This series, with coefficients expressed in 
different forms, may be obtained from (27) by various 
procedures, e.g., by means of 

2~ feirp'OF(P) dO'P = h(rm(r; D)F(o), 

~(r; D) = 1 + i. D + (i.)2 D(D - 1 . 2) + ... 
2r 2r 2! 

(i.)n D(D - 1· 2)(D - 2' 3)'" (D - [n - 1]n) 
+ 2 , ' r n. 

D = -:-21 
[0: + sin 80o(sin (00)], 

sm () 
(28) 

where r is a parameter, F(o) is representable as series 
of surface harmonics, and D is Beltrami's operator; 
see (3:10) to (3:16) for details. Using (28) for the 

15 F. Noether, in Theory of Functions, R. Rothe, F. Ollendorf, and 
K. Pohlhausen, Eds. (Technology Press, Cambridge, Mass., 1948), 
p. 167, Eq. (7). 

Cartesian components of (27), we obtain 

u = h(kr)~kr; D)g(o) 

= h(kr)[g + _i Dg + (~)2 D(D - 2) g+ ... ], 
2kr 2kr 2 

(29) 
subject to V . D = 0 and V x V X D - k2D = O. 

Special function representations: In the following, 
except for normalization factors, we work with the 
transverse vector spherical functions introduced by 
Hansen,9 and discussed by Stratton,IO Morse and 
Feshbach,6 Saxon,7 Stein,IS and others. We use 

Mnm(r) = h .. (kr)C!:,(o), 

C!:'(o) = -r x VY!:'(o) = (8 .0'1' - !f;00) Y!:'(o) 
8m 0 

= -L(o)Y!:,(o), 

Y!:'(o) = P!:'(cos ()e'mfI', 

y;m(o) = (-l)m[(n - m)!/(n + m)!]P!:,(cosO)e-'mq>. 

(30) 

Here hn = h~) is a radiating spherical Hankel 
function, and P!:, is an associated Legendre function. 
Similarly 

Nnm(r) = [n(n + l)h.,(kr)P!' (0) 

+ okr[krh.,(kr)]B!:,(o)]/kr, 

P:;'(o) = oY!:'(o), B:;'(o) = rVY!:'(o) = 0 x C!:,(o). 

(31) 

The two sets are related through kN = V x M and 
kM = V x N. For real directions, the corresponding 
even and odd vector harmonics P~::, and C~::, of 
Morse and Feshbach6 (pp. 1865, 1898, 1899) are the 
real and imaginary parts, respectively, of the present 
P!:, and C:;'/[n(n + 1)]t. We have 

c;;m(o) = (-1)m[(n - m)!J(n + m)!][C:;'(o*)]*. 

We also work with N in an alternative form, 
essentially as in Morse and FeshbachS (p. 1866): 

'n-1N ( ) _ n(n + 1) [h 'n-1E _ h 'n+1H ] 
I n r - n-I I n-l n+l1 n+l , 

2n + 1 

E Bn P Bn 
n-l == P n + -, H.,+l == n - -- , 

n n + 1 
(32) 

where we hue dropped arguments and the index m 
for brevity. Henceforth, also for brevity, all four-digit 
page numbers we cite are to be found in Morse and 
Feshbach.6 

16 S. Stein, Quart, AppJ. Math. 19, IS (1961). 
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The angular functions satisfy the following orthog­
onality relations: 

f c;:;m • B~ dO = f c,;m • p~ dO = f p;m • B~ dO = 0, 

f c,;m . C~ dO = f B;m • B~ dO 

= n(n + 1) f p;m . p~ dO 

= (-1)m47Tbnybm/ln(n + 1)/(2n + 1), 

f E;~1 . H:+l dO = f E;_~ . C~ dO 

= f H;~l . C~ dO = 0, 

nf E;~l· E~_1 dO = (n + 1) f H;~· H~+l dO 

= (-1)m47Tbnybm/l' 

P;:' • B;:' = P;:' • c;:' = B;:' • C;:' = 0, 

C;:' • C~ = B;:' • B~ . (33) 

The asymptotic forms of Hansen's functions are 

inMikr) '" h(kr)Cn(o), in-INn(kr) '" h(kr)Bn(o), 

(34) 

where h = h~l) as in (5). 
From pp. 1782 and1875 we may write the normalized 

dyadic Green's function for r > r' as 

00 n 

li(k Ir - r'D = I I [Mnm(r)M~._m(r') 
n=1 m=-n 

d
n 

== 2n + 1 , 
n(n + 1) 

(35) 

where the functions with superscript 1 are the non­
singular nonradiating functions (j type), and those 
without superscripts are the radiating functions 
(h(l) type). If we substitute (35) into (12), we obtain 

u(r; i: E) = I [Mnm(r)cnm(i: E) - iNnm(r)bnm(i: E)]in, 

cnm(i: E) = i-n( _l)m dn{M~._m(r'), u(r'; i: E)}, 

bnm = i-n+I(_1)m dn{N~._m' u}. (36) 

The scattering coefficients (or multipole coefficients) 
c and b are of the magnetic-type and electric-type, 
respectively. If we introduce (34) into (36), and 
compare with (5) we have 

g(o, i: E) = I [C;:'(o)cnm(i: E) + B;:'(o)bnm(i: E)], (37) 

which may also be derived directly from (16) by 

substituting [from (35) with r'" 00, or from p. 1866]. 

per'; -0) = (1- oo)e-ikO'f' 

= I [C;:'(o)M~._m(r') + iB;:'(o)N~._m(r')wn( _l)m dn. 

(38) 

We could also have obtained (36) for u by substituting 
(37) into (27). Thus 

(39) 

which reduces to (36) on using 

inMnm(r) = 2~ f eikP·rC;:'(p) dOl), 

in-INnm(r) = 2~ f eikP.rB;:'(p) dOl) (40) 

(the radiating function analogs of the forms on 
pp. 1865-1866). 

General representation in inverse powers of r: The 
present series leads to an inverse-distance expansion 
fully analogous to (3: 16). For the scalar case,3 we 
substituted Hankel's polynomial form 

hn(r)in = h(r)[1 + n(n + 1)(i/2r) 

+ n(n + l)[n(n + 1) - 1 . 2] (1/2!)(i/2r)2 + .. .J 
== h(r)~(r; n[n + 1]), (41) 

into u = Ianm(i)hikr)iny;:,(o), and then used 
Legendre's equation 

n(n + I)Yio) = DYnCo), (42) 

and the scalar amplitude g = I anm(i) Y;:'( 0) to 
obtain the form u = h(kr)~ (kr; D)g(o) [implicit in 
the Cartesian representation (29)]. 

We obtain the analog of (42) for the vector 
spherical harmonics by separating variables in the 
vector wave equation (1); we write ~(r) as a series 
of functions Rn(r)F nCO), and obtain 

Fn(0)[r2k2 + (I/Rn)orCr2o"Rn)] 

= r2[V x (V x Fn) - VV . Fn] == Jj. Fn(o), (43) 

where Jj reduces to Dl in Cartesian coordinates. In 
polar coordinates, with F = Fi + Fe6 + F",f/J, 0 = P, 
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we have 

D·F = r{DFr + 2Fr + -?:-[o6(sinOF6) + OtpFtpl} 
smO 

+ O{DFe + _,_1_ [Fe + 2cosOo<pFtpJ - 20eFr} 
sm2 0 

From the definitions in (32), 

2n + 1 
En- 1 - Hn+1 = n(n + 1) Bn , 

(52) reduces to 

in-1Nir) = -h(kriD(kr; D). Bn(o). (53) 

+ CP{DFtp - _._1_[_Ftp + 2 cos OO<pFe] - -!:- O<pFr}. We may now construct the full vector analog of the 
sm2 0 smO 

(44) scalar solution (3:16). Substituting (51) and (53) into 

If we specialize (43) to RF =M of (30), and use 
Bessel's equation 

[k2r2 + orCr2orhn)/hn] = n(n + 1), (45) 

we obtain the vector analog of (42): 

[n(n + 1) - D .]CnCo) = O. (46) 

Similarly, if we specialize (43) to RF = N of (32), 
apply (45) for hn- 1 and hn+1 and use the orthogonality 
properties of En-I' Hn+1 as in (33), we obtain 

[en - l)n - D.] En- 1 = 0, En- 1 = P n + Bnln, (47) 

[en + l)(n + 2) - D .]Hn +1 = 0, 

Hn+1 = Pn - Bn/(n + 1). (48) 

The above provides a different procedure than the 
usual one of synthesizing solutions of the vector wave 
equation from known solutions of the scalar equation: 
We separate variables in the vector equation to obtain 
(43) and work with solutions of the form h.(r)F.(o), 
where F represents the three sets of eigenvectors 
En-I, Cn, and Hn+1 of the linear operator D. 

Using (41) we rewrite M of (30) and N of (32) as 

inMn = h~(n[n + 1])Cn, 
in-IN = h n(n + 1) 

n 2n + 1 

X [~([n - 1]n)En_ 1 - ~([n + IJ[n + 2])Hn+1]' 
(49) 

where the three ~'s are polynomials in (n[n + 1]), 
([n - l]n), and ([n + IJ[n + 2]), respectively. From 
(46)-(48), we have 

:0("[,, + l])F. = ~(D .)Fv == ii . Fn 

(36), reduces the solution to 

u = h(kr)i>Ckr; D). z[C::'(O)Cnm + B::,(o)bnml 

= h(kr)<j)(kr; D) • g(o, i: E), (54) 

where the differentiations are with respect to the 
angles of o. 

The longitudinal (with respect to 0) P terms do not 
appear explicitly in (54) [or in (53)]; however, except 
for the leading term (the far-field form hg), components 
along 0 are generated by the D . operation. The polar 
representation of the above series form obtained by 
using (44) for D, with polar components of subsequent 
terms expressed recursively in terms of the first (g), 
was derived originally by Wilcox,12 who also showed 
that the series in ,-V converged absolutely and 
uniformly in r, 0, and cp in any region r > r~ax = a. 

Since our series for the scattering amplitude g(o) 
of (37) is a general transverse form, we see from (27) 
and (54) that 

.L feikNFCP) dOp = h(r)<])(r; D) . F(o), 
271' 

(55) 

where r is a parameter, and where F(o) is representable 
as a series of transverse vector surface harmonics. To 
cover vector problems for which V· \fI ¥= 0, we 
generalize (55) to include nontransverse components 
(P::'). This corresponds to fields which involve the 
longitudinal functions 

ii(kr; D) = 1 + (i/2kr)D essentially as on p. 1865, and in terms of E and H of 
+ (i/2kr)2D. (D - 1 .21) + .. '. (50) (32). Thus if 

Using (50) in (49), we obtain F(o) = z{C::'(o)cnm + B::,(o)bnm + P::,(o)Pnm], (57) 

inMn(r) = h(kr)i>(kr; D) • CnCo), (51) then substituting (57) for F(p) in (55) we obtain 
in-INner) 

= h(kr)<D(kr; D). [n(n + 1)/(2n + l)](E
n

_ I - Hn+I)' :71'f eikll.rF(p)dOp 

(52) = ! [Mnm(r)cnm - iNnmbnm - iLnmPnmlin == V. (58) 
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From the second equality of (56), and from (41), (47), with 
and (48) we obtain g(o, i) = g(o, i: e)e + g(o, i: 5)5 (66) 

Lnmin- 1 = _h_ [n~([n - 1]n)En_1 
2n + 1 

+ (n + l)~([n + 1][n + 2])Hn+1] 

- - 1 = h~(D) • -- [nEn_ 1 + (n + l)Hn+1] 
2n + 1 

= hcjj(15) • P;:'(o), (59) 

where the final form followed from 

in accord with (62) and with Saxon's definition. 7•s 

Although we could construct the dyadic functions 
from the vector ones by using (64) and (66), it is some­
what simpler to consider the dyadic scattering 
problem systematically. In the following, (ld) means 
Eq. (1) in terms of 1jJ, etc. 

Surface integrals: If we transpose the dyadic fi 
terms in (10), we obtain 

nEn _ 1 + (n + l)Hn+1 = (2n + l)P n' f [fiT. (V x V x u) - (V x V x fi)T • u] dV 

Substituting (51), (53), and (59) into the series V of f 
(58) gives = - [en x fi)T • (V' X u) - (V' x fi)T • (n xu)] dS, 

V = hcjj(15) . ~ [C;:'(o)cnm + B;:'(o)bnm + P;:'(o)Pnm] (67) 

= h(kr)<J)(kr; 15) • F(o). (60) where the superscript T indicates the transposed 

Thus (55) holds for any F(o) representable in terms of (Gibbs' conjugate) dyadic. For any dyadic solution of 
any series of vector surface harmonics. (ld), 

2.2. Dyadic Fields 

We may parallel the above development of the 
scattering problem of the vector plane wave cp(i: e) 
of (2) by the analogous development for the dyadic 
plane wave introduced in (3): 

95(i) = (1- ii)eikl.r = (1 + VV/k2)eikl.r 

= V x V x leiki.r/k2. (61) 

The dyadic scattering problem, because of its higher 
symmetry, is often the easier one: for the vector form 
(2) we must specify both a direction of incidence i 
plus a direction of polarization e in the plane perpen­
dicular to i, but in (61) we specify only the direction of 
incidence i = k/k. The vector plane wave follows from 
cp(i: e) = 95(i) • e, and we may introduce a dyadic 
scattering amplitude6- s g( 0, i), such that the vector 
amplitude follows from 

g(o, i: e) = g(o, i) • e. (62) 

We may rewrite (61) as 

95(i) = (ee + 55)eikl.r =cp(i: e)e +cp(i: 5)5, (63) 

where i, e, 5 form an orthogonal set of unit vectors. 
From the superposition principle, the corresponding 
dyadic scattered wave is thus 

a(r; i) = u(i: e)e + u(i: 5)5. (64) 

Asymptotically, we have 

a(r; i),...., h(kr)[g(o, i: e)e + g(o, i: 5)5] = h(kr)g(o, i) 
(65) 

(V x V X p)T = k2PT = V X V X pT, 

(n x p)T = _pT X n, (V x p)T = _pT(XV), (68) 

where (x V) operating to the left on P in the last 
equality means differentiate to the left on P but leave 
the vector part of x V on the right of P. In particular, 
for P = fi of (9), we have 

fiT = fi, (n x fi)T = -fi x n, 

(V x fi)T = -V x fi = hl(k Ir - r'l)ko x 1. (69) 

From the steps leading to (10) and (67), we obtain 

f [pT. (V X V x fl) - (V x V x FP . a] dV 

= - f [en x p)T • (V X a) - (V x p)T • (n x U)] dS. 

(70) 

In the region external to the scatterer, we use (70) 
for P = fi = hk/41Ti to obtain 

a(r; i) = ..!.. f[(n x h)T • (V X a) 
47T1 

- (V X h)T • (n x a)] dS == {h, a}, (71) 

where n points away from the scatterer. It is this 
definition of the brace operation for dyadics, equiva­
lent to (12) for a replaced by a vector u, that we use 
henceforth. Since (AT. B)T = BT . A, we have aT = 
{h, aT}, and also 

aT = {h, af =..!.. f[(v x U)T. (n x h) 
47T1 

- (n x fl)T. (V x h)] dS = -{fl, h}. (72) 
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Similarly 
g(o, i) = {cp( -0), u(r/; i)}. (73) 

From (18d), i.e., {ViI' Vi2} = 0, we proceed as for 
(19) to obtain 

{CP1' u2} = -{u1, CP2} = {CP2, U1}T, (74) 

where the last equality follows from (72). Thus using 
(73) in (74), we obtain Saxon's results 

g( - iI, i2) = gT( - i2, i1), (75) 

which also follows from (20) and (62): 

£1 0 [g( -iI' i2) 0 £2] = £2 0 [g( -i2' i1) 0 £1] 

= £l ogT(-i2 ,i1)o£2· 

From (74), we see that i1 0 g(i1' i2) = g(i1' i2) 0 i2 = 0, 
i.e., g is transverse both fore and aft [cf. (66)]. From 
(66) and (74), we have 

g(i1' i2) = gT( -i2' -i1) = £lg( -i2' -i1: £1) 

+ 81g(-i2' -i1: 81), (76) 

which supplements (66) in providing a vector repre­
sentation for g(i1' i2) in terms of observed instead of 
incident polarizations. 

Similarly from (21d), i.e., {Vii, Vi2} = 0, we proceed 
as for (21) to obtain 

{ cpi , U2} + {u: , CP2} + {u:, U2} = 0. (77) 

The first term equals g(ii, i 2), the second reduces to 
+{cp: , U1}T* = gT*(i: , i1), and the last equals 

{ui, u2} = ~ 2ikf(0 X glh)*T 0 (0 x g2h) dS 
4m 

= ..l fgT*(O, i1) 0 g(o, i2) dO. (78) 
27T 

Thus the dyadic analog of (23) is 

_(0* 0) + _t(o* 0) 1 f -t( 0) -( 0) dfl g 11 , 12 g 12 , 11 = - - g 0, 11 0 g 0, 12 U, 
27T 

gt == gT*, (79) 

as obtained originally by Saxons by a briefer, more 
abstract procedure. The symbol gt represents the 
Hermitian adjoint of g. In the forward direction 
ii = i: = i1 = i2 we may reduce (79) to (24): 

-£ 0 [g(i, i) + gtci, i)] 0 £ = -2 Re [£ 0 g(i, i) 0 £] 

= ..l flg(O, i) 0 el2 dO 
27T 

k2 

= - Q(i: E). (80) 
47T 

Plane wave form: To construct the dyadic analog of 
(27), we use (1 - pp). (1 - pp) = 1- pp, and rewrite 

(26) in terms of the form (61) as 

ii(k Ir - r/l) =..l fcp(r; p) 0 cp(r'; -p) dD.1J. (81) 
27T 

Substituting in (71) and using (73), we obtain 

u(r; i) = ..l ftP(r; p) 0 g(p, i) d01J 27T 

- ..l f ikp·r -( 0) dfl - e g p, I U1J. 

27T 

Similarly for (55d), etc. 

(82) 

If the scatterer is not at the origin r = 0, but at 
r = b then we may work with 

u 0 cp(b; i) '"" h(kr)cp(b; -0) 0 g(o, i) 0 cp(b; i) 
= heikb.(I-O)g(o, i). (83) 

Special function series: Corresponding to 

tP(i) = cpT(i) = (1 _ ii)eikl-r 

= L [M~m(r)c;;m(i) - iN~mB;;m]in( _l)m dn, 

d = 2n + 1 (84) 
n n(n + 1)' 

we have 

m.n 

g(o, i) = L [C;;'(o)cnm(i) + B;;'bnm(i)], (86) 
where 

cnm(i) = L [ocnmv/lC;/l(i) + ,8mnv/lB;/l(i)], 
V./l 

bnm(i) = L [Ymnv/lC;/l(i) + <5nmv/lB;/l(i)]. (87) 

The reciprocity relation (75) gives 

and similarly for <5; for ,8 and Y we obtain this form 
with (_I)n+v+1. 

For a spherically symmetric scatterer, 

u(r; i) = L [Mnm(r)c;;m(i)cn - iNnmB;;mbnW( _l)m, 
(88) 

g(o, i) = L [C;;'(o)c;;m(i)cn + B;;'(o)B;;m(i)bn]( -It, 
co n 

L = L L ' (89) 
n=l m=-n 

where band c are independent of directions. We may 
rewrite (89) as 

00 

g(o, i) = L [Cn(o, i)cn + Bn(O, i)bn], 
n=l 

n 

Cn(o, i) = L C;;'(o)c;;m(i)( _l)m = L(o)L(i)P nCo 0 i), 
m=-n 

Bn(o, i) = [0 X L(o)][i X L(i)]P nCo 0 i), (90) 
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where P n( 0 • i) = ! Y;;'( 0) y-;;m(i)( _1)m is the Legendre 
polynomial, and L is defined in (30). 

The form (90) has essentially the same symmetry as 
for the scalar problem: The reciprocity r:elation (75) 
reduces to 

g(o, i) = g( -0, -i) = gT(i, 0). (91) 

Substituting (91) into (79) gives the simpler form 

- Re g(il , i2) = -.1 fg*(il' 0) • g( 0, i2) dO, (92) 
41T 

and using (90), and 

f C .. (il , 0)' Bv(o, i2) dO = 0, 

f 15n(il, 0) .15.(0, i2) dO = 41T15..(il' i2)~ .. v!d .. , 

with 15 = C or B, we obtain 

-dn Re Cn = Ic .. 12, -dn Re b .. = Ibnl2. (93) 

In the forward direction, we have 

g(i, i) = (1- ii) ! [in(n + 1)(bn + cn)], (94) 

and the total cross section equals -41T/k2 times 
Re! [ ). 

If only the dipole terms are significant, then 

g(o,i) = ClCl + Blbl , Cl == C~ + C~, .81 == m + .8~, 
Cr = er( 0 )e~(i) = (P<l'i sin 0 sin 0 i , 

CI = Re Ci(o)C~*(i) 

= (bbi + epepi cos 0 cos 0i) cos (cp - CPi) 

+ (bepi cos 0i - ep9i cos 0) sin (cp - CPi)' 

.8r = B~( 0 )B~(i) = b9i sin 0 sin Oi' 

B~ = Re B~( 0 )B~ * (i) 
= (bbi cos 0 cos 0i + epepi) cos (cp - CPi) 

+ (9ep; cos 0 - ep9i cos 0;) sin (cp - cP;). (95) 

For a homogeneous sphere of radius a, for the 
surface conditions (6d), 

(96) 

For conditions (7d) plus (8d), we supplement (84) 
and (88) with the internal field 

ip' = ! [M!.m(k'r)c-;;m(i)c~ - iN~mB-;;mb~W( _1)m, 

(97) 
and obtain 

C = _ in(X)o.,[xjn(x)] - jn(x)o.,[Xin(X»)/1-I d .. 
.. in(X)o.,[xh .. (x)] - h"(x)o.,[Xin(X)]/1-I 

= c .. C!-t), b .. = C .. (E), X = k' a. (98) 

See Morse and Feshbach6 (pp. 1882ff), StrattonlO 

(pp. 563ff), and Van de Hulst17 (pp. 113ff). 
Small scatterer of arbitrary shape: For an arbitrarily 

shaped scatterer with all dimensions very small 
compared to wavelength, in terms of dyadic electric 
(P) and magnetic (m) dipole moments (pp. 1886ff), 
we have 

U • cp = h(kr) • ft . cp + (V x h) • m . (V x cp/k2) 

= [h' ft + (V x h) . m . (i x.1)ijk] • cp, (99) 

where ft arises from the E field cp, and m from the 
associated H field proportional to V x cp = i x cpik = 
i xl· cpik; both p and m are independent of i and o. 
From the definition of h in (12), we obtain 

h = (1- oo)Je + ooH = hT, 

Je(x) = o.,[xhl(x)] , H(x) = 2hl , 
X X 

V x h = -khlo X 1 = -khll x 0 = -(V X h)T. 

Using h '" (1- oo)h, V x h,...." io x Ih 
obtain U '" gh, we write 

(100) 
in (99) to 

g(o, i) = (1- 00)' p. (1- ii) 

Here 
- (0 x 1)· m· (1 x i) == g. + gm' 

1 - ii = ££ + 66 = -(1 x i) • (1 x i), 

(lOt) 

1 x i = i x 1 = 6£ - £6 

are both planar dyadics; the first is symmetrical, and 
the second is antisymmetrical. Both annihilate com­
ponents of vectors parallel to i; the second (1 x i) 
turns perpendicular components through 900 around 
i as an axis, and the first [1- ii = -(1 X i)2] is the 
negative of a turn through 1800

; see Gibbs18 for 
detailed discussion of (1 x W. 

From theorem (75) applied to (101), we obtain 

- -T - -T (102) p=p, m=m; 
thus each is symmetrical and may be put in the form 
p = p~U + p/J~ + p~~e, where the vectors corre­
spond to the principal axis. From theorem (79), we 
obtain 

-Re p = J.. fp· (1- 00)' p* dO. = 1ft· p*, 
41T 

-Re m = - lfm.(1 x 0).(1 x 0)' m* dO 
41T 

= 1m. m*. 
---

(103) 

17 H. C. van de Hulst. Light Scattering by Small Particles (John 
Wiley & Sons. Inc., New York, 1953), Chap. 9. 

18 See J. Willard Gibbs, Vector Analysis, Vol. II Collected Works, 
Vol. II (Yale University Press, New Haven, Conn., 1948), pp. 61ft'. 
for (I X on; and also E. B. Wilson. Gibb's Vector Analysis (Yale 
University Press, New Haven, Conn., 1943), pp. 299ft'. More 
generally. the dyadic operations of this paper are based on their 
development. and also on C. E. Weatherbum, Advanced Vector 
Analysis (Bell and Sons, London, 1949), and on Ref. 6. 
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With s equal to either ;, 'Yj, or " we have -Re Pa = 
i IPsI2; similarly, with s or t or r equal to either x, y, 
or z, we have -Re P.t = -Re Pts = i 2.P ... P~t· 

The special case (95) corresponds to p = bl, 
iii = cl: 

g(o, i) == bil- 00) • (1- ii) - clo x 1). (1 x i) 

= bl (88 + pp) . (8i8i + PiPi) 

+ Cl(rf;O - 8p) . (rf;/I. - (JiPi)' (104) 

For later use, we make the relations between (95) and 
(104) explicit by rewriting h in terms of Hansen's 
functions. From (35) for r' - 0 we see that all terms 
vanish except 

NlO -+ i(P~ + B~) = f(f cos (J - 0 sin (J) == ii, 
Nn -+ i(Pi + Bi) = Ufei<p sin (J + ei<P(cos (J(J + irf;)1 

= l(x + iy), 

N1-1 = -t(N;'l) -+ -t i(x - iy), 

(105) 

where i, (x + ly)/..)2 and (x - iY)/..)'2 form a set of 
orthonormal vectors. Consequently, 

h(kr) = hT = zN10(kr) + t(x - iy)Nll - (x + iy)N1_ 1 

== iNlO + xNlle + yNllo , (106) 

Using the asymptotic forms ofthe left- and right-hand 
sides, we also have 

J - 00 = 2B~(0) + l(x - iy)B~ - (x + iy)B11 

= zB~(o) + xReBi + yImBi 

== iB.(o) + iBio) + yEy(o), (107) 

obtain 

gio, i) == LBr'(0)B1/t(i)Pm/t; m,p. = -1,0, +1, 

where, e.g., 
(111) 

POI = i . P • (x + iy) == (~ + B~) • P • (Pi + BD· 
If the principal axes of p coincide with x, y, z then 
(110) reduces to 

gio, i) == Blll(o)B.li)Plll + Bt/(o)Bt/(i)pt/ + Bio)Bii)p~. 
(112) 

The analogous discussion goes through for gm, i.e., 

gm = -(1 x 0) • iii • (1 x i) == (1 x of· iii • (1 x i) 
= L C.(o)mstCtCi), etc. (113) 

.t 

See Morse and Feshbach& (pp. 1886ff) for an 
alternative development and for illustrations of p 
and iii. Electric dipole dyadics are also considered 
by Yvon,19 Mazur,20 Fixman,21 Brown,22 and others. 

3. MANY SCATTERERS 

For many scatterers in the geometry of Fig. 3: 1, we 
write the vector field as 

'I' = cpO: £) + 'l.L, 'l.L "" h(kr)g(o, i: E), (114) 

where'l.L and g have the forms (12) and (16) with u 
replaced by 'l.L. The "compound amplitude" g fulfills 
the same theorems as g. 

Proceeding as in Refs. 1 and 3, we express the total 
scattered field of a configuration of scatterers (whose 
"centers" are at b.) as 

where since, (1- 00) = (1- OO)T, we may transpose 'l.L = L U.(r - b.)eik'b" Us = {h(k Irs - r;l), Uir;)}, 
the left and right members of each term. Similarly, (115) 
since V x Ni == (V x N)z = kM2 etc., 

V x h/k = -(V x h)T/k 

= M10i + !Mll(x - iy) - M1_ 1(X + iy) 

= -zM10 - xMlle - YMll<>. (108) 

oxl=lxo 
= -(0 x l)T = iC~ + .Y Re C~ + y Im Ci 

== zCz + xCx + yCll' (109) 

Since 1 x 0 == (1 - 00) • (1 x 0), we also have 1 x 0 = 
Blo)C,,(o) + BlllClll + Bt/ClI • 

Substituting (107) into the electric term of (101), 
and letting sand i range over x, y, i we may write 

gio, i) == 2. B,(o)PstBtCi), Pst == s . p . i; 
s,t 

S, i == x,y, z. (110) 

We may also work with the first form of (107) to 

where r. == r - bs and r: are an observation point and 
surface point respectively jn the local coordinates of 
scatterer s. For kr. ,"'"'-' co, 

Us"" h(kr.){g3(r;; -0), U.(r~)} == h(kr.)G.(o), (116) 

where G., the "multiple-scattered amplitude" of 
scatterer s, reduces to the single-scattered function gs 
as the others recede to infinity. In terms of G. the 
compound amplitude equals 

g(o, i: £) = ~ eik(I-O)'bsG.(o, [i: ED, (117) 

" 
where the brackets are to indicate that i: E plays a less 
complete role in G than in g or g. 

" J. Yvon, Actualites scientijiques et industrielles (Hermann Cie., 
Paris, 1937), Nos. 542 and 543. 

20 P. Mazur and M. Mandel. Physica 22, 289 (1956). 
21 M. Fixman, J. Chern. Phys. 23, 2074 (1955). 
22 W. F. Brown. Jr., in Handbuch der Physik (Springer-Verlag, 

Berlin, 1956), Vol. 17. 
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Integral equations: Substituting h of (26) into Vs of 
(I 15), and rewriting in terms of G s of (116), we obtain 

Vs(rs) = 2~ f eikP.rBGs(p) dD.jJ, (118) 

'\L = ! eik'bsj eikP.(r-b')Gs(p) dD. jJ/27T. (119) 

Proceeding as in Ref. 1, we use rs = r t + b t - bs == 
r t + bts to express cP and '\L in the local coordinates 
of scatterer t, and write the total field referred to t 
as a set of plane waves plus one outgoing wave V t: 

'I'(bt + rt) 

= e.1<·b{ eikj.rtE + !J eik(P-i).btBeikP.rtG.(p) dD./27T + V t] 

= eik.bt[~t + Vt], (120) 

where !' means sum over s -:F: t and where ~ t is the 
total excitation at t. Then knowing the response (u) 
of the scatterer to one plane wave, we use the super­
position principle to write 

V t = utCi: E) + !J eik(P-j)'btButCP: Ys)Gs(p) dD./27T, 

Ys == Gs/G.. (121) 

where Ys is the polarization of Gs • 

The asymptotic form of (121) for r t -+ 00 gives a 
"self-consistent" system of integral equations for the 
multiple-scattering amplitude: 

GtC0) = gt(o, i: E) 

+ !' f eik(P--j).btgtCo, p: Ys)G.(p) dD. jJ/27T, (122) 

where in general g(o, i: E) and g(o, p: Y.) are nOLpar­
allel. Forming e • G t, and using the reciprocity rela­
tion (20) to replace e· gtCo, p: Ys) by Ys· gt( -P,-o: e) 
we see from the definition (116) for Gs that the inte­
gral converges if 1m p • (b t• + r~ - r:) > O. In terms 
of bts = bJ't .. we require bts > [(r: + r:). hts]max, 
i.e., that the sum of the scatterer's projections on b ts 
do not overlap. 

The integral equation (122) is essentially a "reci­
procity relation" between G and g. This follows on 
applying Green's theorem (10) to ~1 and'll 2, with ~l 
as the solution for CPl incident on an isolated scatterer 
t, and'll 2 as the solution for CP2 incident on a collection 
of scatterers which includes t; ~l and '1'2 satisfy the 
same conditions at t's surface and the same wave 
equation in its interior. Consequently, essentially as 
for (18), we obtain 

o = {~l' 'I'2}t 

= {(CPl + UtI), (CP2 + !' V.2eik.bt. + VtJ}t, (123) 

where the subscript t indicates integration is over a 
surface that isolates scatterer t from the others. We 
have {CPl' CP2} = Oas previously; similarly {CPl, V s2L = 
o since V S2 has no Singularities inside the surface that 
isolates t; finally {UtI, V t2}t = {ull , V t2L" = 0 follows 
from the asymptotic forms (5) and (116). Consequently 
(122) reduces to 

{CPl' V t2} = -{UtI ,CP2} - {UtI'!' V s2e-ik-btB}. (124) 

Using the definitions of G and g as in (116) and (16), 
and proceeding as for (20), we reduce (124) to 

El • Gt(-il , i2: E2) = E2• gtC-i2' i1: E1) 

+ {!' Vs2e-ik'btB, UtI}. (125) 

Introducing the plane wave representation (118) for 
Vs2 and the definition of g in the kernel, gives 

El • Gt(-il ) = E2 • g/-i2 , il : El) 

+ !J eik(p-r)'btBgtC -p, i
l

: E 2) • Gs(p) dD. jJ/27T. (126) 

Applying (20) to gt, and replacing -il by ° we reduce 
(126) to El • (122). 

Equation (122) is a mixed vector-scalar form. The 
analogous mixed vector-dyadic form is obtained by 
introducing the dyadic isolated-scattering amplitude 
g of (66). Thus since g(o, i: E) = g(o, i) • E, and 
g(o, p, Ys) = g(o, p) • Ys' we may rewrite (I22) as 

G/o) = g/o, i) . E 

+ !' f eik(P--j)'btBgt(o, p) • Gs(p) dD. jJ/27T. (127) 

Similarly, we obtain a complete dyadic representation 
by introducing a multiple-scattered dyadic amplitude 
G, such that 

G(o) = G(o) . E, (128) 
and dropping E: 

G(o) = gio, i) + !' f eik(P-I).bt'g/o, p) • G.(p) dD./27T, 

(129) 

which is the complete analog of (3 :34). Alternatively 
from {1fl' 'Y2}t = 0 we obtain (l24d), i.e., 

{ rpl' a t2} = - { Utl , rp2} - {uil ,!' aS2e-ik'btB} 

= - { Utl , rp2} 

-!J eik(P--j).b,B{utl , rp(rt ; p)} • Gs(p) dD./27T, (130) 

where the last form followed from (118d). From 
(116d) and (73) and (74), we reduce (130) to 

G( - il) = l ( - i2 , il) 

+ !' f eik(P--j)'btBgT( -p,il) • G.(p) dD./27T, (131) 
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from which we obtain (l29) by using the reciprocity 
relation (75) to convert gT to g( -iI' i2) and g( -iI' p), 
and then replacing -il by 0. See Appendix A for 
additional relations and discussion of reciprocity. 

Large spacings: We obtain forms of {l 29) convenient 
for large k Ib t - bsl = kb ts by applying (55): 

(it(o, i) = gt(o, i) + !' its· glo, bts) • (i.(bt., i), 

i - h(kb )e-ik.bt,i> ts - ts ts 
== .:rets(b-l

) + .M,t.(b-2
) + XtsCb-3

) + ... , 
(132) 

where i> is given terms of 1'5 in (50), and the present 
subscripts indicate that the differentiations of (44) in 
1'5 are to be performed with respect to the angles 
associated with the unit vector bts . We introduced the 
additional factor i in the argument of (i to facilitate 
iteration. If we keep only the leading term of i) 
(Le., 1), then 

eikbts-ik.bt. 
(Jlo, i) "" glo, i) + !'. gio, bts) • (is(bt., i); 

s zkbts 
(133) 

if we dot-multiply from the right by E we have the 
system of equations discussed by Saxon? (pp. 92-99). 
(The analogous equations for the scalar problem, and 
the iterated orders-of-scattering form are discussed by 
Karp, and by Twersky in the papers cited in the 
survey, Ref. 5.) 

The leading term of (l32) is the single-scattered 
value, or equivalently the "first-order" of scattering 
gt(o, i). Iterating (132) starting with gt(o, i) yields a 
series in inverse powers of kb ts which involves g and 
its derivatives. Thus the (kb)-l term [either of (132) or 
(133)] is the far-field multiple scattering form of the 
second order of scattering: 

!' .:ret.· U o, bts)· gs(bts , i), x'ts == h(kbts)e-ik.bt.!, 
s 

i.e., the dyadic analog of (3 :37). Terms to order 
(kb)-2 are given by 

!' x'ts· gt(o, bts) • !' x's1'· gibts, bs1') • gibs1" i) 
l' _ 

+ !' ..A{,ts· gtCo, bts) • gs(bts , i), 
s 

.ALts == (i/2kbts):lets • Dts , 

where the double sum corresponds to the third 
far-field order, and the single sum is the first "mid­
field" correction to the second far-field order; this is 
the analog of (3 :38). The next terms in the expansion 
of (i, the terms or order (kb )-3 are given by (3 :39d), 
obtained from (39) of Ref. 3 by replacing g by g, the 
previous scalar operators Je and .A(, by the present 

dyadics, and the previous .N' by 

;:. = [(i/2kb ts)2/2]Jets· Dts • (D ts - 21). 

Algebraic equations: If we substitute spherical 
harmonic representations for gt and (it in (129), i.e., 

gio, i) = ! [C;:'(o)C~m(i) + B;:'(o)b~m(i)], (134) 

(ilo) = ! [C;:'(o) e~m + B;:'(o)$~m]' (135) 
and use the orthogonality of the C's and B's we obtain 

e~m = c~m(i) + !' ! J eik(P-t).bt. c~m(P) 
• [C~(p)e;q + B~(p)$;q] do.1'/27T, 

$~m = b~m(i) + !' ! f eik(P-j).bt'b~m(P) 
• [C~(p)e;q + B~(p)$~q] do. 1'/27T. (136) 

If we expand the isolated scattering coefficients as 
series of spherical harmonics as in (87), then we may 
write 

e ~m = c~m(i) + !' ! [a~m'Jle:qE(st; 11ft, rq) 

+ peE' - a$E' + P$E], 

$~m = b~m(i) + !' ! [yeE + beE' - y$E' + b$E], 

(137) 

where the scheme for the indices is shown only once, 
and where 

-ik.bt'f 
E(st; 11ft, rq) = e 27T eikp.btBC;Jl(p) • C~(p) dO. 

= E(C. C) = E(B • B), 

E' = E(B. C) = - E(C • B). (138) 

Following the procedure used for the scalar case, we 
write C . C and B • C as sets of products of surface 
harmonics YY to reduce the present E's to sets of the 
E's of (3 :42), and then use (3 :43) to write E and E' in 
terms of h's and their derivatives times Y's. We 
illustrate this subsequently. (In the above, we have 
generated implicitly the addition theorems discussed 
by Stein.16) 

In particular, for spherically symmetric scatterers 
(137) reduces to 

e~m = (-1)mc~{c-;;m(i) 
+ !' ! [e~qE(st; nm, rg) - $;qE']}, 

$~m = (-1)mb~{B;;m(i) + !' ! [e;qE' + $;qE]}, 

(139) 

which we apply in detail to two scatterers in the next 
section. 

4. TWO SCATTERERS 

For two scatterers, we take the primary origin 
(r = 0) as the midpoint of the line joining the centers 
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of their circumscribed spheres. The centers are located $;m' Specializing (139), we have 
at 

C;m = (-1)mc;{~m(i) b1 = b(b, T, (3) = bb+, 

b2 = b(b, 7T - T, 7T + (3) = bb_ = -b, + ~ [C~IIE±(nm, "1-') - .'B~IIE~]}, 

where b, T, (3 are spherical coordinates; the local 
coordinates with respect to these centers are written 
as r1 = r+ and r2 = r_. For this case the scattered 
field reduces to 

<\1(r) = eidO+(r+) + e-idO_(c), 

±<5 = bki • b± = ±k· b, (140) 

and the compound scattering amplitude equals 

g(o, i) = ei(6-AlG+(o, i) + e-i(d-AlG_(o, i), 

±~ = kbo • & = ±ko. b. (141) 

The plane wave representation yields 

O± = 2~ J eikp
.r ± G±(p) dOl" (142) 

where 

G±(o) = g±(o, i) 

+ e'fi2dJ ei2kbb.P± g±(o, p). G±(p)dOp I27T. (143) 

4.1. Inverse Separation Representation 

For two scatterers, (132) reduces to 

G±(o) = g±(o, i) + fF±. g±(o, b±) • G'f(b±), 

fF ± = h(2kb )e'fi2d~± , (144) 

where the subscripts on 5) ± etc., indicate that the 
differentiations are to be performed with respect to 
the angles associated with the unit vectors b ± . 
Replacing ° by b ±, we solve for 

G'f(~) = [1- i'f' g'f(b±,~)· i±. g±(b'f' b±)]-1 

• [g'f(b±, i) + fF'f • g'f(b±, b'f) • g ±(b'f' i)], 

(145) 

which when substituted into (144) gives a closed 
operational form for G ±(o) in terms of the isolated 
scatterer functions g ±, i.e., the analog of (3 :50). 
Since the inverse dyadic [1 - .1'']-1 equals 1 + X + 
X • X + .. " we see that the expansion of the 
closed form in powers of b-1 yields the series (3 :51d) 
to (3 :54d), on replacing the previous scalars by our 
present functions. 

4.2. Radially Symmetric Scatterers 

For two spherically symmetric scatterers, we use 
isolated scattering amplitudes g ± as in (134) in terms 
of c! and b!, and G± as in (135) in terms of C;m and 

'" 
.'B;m = (-l)mb;{B;m(i) + ~ [C;"E~ + .'B;/;±]}, 

VII (146) 
where 

E±(nm, "1-') = e'fi2d J ei2kbil'b±~m(p) • C~(p) d0/27T 

(147) 
and similarly E' involves B-;:;m • C~ . 

To illustrate the above, we keep only the electric 
and magnetic dipole terms (b1 and Cl), and suppress 
the arguments 2kb in hn' and b± in Y;:'. We retain 
only the six equations of (146) involving ~m and 
.'B1m for m = 0, ± 1. The integral E±(lO, 10) involves 
q. q = sin2T = !(Yo - Y2), and consequently, from 
(3:14), we have E±(10, lO) = i(ho + Y2h2); similarly 
for the other integrals. Thus 

C~/ct= CW) 

+ e'fi2d[i(ho + Y2h2)Cio + ! Y~h2Cil 
+ y;lh2Ci_l - Y~hl$il + y;lhl:Ai_I], 

C±I ± C-1 
- 11 C1 = 1 

+ e'fi2d[y;lh2Cio - H2ho - Y2h2)Cil 

+ 2y;2h2Ci_l - y;lhl.'Bio - Ylh1.'Bil]' 

-Cf_I/cf = C~ 
+ e 'fi2d[! Y~h2Cio + ! Y~h2Cil 
- !(2ho - Y2h2)Ci-1 + Y~hl:Aio 
+ Y1h1.'B;:"1 (148) 

plus the analogous set for .'B± obtained by inter­
changing all forms of "B" and "e" in the above and 
replacing all Y;' by - Y;' . 

If the axis (b) of the pair of scatterers is taken along 
the polar axis (2) [i.e., scatterers located at z ± = 
±b, x = Y = 0] then T = 0, 7T and (3 = 0. All Y's 
but Y2 = 1 and Y1(b ±) = ± 1 vanish, and we may 
compress the remaining terms by using 

Thus 

j(ho + h2) = 2hll p == H, 
!(2ho - h2) = (phI)' I p == Je, 
p = 2kb, CI = C, bl. = b. (149) 

eto/c = C~(i) + e'fi2dHCio, 
Cfl/c = -C;l(i) + e'fi2d(JeCil ± hl.'Bil)' 

Cf_I/c = - C~(i) + e'fi2d( JeCi_1 T hl.'Bi-I), 

.'Bfol b = B~(i) + e'fi2d H .'Bio , 
.'Bfllb = _B;I(i) + e'fi2d(dr.'Bil ± h1Cil), 

:Af_Ilb = -BW) + e'fi2d(Je.'Bi_1 ± hICtl)' (150) 
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Since q = cp sin ()i and B~ = (; sin (). the components 
C10 and $10 vanish for incidence along the pair's 
axis «() = 0); for these "axial" components, there is 
no coupling between electric and magnetic moments. 
On the other hand, the "perpendicular" components 
$1±1 and C1±1 are coupled in general. 

For the axial components, we iterate once and 
regroup terms to obtain 

C~o = c±{C~(i) + e±i26Hc'F[C~(i) + e'Fi26HCio]} 

±[1 + 'F 'Fi26H] _ c c e CO(') = ±A( 'F)Co(,) 
- 2 11 _C C 11, 

1 - c+c-H 
(151) 

(152) 

where A(b) is obtained on replacing c's by b's in A(c). 
For the perpendicular components, we first con­

sider the cases when only the electric or only the 
magnetic effect exists. 

Electric dipoles: If c± = ° the multiple-scattered 
field is fully specified by (152), and by the simplified 
form of the last two equations of (150), 

$t1 = -b±[B1\i) - e'Fi26 Je.'Bi1] , (153) 

plus the analogous equation for .'Btl involving 
B~(i). Thus 

$~1 = -b±D(b'F)B;l(i), .'Bt-1 = -b±D(b'F)BW), 

D(b'F) == (1 + b'F e'Fi26Je)j(1 -b+b-Je2), (154) 

where D differs from A of (151) only in that H is 
replaced by Je. 

For this case, 

g±(o, i) = B(o, i)b± = (Bo + B1)b±, (155) 

where the B's are the corresponding B1's of (95). 
Similarly, 

G±(o) = G±(o, i) = b±A±(b=F)Bo + b±D±(b'F)B1. (156) 

Thus while each isolated scattering amplitude is an 
electric dipole determined essentially by the direction 
of incidence, the corresponding multiple-scattered 
amplitude is a sum of two uncoupled "compound 
dipoles": the compound axial term bA and per­
pendicular term bD are each the closed form of the 
corresponding geometrical progression of orders of 
scattering. 

If the direction of incidence is along the dipole axis 
(i = i), then BO = 0, and if the incident polarization 
is E = X, we have 

B1 . x = (9 cos cp cos () - cp sin cp) == Y1, 

g(o, i) . x = g(o, i: x) = b±Y1, 

G' x = G = b±D(b=F)Y1' (157) 

If the direction of incidence is perpendicular to the 
axes (i = x), and if the incident field is polarized 
parallel to the dipole's axis (E = i), then B1. i = ° 
and 

BO. i = -9 sin () == Y2, g(o, x: i) = btY2' 

G = b±A(b'F)Y2' (158) 

On the other hand, if the polarization is perpendicular 
to the axis (E = y) then Bo • Y = 0, and 

B1 , Y = cp cos cp + 6 sin cp cos () == Ya, 

g(o, x: y) = b±Ya, G = b±D(b'F)Ya' (159) 

In all the above, the forwardscattered values of g 
and G have the same polarization as the incident wave. 
The same holds for arbitrary direction of incidence 
i = 0 for which case we have Bo = (j(j sin2 () and 
B1 = 9(; cos2 () + yy. If E = y, then g = bE and 
G = bDE; similarly if E = 9 (perpendicular to i), 
then g = bE(sin2 () + cos2() = bE, and 

G = bE(A sin2 () + D cos2 (). 

Although g+ and g_ satisfy (75), the theorem does 
not apply individually to the corresponding multiple­
scattering functions G+ and G_ for the elements of the 
pair: the reciprocity relation applies only to the 

scattering amplitude for the configuration {j(o, i) as in 
(141). From (141), (152), and (154), we write 

~ = F+ + F_, 

F+(o, i) = ei(6-&)G+(0,i) = eikb·(J-o) K+ + e-ikb'(i+o) K, 

F_(o, i) = e-i(6-&)G_(0, i) = e-ikb.(J-o) K_ + eikb·(I+o) K; 

From (160), we have 

F~( -i, -0) = eikb·(I-0) K+ + eikb.(I+0) K :F F+(o, i), 

F::'( -i, -0) = e-ikb·(J-o) K_ + e-ikb'(i+O
) K:F F_(o, i), 

~T( -i, -0) = F~( -i, -0) + F::'( -i, -0) = ~(o,i). 

(161) 

Thus, although the individual functions do not 
satisfy theorem (75) (because the phase of the K term 
is not preserved) their sum does-add this is all that is 
required. See more general discussion in Appendix A. 

In the forward scattered direction, 

~(i, i) = G+(i, i) + G_{i, i) 

= K+ + K_ + 2K cos (2kb ' i), (162) 
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where we may use Jio = EIEI sinll (j and jjl = 
EIEI cos2 (j + E2E2 • From theorem (SO) the total cross 
section for a pair of scatterers equals 

6(i: E) = -(41T/k2) Re (E' 6. E) 

= -(41T/k2)2 Re [E.(K+ + 1L + 2Kcos 2~). E]. 

(163) 

For the special case of a pair of identical scatterers 
(b+ = b-) under symmetrical excitation (i.e., ~ = 
kb • i = 2n1T; n = 0, ± 1, .. " with n = 0 corre­
sponding to incidence perpendicular to the axis) we 
have 

(L = G+ = G = b(AJio + Djjl), 

A = 1/(1 - bH), D = 1/(1 - bJe), (164) 

and the total cross section follows from 

Re g(i, i) = 2 Re G(i, i) 

= Jio2 Re bA + jj12 Re bD. (165) 

For lossless scatterers, 

Re bA = Re b(1 - bH)* = Re b - Iblll J J = 2il 
11 - bHI2 11 - bHI2 

' P , 

and since the theorem for an isolated lossless dipole 
gives -Re b = i IW, we have 

Re bA = -i IW(1 + !J) = -1(1 + liJ) IbAII!. 
11 _ bHI2 2 

Similarly for Re Db we replace H, J by Je, 'J with 
'J = a p[pjl]/ p. Thus 

Re ~(i, i) = -t(1 + !'J) IbAI2 jjo 

+ t(I + !'J) IbDI 2 jj1, (166) 

from which we obtain a by dot multiplication as in 
(163). 
_ For ~ = 2n1T, it is simple to demonstrate that 

g(il, i2) satisfies the general theorem (79). For the 

present case gT(i2' iJ = g(il' i2), and consequently, 
(79) reduces to 

-Re g(il' i2) = ~ f ~(il' 0)' g*(o, 12) dna; 
41T 

equivalently, 

-2 Re O'(i1 , i 2) 

= 4~ f G(il' 0) • 6*(0, i 2) lei~ + e-i~12 dna, 

(167) 

where fj. = kbh· b = kb cos (j. Since G* is obtained 
by replacing bA and bD by their complex conjugates, 
we may show directly by proceeding as for (14S) that 
(167) is satisfied. For example, in the right-hand side 

IbDl1! Bi"I(i1)Bi(i2) is multiplied by 

f B~(o) . B1\0)[2 + ei~ + e-i2~] dna 

= 2 f Bi· Bl1 dO. - f (2 : YJ (ei2~ + e-i2&) dO.; 

the first term gives -¥--n-, and the second gives -t"1T 
(2jo - j2) = -S1T 'J. Since -t[l + 3 'J/2] IbDI 2 = 
2 Re bD [from (165) and (166)], etc., we see that both 
sides of (I67) yield identical terms. 

Magnetic dipoles: Similarly if b; = 0 in (ISO), we 
use (151) and the second and third equations of (150): 

Ci'1 = -c±[CI1(i) - e'fi2DCflJe], (16S) 

plus the analogous equation for Ct.-I involving Ci(i). 
Thus, as previously, 

Cfl = -c± D(C'f)Ci"I(i), Ct.-I = -c± D(c'f)CW). 

The single scattered amplitude is 
(169) 

g± = C±( CO + Cl), (170) 

with the C's as in (95), and the corresponding multiple 
scattered values are 

G'f(o, i) = c'fA(c±)CO + c'fD(C±)Cl. (171) 

The present case is completely analogous to the 
previous and corresponding results may be obtained 
by inspection. 

For axial incidence i = z we have Co = 0, and if 
the incident E is polarized parallel to X, then corre­
sponding to (157), we have 

(y . x = 9 cos g; - tp sin g; cos () == yi , 

g(o, z) • x = g(o, z: x) = c'fYi, G = c'f D(c'f)y~. 

(172) 

For normal incidence i = x, if the incident E is along 
the axis (E = z), then Co. z = 0 and correspondittg 
to (15S), 

Cl • z == yi = - yi , g( 0, x: z) = c±YL 

G = c± D( c'f)yi . (173) 

If the polarization is along y, then Cl. y = 0, and 
corresponding to (159), 

Co . y = tp sin () = yL g( 0, x: y) = c±yL 

G = c±A(c'f)yi. (174) 

One electric plus one magnetic dipole: The remaining 
elementary situation in (150) is that in which one 
scatterer (+) is an electric dipole and the other (-) 
is a magnetic dipole. For this case we set b- = c+ = 0 
s~ that the required functions in (151) and (152) reduce 



                                                                                                                                    

604 VICTOR TWERSKY 

to the single-scattered values 

Cr-o = c-Cl(i), $io = b+B~(i), (175) 

which correspond to the first and fourth equations of 
(150). The second and fifth of (150) reduce to 

Cli = -c-lcl
l + ei26$il hl ], 

$tl = -b+[Br-l + e-i2~Cllhl]' (176) 

plus the analogous set for C"i-I and $t-I in terms of 
ct and Bt with hI replaced by -hI' 

Solving (176) and its analog we obtain 

Cli = -c-ECll(i) + ei2~FBll(i), 
C1- l = -c-EC~(i) - ei2~FB~(i), 

$il = -b+EB1l(i) + e-i2~FCr-l(i), 
$i-l = -b+EB~(i) - e-i2~FC~(i), 

E == 1/(1 - b+c-hD, F == c-b+hlE. (177) 
The single-scattered amplitudes for this case are 

g+ = b+(jjo + Jjl), g_ = c-(CO + CI), (178) 

and the corresponding multiple-scattered amplitudes 
equal 

G+ = b+Jjo + b+EJjI + e-i2~Fjj, 
G- = c-Co + C-ECl + ei2~F jj\ 

jj = B~(O)Cr-I(i) - Br-I(O)C~(i) = i 1m B~(o)C~*(i) 

= i(fJrpi cos e cos ei - rpfJ;) sin «({J - ((J;) 

+ i({J{Ji cos e + rprf\ cos ei ) cos «({J - ((J;), 

jji = C~(o)Br-\i) - Cr-\o)B~(i) = -i 1m C~(o)B~*(i) 

= - i(fJrp - rpfJi cos e cos ei) sin «({J - ((Ji) 

- i(fJfJi cos ei + rprpi cos e) cos «({J - ((Ji)' (179) 

The present case is much less symmetrical than the 
preceding ones, and provides a simple illustration of a 
scatterer containing cross terms [e.g., q(o)BII(i)] 
corresponding to coupling between electric and 
magnetic dipoles. 

For axial incidence i = 2, we have jjo = Co = O. 
If E = x then 

D- A • D-I A .AI 
• X = IYI, • X = -/YIo 

G+ • x = (b+E + e-i2dFi)YI, 
G_ . x = (c-E - ei2~Fi)y~. (180) 

In the forward direction, 

S = G+ + G_ = (b+ + c-)Ex + 2 sin (2kb)Fx. 
(181) 

For normal incidence i = x, if E = 2 then Jji. 2 = 
Co • 2 = jji . 2 = 0 and 

jj·2 = -iYI, G+ = b+Y2 - ie-i2dFYI, 

G_ = c-Ey~. (182) 

In the forward direction, 

G+ = b+2, G_ = c-E2, 

g = G+ + G_ = (b+ + c-E)2. (183) 

If E = Y then jjo • y = CI. Y = jj . y = 0 and 

jji. Y = -ice sin ({J + ({J cos e cos ({J) = -iY4, 

G+ = b+EY3, G_ = c-y~ - iY4ei26F. (184) 

In the forward direction 

g = G+ + G_ = (b+E + c-)y. (185) 

More generally in the forward direction we write 

14 = b+E, g_ = C-E, G± = G±E. (186) 

If E = Y then 
G+ = b+E + e-i26Fi cos e, 

G_ = c- sin2 e + c-E cos2 e - ei2~Fi cos e. (187) 

Similarly, if E = fJ then 

G+ = b+ sin2 e + b+E cos2 e + e-i2~iF cos e, 
G_ = c-E - ei2~iF cos e. (188) 

Thus, in all cases, the forwardscattered values have 
the incident polarization. 

Electric plus magnetic dipoles: For the general 
situation of (150), each scatterer has both electric and 
magnetic dipole moments. The axial components are 
as in (151) and the corresponding perpendicular 
components follow from the remaining four equations 
of (150). Thus eliminating CiI and $iI from the 
second and fifth, we obtain 

Ctl = -ct{CII(i)R(b, c) ± Br-I(i)S(b, c)}/fl, 

$i't = -bNBII(i)R(c, b) =f CII(i)S(c, b)}/fl, 

R(b, c) == 1 - b+b-Je2 - c'Fb±h~ 

+ Jec'Fe'Fi2~[1 - b+b-(Je2 + hI)], 

S(b, c) == hlJeb±(b'F - c'F) 

+ hlb'Fe'Fi2~[1 - b+b-(Je2 + h~)], 
fl == 1 - Je2(b+b- + c+c-) - h~(c+b- + c-b+) 

+ c+c-b+b-(Je2 + hD2, (189) 

where R(c, b) is obtained from R(b, c) by interchanging 
band c, and similarly for S. The corresponding 
coefficients Ct-l and $t-l are obtained by replacing 
CII and BII by q and BL and hI by -hI' 

Equations (151), (152), and (189) provide the co­
efficients for an explicit closed form for multiple 
scattering by two arbitrarily separated scatterers such 
that each is fully specified by its appropriate electric 
and magnetic dipoles when isolated. The set covers 
the special ~ases considered previously and allows us 
to obtain corrections, e.g., to (156) for the case where 
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the magnetic dipoles are not negligible. The present 
results apply to small spheres of different radii with 
both € and f-l different from unity, to two perfectly 
conducting spheres (for which case the electric and 
magnetic coefficients b, c are of the same order of 
magnitude), etc. Simple forms of the present results 
follow not only for the cases considered as illustrations 
but also for the limit of separations small compared 
to wavelength (kb ~ 0) for which region we use the 
origin expansions of the h's, as well as for separations 
large compared to wavelength (kb» 1) for which 
case we use the asymptotic form of the h's. From 
symmetry considerations, specializing the above two­
scatterer results to identical scatterers, enables us to 
write down the corresponding solutions for one 
scatterer near a perfectly conducting plane, two 
protuberances on such a plane, and one protuberance 
on the wall of a perfectly conducting quadrant; see 
analogous expressions for two cylinders given 
previously.23 

4.3. Small Scatierers of Arbitrary Shape 

To construct analogous closed forms for two non­
spherical scatterers small compared to wavelength, 
we base the development on (99)ff, and its general­
ization to an essentially arbitrary exciting electric 
field <l>: 
u . <l> = Ii. p . <l> + (V x Ii) . m . (V x <l>/k2). (190) 

Electric dipoles: For a configuration of two arbitrary 
electric dipoles specified by p± excited by cp, the 
multiple-scattered fields O± may be written 

(J - -± + - O± - :h± - h-(k)-± = u±·cp~ u±· ~ == U±·'V, u±= r± ·P±, 
(191) 

where cp+ is the value of the source term at the 
scatterer located at bb+ = blJ, and where <l>+ is the 
corresponding total exciting field; similarly, for 
brevity, O~ means the field of 0_ evaluated at bb+, 
etc. We have 

<l>± = cp± + 0* = cp± + u* . <l>~; (192) 

consequently, 

:h± (1- -± :'fF)-1 (-± + -± -~) 'V = - U~ • U± • cp U~ • cp , 

cp± = (1- ii)e±i~, u! = 1i(2kb) • P±, 

Ii = (i - bIJ)Je + IJIJH, (193) 

where Cl = k· b, and Je and H are defined in (100). 
We consider first the case corresponding to Sec. 

4.2, for which P± = p±1 (small spheres, elementary 
model for oscillating electrons, etc.), where we have 
replaced the previous h± by P± to avoid confusion with 

23 V. Twersky. J. Appl. Phys. 23, 407 (1952). 

the other b's. Since 

u! . i1! = p+p_1i • Ii = p+p-[(1- IJIJ)Je2 + IJIJH2], 

we may write 

1 - u! . u! = (1 - 1JIJ)(1 - p+p_ Je2) 

+ 1JIJ(1 - p+p_H2), 
and express the reciprocal as 

(/- _± -~)-l _ 1 - IJIJ + IJIJ - u~· u± -
1 - p+p_Je2 1 - p+p_H2 

(194) 
We also have 

cp± - u* . cp± = [(i - 1JIJ)(1 + Jep~e~i2d) 
+ 1JIJ(1 + Hp~e~i2~)] • cp±. (195) 

Thus using (194) and (195), we reduce (193) to 

<l>± = [(1 - bIJ)D~ + IJIJA~] • cp±, 

A~ = (1 + p~e~i26H)/(1 - p+p_H2) = A(H, p~), 

D~ = A(Je, p~), (196) 

where A and D are essentially as defined in (151) and 
(154). The corresponding scattered waves from (191) 
are thus 

O± = Ii(r±). P±· [(1-IJIJ)D~ + IJIJA~]. cp± 

== Ii(r ±) • P ± • cp±, (197) 

where P is the multiple-scattered moment. The 
asymptotic form of (197) for kr» 1, r» b is 
O± ,...., he±i(b-/!:,JG±, with 

G±(o, i) = (1- 00) .P±. (i - ii) 

= (1- 00)· p±[(1-IJIJ)D~ + IJIJA~] . (1 - ii). 

(198) 

Ifwe take IJ = z (i.e., if we measure () from IJ), then the 
multiple-scattered amplitudes G± of (198) may be 
rewritten directly in the form (156) by using (107), i.e., 
for this choice of axis we have 

P + = P±[(xx + yy)D~ + zzA~], 
and using (107) reduces (198) to the form (112) with 
p., = py = p±D± and pz = p±A~. 

For a small sphere of radius a with ft = 1 and 
dielectric constant €, we have p ~ i(ka)3(€ - 1)/ 
(€ + 2). For small spacing p = 2kb« 1 we may use 
Je ~ -H/2 ~ i/p3. Thus 

Jep ~ -tHp- _(!!...\3 (~) 
2bJ € + 2 

in the static limit k - o. For this case we may also 
neglect kCl - O. For identical scatterers we then have 

!. _1 - IJIJ + ~ , ( a \3 (€ - 1) 
P 1 + R 1 - 2R R = 2bJ € + 2 . 

(199) 
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On the other hand, for p » 1 we have Je,..., ho and 
H ,...., - 2iho/ p; if we neglect H, then we get the "far­
field multiple-scattering form" 

P '" p[D(i - Db) + Db], Je '" ho(2kb); (200) 

more generally we use Je = h[1 + (ilp) - Ilp2], 
H = - 2h[(i/ p) - 1/ p2] to convert P to the analog of 
(I44) plus (145). 

The above dyadic dipoles are spherically symmetric 
in that p = bl means the vector dipole p . E = pE has 
the direction of the incident polarization. We can also 
consider the case of a fixed vector dipole p = pdd 
(i.e., a fixed metal wire oriented along d), or the 
general dipole p = P of (l02)ff. For simplicity we 
assume that the principal axes of the scatterers are 
parallel, and take ~ = b. Thus we may write 

u± = Ii· P± = Je(ps±U + Pq±ijij) + Hp,±~e, (201) 
and obtain 

1 -± - =F .",2 'A 2) A A - U'F • U± = (1 - d\.> PHP~-)~; + (1 - Je Pq+Pq_ YjYj 

+ (1 - H 2p,+p(_)ee, 

(1- U~' u:r1 = EiI(Je, p)U + Eq(Je, p)IJij 

+ E,(H, p)ee. 
Eg(Je, p) = 1/(1 - Je2htPg_), etc. (202) 

Substituting into p . $ = P • cp, we construct 

P± = P±' [i - u:. u!r1
• [i + u~e=Fi26] 

= p!i±D(p;=F)U + pq±D(pq'F)'}i} + p{±A(p{=F)U, 

(203) 

Magnetic dipoles: Similarly for two magnetic 
dipoles, say each of the form 

v· V x cp = V x h • (nl/k 2) • V x if; 

= (-1110 x i). ,.17 • (i x i)· cpi, (204) 

we may work with the electric functions 

Thus using (208) in (205) with v as in (204), we obtain 

O± = ihlm±(o x i) • [(1 - bb)D(m'F) + bbA(m±)] 
. (1 x i)e±iO 

== (V x Ii±) • M± • V x ip±/k2, (209) 

where M is the multiple-scattered moment. Since 

h1(kr±),....., -ih(kr±)""" -il1(kr)e=Fi~, 

the scattering amplitudes are 

G± = -(0 x i) . M± • (i x i) 
= -(0 x i)'m±[(i - Db)D(m=F) + DbA(m=F)].(i x i). 

(210) 

If we take b = z then (210) may be rewritten directly 
in the form (171) by using (109) to reduce G to the 
form (113). 

For a small sphere of radius a with € = 1 and 
permittivity fl, we replace € by fl in the previous 
illustration. Similarly for the magnetic analog of the 
more general case (203) we obtain 

M± = mg±D(mg'f)U + m1/±D(mq'f)t}tj 

+ m{±A(m{=F)U, (211) 

See Appendix B for analogous results for scalar 
problem. 

Electric plus magnetic: If we are dealing with one 
electric (u+) and one magnetic (lL) dipole, then we 
may work with 

0+ = u+ • (ip+ + 0-:) = u+ • d)+, (212) 

0_ = v_· V x (ip- + 0;.) = v_' V x d)-, (213) 

where 

$+ = ip+ + v! . V x $-, (214) 

V x $- = V x ip- + (V x ii~). $+. (215) 

o± = v± . V X $±, (205) Solving (214) and (215) we obtain 
- ± ± -± ± ± -=F 

<I> = if; + V'F = ip + V'F' V X <I> (206) 

to obtain 

V x d)± = [i - (V x v~). (V x ii!)r1 

Since 
• [V x ip± + V x v: . V x ip'F]. (207) 

V x V = V x V x jj • iil/k2 = it . 111, 

the function [ ]-1 is of the same form as for the 
electric case but with the previous p replaced by 111. 

For 117± = m±i corresponding to the spherically 
symmetric case of Sec. 4.2, we have from (207) and 
(196), 

V x $± = [(i - bb)D(m'f) 

+ DbA(m=F)] • q± x iik. (208) 

$+ = [1 - v! . V x ii~] -1 • [ip+ + v! . V x if;-], 

V x $- = [i - (V x u+). V:::]-1 
(216) 

We have 
• [V x ip- + (V x u~). ip+]. (217) 

v-: = V x jj. 111/k2 = -kh1(b x 1). iil/k2
, 

and similarly 

V x u+ = -kh1( -b x i) . p = kh1(b x i) . p. 
For the case of Sec. 4.2, we have p = pi and 

117 = mi and 

v:+:' • V x u+ = -m_p+hi(b x i). (6 x i) 
= m_p+hi(i - hh). 
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Thus 

(1 - v~ • V X ii~)-l = [1 - (1 - bb)m_p+h~rl 

= bb + (1 - bb)/(l - p+m_h~) 
== bb + (1 - bb)E, 

and consequently 

<1>+ = [bb + (1 - bb)E 

- im_hlCb x 1)e-i2d(1 x i)E] • fP+, 

E = 1/(1 - p+m_hD. (218) 
Similarly 

V x <1>-/ik = {[bb + (1- bb)E]. (i x 1) 

- ip+h1(b x 1)ei2<l} • fP-. (219) 

Using (218) and (219) in (212) and (213) gives the 
corresponding electric dyadic fields. To obtain the 
scattering amplitude we use 

ii+ = p+ii(hr+) ,....., p+ho(kr)e-id(1 - 00), 

and similarly 

v_ = -khl(O x 1)m_/k2,....., -hoeidm_(o x 1)/ik. 

Thus 

G+ == (1- 00) . {p+[bb + (1- bb)E] 

- i(b x 1). (i x 1)Fe-i2<l} • (1 - ii), 

F = p+m_IhE, (220) 

G_ = -(0 x 1). {m[bb + (1- bb)E] 

+ i( b x 1). (l x i)F ei2<l} • (i x 1), (221) 

where we replaced 1 - ii in the last term by -(1 x i) . 
(1 x i) to stress the similarities of the form of the 
composite moments P + and M_ corresponding to 
(220) and (221), respectively. To reduce (220) and 
(221) to the forms in (179), we take bb = ii and use 
(107) and (109). 

For the more general case of 

P+ = LPxxx, iiL = L m",xx, x = ~, 1], ~, 
(222) 

with ~ = b, we have 

v~ = V xii· "h/e = -hl(~ x 1)· 1i1/k 

= hlallm~ -Ij~ms)/k, 

V x u~ = khl~ X 1· P = -kh1(~llp~ -1j~Pg). 

Consequently 

Thus 

<1>+ = [~~ + UE(psm~) + 1j1jE(p.,ms)] 

. [1 + ih1e-i2d(m.,g1} - mg1jg)(1 x i)] • fP+, (223) 

P + == P+ • <1>+ • (fP+)-l 

= p,~~ + PsE(pg' m.,)U + p.,E(p.,mg)1j1j 

+ ie- i2d[F(pgm.,)g1j - F(p.,ms)1jg](i x 1), 
G+ = (1- 00)' P+. (1- ii). (224) 

Similarly 

V x <1>_ = [~~ + UE(mgp.,) + 1j1jE(m.,ps)] 

. [1- ih1(g1jp., - Mps)ei2d(i x 1)]. ik(i x fP-), 

(225) 
M_ == (m_ • V x <1>-)(iki X cp-)-l 

= m,~~ + msE(mSp.,)U + m.,E(m.,ps)1j1j 

- iei2d[F(mSp.,)g1j - F(m.,ps)1jg](i x 1), 
G_ = -(0 x 1). M· (1 x i), (226) 

which differs from (224) in the interchange of m 
and P and the replacement of i by -i. 

If each scatterer consists of an electric plus a 
magnetic dipole such that the isolated-scatterer 
values equal ii± + v± with ii and v as defined in this 
section, then we write the scattered electric dyadics as 

[)± = ii± • <1>± + v± • V x <1>± = (ii± + v±' V x 1) .<1>±, 

(227) 
with 

<1>± = fP± + (ii$ + v$ • V x 1). <1>'F, (228) 

where V x 1· <1> is a temporary expedient for V x <1>. 
Eliminating <1>'F from the right-hand side, we obtain 

<1>± = (fP± + ii$. fP'F + v$ • V X fP'F) 

+ (ii~ • iii + v~ • V x ii!)' <1>± 
+ (u~. vi + v~. V x vi)' V x <1>±, (229) 

plus the corresponding expression for V x <1>± 
obtained by replacing all left-hand elements in the 
terms in parentheses by their curls, e.g., V x <1>± 
involves 

V X ¢;± + (V x ii*) • ¢;'f + (V x v~). (V x ¢;'f), 

etc. Essentially as for the previous case, we may solve 
the simultaneous equations for <1>± and V x <1>± to 
reduce the above to the case considered previously by 
separations of variables. 

APPENDIX A. RECIPROCITY RELATIONS 

We should stress that G of(131) does not in general 
satisfy the reciprocity relation of the form (75): 

~ ( • .) ~T(" ) gt -11 ,12 = gt -12 ,11 , (AI) 
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We may always write 

Gt( -ii, i2) = Rt( -i2' i1) + Ll-il , i2) 

= Rt< -ii, i2) + I' R;.( -ii, i2)e-ikI2·bt., 

(A2) 

where Rt (R for "reversible") includes only those 
"chains" of successive scattering processes which 
start and end with scatterer t, and L includes those 
that start with s ¢ t and end with t. Interchanging the 
directions we get 

Gt( -i2' i1) = R'f( -i2 , i1) + I' R;.( -ia, i1)e-ikl l'b,s 

= Rt( -ii' i2) + I' R;.( -ii, i2)e-iki l'b,s, 

(A3) 
so that 

Gt( -ii' i2) - Gr( -i2' i 1) 

= I' R'e.( -ii' i2)[e-iki2'bt, - e-iki,.b,,], (A4) 

is not in general zero. We illustrate this explicitly for 
an elementary case in (160)ff. In the present Appendix 
we list additional theorems for G. 

The compound scattering amplitude 

(AS) 

of (117) satisfies the same theorems as g. Thus using 
(A4) in (75), we obtain 

Gt< -ii' i2) = Gr( -i2' i1) 

- ~, e-ikU,+i2 )'b"[G (-i i) _ GT(_I' ')] £., • 1, 2 s 2, 11 . 

(A6) 

These equations follow essentially from Ci\ , 'F 2} = 0 
over any surface bounding the collection. In addition, 
we have {Vii' 'F 2L = 0 which led to the "reciprocity" 
relation of (131), i.e., 

Gt( -ii' i2) = gt( -i2' i1) 

+ I' J eikCP-12).b,sgr( -p, i1) , G.(p, i 2) do.j27r, 

(A7) 

as well as the result obtained by interchanging and 
transposition: 

G'f( -i2' i1) = .g( -ii' i2) 

+ LJ eikCp--lt)'btsG;(p, it) , gt< -p, i 2) do.j27r. 

(A8) 
Subtracting (A8) from (A7), we obtain 

Gt( -ii' i2) = Gt( -i2' i1) 

+ IJ eikP.bt'[e-ik2·bt'gT( -p, i1)G.(p, i
2
) 

Similarly from {'F1 , 'F 2L = 0 we obtain 

Gt( -iI' i2) = GT( -i2' i1) 

+ I' J eikP.bto[e-ik2·bt&G'f( -p, i)Gs(p, i 2) 

- e-ikl'b"G;(p, i1), Gl-p, i2)] do.j27r, (AIO) 

which we may reduce to (A9) by substituting (A 7) 
for GT(-p). 

The above "reciprocity relations" follow from 

{Vii' Vi2L = {'F1 , 'F2}c = {Vii' 'F2L = {'F1 , 'F2L = 0, 
(All) 

where t indicates the surface that isolates scatterer t 
from the others, and c indicates a surface around the 
whole collection. We may also regard the theorems 
for lossless scatterers that follow from 

{Vii, Vi2h = {'F:, 'F2}e = {Vii, 'F2}t = {'F:, 'F2}t = 0, 
(AI2) 

as "reciprocity relations." 
The first form of (AI2) yields (79), and the second 

yields (79) with g replaced by the compound amplitude 

~. Using (AS) in theorem (79) for ~, we obtain 

G- ('* ') + J'<t ('* ') t 11 , 12 lJ t 12 , 11 

= - I' [G s(ii , i 2) - G} (i2 , i1) ]e-ikCl2-1t * )·b,. 

- 1.. J[G; (0, it) , GtCo, i2) 

27r 

+ I'G: ' Gse-ikI12-i'*)'b" 

+ I L' G~, GneikCO.bmn+i2·bn,+i,*.btm)]do., (A13) 

where bnm = bn - bm , etc. In the forward direction 
ii = i2 = il = i: = i for the class of scatterers 
such that GT(o, i) = G(i, 0) we have 

-Re Gt(i, i) = Re L' GsO, i) 

+ .l J[G:O, 0)' Gt(o, i) + I' G: ' Gs 47r 

+ II' G~ . GneikCO-iHmn] dO.. - (AI4) 

We consider a special case of (AI4) corresponding to 
two simple scatterers in (163)ff, and have considered 
other special cases in the papers on periodic and 
random distributions cited in Refs. 4 and 5. 

The third form in (AI2) yields 

G ('* ') + ~t(' ') - 1 J ~t( ') - ( ')d" t 11' 12 gt 12 , 11 - - 27r gt 0, 11 'G t 0, 12 .l.~o 

- 2~ LJ eikC p--i2)-bt, i:(p*, i1), G.(p, i 2) do. p , (AI5) 

in which we may specialize to forward scattering and 
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use (75) for g to eliminate Re g(i, i). Finally the fourth 
form of (AI2) yields 

Gt(i:, i2) + Gt
t(i2' il ) 

= _l.. JG:(O, i l )· Gio, i 2) dna 
27T 

-L L' f eik
(P-!2)·b,. G;(p*, il ) • G.(p, i2) dO. 

-L L'[J eik(p---h)'bt'G:(p*, i2)· G.(p, il ) dO. ] t. 

(AI6) 

For forward scattering and GT(o, i) = G(i, 0) we have 

-Re Gt(i, i) = .1.- JG*(i, 0)' G(o, i) dna 
47T 

+ 2~ Re LJ eik(p---j).btsG7(i, p*). G.(p, i) dO.. (AI7) 

We consider special cases of (AI7) in the papers on 
periodic and random distributions cited in Refs. 
4 and 5. 

APPENDIX B. SCALAR DIPOLES 

In the previous developments of the analogous 
scalar problems (Refs. 1 and 3), the case of two 
different monopoles was used as the simplest illus­
tration. For the present electromagnetic case, our 
discussion of two electrical dipoles as in (191)ff 
provides the dyadic analog of the previous results for 
monopoles: i.e., if we replace the dyadics by appro­
priate scalars we again get the earlier results. Thus the 
scalar version of (191)ff is 

u± = u±<P±, u± = ath(kr±), cp = e
ik

'" 

ffi,± ± ±,f-,'F (1 + u~e'Fi20)cp± 
'V = cp + U'F'V = -'-----'--'-'-

I - u+u_ 

= 
[1 + arie'Fi20h(2kb»)cp± 

(Bl) 

where h = h~l) for the three-dimensional problem 
[see Ref. 3, Eq. (63»), and h = H~l) for the two-dimen­
sional problem [see Ref. 1, Eq. (71»). 

The corresponding scalar problems of symmetrical 
dipoles, 

u = iH~1)(kr)al(2) cos (0 - 0i)CP, cp = eiki.r , (B2) 

u = ihp)(kr)al(3) cos (0 - 0i)CP, (B3) 

where (B2) and (B3) correspond to two dimensions 
and three dimensions, respectively, were considered by 
separations of variables. l •3 The normalization of the 
scattering coefficients al (2) and al (3) is here chosen so 

that for lossless scatterers, we have -Re al(n) = 
n !al (n)!2, e.g., for "p = 0 at the surface, we have 
al = -2Jl/Hl and a2 = -3Nhl • The present dyadic 
development for two magnetic dipoles (204)ff suggests 
an analogous development for generalizing the scalar 
results to two arbitrary dipoles. 

We rewrite (B2) and (B3) in the single form 

u == v • Vcp = -(a/k2)(Vh) • (Vcp) 

= -(a/k2)[kh'o). [ikcpi) 

= -iah'cp(i. 0), (B4) 

where h is either H~l) or h~l), and h' = 0krh(kr) is 
either _H~l) or _h~ll; similarly a = al(2), al(3). We 
may now proceed essentially as for (205). Thus for 
two dipoles we use 

U± = v±· V(cp± + U~) = v±· V<P±, 

v= -(a/k2)Vh, (B5) 

<P± = cp± + v~ . V<p'F. (B6) 

Taking the gradient of (B6), and eliminating V<p± from 
the right-hand side, we obtain the analog of (207): 

V<p± = [/- Vv~' Vvirl • [Vcp± + Vv$· Vcp"'). (B7) 

We have 

vv = -(a/k2)VVh 

= a[bbh{ + (/- bb)hl/p) 

== a[bbJe + (I - bb)H), p = 2kb, (B8) 

where h is either h~ll or H~ll, and hI is either h~l) or 
Hil ). Thus Vv*. Vv! = a+a_[bbJe2 + (1- bb)H2), 
and 

[/- Vv· VV)-l = bbE(Je) + (1- bb)E(H), 

E(Je) = 1/(1 - a+a_J(2), (B9) 

V<p± = [bbA(Je) + (/- bb)A(H»). Vcp± 
- - ±/ = p. Vcp a±, 

1 + a'FJee'Fi20 
A(a± Je) = (BIO) 

, I - a a Je2 ' + -

where P ± are the multiple-scattered moments. 
Substituting (BlO) into (B5), we obtain 

- ± _+i(o-,1) U± = v±.p.Vcp /a±""h(kr)e- G±, (Bll) 

where the multiple-scattered amplitudes equal 

G±(o, i) = o· p. i 
= o· [bba±A(a'F, Je) + (1- bb)a±A(a'F, H] • i. 

(BI2) 

(Note the shift in location between Hand Je type 
functions from axial to perpendicular components as 
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compared to vector problems in the text proper; this 
is in accord with the relations between, e.g., acoustic 
pressure dipoles and the electric functions in the text.) 

If we express (BI2) in terms of the appropriate 
two- and three-dimensional special functions, we 
obtain the previous results [(85) of Ref. 1 for circular 
cylinders, and (69) of Ref. 3 for spheres]. 

To generalize the above to arbitrary dipoles, we 
replace v in the above by 

v = _(l/k2)Vh • p, (B13) 

so that 

u = _(l/k2)Vh· p. Vcp = ih1cpo. p. i, (BI4) 

where, e.g., p may be constructed from the known 
approximations for elliptic cylinders and ellipsoids. 
For the case where the principal axis of p+ and p_ are 
parallel (i.e., essentially as in the text) we obtain (Bll) 

and (BI2) with P replaced by 

P± = p;±A(PH' H)U + p~±A(p~'f' H)ijij 
+ p,±A(p,'f' Je)~~, (BI5) 

where the ~ term is to be dropped for two dimensions. 
We could also extend the above to all moments by 

working with 

u(n) = (Lnh) <2l Pn <2l (Lncp); n = 2,3. (BI6) 

Thus for monopoles 

L = 1, P = a. (BI7) 
For dipoles 

L = V/ik, <2l =', P = (ab). (BI8) 

For quadrupoles we have 

L = (I + n V'V') fx\ = . 
n k2 ,'CJ " Pn = (abcd)j(n - 1)n, 

(BI9) 
which represents u as the scalar resulting from 
double-dotting a tetradic6 fore and aft by dyadics. 
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The irreducible Hermitian representations of the Lie algebra of the homogeneous Galilei group were 
first constructed by using the method of the maximal compact subgroup. The same representations were 
then obtained by contracting the irreducible representations of the homogeneous Lorentz group. In the 
Appendix, the faithful representations are given with the diagonalized generators of the velocity 
transformations. 

I. INTRODUCTION 

THE homogeneous Galilei group § is a 6-parameter 
Lie group. The corresponding 6-dimensional Lie 

algebra consists of the linear combinations of the 
elements K1 , K2 , K3, J1 , J2 , and J3 with the com­
mutation relations 

[K" K j ] = 0, (Ll) 

[Jk , K j] = h'kjmKm, (1.2) 

[Jk' J j] = iEkjmJ m • (1.3) 

In the following, we construct the Hermitian 
irreducible representations of this Lie algebra in a 
basis which diagonalizes ]2. We first use the method 
of the maximal compact subgroupl; we then apply 
the method of contraction to the irreducible represen­
tations of the Lorentz group.2 In the Appendix, the 
faithful representations are expressed with the 
diagonalized K 1 , K 2 , and K 3 • 

II. HERMITIAN IRREDUCIBLE REPRESEN­
TATIONS OF THE LIE ALGEBRA OF § 

In order to obtain the irreducible Hermitian 
representations of the infinitesimal elements of §, 

we proceed in two steps. 
First, the general form of the matrices K 1 , K 2 , and 

K3 is such that 
[Jk , Pj] = iEkimP m 

is determined from the known expressions of the 
irreducible representations of the Jk's. 

Let us choose, in the representation space, a basis 
labeled by the spin eigenvalues I, and I is fixed by the 

1 We follow the way proposed, in the case of the Lorentz 
group, by I. M. Gel'fand, R. A. Minlos, and Z. Va. Shapiro, 
Represemations of the Rotation and Lorentz Groups and Their 
Applications (Pergamon Press, Inc., London, 1963), Part I, Chap. II, 
Sec. 9. The method of the maximal compact subgroup has been 
further extended by the Syracuse University group, particularly by 
Jacob G. Kuriyan, Ph.D. thesis, Syracuse University (1966). 

2 E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 39, 510 
(1953); E. J. Saletan, J. Math. Phys. 2,1 (1961). 

eigenvalues m of J 3 • We also introduce a third 
parameter T to distinguish between the subspaces 
with the same I; however, such a parameter is not 
necessary in the present case, since we restrict our­
selves to irreducible representations; for these repre­
sentations, any I appears at most once. We then have 

J3 1/, m)' = mil, m)', (2.1) 

J+ II, m)' = ~!n+l II, m + 1)', (2.2) 

J_I/, m)' = ~!n II, m - 1)', (2.3) 
where 

(~!n)2 = (l + m)(l - m + 1), (2.4) 

J± = J1 ± iJ2 • (2.5) 

The states II, m)' are normalized to one; later on, we 
change this normalization. 

Now, if we want to obtain the general matrices 
representing K1 , K2 , and K3 submitted to conditions 
(1.2), we can use the Wigner-Eckart theorem,3 
according to which the matrix element 

(j',m'l T(I,q)\j,m) 

of the qth component of the tensor of first rank 
( = vector) T (1) is given by 

(j', m'l T(l, q) Ij, m) 

= (- )1-1+;' [(I, q,j, mil ,j,j', m')/(2j' + I)~] 
(j'II T(l) \I j), (2.6) 

where q takes the values I, 0, -I, and 

(I, q,j, mil, j,j', m') 

is the usual Clebsch-Gordan coefficient. Equation 
(2.6) gives the expected result if we put 

Tl = K+ = K + iK2' To = K3 , 

(2.7) 

3 See, for example, A. R. Edmonds, Angular Momemum ill 
Quantum Mechanics (Princeton University Press, Princeton, N.J., 
1957). 
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However, we prefer to follow here the notation of 
Gel'fand, Minlos, and Shapiro 1 in order to make use 
of their results on the Lorentz group. These authors 
have shown that, if 

we have 
K 3 II, rn)' = c!'.I;m'.m II', rn')', (2.8) 

C!'.I;m'm = C1'.I;mbm'm' 

cl - 1•1;m = CI_l.I(12 - rn2)!, 

c1+1.I;m = cl+l.I[(l + 1)2 - rn2]!, (2.9) 

c1'.I;m = 0, if II' - 11 > 1, 

C1,I;m = cl,lrn. 

Now, let h(/) be given by 

h(l) = Crro cr+1.r/Cr-1,r t (2.10) 

with 10 being the smallest weight involved in the 
representation. If we replace the states II, rn)' by the 
states 

II, rn) = h(/) II, rn)', (2.11) 

and if we define A I and C I by 

AI = -icl,l> C l = [h(l)/h(l- 1)](-i)C1- 1 •1 , (2.12) 

we obtain for K3, K+, and K_ the representation 
quoted in Eqs. (1.1), (1.4), (1.5), and (1.6) of Table I. 
J3, J+, J_ are still given by (2.1), (2.2), and (2.3) with 
II, rn)' replaced by II, rn). 

What remains to be done is the determination of 
AI and C1 by taking into account the relations tha[ 

[K3' K±] = 0, [K+, K_] = 0, 

and that the representation is Hermitian and irreduc­
ible (for K j , J 1). This is the second step of our 
procedure. 

By following the method of Gel'fand, Minlos, and 
Shapiro1 for the Lorentz group, we obtained, after 
lengthy calculation, the results that the irreducible 
Hermitian representations are characterized by two 
numbers 10 and 11' 10 is the smallest weight involved 
in the representation. ( -Ii) is the value of the Casimir 
operator K: + K+K_. In the representation (10' 11), 

AI = ilol1/1(l + 1), CI = -1-1[li(l2 - 1~)/(412 - 1)]!, 

where 11 is either a pure imaginary number or zero. 

Case I: 11 is the pure imaginary number. In this 
case, the representation is infinite dimensional, I takes 
the values 10, 10 + 1, 10 + 2, .... The representation 
is single-valued (double-valued) if and only if 10 is an 
integer (half odd integer). 

Case II: 11 = 0. The representation is finite. Since 
A I and Clare equal to zero, the translations are 

trivially represented and the representation is un­
faithful. It coincides with the irreducible representation 
10 of the rotation algebra. 

III. ~ AS A CONTRACTION OF THE 
HOMOGENEOUS LORENTZ GROUP L 

We are going to obtain the irreducible represen­
tations of ~ by considering this latter group as the 
contraction of the homogeneous Lorentz group L 
with respect to the rotations. 

The group L has six infinitesimal operators M ik , 

Ki corresponding to rotations in the planes (i, k) 
[i, k = 1,2,3] and (i,O) [i = 1,2,3], respectively. 
The commutation relations, in the usual normal co­
ordinate system, are as follows (with J+ = M 23 + iM13 , 
J_ = M 23 - iM13 , J3 = M 12 , K+ = Kl + iK2' K_ = 
Kl - iK2, and K3): 

[J+,J3] = -J+, [L,J3] = L, [J+,J_] = 2J3, 

[K+ , J +] = [J _ , K_] = [J3, K3 ] = 0, 

[J+, K3] = -K+, [J_, K3 ] = K_, 

[J+, K_] = -[L, K+] = 2K3 , 

[K+,J3] = -K+, [K_,J3 ] = K_, 

[K+,K3] =J+, [K_,K3 ] = -L, [K+,K_] = -2J3. 
(3.1) 

A. Irreducible Hermitian Representations 
of the Lie Algebra of L 

The representations of the generators J3 , J ±, Ka, 
K± of ~ and those of the generators J3, J±, Ka, K± 
of L differ by nothing other than the values of AI 
and CI .4 In both cases, Eqs. (1.1)-(1.6) of Table I are 
valid. But instead of (1.7) and (1.8), we have in the 
case of L the following values for A I and C I 

AI = iloll/I(I + 1), 

C I = (i/1)[(l2 - 1~)(12 - li)/(412 
- 1)]!. 

The pair of invariants (10' 11) can take three 
different types of values. 

Case I: 11 is a pure imaginary number, 10 is an arbi­
trary integer or half-integer. The corresponding 
representations form the so-called main series of 
representations; they are infinite dimensional (I = 10 , 

10 + 1,10 + 2, .. '). 

Case II: 10 = 0, II is a real number such that 
1/11 < 1. The corresponding representations are in­
finite dimensional too (I = 10, 10 + 1, .. '). They 
belong to the so-called supplementary series. 

Case III: 10 = 0, I = 1. The corresponding repre­
sentation is finite. It belongs to the supplementary 
series. 

(I. M. Gel'fand, R. A. Minlos, and Z. Va. Shapiro, Ref. 1. 
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TABLE r. Lie algebra of g. 

Jail, m) = mil, m) (1.1) 

J+ II, m) = oc:"+ll/, m + 1) (1.2) (oc:")t == (l + m)(1 - m + 1) 

J_I/, m) = oc:"l/, m - 1) (1.3) 

K.ll, m) = CI(l! - m!)! II - 1, m) - A,m II, m) - C!+1[(1 + 1)' - m2]lll + 1, m) (1.4) 

K+ II, m) = C.[(/ - m)(/ - m - 1)1~ 11- 1, m + 1) - A,[(l- m)(l + m + 1)] II, m + 1) 
+ C!+l[(l + m + 1)(1 + m + 2)]lll + 1, m + 1) (1.5) 

K_I/, m) = -C,[(l + m)(1 + m - 1)]1 II - 1, m + 1) - A,[(l + m)(/- m + 1»); II, m - 1) 

-C1- 1[(l- m + 1)(/- m + 2»)1 II + 1, m - 1) (1.6) 

(1.8) AI = i/0/1/1(1 + 1) (1.7) C I = -~ [/~(l· - 1:)/(412 
- I)J 

{
positive integer, 

Case I: 11 = pure imaginary; I = 10,10 + 1, ... ; 10 = 
positive half odd integer. 

Case II: 11 = 0; 1=10 , 

B. Contraction of t 

The rotations form a subgroup of t with respect to 
which contraction may be carried out in the sense of 
InonU and Wigner.2 If we make the substitution 

or 

the commutation relations (3.1) lead, in the limit 
E -. 0, to the commutation relations (1.1)-(1.3) 
characteristic of the Galilei group. 

Now, let us consider the irreducible Hermitian 
representations of the algebra of \.: and from these let 
us try to obtain representations for g by using the 
contraction procedure. Relations (1.1 )-(1.3) in Table I 
remain unaltered under the substitution (3.2), but the 
same is not true for (1.4)-(1.6), because AI and C I 

are replaced by 

Ai = ilo(d1)/1(1 + 1), 

C; = (i/l)[(12 - 1~)(E212 - E21~)/(412 - 1)]. (3.3) 

Now, let E go to zero. For the representations 
belonging to the supplementary series (1/11 ::::;; 1), A; 
and C; tend to zero. Hence, the generators Ka, K± 
are represented by the null matrix. For J3 , J± we have 
the representation (I.l)-(I.3) with either 1= 0 if we 
contract the finite representation (10 = 0, 11 = 1) of \.: 
or I = 0, 1, 2, ... if we start from the representation 
(/0 = 0, 1/11 < 1). In the former case, the final repre­
sentation is irreducible (trivial one-dimensional repre­
sentation), in the latter case, it is reducible into the 
representations I = 0, I = 1, ... of the rotation 
algebra. 

On the other hand, in the case of the principal 
series, we have two possibilities: either we .keep 11 
(and ' 0) fixed, then Al and C l tend to zero with E and 

we obtain a representation which is reducible into 
the representations I = 10 , 1 = 10 + 1, ... of the 
rotation algebra; or we let 11 go to infinity (which is 
allowed since, here, any positive value may be 
accepted for 1/11) in such a way that 

lim lIE = 8 
I t11-00 

<-0 

(3.4) 

with 8 a fixed finite number; here we have again to 
di~tinguish between two cases-if 8 = 0, A; and C; 
are zero at the limit and we are reduced to the case 
considered above; but if 8 ¥: 0, A; and C; tend to 
the nonzero limits 

A; = EAl - i81oll(1 + 1), (3.5) 

C; = ECl - O/l)[ _82(/2 - 1~)/(412 - 1)]1 (3.6) 

with 8 a pure imaginary number. Z· can take the 
values 10, 10 + 1, ...; the corresponding repre­
sentation is obviously an irreducible representation 
of Type I for g [infinite (faithful) representation]. 

APPENDIX. FAITHFUL IRREDUCIBLE 
REPRESENTATIONS OF THE ALGEBRA 
OF g WITH THE DIAGONALIZED Ka. 

K+. AND K_ 

It can be derived from resu1ts obtained by Wight­
mans that the irreducible faithful representations of 
the homogeneous Galilei group can be written 
(v = change in velocity or acceleration, R = rotation) 
as 

[U(v, R)'Y](q) = exp iSrp • exp iq • V'Y(~lV (AI) 

with Iql a constant, S the integer (half odd integer), 
and rp the angle of the rotation R-;;l RR R-'q about 
ea . Rq is the rotation about the axis eal\q/q by the 
smallest positive angle between q and the unit vector 
ea on the axis 0 X3 • 

5 A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962). 
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It is then possible to obtain the corresponding 
representation for the generators by going to the 
infinitesimal elements. We find 

Ki =qi' 
iJ1 = q2(0/Oq3) - qa(0/Oq2) - is[q1/(q + qa)], 
iJ2 = q3(0/Oq1) - Q1(0/Oqa) - is[Q2/(Q + Qa)], 
iJa = Q1(0/OQ2) - Q2(0/OQ1) - is. (A2) 

The values of J i are obtained by computing the angle 
of the rotation R-;/RRR-lq for an infinitesimal R. We 
use the 2 X 2 representation of the rotations and the 
formulas 6 

Rq = 2-i [l + (q 0 la/Q)]-i{l + (q 0 la/Q) 
+ i[a 0 (laAq)/Q n, (A3) 

R(o, e) = I + Mea 00 (A4) 

if e is infinitesimal 

q' = R-1q = q cos e + (q 00)0(1 - cos e) 
- (oAq) sin e rv q - (oAq)O. (AS) 

6 The general method used here is especially well explained by 
A. J. Macfarlane, J. Math. Phys. 3, 6 (1962). See also J. M. Levy­
Leblond, J. Math. Phys. 4, 776 (1961). 
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Putting now 
R;/RRW' q = I + tirpa oW (A6) 

we have 

n 0 Is + 0 0 (q/q) IJ 
rp "-' - u. 

- 1 + (q ols)/q 
(A7) 

Thus, we obtain the result (A2), since from (AI) we 
deduce 

[U(O, R)'Y](q) = (1 + iSrp)[1 + e(qAVq) oo]'Y(q) 

(AS) 
if R is infinitesimal. 
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This paper considers all resistive instabilities of a self-pinched cylindrically symmetric beam of 
charged particles in a finite or an infinite Ohmic plasma channel. The problem is reduced to an ordinary 
second-order linear differential equation for the longitudinal component of the perturbed electric field. 
The equation can be solved for a uniform beam shape, yielding an implicit transcendental equation 
whose roots define the various modes. We find that for each azimuthal "quantum number" m there are 
two infinite sequences of modes and two exceptional modes, except that some of these modes are 
missing for m = 0, 1, and 2. In all modes we find stable oscillation at very low and very high frequencies, 
and instability at intermediate frequencies, the growth rates generally reaching maxima somewhat less 
than the betatron frequency wp. The largest maximum growth rate is in the "hose" mode (the only 
exceptional mode for m = 1), where it is approximately 0.29 wp. For a general smooth beam shape, 
the catalog of modes is similar to that for a uniform beam, except that there also appears a continuous 
spectrum. It is also proved for general beam shape that at low frequencies the "hose" dispersion 
relation becomes the same as that derived earlier under the assumption of rigid beam displacement; 
this is not the case at higher frequencies. 

10 INTRODUCTION 

THIS article deals with the general resistive insta­
bilities of a self-pinched cylindrically symmetric 

unmodulated beam of charged particles passing 
through an Ohmic plasma channel. The modes are 
characterized by the appearance in the fields and 
currents of exponential factors 

(1.1) 
• Morris Loeb Lecturer, Physics Department, Harvard Univenity, 

Cambridge, Massachusetts. 

multiplying various functions of r. The streaming 
modes, with w of the order of the plasma channel 
conductivity a, have been adequately treated in 
previous articles1 ; the present work deals only with 
the resistive instabilities, with I{ol « a. 

What we hope to get for our trouble is a dispersion 
formula giving k (or w) for general complex values of 

1 E. A. Frieman, M. L. Goldberger, K. M. Watson, S. Weinberg, 
and M. N. Rosenbluth, Phys. Fluids 5,196 (1962); earlier references 
are quoted therein. 
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ro (or k). It is helpful to have in mind a more specific 
problem of practical importance in experiments like 
those at the Astron: Suppose the beam is tickled at 
z = 0 with a perturbation having a single real 
frequency wand with m value and radial dependence 
such that only a single mode is excited. The instability 
grows if 1m k < 0, and at a point z downstream 
the number of e foldings is z 11m kl. Our primary 
aim is then to decide, for each mode, at which real 
value of w there occurs a maximum in - 1m k and to 
calculate this maximum value. However, there are 
conditions of "free growth" for which ro and k take 
complex values determined by a saddle-point con­
dition2 ; hence we really solve our instability problem 
only when we understand the behavior of k(w) 
throughout the complex w plane. 

One of the resistive instabilities with m = 1, the 
"hose" mode, has already been intensively studied3•4 

under the assumption that the beam moves rigidly 
from side to side. This assumption is expected to be 
valid for very small ro, or more precisely, when the 
skin depth (c2/47T(1W)t is much larger than the beam 
radius. However, the growth rate is also expected to 
reach a maximum when the skin depth is of the order 
of the beam radius, and in this most important case 
we cannot rely on the rigid beam approximation. 
Furthermore, the "sausage" (m = 0) mode and all 
higher modes depend fot their existence on beam 
deformation, so we could never hope to treat them all 
until we learned how to take into account the per­
turbations in the individual beam particle orbits. In 
this paper we discuss all m values in a unified way, with 
no assumption of beam rigidity in any mode. 

The simplifying assumptions made here are: 

(l) Beam particles undergo no collisions. This 
assumption is essential not only to our calculation but 
also to the very existence of the beam. (For a high­
density beam moving very fast with respect to the 
plasma, we might have to take into account beam-beam 
collisions without worrying about beam-plasma colli­
sions. In this case the instability could be treated 
hydro-dynamically without looking at individual beam 
particle orbits.) 

(2) The unperturbed beam particles all have 
velocities with the same z-component v. This assump-

2 This point is discussed in detail in Sec. XII. 
3 The original work on the "hose" instability was done by C. 

Longmire (unpublished) and M. Rosenbluth. Phys. Fluids 3, 932 
(1960). See also Ref. 4, and unpublished work by H. Lewis, K. 
Brueckner, G. Ascoli, H. Chang, S. Yadavalli, H. Singhaus, and 
R. Briggs. 

4 The "hose" instability was discussed for general beam shape, with 
emphasis on the effects of beam modulation, by S. Weinberg, J. 
Math. Phys. S, 1371 (1964). 

tion is made for simplicity, and does not appear to be 
of critical importance in these modes. 

(3) The particles in the unperturbed beam move in 
circular helices5 around the z axis. This assumption is 
made so that a beam particle feels a simple harmonic 
force from the perturbed fields. It could be given up, 
but only at the cost of having to solve an additional 
nontrivial second-order differential equation for the 
perturbed particle orbits. 

(4) The parameters of the beam and plasma are 
such that 

c2/47T(1aV « 1, 

wpa/v « 1, 

and we only look for modes with 

Iwl a« D, 

Ikj a« 1. 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

Here, (1 is the plasma conductivity, c is the speed of 
light, a is a characteristic beam radius, D is the z 
component of the unperturbed beam particle velocity, 
and wp is a typical value of the unperturbed beam 
particle gyration frequency around the z axis. All 
previous work on the hose and sausage modes has 
been based on the assumptions (1.4) and (1.5), 
because they lead to an enormous simplification in the 
derivation of the dispersion relation and in the 
dispersion relation itself. The point of the assumptions 
(1.2) and (1.3) is that we expect and do find the fastest 
growing modes to be such that 

(1.6) 

Iw - kvl ~ wp, (1.7) 

and in this case (1.2) and (1.3) are necessary and 
sufficient for (1.4) and (1.5). [As an example, nominal 
values for the beam experiment at Astron6 are 
(1 ~ 1012 sec-I, a ~ 1 cm, wp ~ 9 X lOs sec-I, and 
v ~ c, so the left-hand sides of (1.2) and (1.3) take the 
values 0.002 and 0.03, respectively, and our assump­
tions are well justified.1 It should be noted that (1.4) 
and (1.6) yield 

\wl/47T(1 ~ \wI2a2/c2 « 1, 

and, as already remarked, this excludes the streaming 
modes from our present consideration. 

In Ref. 4 we first found the "exact" hose dispersion 
relation, and then applied (1.2)-(1.7), at the cost of 
considerable clarity and physical insight. Here we use 

S This assumption was used in unpublished work by H. Lewis to 
obtain the "sausage" dispersion relation for a uniform beam. Our 
result for this case [Eq. (8.12) with m = 0 and R = ao) is identical 
with that previously obtained by Lewis. 

6 N. Christofilos, private communication. 
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(1.2)-(1. 7) from the beginning; it is hoped the reader 
finds this an improvement. 

The first half of the present paper (Secs. II-VI) is 
devoted to a derivation of the dispersion relation as 
the condition for the solubility of an ordinary second­
order differential equation [Eq. (6.1)] for the z 
component of the electric field. In Sec. II we describe 
the unperturbed beam. In Sec. III we use assumptions 
(1.2)-(1. 7) to calculate the perturbed electromagnetic 
fields and forces generated by a given perturbation in 
the beam charge density. The response of a beam 
particle to these forces is calculated in Sec. IV, and in 
Sec. V we use the results of Sec. IV to calculate the 
perturbed beam charge density. Putting this into the 
simplified field equation derived in Sec. III, we emerge 
in Sec. VI with our fundamental equation (6.1). 

It becomes immediately apparent upon inspection 
of Eq. (6.1) that in each mode the dispersion relation 
has a basic scaling property, which can be expressed 
in the formula 

0 2 == (w - kV)2 = w;}.2(41Til1a2w{c2
). (1.8) 

The quantity }.2 is for each mode a dimensionless 
function entirely determined by the shape of the beam 
particle number density nCr) (and by the precise 
definitions chosen for a and wp) except that for a 
finite plasma channel radius R the }.2 functions 
also depend on the fixed parameter aiR. 

The second half (Secs. VU:-XIII) of this paper is 
concerned with the construction of a catalog of modes 
and a detailed examination of the properties of the 22 
functions in each mode, leading to an estimate of the 
forced and free growth rates. In Sec. VII we check7 

that the rigid beam "hose" dispersion relation derived 
in Ref. 4 for general beam shape emerges here as the 
limit of Eq. (1.8) for w « c2{41Tl1a2 in the case m = 1. 
In Sec. VHf we specialize to the case of a uniform 
beam, and derive the dispersion relation as an implicit 
transcendental equation 

f}e:"(qa/'f}») + e/qa 
J,iqa/f}) 

_ H~)'(qa)JJm_ll(qR) - J;,,(qa)Hl~_ll(qR) (1.9) 

- H~)(qa)J'm_ll(qR) - J,,.(qa)Hl!LII(qR) ' 

7 The existence of a mode, for which n -+ 0 as w ...... 0, can be 
inferred from the translat.ional invariance of Maxwell's and Newton's 
equations, and the uniformity of the background plasma. The beam 
could be anywhere within the plasma channel, and its being at one 
position rather than another "breaks" this translational symmetry. 
There is a theorem, known in quantum field theory as the Goldstone 
theorem, which states that whenever the equations (i.e., the 
Lagrangian) of a system have a symmetry which is not shared by 
some solution of these equations (in our case, the unperturbed 
beam), this solution must admit perturbations (in our case, the hose 
mode) which allow arbitrarily small wavenumber and frequency. 
See J. Goldstone, Nuovo Cimento 19, 1.54 (1961), and J. Goldstone, 
A. Salam, and S. Weinberg, Phys. Rev. 127,96.5 (1962), 

where a is the beam radius, R is the plasma channel 
radius, and 

q2 == 41Til1w/c2 (Imq > 0), 
2(4 - m'l. _ ;'2) 

,.,2 = 1 _ --~------''---
'[ - (4 - m2 _ ,1.2)2 - 4m2;r~ , 

2 == 2m
2
(1 - f}2)(1 _ 222 ) 

~ ,2 2 4 2 '2' II.-m -m-II. 

22 == 0 2/(0: == «(0 - kv)2Iw;. 

Then in Sec. IX we catalog the solutions of this equa­
tion for 22 as a function of q2. It is found that for each 
m there are generally two infinite sequences of modes 
Amn and Bmn and two exceptional modes Cm and Dm, 
except that the modes Bon' Co, Do, D1 , A2n , C2 are 
missing. The "hose" mode is C1 • The high- and low­
frequency behaviors of 22 in all these modes is derived 
in Appendix B and by machine calculations,S and 
summarized in Sec. IX, Tables I to 3, and Figs~ 1 to 5. 

In Sees. X-XIII we return to the case of a general 
smooth beam shape. We show in Sec. X that there 
occurs here a continuous spectrum9 similar to that 
found in Ref. I for the streaming modes. That is, there 
are real positive 0 2 values [in bands given by Eqs. 
(10.12)-(10.16») each of which aUows a solution ofEq. 
(6.1) for all real or complex w. The solutions contain 
logarithmic and step function singularities, but the 
location of the singularities depends on 0 2, so that 
the fields are nonsingular when integrated over a 
range of 0 2• The continuous spectrum includes only 
stable oscillation frequencies (i.e., 0 real) so it is of no 
practical importance here; this is in contrast with the 
streaming modes, 1 for which the continuous spectrum 
is unstable and is in fact the whole spectrum. In Sec. 
XI we treat the discrete modes, for which 0 is a 
function of w, and we show that they correspond, 
more or less, to the A, B, C, and D modes found in 
Sec. IX for a uniform beam. The limits of 0 as w -- co 
and (for A, B, and C1 modes) as w -- 0 are shown to 
be the same as for a uniform beam, except that (J)p 

must be replaced with the particle gyration frequency 
at r = 0; however, the way that 0 approaches its 
limit as w -- co depends sensitively on the beam shape. 
The analytic properties of the function O( w) are 
discussed in Sec. XII and used to construct approxi­
mate dispersion relations, which for the uniform beam 
compare rather well with exact computer results. 

We conclude in Sec. XIII with a discussion of how 

8 Computer results for the most important modes were very 
kindly supplied by S. C. Wright. 

9 We are very grateful to K. M. Case for pointing out the existence 
of a continuous spectrum in this problem. The continuous spectrum 
found here is very closely related to that of the streaming modes, 
discussed in Ref. J. 
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the dispersion relation is to be used in calculating the 
number of e foldings under conditions of forced 
growth and free growth. In the former case w is a 
fixed real tickling frequency, and A2 in Eq. (l.8) is 
complex, so there are two roots, one growing and one 
decaying. In all modes A2(O) and A2( (0) are non-negative 
real numbers, so we may expect 1m A to reach its 
maximum when the argument of A2 is of order unity, 
at which point IRe AI and 11m AI are also of order 
unity. [Inspection of Eq. (1.8) then explains why (1.6) 
and (1.7) characterize the most rapidly growing modes.] 
CalculationS of the maximum growth rates for the 
uniform beam (with R = 2a) reveals that they all lie 
between O.09wp and O.12wp, except that the m = I 
"A modes" have maximum growth rate O.17wp, the 
m = 0 "sausage" modes have maximum growth rate 
O.26wp, and last but not least, the m = 1 "hose" mode 
has maximum growth rate O.29wp . 

The saddle-point method is used at the end of Sec. 
XIII to treat the case of free growth. It is found that 
at a fixed distance vt - z behind the disturbed part of 
the beam, the saddle point moves as z -+ 00 to w -+ 00, 

and the number of e foldings grows as 

# rx Z(N+lJ/(2N+lJ (N = 1,2, ... ) 

if the beam density nCr) approaches nCO) + O(r2N) as 
r -+ O. This conclusion seems to indicate that for 
asymptotic free growth (or more generally, for all 
large w) the instability is worse for a smooth beam 
shape (N small) than for a uniform beam (N large). 
However, it is necessary to take this conclusion with 
some reservations, because for a smooth beam shape 
the particles participating in the instability are limited 
for large w to a small area near the beam axis, and the 
instability may not matter. A general treatment of this 
phenomenon (including the effects of noncircular 
orbits) seems called for, and may be the subject of a 
future article. 

II. UNPERTURBED BEAM 

The average velocity of the beam particles is in the 
z direction, with magnitude v, 'lnd their number 
density at a distance r from the beam axis is nCr). 
Therefore the unperturbed magnetic field points in the 
+ () direction, with magnitude 

47Tevlr , Boo(r) = -- r'n(r') dr. 
rc 0 

(2.1) 

We assume the plasma to maintain local charge 
neutrality, so the force on a beam particle is solely due 
to the magnetic field. Assuming the beam particles to 
move on circular helices, their velocity has no r 

component, so the magnetic force points in the -r 
direction, with magnitude 

-Foir) = (ev/c)Boo(r). (2.2) 

If the beam particles have angular frequency !X(r), we 
must equate (2.2) to the relativistic centrifugal force 
My!X2(r), obtaining for the angular frequency 

(2.3) 

with 

For instance, if the beam density nCr) is uniform, Eq. 
(2.3) gives just the familiar betatron frequency 

!X2(r) = w; == 27TeVn/Myc2 (inside beam). (2.4) 

However, we do not restrict ourselves to the case of a 
uniform beam. 

Equation (2.3) has two roots for !X(r), corresponding 
to the possibility of both clockwise and anticlockwise 
helical orbits. We usually expect both to occur with 
equal probability, and so assume in this article, though 
it would be a trivial matter to extend our analysis to 
the case of a polarized beam. 

III. PERTURBED FIELDS AND FORCES 

Our unperturbed system has a translation symmetry 
in each of the coordinates (), z, and t. Therefore· we 
may assume that the cylindrical components of the 
perturbed fields EI , BI and perturbed current J I take 
the form 

eimOeikze-irot X functions of r. (3.1) 

Here, m is an integer, with m = 0 for the sausage mode, 
m = ± 1 for the hose mode, etc. 

The exact Maxwell equations can therefore be 
written as 

(im/r)Elz - ikElo = (iw/c)BIr' (3.2) 

O/r)(rEIO)' - (im/r)EIr = (iwJc)BIz> 

im . (47Ta - iW) 47T - BIz - ,kBIO = E1r + - J Ir , 
r c, c 

'kB B' (47Ta - iW)E 47T J 
I Ir - lz = C 18 + -;;- 10, 

! (B )' _ im B _ (47Ta - iW)E 47T J r 10 Ir - 1% + Iz • 
r r c c 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(We have set the plasma current equal to aE1 ; a prime 
means a/or.) It is very convenient to use (3.2), (3.3), 
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(3.5), and (3.6) to express the transverse field com­
ponents in terms of E Iz , BIz, Jlr , and JI9 : 

2E -mw B 'kEf 47Tiw J q Ir = -- lz + 1 lz - -9- In (3.8) 
rc c-

(3.9) 

2B _ (47T1J' - iW)(im)E + 'kB' + 47Tik J q 1,. - lz I lz 19 , 
ere 

(3.10) 

2B __ (47T0" - iW)Ef _ km B _ 47Tik J 
q III - lz lz 1,., 

ere 
(3.11) 

where q is the transverse wave number, defined by 

q2 = _p + (iw/c2)(47T0" - iw). (3.12) 

Equations (3.4) and (3.7) give decoupled equations for 
Eiz and BIz: 

-47T[. 0 J = -- -lmJlr + - rJ18 . 
rc or 

(3.14) 

We now invoke the approximations discussed in the 

We also find that Iw - kvl is of the order of the 
typical betatron frequency wp , so (3.15) and (3.16) are 
consistent only if 

wpa/v« 1. (3.20) 

We have already made assumptions (3.19) and (3.20) 
in Sec. I. 

We next simplify the electrodynamic equations 
(3.8)-(3.14), using (3.15)-(3.20), and estimating 

q "-' a/a, "" l/r"-' l/a (3.21) 

everywhere in these equations. Our starting point 
is the tentative assumption that the perturbed beam 
particle velocity VI has comparable , and () com­
ponents, and a z component at most comparable with 
these. This ansatz is verified later in this section; it 
actually turns out that VIz is much less than VIr and 
VI9' The perturbed beam current components are 

JI9 = envI9 , 

J Iz = envlz + enIv, 

(3.22) 

(3.23) 

(3.24) 

where n is the unperturbed beam density and ni is the 
perturbation to n. Charge conservation gives 

+iweni = V· J 1 

or 
(3.25) 

where 
o == w - kv. (3.26) 

Hence VIr and VIII may be estimated as of order 

Introduction. Specifically, we look for modes with and so 
(3.27) 

(3.28) Iwl a« v, 

Ikl a« 1, 

Iql a,-..., 1, 

(3.15) 

(3.16) 

(3.17) 

where a is a characteristic beam radius and V is the 
unperturbed beam particle velocity z component. By 
Eq. (3.17) we do not necessarily mean to exclude the 
possibility that Iql a"" 0.01 or Iql a'" 100, but only to 
require that /ql a is much closer to unity than is Iwl a/v 
or Ikl a; however, the fastest growing modes in 
fact turn out to be those with Iql a quite close to unity. 

From (3.15)-(3.17) we see that Iql » Ik/ and Iql » 
Iwlel, so (3.12) now gives q as 

(3.18) 

Note that (3.15) and (3.17) are consistent only if 

(3.19) 

the other term in (3.24) being smaller by at least a 
factor 101 a/v. [Equations (3.15) and (3.16) imply 
101 a « v.] Also (3.27) lets us estimate the transverse 
perturbed beam currents (3.22) and (3.23) as being of 
order 

(3.29) 

Formula (3.28) and the estimate (3.29) show that the 
Jlr and JI9 terms on the right-hand side of Eq. (3.13) 
are smaller than the JIz term by factors of order 
(Oa/v)(ka), and hence may be neglected. Recalling that 
Iql » Ikl, we may thus simplify Eq. (3.13) to read 

1 a a m2 
2 -47Tievw 

- - r - E1z - - Elz + q Etz = "1' 
r 8, ar r2 c2 

We may also estimate E1• as being of order 

E10 '" (47Tevwa2/c2)n1 • 

(3,30) 

(3.31 ) 
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Using (3.29) and (3.14), we may estimate BIz as being 
of order 

(3.32) 

Using (3.29), (3.31), and (3.32) in (3.8)-(3.11) yields 
the estimates 

El, -- Elf) "" (47TewD.a3/c2)nl or (47Tewkva3/c2)nl' 

(3.33) 

BIT"""" B1B .-. (47Teva/c)nl . (3.34) 

Also, (3.10) and (3.11) now simplify to 

Bl , = (mc/wr)ElZ ' (3.35) 

BIB = (iclw)E~z, (3.36) 

the terms neglected being smaller by a factor ka(Qa/v). 
We are now in a position to decide which are the 

important forces on a beam particle. A particle in an 
unperturbed orbit of radius r feels forces due to the 
perturbed electromagnetic fields, given by 

FIr = e[Elr + (rxrjc)BIZ - (v/c)BlO], (3.37) 

FIB = e[ElO + (v/c)B lr], (3.38) 

(3.39) 

where rx is the angular gyration frequency at r. We 
have already assumed that the typical value wp of rx 
is much less than via. Our estimates (3.31)-(3.34) of 
the field magnitudes then lets us replace (3.37) and 
(3.38) by 

ing perturbed orbit is then given by equations 

ret; rcph) = r + D,(t; rcph), (4.1) 

lJ(t; rcph) = rx(r)t + cp + ,-1 Do(t; rcph), (4.2) 

fl(t; rcph) = vt + h. (4.3) 

Here Dr and De are infinitesimal perturbations; we do 
not perturb z because we have already seen that the 
perturbed force is almost purely transverse. 

The exact equations of motion are 

r - lJ2r = FrCr, lJ, fl, t)/My, (4.4) 

rlJ + 2M = FoCr, e, fl, t)/My, (4.5) 

with My the relativistic beam particle mass. The 
zeroth-order solution has already been discussed in 
Sec. II. The first-order terms give 

DrCt, rcph) - rx2(r)Dr(t; rcph) - 2rx(r)De(t; rcph) 

= -[rrx2(r)]' Dit; rcph) 
+ (My)-IF1T [r, rx(r)t + cp, vt + h, t], (4.6) 

Do(t; rcph) + 2rx(r)DrCt; nph) 
= (My)-lFlO[r, rx(r)t + cp, vt + h, tJ. (4.7) 

On the right-hand side of Eq. (4.6) we have used the 
fact that the unperturbed radial force is -Myrrx2(r). 

We have already observed that the perturbed forces 
have the functional form 

Fln(r, e, z, t) = cimOeikze-iwtS,,(r) (4.8) 

with n = r or e, and :F,,(r) and .'Fo(r) two infinitesimal 
functions of r. Then 

FIr = -(evJc)BllI = (-iev/w)Ei •• 

FlO = (evjc)Blr = (evmjwr)EIz , 

(3.40) [( ) h ] FIn r, rx r t + cp, vt + , t 
(3.41) 

the neglected terms being smaller by factors of order 
(wa/c)(Qa/c), (wa/c)(ka)(v/c), or (Qajv)(wpa/v). And 
FIz is smaller than FIr and FIe by factors of order 
(wa/v) or (wpa/v), justifying our previous statement 
that Viz is smaller than VIr and VlO' 

The important results of this section are the differ­
ential equation (3.30) for the Eiz generated by a given 
Ill' and the formulas (3.40) and (3.41) for the forces 
in terms of Eiz • To Eq. (3.30) we must also add a 
boundary condition on E1z for r --+ 00. If the plasma 
conductivity (J stays constant everywhere, then outside 
the beam we must require 

EIz oc H;;/(qr), 1m q > O. (3.42) 

The boundary condition for finite plasma channel 
radius is worked out in Appendix A. 

IV. PERTURBED BEAM PARTICLE ORBITS 

The unperturbed orbit of a beam particle can be 
characterized by three parameters, the radius rand 
the values cp and h of 0 and z at t = O. The correspond-

where again 
Q == w - kv. (4.10) 

We may therefore conclude that the rand e com­
ponents of the beam displacement take the form 

Dn(t; r, cp, h) = e-i[(l-m~(r)]teik"eim"'!Dn(r). (4.11) 

Inserting (4.9) and (4.11) in (4.6) and (4.7), we find 

{-[Q - mrx(rW + rrx2'(r)}!D.(r) 

+ 2irx(r)[Q - moc(r)]!Do(r) 

= (My)-l.'F,.(r), 

-2irx(r)[Q - mrx(r)]!D.(r) - [Q - mrx(rW!Do(r) 

= (My)-I.19(r). 
The solution of these equations is 

My!D.(r) = :F,,~) + 2irx(r).19(r)f[Q2 - mrx~r)], (4.12) 
4rx (r) - [0 - mrx(r)] + rrx (r) 

[
-2irx(r).'F,.(r)/[Q - mrx(r)] ] 

M !D ( ) = + (l - {rrx2'(r)/[Q - mrx(r)]2}).19(r) 
y II r 4rx2(r) _ [Q _ mrx(rW + rrx2'(r) . 

(4.13) 
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The forces are given in Sec. III in terms of the 
perturbed electric field E Iz , which takes the form 

Elz(r, e, z, t) = eimOeikze-irot[,(r). (4.14) 

Hence from (3.40), (3.41), (4.8), and (4.14) we have 

.rrCr) = (-iev/w)["(r), (4.15) 

.ro(r) = (evm/wr)[,(r). (4.16) 

Using (4.15) and (4.16) in (4.12) and (4.13) gives 

-iev( ["(r) _ 2mlX(r) r-1[,(r») 

~ ( ) = Myw 0 - mlX(r) (4.17) 
r r 41X2(r) _ [0 _ mlX(r)]2 + rIX2'(r) , 

[
~( -2!X(r) ["(r) ] 

My'" n: [:~ ,.'(d ,](m)6('l) 
~ ( ) = (0 - mIXer)] r 

9 r 4!X2(r) _ [0 _ m!X(r)]2 + r!X2'(r) . 
(4.18) 

V. PERTURBED BEAM DENSITY 

The driving term for the perturbed fields was shown 
in Eq. (3.30) to be the perturbation n1 in the beam 
particle density. We must now express n1 in terms of 
the beam displacement functions found in the last 
section. 

The total perturbed beam density ii = n + n1 is 
given by integrating the number n(-t}t d-t dq; dh of 
beam particles between -t, q;, h, and -t + d-t, q; + dq;, 
h + dh, times appropriate 15 functions: 

rii(r(Jzt) = f n(-t)-t d-t dq; dM[r(t; -tq;h) - r] 

X 15[e(t; -tq;h) - e]b[z(t; -tq;h) - z] (5.1) 

with r, 0', and z given by (4.1), (4.2), and (4.3). To first 
order in the ~'s, the 15 functions give 

-t = r - ~r[t; r, e - !X(r)t, z - vt], (5.2) 

q; = e - !X(r)t + !X'(r)t~r[t; r, e - !X(r)t, z - vt] 

- r-l~9[t; r, e - !X(r)t, z - vt], (5.3) 

h = z - vt (5.4) 
or using (4.11) 

-i = r - e-iroteimgeikz~rCr), (5.5) 

q; = (J - !X(r)t _ e-iroteimgeikz 

X [r-1~9(r) - !X'(r)t~r(r)]. (5.6) 
The Jacobian of the transformation r(Jz ~ -iq;h is 

the determinant 
l-e( )~;(r) -ime( )~r(r) -ike( )~o(r) 

1
(J(rrph)] = -rx'(r)t- e( )~riI(r) 1- ime( )~r9(r) -ike( )~re(r) , 
o(r(Jz) 

o 0 

where we have used the abbreviations 

'1)re(r) = r-1'1)0(r) - O('(r)t1>r(r). 

Keeping only terms of first order in '1), we find that the 
100'(r) terms cancel, giving 

I o(tq;h) I = 1 - eikZeimOe-irot{~;(r} + im ~o(r)} . 
o(r(Jz) r 

(5.7) 

Applying (5.5)-(5.7) to (5.1), we find the beam 
density 

rii(r(Jzt) = {rn(r) - [rn(r)]'ikZeimOe-irot'l>r(r)}\O(-iq;h)j 
o(rez) 

= rn(r) _ eikzeim6e-irot 

X {[rn(r)'l>rCr)], + imn(r)'l>o(r)}. (5.8) 

The perturbation in n is hence of the form 

nir(Jzt) = eikZeimoe-irotX(r) (5.9) 
with 

X(r) = -(ljr)[rn(rYD.(r)], - (imjr)n(rYDo(r). (5.10) 

This result, that n1 = -V· (Dn), is certainly one that 
might have been guessed from conservation con­
siderations. However, it is difficult to find any simpler 
proof of (5.10) than the one given here. 

Using (4.17) and (4.18) in (5.10), we find 

X(r) = - iev{ _ 1 ~ rn(r) ~ l;(r) + m2 
nCr) &(r) 

Myw r dr F(r) dr r2 F(r) 

+ 2m (O(r)n(r»)'&(r)}, (5.11) 
r[O - mO(r)] F(r) 

where F(r) is the denominator in (4.17) and (4.18): 

F(r) == 40(2(r) - [0 - mO(r)]2 + r0(2'(r). (5.12) 

It is convenient to use the static equilibrium condition 
(2.3) to express nCr) in terms of O(r): 

(47Te2v2jMyc2)rn(r) = [r20(2(r)],. (5.13) 
This gives 

ic
2 {I d d X(r) = -- - - rl+(r) - &(r) 

47Tevw r dr dr 

m
2 

} - """"11+(r)&(r) - g+(r)&(r) , (5.14) 

where 

f ( ) 
= 20(2(r) + r0(2'(r) 

+ r _ , , 
40(2(r) - [0 - mO(r)f + r0(2 (r) 

(5.15) 

2m 
g+(r) == ----=:..:.:..--

r[O - mO(r)] 

( 
0(r)[20(2(r) + r0(2'(r)] )' 

X 40(,2(r) _ [0 _ m!X(r)]2 + r0(2'(r) . 
(5.16) 
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This answer is correct as it stands only in the 
unlikely event that all beam particles have the same 
sign for the rotational frequency oc(r). It is much more 
realistic to suppose that clockwise and anticlockwise 
orbits are equally common (at each r), in which case 
the beam density perturbation X(r) must be averaged 
over the two signs of oc(r). We then find 

ic2 {1 d d X(r) = -- - - rf(r) - &(r) 
47Tevw r dr dr 

m
2 

} - - f(r)&(r) - g(r)&(r) , 
r2 

(5.17) 

where 

fer) = Hf+(r) + f-(r)] 
[roc2'(r) + 2oc2(r)][(4 _ m2)oc2(r) _ Q2 + roc2'(r)] 

= [(4 - m2)oc2(r) _ Q2 + roc2'(r)]2 _ 4m2Q2oc2(r) , 
(5.18) 

_4Q2m2 

g(r) = t[g+(r) + g_(r)] = r[Q2 _ m2oc2(r)] 

{ 
oc2(r)f(r) }' 

X (4 _ m2)oc2(r) _ Q2 + roc2'(r) 

+ 2m
2
oc(r) {oc(r)f(r)}' (5.19) 

r[Q2 _ m2oc2(r)] 

the functions f-Cr) and g_(r) being given by replacing 
oc(r) by -oc(r) in (5.15) and (5.16). [It would also be 
possible to treat a "polarized" beam by using different 
weights for f+ , g+ and f- , g_ in (5.18) and (5.19).] 

VI. FUNDAMENTAL EQUATIONS 

Using (4.14) and (5.9) let us write the field equation 
(3.30) for E1z as 

1 d d m2 
2 . V.n 

- ~ r - &(r) - - &(r) + q &(r) = -47Tlew"2 J, (r). 
r dr dr r2 c 

And (5.17) gives X(r) in terms of &(r), so the circle is 
closed, and we emerge with a second-order ordinary 
differential equation for &(r): 

1 d d. m2 

- - r[1 - fer)] - &(r) - - 11 - f(r)]&(r) 
r dr dr r2 

+ q2&(r) + g(r)&(r) = 0. (6.1) 

For the reader's convenience, we repeat thatf(r) and 
g(r) are functions describing the beam response to the 
field &: 

f( ) = [roc2'(r) + 2oc2(r)][(4 - m2)oc2(r) - Q2 + roc2'(r)] 
r [(4 _ m2)oc\r) _ Q2 + roc2'(r)]2 _ 4m2Q2oc2(r) , 

(5.18) 

_4m2Q2 { oc2(r)f(r) }' 
g(r) = r[Q2 _ m2oc\r)] (4 _ m2)oc2(r) _ Q2 + roc2'(r) 

+ 2
2m2oc

(;) 2 {oc(r)f(r)}', (5.19) 
r[Q - m oc (r)] 

with oc(r) the beam particle gyration frequency. 

The solutions of (6.1) behave like ,-m and r+m 

for r ->- ° (or, for m = 0, like In rand 1), and we must 
of course pick the solution that goes to rlml for r ->- 0. 
The boundary condition at the plasma channel radius 
R is shown in Appendix A to be 

&'(R)/&(R) = -Iml/R. (6.2) 

[For R = 00 we just pick the solution that behaves 
like HI<Jnl(qr) outside the beam.] The consistency of 
these requirements on the behavior of &(r) at r = ° 
and r = R imposes a condition relating q2 and Q2, 

which of course is the dispersion relation we seek. 
Inspection of Eq. (6.1) reveals that the dispersion 

relation has the form promised in Sec. I: 

Q2 = w:).2(q2a2), (1.8) 

where a is some characteristic beam radius and wp is a 
typical value of oc(r). The circumstance that only Q2 

rather than Q appears in the dispersion relation (which 
implies that there is always one growing and one 
decaying mode) arises because we average over the 
two directions of beam polarization in Eq. (5.17). For 
the same reason the dispersion relation depends only 
upon m2 rather than m. Had we allowed unequal 
numbers of clockwise and anticlockwise beam particle 
orbits we should have found the dispersion relation to 
depend not only on Q2 and m2, but also on the relative 
sign of Q and m; hence for each growing or decaying 
mode with m > ° there would be a decaying or 
growing mode with opposite m and Q. 

Since the dispersion relation does not depend on the 
sign of m, we save writing below by always taking 
m positive, m ~ 0. 

VII. RIGID BEAM LIMIT 

There is one special case where (6.1) can be solved 
exactly for arbitrary beam shape. With Q = 0, q = 0, 
and m = 1 the functions fer) and g(r) are given by 
(5.18), (5.19) as 

fer) = fo(r) == [roc2'(r) + 2oc2(r)]/[roc2'(r) + 3oc2(r)], 

(7.1) 

g(r) = goer) == [-2/roc(r)][oc(r)fo(r)]'. (7.2) 
It is straightforward to check that (6.1) is then 
satisfied exactly by 

&(r) = boer) == Aroc2(r) (A const). (7.3) 

Note that outside the beam (2.3) and (7.3) give 
&(r) oc l/r, in agreement with the requirement that 

&'(R)/&(R) = -l/R. 

Also, (7.3) obeys the condition that for r ->- 0 

&(r) oc r. 

The meaning of the solution (7.3) can be understood 
by referring back to the formulas (4.17) and (4.18) 
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for the beam displacement functions :On(r). With 
.0 = 0 and m = 1 they give 

'" ( ) = -iev t'Cr) + (2/r)t(r) (7.4) 
"vr r Myw 31X'r) + rlX!'(r) , 

'" ( ) _ ~ 2t'(r) + [r- 1 
- oc2'{r)joc2{r)]t'(r) 

"vB r - . 
Myw 31X2(r) + roc2'(r) 

(7.5) 
Using (7.3) we find 

where 

~r(r) = d, 

~o<r) = id, 

d == -ievA/(Myw). 

(7.6) 

(7.7) 

(7.8) 

The Cartesian components of the beam particle 
displacements are then given by (7.6), (7.7), and (4.11) 
[with w = k = 0] as 

Dx = eia(r)teitp{~ir) cos [1X(r)t + cp] 

+ ~O<O) sin [o:(r)t + cpU 
= d, (7.9) 

Dy = eia(rlleitp{ -~ir) sin [o:(r)t + cp] 

+ ~B{O) cos [o:(r)t + cpH 
= id. (7.10) 

We therefore conclude that this solution corresponds 
to the rigid displacement7 of the beam in the direction 
(l, + i, 0). The mode m = -1 would correspond to 
displacement in the (1, -i, 0) direction. Equation 
(7.8) just expresses the fact that the perturbed electric 
field vanishes like w for w ..... O. [To be honest, the 
solution (7.3) was guessed by requiring that (7.4) and 
(7.5) give constants.] 

Now that we have a zeroth-order solution we can 
do perturbation theory to obtain a relation between 
.02 and q2 when both are small. Let the solution in 
this case be written 

t(r) = Boer) + 02lO(r) + . . . (7.11) 

and expand fer) and g{r) in powers of 0 2 

fer) = fo{r) + 02<I>{r) + ... , (7.12) 

g(r) = goer) + 02r(r) + ... , (7.13) 

where !oCr), goer), and to(r) given by (7.1)-(7.3), and 

<P(r) = [20:
2
(r) + r0:2'(r)][7oc

2 + r«2'(r)] , (7.14) 
[3«2(r) + r0:2'(r)]3 

r(r) = _4_[oc2(r)[2«2(r) + r0:2'(r)]J I 
r0:2(r) [3«2(r) + r«2'{r)]2 

2 [0:(r)[2«'r) + r«!'{r)]] I 2 
- r0:3(7) [3oc2(r) + roc2'(r)[ - ro:(r) 

[
0:(r)[2OC2(r) + rIX2'(r)][71X2(r) + r0:2'(r)]J' 

X [3«2(r) + r«2'(r)]3 • 
(7.15) 

Keeping only terms of first order in .02 and qt, the 
differential equation (6.1) gives 

1 d d 1 . 
- - r[1 - foCr)] - lO(r) - "2 [1 - fo(r)]lO(r) + go(r)lO(r) 
r dr dr r 

1 d d 1 
= - - r<P(r) - to{r) - "2 <P(r)&o(r) 

r dr dr r 

- r(r)&o(r) - (~~)&o(r). C7.16) 

Multiply by rtoCr), and integrate from r = 0 to the 
plasma channel radius R. Since Boer) obeys the zeroth­
order equation we find 

(RrBo(r){!.!! r<P(r).!! -! <P(r) - r(r) - (q2)}BoCr) Jo r dr dr r2 0 2 

= (R{Bo(r) .!! [1 - fo(r)] .!! €(r) Jo dr dr 

- lO(r).!! [1 - fo(r)] .!! Bo(r>} dr 
dr dr 

= [1 -- j~(R)J{&o(R)lO'(R) -- €(R)&~(R)}. 

The right side vanishes because B{r) is subject to the 
boundary condition 

1 fi~{R) + OVeR) 
--= 

R Bo(R) + 02lO(R) 

'" __ ! + .?2 [lO'(R)fio(R) __ lO(R)B~(R)]. 
R boer) 

The dispersion relation thus becomes very simple 

0 2 = _q2U2, (7.17) 

where U2 is a real constant defined by 

U2 = Sf: B:(r)r dr . 
Sf: [B~2(r)<P(r) + r-20:(r)<P(r) + r(r)&:(r)]r dr 

(7.18) 
We have done an integration by parts, using the fact 
that <P(r) vanishes outside the beam. 

The integral of rB~r can be re-expressed using 
integration by parts as 

i R r(r)&~(r)r dr = A2i R r dr 

[2oc2(r) + roc2'(r)][40«6(r) + 38roc4(r)«2'(r) 
+ 9r2oc2(r)oc2'(r)2 + r3oc2'(r)3J 

X ------------------~--~----~~ 
[3«2(r) + roc2'(r)]3 

The other terms in the denominator give 

iR<p(r){B~2(r) + r-2&~(r)}r dr = A2iRr dr 

[0:2(r) + roc2'(r)](14oc8(r) + 16r«V)oc2'(r) 
+ 9r2«2(r)1X2'(r)2 + r3oc2'(r)3] 

x------------~--~~~~~--~~ 
[3«2(r) + r«2'(r)]3 
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A marvelous cancellation gives at last 

U2 = ~ LR

oc4(r)r3 dr / LR

[r2oc2(r)]' dr. (7.19) 

This can be rewritten in a more useful form by using 
the fact that outside the beam 

oc2(r) = u2/r2 (outside), (7.20) 
where 

(7.21) 

Therefore 

LR

[r2ocV )]' dr = u2
, 

LR

oc4(r)r3 dr = 112 In R - foRln r d(oc4r4
). 

The last integral is actually R-independent since 
d(r4oc4) vanishes outside the beam. We can thus define 
a characteristic beam radius re by 

u4 ln re == Looln r d(r4oc4
), 

so (7.19) becomes 

U2 = tu2 In (R/re) 

and the dispersion relation (7.17) reads 

0 2 = -tq2u2 1n (R/re>. 

(7.22) 

(7.23) 

(7.24) 

This is in complete agreement with the results of Ref. 
4 [Eqs. (8.12) and (8.15)] if we note that the quantities 
called w~a2 and 2ro/C in Ref. 4 are identical with the 
u2 and re introduced here. In Ref. 4 we assumed that 
the beam moves rigidly, and we are not surprised to 
see that this indeed gives the correct dispersion 
relation for small 0 and q, but is reassuring to have 
this result proved. Also, we are encouraged by this 
example to have faith in the rather complicated 
formulas (5.18), (5.19) for the coefficients in our 
fundamental equation (6.1). 

VIII. UNIFORM BEAM: GENERAL 
DISPERSION RELATION 

In order to get quantitative results in more general 
cases than discussed in the last section, it is necessary 
to choose the beam shape so as to simplify the function 
fer) and g(r) as much as possible. The simplest choice 
is the uniform beam 

( ) {
n f r < a, n r = or 
Or> a. 

Then (2.3) gives the rotation frequency oc(r) as 

r < a, 
r > a, 

(8.1) 

(8.2) 

where w~ is the betatron frequency 

w~ = 27Tne2v2/Myc2. (8.3) 

The functionsf(r) andg(r) defined by Eqs. (5.18) and 
(5.19) are therefore 

fer) = {1 - r/ for r < a, (8.4) 
Or> a, 

and 
g(r) = -~2b(r - a)/a, (8.5) 

where 

and 

A2 == 02/Wp. (8.8) 

Inspection of Eq. (6.1) and its boundary conditions 
tells us immediately that the electric field here is 

f;(r) oc {Jm(qr/'Y}), for r < a, 
H~)(qr) - ocm(qR)Jm(qr), r > a. 

(8.9) 

The coefficient OCm is determined by the properties of 
the plasma channel; if the channel is infinite then OCm 

is zero, while for a finite uniform plasma channel with 
radius R we show in Appendix A that 

ocm(qR) = H~~l(qR)/Jm_l(qR) for m > 0, (8.10) 

or for m = 0 

oco(qR) = H~l)(qR)/Jl(qR). 

Also, q is the root of q2 = 47Tiaw/c2 with positive 
imaginary part. 

Our dispersion relation comes from the equations 
connecting the solutions for r < a and r > a. We note 
first that f;(r) must be continuous at r = a because it 
is the tangential component of an electric field. The 
jump condition on f;'(r) is given by integrating (6.1) 
from r = a - e to r = a + e; 

f;'(a + e) - 'Y}2f;'(a - e) - ~2f;(a)/a = 0 
or 

(8.11) 

Imposing this condition on (8.9) yields the dispersion 
relation 

(
J'",(qal'Y}») ~2 H~)'(qa) - ocm(qR)J'",(qa) 

'YJ +-= . 
Jm(qa/'Y}) qa H~)(qa) - (Xm(qR)Jm(qa) 

(8.12) 

We remind the reader that ~2 and 'YJ2 are given in terms 
of 0 2 by (8.6)-(8.8), and ocm(qR) is given by (8.10). 
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IX. UNIFORM BEAM: CATALOG OF MODES 

The uniform-beam dispersion relation (8.12) is 
analyzed in detail in Appendix B; this section gives 
only the results. 

We find that for each m the modes may be con­
veniently classified into two infinite sequences, which 
we call the Amn and Bmn modes, and two individual 
modes called Cm and Dm. The only exceptions are that 
the A modes are missing for m = 2, the B modes are 
missing for m = 0, the C mode is missing for m = ° 
and m = 2, and the D mode is missing for m = 1. 
That is, the only modes with m ~ 2 are 

Aon , Aln , BIn, CI , B2n , D2 

but all modes of types A, B, C, and D are present for 
m ~ 3. By "mode" here we mean a value of 0 2 ; for 
each such "mode" there are of course two roots for 0, 
one growing and one decaying, or both oscillating. 
The "hose" mode is CI • 

Amn(m ;t! 2) 

For Iqal « 1 we find 

0 2 

--+3 + m2 - (12m2 + I)! w; 
22(1 2m

2
-1 )/.2 + (91) - q a - (12m2 + I)! lmn . . . . 

with jmn the nth positive zero of Jm(x). The only 
exception is for m = 0, where 

02/W; -+ 2 - 2q2a2/y~ + ... , (9.2) 

where Yn is the nth root of the equation 

J~(y)/yJo(Y) = t[(R/a)2 - 1]. (9.3) 
For Iqal » 1 we find 

02/W; = [m - 2 - j!._I,n+J4q2a2 + ... ]2. (9.4) 

The l/q2a2 term in (9.4) is correct only for m ~ 3; 
for m = ° and m = 1, we have instead 

Aon: 02/W; = [2 + j~,n/2q2a2 + ... ]2, (9.5) 

Aln : 02/W; = [1 + x~+l/4q2a2 + ... ]2, (9.6) 

with Xn the nth root of the equation 

xJ~(x) = -3JI(x). 
The first three roots are 

Xl = 2.95, X2 = 5.84, Xa = 8.87. 
Bmn (m ;t! 0) 

For Iqal « 1 we find 

0
2 

= 3 + m2 + (12m2 + I)! w; 
_ 2a2(1 + 2m

2 
- 1 )/.2 + ... 

q (12m2 + I)! lmn . 

(9.7) 

(9.8) 

For Iqal » 1 we find 

02/W; = [m + 2 + j!.+l,n/4q2a2 + ... ]2. (9.9) 

There are no exceptions. 

em (m ;t! 0,2) 

For Iqal « 1 we find 

02/W; -+ m2 - 2m + -! - (2m2 - 4m + £)!. (9.10) 

The next terms are of order q2, but it is difficult to 
give a general formula for their coefficients. We have 
done the calculation to order ct for m = 1 and q2 
for m = 3, and we find that, for Iqal « 1 and IqRI « 1, 

0 2 

- -+ l[9 - (33)!] 
w2 

p (17 3 [aJ2) 22 
+90-40R qa+ .. ·. (9.12) 

For I qal » 1 the C mode is very much like the A mode: 

02/W; -+ [m - 2 - (x"rrl/4q2a2 + ... ]2, (9.13) 

where x~ is the first root of Eq. (9.7) 

xf = Xl = 2.95 (m = 1), 

and x~ for m ~ 3 is the first zero of Jm-I(X) 

x~ = jm-l,l (m ~ 3). 

The v~nishing of (9.11) for q = 0 identifies CI as the 
hose mode. Equation (9.11) may be compared with 
the results of the rigid-beam calculations made in 
earlier work. We found in Ref. 4 that 

02/W; = 1 - i1TJI(qa){H~I)(qa) 

- [H~I)(qR)/Jo(qR)]JI(qa)} (9.14) 

and to order ct this gives 

02 1 2 2( R 1) 1 4 4(1 R 4) - = --,;q a In - + - - T6q a n - + w; a 4 a 

+ q4a2R2(ln;' + ~) _ -hq4R4 (rigid). 

(9.15) 

Note that (9.15) agrees with the correct result (9.11) 
to order q2, as it must according to the general theorem 
of Sec. 7. [Equations (7.21) 'and (7.22) here give 
u2 = w;a2 and r" = arl.] However, (9.11) and (9.15) 
begin to differ in the ct terms, which is not surprising 
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since there is no reason why the rigid-beam result 
(9.14) should give more than the q2 terms correctly. 

If R is very much greater than a, it is possible to 
have Iqal « 1 but IqRI » 1. In this case the correct 
(or the rigid beam) hose dispersion relation is given by 
(9.11) [or (9.15)] withq'a2R2 (and q'R4) terms dropped, 
and with the replacement 

In R/a -+ In (-tiqa) + 0.577. (9.16) 

It is expected that similar rules work in all other 
C and D modes. 

Dm(m ¥< 0,1) 

For Iqal « 1 we find 

o.2/W; -+ m2 - 2m + ! + (2m2 - 4m + })1-. (9.17) 

The next terms are of order q2 but (as in the Cm modes) 
rather difficult to calculate in general. We have done 
the work only for m ~ 3; for Iqal « 1 and IqRI « 1 
we find: 

D2: o.2/W; -+ 3 - (l - l[a/R]2)q2a2 + .. " (9.18) 

Da: o.2/W: -+ ![9 + (33)1-] 

- (it - 4
30[a/R]2)q2a2 + .. '. (9.19) 

For Iqal » 1 we find a behavior quite different from 
that of the A, B, and C modes: 

(9.20) 

There are no exceptions to Eq. (9.20). 
It is important to note that in all modes o.2/W; 

approaches a positive-definite constant A~ or A~ for 
q2 -+ 0 or q2 -+ 00, the only exception being that 
A~ = 0 in the hose mode. Hence all modes are stable 
for very small or very large w, oscillating at the 
frequencies ±AoWJI or ±A""WJI. Our formulas for the 

behavior of o.2/W: as W approaches zero or infinity 
show that 0.2 is generally complex for finite real W 

(finite imaginary q2) so that in all modes there is 
one growing root with maximum growth at some 
finite w; a method for estimating this maximum is 
presented in Sec. XII. 

The stable oscillation frequencies for W -+ 00 have a 
simple physical interpretation. For Iqa'i » 1 we found 
the limiting behavior 

{

:d::(m - 2) Amn 

0. -+ ±(m + 2) Bmn 

wJI ±(m - 2) Cm • 

±m Dm 
A close look at Appendix B and Sec. IV shows that it 
is only the beam particles with gyration frequency 
± wJI (rather than 1= wp) that oscillate with these 
frequencies. According to Sec. IV such particles suffer 
a displacement proportional to 

exp (-i[o. 1= mWp]t) ex exp (±i[~JI 1= mJ ()) 

(

e-2i9 (Amn) 

e2i9 (Bmn) 
-+ e·-2i9 ( C m) • 

eO (Dm) 

Thus the perturbed orbit is a slightly eccentric ellipse 
in modes A, B, and C and a slightly enlarged or 
diminished circle in mode D. This is very reasonable 
because for Iqal »1 the electromagnetic fields are 
essentially frozen in place by the plasma conductivity, 
so the beam particle orbits can be independently 
perturbed into ellipses or circles of different radius. 
Tables I-III and Figs. 1-5 summarize our conclusions 
in numerical form for m = 0, 1, 2, and 3, and for 
m»l. 

TABLE I. Catalog of modes for the uniform beam. The behavior of n for q --+ 0 (w --+ 0) is 
given by n'/w~ --+ A~ - q'a'A~ + .... Also, for q --+ OCJ (w --+ OCJ), n'/wJ --+ A~. Note the 
relatively small changes in n' between these two limits. 

Mode 

m = 0: Aon 
m = 1: A1n 

BIn 
Hose --+ el 

m = 2: BIn 
D2 

m = 3: Aan 
Ban 
e. 
Da 

m» 1: A .. .. 
B .. .. 
e .. 
D .. 

2 
0.39 
7.61 
o 

14 
3 
1.55 

22.45 
1.63 
7.38 

(m - 1.732)2 
(m + 1.732)' 
(m - 1.707)' 
(m - 0.293)1 

0.344 (n = 1),0.066 (n = 2), .. . 
0.049 (n = 1), 0.015 (n = 2), .. . 
0.086 (n = 1), 0.026 (n = 2), .. . 
0.125 + 1- In R/a 
0.076 (n = 1), 0.028 (n = 2), ... 
0.167 - 0.125 a'/R2 

-0.015 (n = 1), -0.0065 (n = 2), ... 
0.065 (n = 1), 0.Q28 (n = 2), ... 

-0.188 + 0.075 a'/R' 
0.083 - 0.34 a'/R' 

4 
1 
9 
1 

16 
4 
1 

25 
1 
9 

(m - 2)2 
(m + 2)2 
(m - 2)' 

m' 
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Ao, 

Im(~) 
AOI 

0.001 L--!.-!.-'-L.l..l..Ll..l._-'--'-...L.l....L.Lu.I..::_-L--L-LLu.J..l..! 
10' 10' 10 

41TCTa'w/c' 

FIG. 1. Growth rate vs frequency for the AOl and A02 (sausage) 
modes computed (Ref. 8) for an uniform beam, with R = 2a. 

X. CONTINUOUS SPECTRUM 

We now return to the case of a general beam shape. 
It is assumed that the beam density n(r) drops smoothly 
and monotonically from a value n(O) at the beam axis 
to n(a) = 0 at a radius r = a. A catalog of modes is 
compiled in the next section, but first we must discuss 
a type of mode qualitatively different from any found 
for the uniform beam. 

Suppose Q2 is such thatf(r) becomes unity at some 
radius r 0, with 

the length b as well as ro depending on Q2 in a fairly 
complicated way. For Ir - rol «b the differential 

TABLE II. Uniform beam modes at high frequency. For q -+ co 
(w -+ co) the behavior of the A, B, and C modes is (l"/w) -+ 

[Aoo - x2/4q"a" + .. ']". In the D modes we have instead 
D."/w) -+ [Aoo + x/2iqa + .. ']". The number of e foldings in free 
growth at a fixed distance fL behind the head of the beam is, for 
the A, B, and C ~odes: # = [X'C'WpfLz/81TO'a'v']! and for the D 
modes # = i V 3[X'C'W)fLz2/1TO'a2v3]1. 

Mode 

m = 0: Aon 
m = 1: A in 

Bin 
Hose -+ Ci 

m = 2: B'n 

D. 
m = 3: A 3n 

B3n 
C_ 
D_ 

-2 
-1 
-3 
-1 
-4 
+2 
+1 
-5 
+1 
+3 

x 

5.42 (n = 1), 9.90 (n = 2), .. . 
5.84 (n = 1), 8.87 (n = 2), .. . 
5.14 (n = 1), 8.42 (n = 2), .. . 
2.95 
6.38 (n = 1), 9.76 (n = 2), ... 
1.05 
8.42 (n = 1), 11.62 (n = 2), .. . 
7.59 (n = 1), 11.06 (n = 2), .. . 
5.14 
1.59 

1.0 r---r--r-r-T""n"T'TT--r-r'T"T"TTrrr-.-.-rTrTTLi 

A" 

Im(~) 
8" 

A" 
8" 

41TCTa'w/c' 

FIG. 2. Growth rate vs frequency for the All' Au, Bll , Bu modes, 
computed (Ref. 8) for an uniform beam, with R = 2a. 

equation (6.1) becomes essentially 

(djdr)(r - ro)(d&jdr) - K& = 0, 

K = _b[q2 + g(ro)]. 

(10.2) 

(10.3) 

Hence we may define two solutions ofEq. (6.1), which 

TABLE III. Parameters for fastest forced growth. The growth 
rate 1m D. reaches a maximum value equal to {1m A)~p when 
the real frequency w takes the value c' Y M/41TO'a·. The first two 
columns were computed" directly from the "exact" uniform 
beam dispersion relation (8.12) for R = 20. The last column 
gives AM as estimated by a method mentioned in Sec. XII; 
apparently this method gives values about 15 % too high. 

Mode YM {1m A)M (1m A)~t 

m = 0: AOi 7 0.225 0.29 
A02 35 0.255 0.29 

m = 1: All 14 0.165 0.19 
Au 30 0.167 0.19 

Bll 20 0.10 0.12 
Bu 62 0.11 0.12 

r,/a. ~ 1.25 2.1 0.293 
1.5 2.0 0.310 

Hose -+ C1 2 1.6 0.318 0.35 
4 0.85 0.297 
8 0.55 0.260 

m = 2: B21 30 0.11 0.13 
B22 78 0.12 0.13 

D. 6 0.09 0.13 
m = 3: A 3n 0.12 

Ban 0.13 
C. 17 0.11 0.14 
Da 15 0.097 0.14 

m» 1: Amn 0.134 
Bmn 0.134 
Cm 0.146 
Dm 0.146 
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Im(~) 

'\ EXACT , 
APPROXIMATE /", , 

0.001 ~-'--'-.J....I..J.J.J..l..I----l--L-.LJu...L.I..I..L_.L..L.J...J....LUl.J 
0.1 1.0 10 100 

411'VO'w/c' 

FIG. 3. Growth rate vs frequency for the C1 (hose) mode, com­
puted (Ref. 8) for an uniform·beam. with R = la. The dashed curve 
shows the corresponding approximate result. based on the simple 
formula (12.25), choosing Wo to give O(w) the correct behavior as 
W --+ O. (A different choice of Wo would simply displace the dashed 
curve along the w axis.) 

near r 0 have the behavior 

81 -... Io{[K(r - ro)]!} -+ 1 + iK(r - ro) + .. " (10.4) 

8n -... Ko{[K(r - ro)]!} 

-... -Ul + tK(r - ro) + ... ] In [lCZK(r - ro)] 

+ iK(r - ro) + . . . . (10.5) 

Ordinarily we would have to avoid the logarithmic 
singularity at ro, and take 8 = 81 , The requirement 
that this solution also behave nicely when continued 
to r = 0 and r = R imposes two conditions on 0 2, 

1m (t;) 

which we do not expect to be satisfied by any choice 
of the single function 02(q2). 

However there is a less obvious kind of instability. 
Suppose that the solution of Eq. (6.1) regular at r = 0 
is 

8(r) ex: &n(r) + (L&rCr), r < ro, (10.6) 

while the solution ofEq. (6.1) which behaves properly 
at r = R is 

(10.7) 

We try as our solution 

&oCr) = &n(r) + 6(r - rO){1_&1(r) 

+ O(ro - r)f3+81(r). (10.8) 

This is admittedly singular at r = ro (though nice at 
r = 0 and r = R) but it nevertheless gives a perfectly 
nonsingular electric field if we consider, not just one 
o value, but a continuous range with a smooth 
weighting function W(O) 

8(r, 0, z, t) = exp [ _iW(t ~ Z) ] exp [imO] 

x J dOW(O)exp (- i~Z)&o(r) (10.9) 

for, since ro depends on oz, the 0 integration smooths 
out the logarithmic and step-function singularities in 
&0. 

We must still check that (10.8) solves the differential 
equation (6.1). Using the fact that 81 and 8n are 

Im(~) 

411'CTO'W/C' 

C, 
D. 

FIG. 4. Growth rate vs frequency for the B21 and Bu modes, FIG. S. Growth rate vs frequency for the D2 , Ca, and Da modes, 
computed (Ref. 8) for an uniform beam, with R = 2a. computed (Ref. 8) for an uniform beam, with R = la. 
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defined to satisfy (6.1) for all r we find 

[! .!!.. r[1 - f(r)J .!!.. - m
2 

[1 - f(r)J + q2 + g(r)] en(r) 
r dr dr r2 

= ({3- - (3+)[! !i r[l - f(r)Jc5(r - ro)er(r) 
r dr 

+ [1 - f(r)Je~(r)c5(r - ro) J. (10.10) 

But 1 - fer) vanishes [and erCr) is regular] at ro so 
(10.10) gives no contribution in an integral over O. 
{The first term must be integrated by parts, and then 
both contain factors c5(r - ro)[1 - f(r)].} Hence 
(10.8) is a satisfactory solution for a range of 0 2 values 
and any fixed w. Such modes are usually said to belong 
to the continuous spectrum of the differential equation.9 

What is the 0 2 range of the continuous spectrum? 
We note from Eq. (5.18) that the conditionf(ro) = I 
is satisfied by the 0 2 values 

0 2 = (3 + m~(l2(r) + lr(l2'(r) ± [(1 + 12m2)(l4(r) 

+ r(l2'(r)(l2(r)(1 + 2m2) + tr2(l2'2(r)Jl (10.11) 

except that the "+" root is absent for m = O. The 
gyration frequency (l(r) drops from (l(0) at r = 0 to 
some value (l(a) < (l(0) at the beam edge, while 
2(l2(r) + r(l2'(r) [which is proportional to nCr)] drops 
from 2(l2(0) at r = 0 to zero at r = a. A little work 
reveals that the continuous spectrum consists of the 
0 2 values 

m=O, 
2(l2(0) ~ 0 2 ~ 2(l2(a); (10.12) 

[4 - (13)1](l2(O) ~ 0 2 ~ (J2 - 1)2(l2(a), (10.13) 

m= I, 

[4 + (13)1](l2(0) ~ 0 2 ~ (J2 + 1)2(l2(a); (10.14) 

m~2, 

(3 + m2 - [1 + 12m2]1)(l2(0) :s;; 0 2 

:s;; (m - /i)2(l2(a), (10.15) 

(3 + m2 + [1 + 12m2]1)(l2(O) ~ 0 2 

~ (m + .J2)2(l2(a). (10.16) 

[For sufficiently large m the limits in (10.15) must be 
reversed.] The continuous spectrum thus consists only 
of stable oscillation frequencies O. We repeat that 
the above ranges of 0 2 allow solutions for any w, real 
or complex. 

XI. GENERAL BEAM SHAPE: 
CATALOG OF MODES 

We next examine the discrete modes for a general 
beam shape, which (unlike those of the last section) 

correspond to the A, B, C, and D modes found for 
the uniform beam in Sec. IX. We first center our 
attention on the limit w -->- 00, i.e., Iqal » 1, because 
this is by far the easiest way to catalog the modes, and 
because it is the high-frequency limit which will be 
seen in Sec. XIII to govern the asymptotic behavior of 
instabilities under conditions of free growth. Then we 
attempt to say something about the case of finite 
frequency, by examining the behavior of 0 2 for q2 < O. 

1. High Frequency 

Inspection of Eq. (6.1) suggests that when q2 -->- 00, 

0 2 must approach a value 0;', such that either fer) or 
g(r) becomes infinite somewhere. To simplify the 
problem, it is assumed that the beam density nCr) is 
flat at r = 0, drops smoothly and monotonically to 
some value n(a) > 0 at the beam edge r = a, and then 
drops very steeply to 0 just outside r = a. The functions 
fer) and g(r) are then stationary only at r = 0, where 

f(
O) _ 2(l2(0)[( 4 - m2)(l2(O) - 0 2] 

- [(4 - m2)(l2(0) - 0 2]2 - 4m202(l2(0) , 
(11.1) 

g(O) = O. (11.2) 

At the beam edge, we have 

g(r) -->- -;2b(r - a)/a, (11.3) 

;2 = 2m2(l2(a)f(a) 
0 2 

- m2(l2(a) 

[ 
202 ] 

X 1 - (4 _ m~(l2(a) _ 0 2 + a(l2'(a) . 
(11.4) 

Hence our guess, based largely on our experience for 
the uniform beam, is that there are three kinds of 
modes for Iqal » 1: 

A & C: f(O) -->- 00, 0 2 -+ (l2(0)(2 - m)2, (11.5) 

B: f(O) -->- 00, 0 2 -+ (l2(0)(2 + m)2, (11.6) 

D: (11.7) 

Note that the vanishing of the denominator 

(4 - m2)(l2(a) - 0 2 + a(l2'(a) 

in Eq. (11.4) does not lead to another pole of ;2, since 
it is canceled by a zero inf(a). The modes Bo, Do, A 2 , 

and C2 are evidently absent. 

ABC Modes 

We suppose that for Iqal » 1 the value of 0 2 is 

0 2 = (l2(0)(2 ± m - 15)2, 1151« 1, (11.8) 

the sign ± being + for B modes and - for A and C 
modes. In the region of r close to the beam axis, the 
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beam density may presumably be well represented by 

n(r),-..J n(0)[1 - (r/l)2N] (11.9) 

with N an integer [the exponent of r must be an even 
integer to avoid a singularity in nCr) when expressed in 
Cartesian coordinates], and I a length of the order 
of the beam radius a. Integration of Eq. (2.3) yields 

0(2(r) ~ 0(2(0)[1 _ (r/l)2N]. 
1 + N 

(11.10) 

Inserting (11.10) and (11.8) in (5.18) and (5.19), we 
find for Iqal » 1 and r « I 

fer) ~ [415 _ (4 ± 2m + 2N) (r/l)2N]-I, (11.11) 
1 + N 

g(r) ~ ±mj'(r)/r. (11.12) 

[Some care is needed to show that Eq. (11.12) holds 
even for the Al and CI modes.] Equation (6.1) 
becomes approximately 

! ~ rf(r) ~ &(r) - md(r) &(r) 
r dr dr r2 

± m f'(r) &(r) - q2&(r) = O. (11.13) 
r 

We introduce a dimensionless variable 

p = [415(1 + N)/(4 =F 2m + 2N)t!N(r/l) (11.14) 

and write (11.13) in dimensionless form as 

1 d p ~ & _ m
2 

1 & 
p dp 1 - p2N dp p2 1 _ p2N 

2 N 2N-2 
m p & 2& _ 0 (111) ± (1 _ p2N)2 + I-' - . 5 

with 

1-'2 = -[(1 + N)/(4 ± 2m + 2N)]I/N 
X (415)'N+lI/Nq212. (11.16) 

The boundary conditions on (11.15) are 

(11.17) 

&,...,., exp [-l-'pN+l/(N + 1)] for Ipl» 1, (11.18) 

with I-' defined as the root of (11.16) with Re I-' > O. 
Solving (11.16) for 15 and inserting the answer in 

(11.8) yields the dispersion relation for Iqal » 1 

[ 1 (4 ± 2m + 2N)1/(N+l1 0 2 = 0(2(0) 2 ± m - - ~~.:.:.......:~:..:. 
4 1 + N 

(
_ 1-'2)N/(N+lI] 2 

X 22 (11.19) 
q I 

with the eigenvalues 1-'2 to be found by solving Eq. 

(11.15) and imposing (11.17) and (11.18). It is interest­
ing to note that for a beam density nCr) very flat near 
the beam axis we must take N large, and (11.19) 
becomes 

0 2 = 0(2(0)[2 ± m + (1-'2/4q2[2)]2, (11.20) 

which is of the same form as the result found earlier 
[see (9.4) and (9.9)] for the uniform beam, i.e., 

0 2 = 0(2[2 ± m + (j:'±1.n/4q2a2)]2. (11.21) 

In analogy with the uniform beam we call the modes 
with 0 2 --+ (2 + m)0(2(0) the Bm modes, while the 
mode with 0 2 --+ (2 - m)20(2(0) corresponding to the 
smallest eigenvalue of (11.15) is called the Cm mode, 
and all other such modes are called the Am modes, 
except that for m = 0 there is no C mode. 

We make no attempt to discuss the low-lying 
eigenvalues of (11.15). However, comparison of 
(11.21) with (11.20) leads us to suspect that there is an 
infinite sequence of 1-'2 values tending to infinity. This 
is verified by a WKB calculation in Appendix C. We 
show there that the nth eigenvalue for a given m has 
the asymptotic value for large n: 

I-'mn --+ [2(N + 1)r(~ + 2~) / rG) r (2~) ] 
X (n + !m + !)7T. (11.22) 

In particular, for a nearly uniform beam we must 
take N large and (11.22) becomes 

I-'mn --+ (n + !m + !)7T. (11.23) 

This may be compared with the uniform beam result 
(11.20), which in place of I-' has 

(11.24) 

There is thus not a great deal of difference between an 
uniform beam and a smooth beam nearly flat at the 
beam axis. 

It is apparent from Eq. (11.19) that for a given very 
large frequency (lq[1 » 1) the growth rate 1m 0 will 
be larger for finite N than for a uniform beam; it 
vanishes like w-N1N+1 as w --+ O. To some extent this 
enhanced growth rate is illusory, however, for (11.14) 
and (11.18) show that, as w --+ 00, the fields and currents 
are limited to a region around the beam axis which 
vanishes as 

D Modes 

The discontinuity condition at the beam edge 
r = a is, as in Eq. (8.11), 

([I - f(r)](&' /&) }a-E + ;2/a = (&'/&)a+<' (11.25) 
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A trivial WKB calculation shows that, for r < a, the 
solution of Eq. (6.1) with q2a2 » I is a linear com­
bination of the two functions 

&±(r) = r-![l - f(r)]-l exp [± iq [r dr !J. Jo [1 - fer)] 

(11.26) 

The well-behaved solution of Eq. (6.1) near r = 0 can 
be seen by inspection to be 

&(r) oc Jm(qr/[l - I(O)]!). (11.27) 

For sufficiently large q there is a range of r values with 
Iqrl'» [I - 1(0)] but/(r) ~/(O); in this region (11.26) 
gives 

&±(r) oc ,-! exp (±iqr/[I - I{O)]!), 

while (11.27) gives, for 1m q > 0, 

&(r) oc ,-! exp (-iqr/[I - I{O)]!), 

so the correct solution for r ---+ a is just &_(r). Its 
logarithmic derivative can be seen from (11.26) to be 

&~(r)/&_(r) ~ -iq/[l - fer)]! (r < a). (11.28) 

Outside the beam the field is, for IqRI » I, 
&(r) oc H~)(qr), 

so 
&'(r)/&{r) ~ +iq (r > a). (11.29) 

Using {I 1.28) and {I 1.29) in (11.25) gives the asymp­
totic dispersion relation 

-iTJoo + ~2/qa = i (11.30) 
with 

TJ'!:, == 1 - f(a - e). (11.31) 

Equation (11.30) is in agreement with the uniform 
beam result (8.43), except that a finite slope of the 
beam density nCr) just inside the beam edge affects 
the value of I(a - e) and hence of TJ~; setting 
0 2 = m20(2(a) in (5.18) gives 

TJ'!:, = 1 _ [a0(2'(a) + 20(2{a)][(4 - 2m2)0(2(a) + a0(2'(a)] 
[(4 - 2m2)0(2(a) + a0(2'(a)] - 4m40(4(a) 

The solution of Eqs. (11.4) and (11.30) takes the form 

where 

0 2 
---+ m20(2(a)[1 + ~J, 

21qa 
(11.32) 

x = 2[0(2(a) + la20(2'(a)2][(1 - m~0(2(a) + ta0(2'(a)] 

(1 + TJoo)[(l - m2)0(4(a) + ta0(2'(a)0(2 

X (a)(2 - m2) + loa20(2'(a)2]. 

(11.33) 

The form of {I 1.32) is the same as for an uniform 
beam. Note that as w ---+ 00, the field &_(r) vanishes 
exponentially except within a skin depth of the beam 
edge. 

It is not clear what happens to the D modes when 
we consider a smooth-edge beam, with n(a) = O. 

2. Finite Frequency 

Equations (11.11) and (11.16) show that, for large 
negative real q2, the function 0 2 in the A, B, and C 
modes takes values such that I(r) becomes infinite at 
some point r <Xl near the beam axis. Our experience 
with the uniform beam suggests that this is still the 
case for all q2 < 0 in the A and B modes, and also for 
sufficiently large _q2 in the C modes, except that roo 
may be anywhere inside the beam. The D modes are 
not expected to have I(r) infinite anywhere and are 
not discussed further here. 

According to Eq. (5. 18),/(r 00) is infinite ifn(r 00) ~ 0 
and 

0 2 = {mO(r 00) ± [40(2(r 00) + r 000(2'(r 00)]!}2. (11.34) 

For simplicity, we now assume that n(r) drops smoothly 
and monotonically from nCO) at r = 0 to n(a) = 0 at 
r = a; then the 0 2 values which allow solutions of 
(11.34) with roo < a are 

m=O 

m = I 

m~2 

40(2(0) ~ 0 2 ~ 20(2(a); 

0(2(0) ~ 0 2 ~ (.J'2 - 1)20(2(a), 

90(2(0) ~ 0 2 ~ (.J'2 + 1)20(2{a); 

(11.35) 

{I 1.36) 

(11.37) 

(m - 2)20(2{0) ::;; 0 2 ::;; (m - .J'2)20(2(a), (11.38) 

(m + 2)20(2(0) ~ 0 2 ~ (m + .J2)20(2(a). (11.39) 

[The limits in (11.38) must be reversed for sufficiently 
large m.] We must however exclude 0 2 values 
satisfying (10.12)-(10.16), for these lie in the con­
tinuous spectrum. This leaves the following bands: 

m = O(A), 

m = I(A, C), 

0(2(0) ~ 0 2 ~ [4 - (13)!]20(2(0); 

m ~ 3(A, C), 

(m - 2)20(2(0) ::;; 0 2 

(11.40) 

(1l.41) 

::;; (3 + m2 - [1 + 12m2]!)0(2{0); (11.42) 

m ~ I(B), 

(m + 2)20(2(0) ~ 0 2 

~ (3 + m2 + [I + 12m2]!)0(2{0). (11.43) 
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The labels A, B, and C have been attached in accord­
ance with the evident correspondence of the left-hand 
limits in (11.40)-(11.43) with the known behavior of 
0 2 as q2 -+ - 00. However, our work in Appendix B 
on the uniform beam suggests that in the C modes, 
0 2 lies in the real bands (11.41), (11.42) only for 
_q2 greater than some value Q~, at which 0 2 has a 
singularity and becomes complex, returning to real 
values when _q2 passes below another singularity Q~. 
This is particularly clear in the case of the hose mode 
C1 , since in this case we know that 0 2 -+ 0 for q2 -+ 0 
(see Sec. VII), and the value 0 2 = 0 does not lie in the 
"allowed" band (ll.41). We have not allowed for the 
possibility of a C mode with m = 0, because one can 
easily show that for q2 < 0 there are no m = 0 modes 
for which Eq. (6.1) is nonsingular, i.e., except for the 
continuous spectrum, 0 2 must lie in the range (11.40) 
for all q2 < O. (See Appendix D.) Also, the A mode is 
missing for m = 2 (just as it was missing in Sec. IX) 
because for m = 2 the range (11.36) precisely overlaps 
the continuous spectrum (10.15). Furthermore, all A 
and C modes are absent for m sufficiently large. This 
is because the derivation of(I1.42) made use of(IO.15) 
and (11.38), which, respectively, make sense only for m 
sufficiently small so that 

(3 + m2 - [1 + 12m2]t)j(m - .J2)2 ~ oc2(a)joc2(0), 

(11.44) 

(m - 2)2j(m - ..J2)2 ~ oc2(a) oc2(0). (11.45) 

These inequalities hold for all but very large m if oc(a) 
is close to oc(O), as is the case if nCr) is nearly constant 
almost out to r = a and then drops steeply to zero 
at r = a. But in any case (11.44) and (11.45) breaks 
down for sufficiently large m. If (11.45) holds but 
(11.44) does not, then the allowed range for A modes 
is given by 

(m - 2)2OC2(0) ~ 0 2 ~ (m - ,.J2)2oc2(a), (11.46) 

while if m is so large that (11.44) as well as (11.45) is 
not valid, then there are no A modes. 

It is very satisfying that the right-hand limits in 
(11.40)-(11.43) are precisely the same as the limits at 
q2 -+ 0 of the uniform-beam A and B modes discussed 
in Sec. IX, except that what was wp has now become 
oc(O). We can therefore have some confidence in the 
assertion that for low frequency the function 0 2 

approaches the values 

0 2 -+ (3 + m2 - [1 + 12m2]t)oc2(0) [Am' q2 -+ 0], 

(11.47) 

0.2 -+ (3 + m2 + [1 + 12m2]t)oc2(0) [Bm, q2 -+ 0]. 

(11.48) 

We do not know the low-frequency limits in the Cor 
D modes, except, of course, that the C1 mode has been 
thoroughly examined at low frequency in Sec. VII. 

XII. ANALYTIC INTERPOLATION 

In this section we offer arguments to the effect that 
0 2 is analytic in q2 (i.e., in w) except for singularities 
on the positive-real q2 axis (i.e., on the negative 
imaginary w axis). This property is then used to guess 
at interpolation formulas for 0 2 for general complex q2. 

1. Causality 

The usual causality argument may be used to show 
that 0 is analytic for 1m w > O. (See Sec. XIII.) But 
this argument breaks down in the presence of a 
continuous spectrum, where 0 is not a function of w 
at all. Presumably this explains the singularity in 0 
found in the uniform beam C modes in Appendix B; 
the singularity occurs at a value of 0 at which 
1 - j(r) vanishes inside the beam, and hence which 
would lie in the continuous spectrum of Eq. (6.1) for 
a smooth beam shape, It would be well to understand 
in more detail what is going on in the C modes when 
they cross into the continuous spectrum, but for our 
present purposes little harm will be done if we simply 
forget the whole problem and accept the implication 
of naive causality that 0. is analytic in the upper-half 
w plane. 

2. Poles 

The next step is to show that 0 can become infinite 
only at a series of poles on the positive real q2 axis, the 
nth pole lying at 

(12.1) 

where R is the plasma channel radius and jP." is the 
nth zero of J,p(x). We note that when 0 2» oc2 the beam 
response functions j(r) and g(r) become negligible, 
so Eq. (6.1) becomes the differential equation for an 
un driven electromagnetic wave 

1 d d m2 

- - r - &(r) - "2 &(r) + q2&(r) = O. (12.2) 
r dr dr r 

The solution regular at r = 0 is & = Jm(qr). This must 
join smoothly with the known solution in the plasma 
channel outside the beam 

&(r) oc J'm_ll(qR)H~)(qr) - Hl~_ll(qR)Jm(qr). 
(12.3) 

Thus we can have 0 2 -+ 00 only when 

J1m_11(qR) -+ 0 (12.4) 

yielding Eq. (12.1). 
It is also easy to obtain the residues of 0. near the 
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poles (12.1) by keeping terms in Eq. (6.1) of order 
Q-2. To this order, Eqs. (5.18) and (5.19) yield the 
beam response functions 

fer) = -[r2oc2(r)]'/rQ2, (12.5) 

g(r) = O. (12.6) 

We also suppose that 

S(r) = Jm(qr) + E(r) (12.7) 

with E of order Q-2. Neglecting higher~order terms, 
Eq. (6.1) becomes 

1 d d m2 
II 

- - r - E{r) - - E(r) + q E(r) = 1I{r), (12.8) 
r dr dr r2 

where 

v(r) == _(rQ2r1{.!! [rllocll(r)]' .!! J m(qr) 
dr dr 

_ ~2 [rlloc2(r»)'Jm(qr)}. (12.9) 

The solution of (12.8) regular at r = 0 is well known, 

E(r) = -ii1r LX> tv(t)J m(qr <)H<;'\qr» dt, (12.10) 

with r < and r> the lesser and greater of rand t. [We 
are using the freedom evidently allowed us by (12.7) 
to choose E(r) so that it does not contain a term 
proportional to Jm(qr) in addition to the integral 
(12.10).] For r outside the beam we take r> = r, 
r < = t, and (12.7) becomes 

8(r) = J m(qr) - !j1TH~!)(qr) LX) t1l{t)J m(qt) dt. 

Comparing with (12.3), we see that 
(12.11) 

(12.12) 

Letting q approach the values (12.1) on the left, and 
using (12.9) and integrating by parts on the right, we 
find from (12.12) and (2.2) that 

Q2 -+ Q!.nq!tn/(qll - q!.n), 

where Q~n are the positive numbers 

(12.13) 

8 \I \I 
0 2 = 1Te v 

mn M IIR2JI1I ( • ) yc 1m-II Jlm-ll,n 

xj"'{J;;'(qmnr) + 2
mll

!! 
6 qmnr 

J!.(qmnr)}n(r)r dr. 

(12.14) 

If the plasma channel is infinite, then instead of the 
poles (12.1) we find a cut on the whole positive real 
q2 axis. 

3. Other Singularities 

When q2 -+ Xli ± iE (with Xli > 0) we must take q in 
Eq. (12.3) as the root with positive imaginary part, 
q = ±x + iE, so (12.3) appears to have a cut on the 
positive real axis. This cut is actually present if the 
plasma channel is infinite, and leads to a cut in QII 

which takes the place of the poles (12.1). But for 
finite R the cut is a chimera, since when q -+ -q the 
linear combination (12.3) merely changes sign. 

It is tempting at this point to guess that Q2 is 
meromorphic in qll, but this cannot be true. We know 
that QII stays bounded for Iq21 -+ 00 provided 
Arg (ql) ~ 0, so if QII were meromorphic in q2 it 
could be written 

Q2 = Q~ + ql I 2 Q!. .. \I (12.15) 
n q - qm .. 

with Q~ an unknown constant. But a simple calculation 
shows that for n -+ 00 

II \I 2/R\I qmn -+ n 1T , (12.16) 

II 41Tellvll f 00 2K Qmn -+ --11- n(r) dr == - . 
Myc R 0 R 

(12.17) 

Thus the sum (12.15) does converge, but for large 
nonpositive q2 it behaves like K( _q2)t, violating our 
theorem that 0 2 can become infinite only at the poles 
qmn' [Also, letting R -+ 00 for fixed nonpositive q2 

we find that (12.15) becomes just O~ + K(_q2)t, 
which is certainly too good to be true.] 

The failure of meromorphicity seems to arise 
because as q2 increases from q!. .. to q!..n+1 we would 
expect 0 2 to drop from + 00 to - 00, passing through 
one or two bands of Oil values lying in the continuous 
spectrum. Branch points may be expected at the onset 
of such bands, though we confess to having made no 
progress toward a detailed understanding of these 
cuts. It is only a guess that they lie on the positive real 
q2 axis. 

[This very complicated singularity structure is in 
sharp contrast with the m = 1 solution found in Ref. 
4 under the assumption of rigid beam displacement. 
There, 0 2 was explicitly given as a meromorphic 
function of q2 which can be represented as in (12.15), 
the residues O~n vanishing exponentially for n -+ 00, 

This underscores the great qualitative change in the 
dispersion relation made by giving up the constraint of 
rigid beam displacement.] 

The analyticity properties discussed above suggest 
that 0 may be written as a dispersion integral in q2: 

(12.18) 
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with p(P) some weight function. Since 0. approaches a 
limit 0.( 00) for Iq21_ 00, it must obey the sum-rule 

0.( 00) - 0.(0) = L" pep) dp. (12.19) 

The convergence of (12.19) then leads us to guess that 
p(P) falls off fast enough so that all the singularities in 
0. may be lumped together into a pole at q2 = q~, 
i.e., so that we may approximate 

p(P) "-' {)(p - qa)[n( 00) - 0.(0)]. (12.20) 

Inserting this in (12.18) yields the approximate formula 

2 

n(q2) "-' 0.(0) + 2 q 2 [0.( 00) - 0.(0)] (12.21) 
q - qa 

or 

n(w)"-' 0.(0) + w. [0.(00) - 0.(0)], (12.22) 
w + lWo 

Wo = q~c2j47T(1. (12.23) 

However, the hose mode requires special consideration, 
for as w - 0 the function 0. vanishes like (q2)! or 
(w)!, and this branch point is too strong a singularity 
to lump with all the others. Instead, we must apply the 
above arguments to 0.2 itself, and write 

(12.24) 
or 

new) ~ wp[wj(w + iwo)]! [el ], (12.25) 

where wp == IX(O) and Wo is given by (12.23). 
The characteristic frequencies Wo in (12.22) and 

(12.25) can be chosen either to give 0.2'(0) the correct 
value, or to give new) the correct asymptotic behavior 
as w - 00, or any other way that seems best suited to 
the problem at hand. 

In order to test the value of the approximate 
formulas (12.22) and (12.25) in a way that does not 
depend on the specific choice of wo, we may use them 
to compute the maximum value of the growth rate 
1m 0. achieved for real frequency w. Equation (12.22) 
gives, for real w, 

1m n(w)""" wwoj(w2 + w~)[!J(oo) - 0.(0)]. (12.26) 

Modes always come in pairs differing in the sign of 0., 
and for w > 0 it is the mode with 0.( 00) - 0.(0) 
positive that has positive growth rate, which reaches a 
maximum when w = wo, where 

(1m n)max ~ un(oo) - 0.(0)]. (12.27) 

For the hose mode the growth rate is given by (12.25) 
as 

This has a maximum at w = woj.)?', where 

wp 
(1m n)max = ;- = 0.35wp • 

2"\/2 
(12.29) 

Table III shows that the values (12.27) and (12.29) 
are not far from the true maximum growth rates for a 
uniform beam, being generally about 15 % too high. 
In particular, for the hose mode the correct value of 
the maximum growth rate is 0.29wp • 

XIII. GROWTH RATES AND SADDLE POINTS 

At last, we come to the point. In this section we use 
the results obtained in the previous twelve sections to 
estimate the growth of various modes under various 
conditions of excitation. 

It is essential to begin by distinguishing between 
forced growth at a fixed frequency and free growth at a 
saddle point. Suppose the beam is tickled at z = 0 
with a disturbance (in a pure normal mode) having 
t dependence 

[,(t) = f f(w)e- iwt dw, (13.1) 

where few) is some smooth function reaching a 
maximum at a real wo, with width r; for example, if 
the disturbance is turned on and off gradually, we 
might take 

7Tf(w) = r/[(w - Wf )2 + r 2
], 

(13.2) 

while if the disturbance (or the beam itself) is turned on 
suddenly at t = 0 and then turned off gradually, we 
might take 

-27Tif(w) = [w - w, + irrt, 

[,(t) = {
O, t « 0, 

e-iwfte-rt, t > O. (13.3) 

Then at any z > 0 the field has the z and t dependence: 

&(z, t) = L: few) exp {-iwt + ik(w)z} dw 

or 

&(z, t) =L:f(W) exp {-iw(t - zjv) - iQ(w)zjv} dw. 

(13.4) 

[Note that in the example (13.3) of a suddenly 
turned-on beam, the analyticity of 0.( w) in the upper­
half w plane ensures that &(z, t) vanishes for z > vt, 
since then the contour of integration can be closed 
with a large semicircle in the upper-half w plane, 
where new) and few) are analytic. Thus there is 110 

need to impose a special boundary condition at z = vt 
in this case.] 
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We are in a condition of forced growth when 

r It - z/v + O'(wf)(z/v)1 « 1. (13.5) 

In this case the exponential in (13.4) is essentially 
constant over the support of I( w), and we may 
approximate 

&(z, t) c:::: exp [-iw/t - zjv) - m(wf)z/v]. (13.6) 

The number of e foldings is 

# = (z/v) 1m O(wf) (13.7) 

and the maximum growth is achieved by adjusting 
the real frequency wf to the value at which (13.7) is 
greatest. Table III gives values of this maximum 
growth rate and the frequency wf at which it is achieved 
for the various low A, B, C, and D modes; it seems 
that the hose mode is from this point of view the most 
serious instability. Incidentally, when (13.7) is a 
maximum we may define a real group velocity 

Uf == v[l - O'(Wf)]-l = l/k'(wf) 

and (13.5) is just the condition that r It - zjufl « 1. 
In other words, we have forced growth at z, I if, at the 
time I - z/uf when the disturbance left the disturber, 
the disturbance had not yet been turned off. 

In contrast, we are in the case of free growth when 

r It - zjv + O'(Wf)(z/v) I » 1. (13.8) 

For, even if Wf is chosen to maximize 1m O(wf)' the 
phase of the exponential in Eq. (13.4) undergoes so 
many oscillations in the frequency range wf - r S 
W S W f + r that cancellations intervene to prevent 
the pure exponential growth found in Eq. (13.6). It 
is well known that such integrals can usually be 
estimated by the saddle-point method. Where this is 
valid (and we do not venture a rigorous justification in 
the present context) the growth is dominated by a 
function 

&(z, t) oc exp [-iw.(t - zjv) - iO(ws)zjv], (13.9) 

where Ws is a complex frequency, depending on z and t, 
and determined by the condition that the argument of 
(13.9) be stationary, i.e., 

O'(Ws) == 1-'- VI/z. (13.10) 

Equation (13.8) can be viewed as just the requirement 
that the saddle point not be at Wf; if it were, then the 
saddle-point method would give the same result (13.6) 
as in the case of forced growth. 

Although (13.8) requires that z or I must be large, 
we may still distinguish different cases according to the 
relative magnitude of t and z. We recall the basic 
scaling law (1.8): 

O(w) = wpA(iW/Wl), (13.11) 

(13.12) 

where A is a function whose value and derivatives are 
of order unity when its argument is of order unity. 
Hence, the two special cases of greatest interest are 
Iz - vtl W l » zWp and Iz - VII W l « zWp. 

1. Iz - vtl w l » ZWp 

In this case IO'(wf)1 is much greater than Wp/Wl' so 
Ws must be near one of the poles found in the last 
section. For W near the nth pole, the function 02(W) 
is given by Eq. (12.13) as 

02(W) -+ iO!.nwmn/(w + iwmn), for W -+ -iwmn' 

where 

Wmn == c2q!.n/4m1 = (c2R2/4m1)j~_11,n (13.13) 

and the positive constants O!.n are given by (12.14). 
The saddle-point condition (13.10) then gives 

W -+ -iwmn + O[(Omn Iz - vtllwmnz)iwmn] 

and the electric field (13.9) behaves like 

(13.14) 

This just means that if we fix z and wait long enough, 
we eventually find ourselves watching the decay of the 
wave-guide modes excited in the plasma channel. 

2. Iz - vtl w l «zwp 

In this case IO'(wf)1 is much smaller than WpjWl' so 
Ws must be in the asymptotic region Ws » W l , where 
O(ws) approaches a constant. In all cases the asymp­
totic behavior of O(w) is of the form 

O(W) -+ Wp[Aoo + (x/2iqa?V + ... ] 
= Wp[Aoo + (ilc2/161Taa 2wY + ... J, (13.15) 

where A, X' and v are real dimensionless numbers 
depending on the mode in question. For the A, B, 
and C modes 

v = N/(N + 1) (A, D, C), (13.16) 

it being assumed that the beam density nCr) behaves 
like nCO) + O(r2N) as r -+ O. (For th~ uniform beam 
we take' N = 00, so in this case v ~ 1.) For the D 
modes 

'11= l (D). 

The quantities .1.00 are 

{

-2 + m 
A = -2 - m' 00 , 

m, 

A&C, 

D, 

D, 

(13.17) 

[Wp == 0(0)]. 

The numbers X are given for the uniform beam in 
Table II and Sec. IX. (It is amusing that the rigid hose 
calculation of Ref. 4 gets this backwards, giving 
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v = I for a uniform beam and v = 1 for any other 
shape!) The saddle-point condition (13.10) yields here 

161Tlja2w./i;lc2 ~ (+ 161Tlja2wpvz/i;lc2[vt _ Z])l/(v+1), 

(13.1S) 

Q. ~ Wp[Aoo + (iX2C2[vt - z]/161Tlja2WpvzY/(V+1)], 

so the exponential (13.9) becomes 

8 ex: exp {-iWpAoo(t - z/v) 

- i(i;lc2[t - z/v]/161Tlja2y/(V+1) 

(13.19) 

x (w;z t(V+1) [l/(v+1) + v-V/I.H)]} 

and the number of e foldings is 

# = 1m (iv/(V+1l)(x2C2[t - z/v]/161Tlja2y/lV+l) 

X (wpz/v)l/(V+1)(1 + '1')'1'-./(.+1), (13.20) 

In the two most interesting cases, the fastest growing 
roots give 

v = 1: # = [;lc2wp(vt - Z)z/S1Tlja2v2]!, (13.21) 

'1'= l: # = i~3[;lc2W;(vt - z)z2/m1aV]t. (13.22) 

The distinction between forced and free growth can 
also be drawn for a disturbance which at t = 0 
extends over some finite range of z. In forced growth 
the number of e foldings is 1m wt, with W evaluated at 
a fixed real k. In free growth the asymptotic behaviors 
of 8 is again dominated by a saddle point at which the 
exponential in (13.4) is stationary, and all results 
obtained above in the case of free growth hold also 
for these different initial conditions. 

ACKNOWLEDGMENTS 

The author is glad to have the opportunity to thank 
K. Brueckner, K. Case, N. Christofilos, H. W. Lewis, 
and K. M. Watson for many valuable conversations 
on beam stability problems. Also, he is very grateful 
to S. C. Wright for performing the machine computa­
tion quoted in Sec. IX. 

This work was performed by the author as a 
member of the Jason Division of the Institute for 
Defense Analyses, Arlington, Virginia. 

APPENDIX A. BOUNDARY CONDITIONS AT 
THE CHANNEL RADIUS 

We suppose that outside the beam the perturbed 
current J 1 drops to zero, while the plasma conduc­
tivity Ij stays constant out to a channel radius R, 
where Ij drops sharply to zero. We assume there to be 
a vacuum for r > R, though we shall also see that it 
would make no difference if the whole system were 

enclosed by a conducting cylinder of radius larger 
than R. 

The boundary conditions at R are the usual ones 
at the surface of a cylinder of finite conductivity, i.e., 

AElz = 0, 

A( 41T1j - iw)Elr = 0, 

AEIIJ = 0, 

ABh = 0, 

(AI) 

(A2) 

(A3) 

(A4) 

ABlr = 0, (A5) 

ABIO = O. (A6) 

Using Eqs. (3.S) and (3.l1) (setting J I = 0) with (A4), 
we find that (A2) and (A6) are equivalent, both 
yielding at r = R: 

A[(4mT - iw!q2c)E;z] == -(km/R)BlzAq-2. (A7) 

Using Eqs. (3.9) and (3.10) (setting J 1 = 0) with (AI), 
we find that (A3) and (A5) are equivalent, both 
yielding at r = R: 

A( -iw/cq2)B;. = (km/R)EtzA(q-2). (AS) 

The relevant discontinuity equations are then (AI), 
(A4), (A 7), and (AS). We first consider the case 
m =;l: 0, returning later to the sausage mode m == O. 

Outside the plasma channel E Iz and BIz are given 
by the exponentially decaying solutions of (3.13) and 
(3.14), with Ij and J 1 set equal to zero: 

EIz = 8Hl~l(qor), 

BIz = $Hj!.:,(qor), 

where qo is the value of q with Ij = 0, 

(A9) 

(A10) 

q~ = _k2 + W
2

/C
2

; 1m qo ~ 0, (All) 

and 8, $ are unknown constants. Dividing (A 7) by 
EIz and (AS) by BIz then gives at r = R 

(417'(7 - iW) (E~z) = - iw Hl!.:;(qoR) 

q2c EIz < qoc HI!.!j(qoR) 

- k;(~)(:2 - :~), (A12) 

(
- iW) (B~.) - iw HI~;(qoR) 
q2c Biz < = qoc Hl!.:l(qoR) 

+ k;(!)(:z - :~). (A13) 

The subscript "<" means that the logarithmic deriv­
atives are evaluated just inside the plasma channel. 

We now employ the approximations of Eqs. (1.2)­
(I.5). If IqRI » 1 then there is nothing to do, since in 
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this case we already know that E1• and Blo become 
proportional to Hr~l(qr) outside the beam. Therefore 
consider the more challenging problem, where IqRI is 
roughly of order unity. The logarithmic derivatives 
(E;./Elo)< and (B~./Blo)< are then of order R-l,"" Iql. 
Also, since IqoRI « I we have (for m ¥:- 0) 

HI~;(qoR)/HI~I(qoR) r--J -lml/qoR. (AI4) 

But then the left-hand side of (AI3) is smaller than 
the first term on the right by a factor of order IqoRI, 
and using Iql » Iqollets us write (AI3) as 

(E/$) r--J (iw/kc)(m/lml). (AI5) 

Using (AI4) and (AI5) in (AI2) (and taking Iql » Iqol 
and fJ» Iwl) gives finally 

(E~./E1z)< c:::: -Iml/R (m ¥:- 0). (AI6) 

The fact that (AI6) as well as the differential equation 
(6.1) is independent of the sign of m allows us to 
restrict our attention to the case m Z O. 

For m = 0 we see directly from (A 7) that 

(41TfJ - iW) (E~z) = _ iw H~l)'(qoR) 
q2c E1z < qoc H~l)(qoR) . 

Instead of (AI4) we now have, for IqoRI « I, 

H~l)'(qoR) r--J 1 

H~l)(qoR) - qoR In (-tC2q~R2) , 

where In C = 0.577 .. '. Hence for large fJ, 
gives 

(AI7) 

(At8) 

(AI7) 

(E~z) = ( ~22) [R In (_!C2q~R2Wl. (AI9) 
E 1z < qoc 

For simplicity we take the condition IqoRI « 1 as a 
strict limit, so that (AI9) is taken to vanish. 

Knowing (E;z/ E1z) < , we can now write the form of 
the solution outside the beam but inside the channel. 
In this region E1z is a linear combination of Jm(qor) 
and H(;/(qor), and imposing condition (AI6) at r = R 
gives this linear combination as (for m Z 0) 

Elz ex: H~)(qr) 

- {H~~iqR)/Jm_l(qR)}Jm(qr) (m ¥:- 0). (A20) 

[For m = 1 the ratio in brackets is just H~l)(qR)/ 
Jo(qR), a result already familiar from Ref. 4.] The 
corresponding result for the sausage modes is 

E1• ex: H~l)Cqr) - [H~l)(qR)/Jl(qR)]Jo(qr) (m = 0). 

(A21) 

If the system were surrounded with a conducting 
shell at Rl > R the function H<;')(qr) in Eqs. (A9) and 
(AW) would be replaced with some linear combination 

Fm(qr) of H~)(qr) and JmCqr). But (AI4) would hold 
for Fm(qr) as well as H~)(qor), (unless the coefficient 
of H~~) were much less than that of J m) since for 
IqoRI « 1, Fm is dominated by its H~) term. Thus, it 
makes no difference what kind of tube the system is 
in, except that we require a vacuum immediately 
outside the plasma channel. 

APPENDIX B. ANALYSIS OF THE UNIFORM 
BEAM DISPERSION RELATION 

In this Appendix we show how the results quoted in 
Sec. IX are derived from the dispersion relation (8.12). 
We first classify the modes according to their low­
frequency behavior, then classify them according to 
their high-frequency behavior, and then show how 
the two classification schemes are connected. 

Low Frequency: Iql ~ 0 

For Iqal « 1 the dispersion relation (8.12) may be 
written 

!L J'r,,(qa/'f}) = _ (m + ~2) + 0(1) (m ¥:- 0), (Bl) 
qa J m(qa/'f}) q2a2 

!L J~(qa/'f}) = ![R2 _ IJ + 0(q2) (m = 0). (B2) 
qa J o(qa/'f}) 2 a2 

[Equation (82) holds only if IqRI « I; if IqRI » 1 
then the right-hand side is infinite.] We divide the 
modes into those for which Iqa/'f}I-H 0 at low fre­
quency (called A and B) and those for which Iqa/'f}I--+ 0 
at low frequency (called C and D). 

A & B: I qa/T) I -H 0 

Here 'f} must vanish at least as fast as qa. Equation 
(8.6) may be written 

2 A,4 - 2i.2(3 + m2) + (m2 - 4)(m2 - 2) 

'f} = [;'2 _ (m + 2)2][A,2 _ (m _ 2)2] 

The numerator of (83) vanishes at two A,2 
which define the modes of Types A and B: 

A: A,2 = 3 + m2 - (12m2 + I)i, 

B: A,2 = 3 + m2 + (12m2 + 1)( 

(83) 

values 

(84) 

(85) 

However, the vanishing of the denominator prevents 
'f}2 from vanishing for the cases m = O(B) and m = 
2(A), so these modes are absent. 

Direct calculation shows that m + ~2 does not 
vanish for m Z I when A,2 takes one of the values 
(84) or (85). Hence (81) shows that for m > 0 

(86) 

where jmn is the nth positive root of Jm(x). Solving 
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(B3) then gives for m > ° 
Amn: ).2 _ 3 + m2 - (12m2 + 1)! 

- q2a2( 1 -(1~:: ~ ~)!) / lmn + ... , 

Bmn: ).2 _ 3 + m2 + (12m2 + l)! 
_ 2a2(1 + 2m

2 
- 1 )/.2 + ... 

q (12m2 + l)! lmn . 

For m = 0, Eq. (B2) can be written 

1] - qa/Yn' 

where Yn is the nth root of the equation 

J~(y)/yJo(Y) = l[(R2/a2) - 1]. 

Solving (B3) then gives for m = 0 

Aon: ).2 _ 2 _ 2q2p2/y~ + .... 
If R » a then Y n -:::::::. jon. 

C & D: I qa!7J I ->- 0 

(B7) 

(B8) 

(B9) 

(BI0) 

(Bl1) 

The left-hand side of (B2) becomes - t for qa/1] - 0, 
so there can be no m = ° mode of this type, and we 
restrict ourselves to the case m > 0. 

For qa/17 - 0, Eq. (Bl) becomes 

m1]2 + m + ;2 = 0. (BI2) 

We may write the left-hand side as a function of ).2 

m1]2 + m + e 
2[).4 _ ).2(2m2 - 4m + 3) + m(m - (2)m - 1)2] 

= [).2 _ m2][).2 _ (2 _ m)2] 
(B13) 

There are two zeros of the numerator, defining the 
modes of Types C and D: 

c: ).2 = m2 - 2m + i - (2m2 - 4m + I)!, (BI4) 

D: ).2 = m2 - 2m + i + (2m2 - 4m + I)!. (BI5) 

However, the vanishing of the denominator prevents 
(B13) from vanishing for the cases m = I(D) and 
m = 2(C), so these modes as well as m = O(C & D) 
are absent. 

In the m = 1 mode of Type C, Eq. (BI4) shows 
that ).2 _ 0, so this is the hose mode. In order to 
obtain).2 to order q4 we need the following expansions: 
For 1).1 « 1 and m = 1, Eqs. (8.6) and (8.7) give 

1]2 - i - g).2 - iii).4 + ... , (BI6) 
;2 __ -t - H).2 - ~a).4 +.... (BI7) 

For Iqa/1] I « 1 

1] J{(qa/r;) 1]2 [ q2a2 q4a4 ] 
qa J

1
(qa!1]) - q2a2 1 - 41]2 - 961]4 + . .. . (BI8) 

For Iqal « 1 and IqRI « 1 

H~l)(qR)J{(qa) - Jo(qR)Hpl'(qa) 

H~l)(qR)Jl(qa) - Jo(qR)m1)(qa) 

1 [. R R _ - - 1 - q2a2 In - + iq'a' In2 
-

qa a a 

+ iq'a' In ~ - tq'a2(R2 - a2) + .. -]. 
(BI9) 

Putting these expansions into (8.12) gives an implicit 
dispersion relation 

).2 + )., + ... = -iq2a2(ln ~ + D + !q'a' 

X (In2 !!. + In !!. + 2) - lq'a 2R2 + .... 
a a 16 

(B20) 
Solving (B20) to order q' gives the explicit dispersion 
relation 

C1 : ).2 = -iq2a2(ln ~ + ~) 

~ '4(1 R 3) ~'2 2 - 4q a n -;; - 8 - 1iq a R + .... 
(B21) 

For the C and D modes with m ~ 2 we can evaluate 
the q2 terms in ).2 by using the expansions 

1] J'",(qa/1]) m1]2 [ q2a2 ] 
qa J m(qa!1]) - q2a2 1 - 2m(m + 1)r;2 + . .. , 

H<.!~l(qR)J'",(qa) - Jm_1(qR)H<.!l'(qa) 

H<.!~l(qR)Jm(qa) - Jrn_1(qR)H<;;)(qa) 

(B22) 

m [ q
2
a

2 
q2R2 (a

2
)m ] --- 1--+ - + .... 

qa 2m 2m(m - 1) R2 
(B23) 

The implicit dispersion relation is now, for m > 1, 

2 m + 2 2 m(r;2 + 1) +; = q2a 
2(m + 1) 

_ 1 (a
2
)mq2R2 + . . .. (B24) 

2(m - 1) R2 
We do not attempt to make this explicit for general m; 
the numerical results for m = 2 and m = 3 are 
included in Table I. 

High Frequency: Iqj ->- co 

For Iqal » 1 the dispersion relation (8.12) may be 
written 

r;(J'",(qa/'YJ») + f. = i + O(I!qa). (B25) 
J m(qa!1]) qa 
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We divide the modes into those for which Iqa/1] I ~ OCJ 

at high frequency (called Types A and $) and those 
for which Iqa/1]I--+ OCJ at high frequency (called ~). 

"t & .'6: I quj'l I ~ co . 

Here 1] must go to infinity at least as fast as qa. 
From (B3) we see that there are two possible limits 
for il,2, which define the modes of Types A and $: 

A: il,2 --+ (2 - m)2, 

$: il,2 --+ (2 + m)2. 

(B26) 

(B27) 

For m = 0 the two limits are the same, and we call 
the mode Type A. For m = 2 the Type A mode is 
absent because the vanishing of the numerator of 
(B3) prevents it from becoming infinite when il,2 --+ O. 

In order to obtain the l/q2 term in il,2 we write 
(B25) as 

[J'.,,(x)/xJ m(x)] + (e/x21]2) --+ 0, (828) 
where 

x == qa/1]. (B29) 

A: When il,2 approaches the limit (B26) we find 

1]2 --+ (2 - m)/2[iI,2 - (m - 2)2], 

~2/1]2 --+ m, 

except that for m = 0 

1]2--+2/(iI,2 - 4), 
and for m = 1 

Hence for m :F 0 the dispersion relation is 

(B30) 

(B31) 

(B32) 

(B33) 

Amn: il,2 --+ (m - 2)2 - (m - 2)x2j2q2a2 + ... , 
(B34) 

while for m = 0 

Aon: il,2 --+ 4 + 2x2jq2a2 + ... , (B35) 

where x is a root of Eq. (B28), which becomes 

xJ'.,,(x) = -mJm(x), (B36) 

except that for m = I 

xJ{(x) = -3J1(x). (B37) 

$: When il,2 approaches the limit (B27) we find 

1]2 --+ (m + 2)j2[iI,2 - (m + 2)2], (B38) 

(B39) 

Hence the dispersion relation is 

$mn: il,2 --+ (m + 2)2 + (m + 2)x2j2q2a2 + ... , 
(B40) 

where x is a root of (B28), which becomes 

xJ'.,,(x) = +mJm(x). (B41) 

Some standard Besseling shows that the roots of 
(B36) and (B41) are, respectively, 

A: X=j/m-l/,n, $: X=jm+l,n, (B42) 

where jp,n is the nth root of Jix). The roots of (B37) 
must be calculated separately, and there are an infinite 
number of them. 

!D: Iquj'll ->- co 

Suppose we choose 1] as the root of (8.6) such that 
qaj1] goes to infinity with positive imaginary part. 
Then the dispersion relation (B25) for Iqal --+ OCJ 

becomes 
- i1] + ~2jqa --+ - i. (B43) 

If ~2 stays finite then 1] --+ -1, which is impossible 
since we define q with 1m q > 0 and 1] with 1m (qa/1]) > 
O. Thus ~2 --+ 00 at least as fast as qa. If 1] also goes to 
infinity we have 1]2j ~2 asymptotically constant for 
m > 0 (vide supra) so according to (B43) 1] must go 
like qa, which is impossible since I qaj1] I is assumed to 
diverge. Hence we must have ~2 --+ OCJ but 1]2 H 00. 

Inspection of (8.6) and (8.7) shows that this happens 
when 

(B44) 

except that for m = 1 the vanishing of the numerator 
of (8.7) prevents ~2 from becoming infinite when 
il,2 --+ I, and of course ~2 for m = 0 is identically zero, 
as the type ~ modes start with m ~ 2. When il,2 --+ m2, 

Eqs. (8.6) and (8.7) give 

1] --+ 1] 00 = [(3m2 - 2)j4(m2 - 1)]1, (B45) 

~2 --+ m2j(iI,2 _ m2), (B46) 

so (B43) becomes 

~m: il,2--+m2[1+~2]--+m2[1+ 1 J. 
iqa(l + 1]ocJ 

(B47) 
The derivation shows that the square root in (B45) 
must be taken positive. 

Connection: q2 < 0 

It should be noted that for purely imaginary q, the 
high- and low-frequency formulas (B7), (B8), (Bl1), 
(B21), (B24), and (B34), (B35), (B40), (B47) all give 
iI, real. The relative ordering of the values of il,2 at low 
frequencies is 

m = 0: AOl > A02 > ... , 
m = 1: Bn > Bl2 > ... > An 

> A12 > ... > CI , 

m = 2: B21 > B22 > ... > D2, 

m~3: Bml>Bm2>"'>Dm>Cm 

> ... > Am2 > AmI' 



                                                                                                                                    

GENERAL THEORY OF RESISTIVE BEAM INSTABILITIES 639 

where ">" refers to the A2 values of the modes indi­
cated. At high frequencies the relative ordering is 

m = 0: AOI > A02 > ... , 
m = 1: $u > $12 > ... > Au > A12 > ... , 
m = 2: $21 > $112 > ... > :D2, 

m ~ 3: $ml> $m2 > ... > 1>m 

> ... > Am2 > AmI' 

(The missing modes are Bon, Co, Do, D1 , A2n , C2 at 
low frequency and $On, :Do, 1>1, A2n at high fre­
quency.) If one could be sure that for a given m and 
q2 < 0 the various ).2 are real continuous functions of 
_q2 which do not cross, then we could immediately 
conclude that the modes A, $, 1> labeled by their 
behavior for q2 ----+ - 00 are to be identified with the 
corresponding A, B, D modes labeled by their behavior 
for q2 ----+ O. That is, we would guess that Amn == A mn , 

$mn == Bmn, and 1>m == Dm· 
But the trouble with this guess is that the Cm modes 

are left out in the cold, there being no em modes they 
can hook onto at high frequency. A careful reinspec­
tion of the ordering of the A2 will convince the reader 
that, as we move away from zero on the negative q2 
axis, the Cm modes must either cross the others or reach 
a singularity. 

In fact, what happens is a singUlarity. In order to see 
this without inessential complications, we take the 
plasma channel radius R infinite, and write the dis­
persion relation (8.12) for q2 < 0 as 

'fj I:"'(Qa/'fj) + .L = K:"'(Qa) , (B48) 
Im(Qa/'fj) Qa Km(Qa) 

where q = iQ, with Q > O. For Q ----+ 0 it is easy to 
check from (BI4) that 'fj2 > O. As long as 'rJ2 stays 
positive (B48) requires that 

m'rJ2 + ;2 + m < 0, (B49) 

since xI~(x)/Im(x) > m and xK~(x)/Km(x) < -m for 
real positive x. However, it is easy to see that (B48) 
has at some finite Qa a solution with 'rJ2 ----+ 0+. When 
1]2 -+ 0 (B49) requires that we take the root with 

A2_ 3 + m2 
- (12m2 + l)t == Ai. (B50) 

[See (B3) and (813).] In this case ;2 approaches a 
finite limit ;i < -m, and (848) gives Q ----+ Ql' where 

(851) 

an equation with precisely one solution. For instance, 
in the hose mode CI we have 

Ai = 4 - (13)! = 0.39, 

~i = -6/[(13)1 - 1] = -2.29, (852) 

and (B51) gives 
(B53) 

However, it is not possible for 'rJ2 to return above 
zero when Q increases past Ql' For ;2 - ;i is of 
order 'rJll when 'fj - 0, so (848) gives 

= (Qa _ 1) [.!!.. XK:"'(X)/Km(X)] . 
Qla dx <r=Qla 

(854) 

The derivative in (854) is negative, so this is only 
possible for 'rJ2 to go to zero from above when Q goes 
to Ql from below. 

It is also not possible for 'rJ2 to pass through zero to 
negative values as Q passes Ql' since the ratio 
l'm(Qla/'rJ)/lm(Qla/'rJ) oscillates between + 00 and - 00 

as 'rJ2 ----+ 0_. We can only conclude that the function 
A2 simply comes to an end in the Cm modes when _q2 
reaches the value Qi. 

There is still the question of what happens to All 
in the Cm modes when q ----+ 00 along some direction 
other than the imaginary axis. Here, A2 is complex 
and we do not expect to encounter a break in the 
Cm mode. From the way the A2 values are ordered 
for qll < 0, we might expect that when q2 is only 
slightly above the negative real axis the Cm mode A2 
will be nearly real for Re ( _q2) increasing from zero 
to Qi, when A2 becomes highly complex and passes 
over an infinite number of Amn modes to hook on 
finally to a low Amn mode, probably AmI' In fact, a 
machine calculationS shows that this is what happens 
in the C1 ("hose") mode. Following the A2 function 
from its known behavior at q = 0 up to large imaginary 
values of q2a2 (Le., w large and real) shows the C1 

asymptotic behavior is what we have above called the 
All mode. Assuming the same to happen for m ~ 3, 
we finally conclude that the correct identifications 
must be 

Am,n == Am,n+!> Bm,n == $m,n' 

C m == Am,!> Dm == j)m' 

APPENDIX C. WKB SOLUTION OF 
EQUATION (11.15) 

We first write (11.15) in the Riccatti form 

! i-[ p (£)] + m
2 

1 
- pdp IN - 1 & l p2N - 1 

(855) 

2mN p2N-2 2 1 (&/y 
1= (p2N _ 1)2 + J-l = p2N _ 1 f)' (Cl) 
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For large p this gives &'j&~p[p2N -1]t, which 
when inserted in the left-hand side of (6.1) yields 

&'j& = p[p2N _ 1]t _ [p2N - 1]t 
2p 

d p (1) 
X dp [p2N _ l]t + 0 ~' (C2) 

either sign being taken for the square root of p2N - 1. 
Integrating (C2), we find our WKB solutions 

& oc p-t[p2N - 1]1 exp (p f dp[p2N - l]t). (C3) 

These solutions are valid except very near p = 0 and 
p = 1. 

For p« 1, Eq. (11.15) becomes just Bessel's 
equation 

1 d d& m2 
2 

- - P - - - & + p & = 0 (C4) 
pdp dp p2 

with solution 
& oc Jm(pp). (C5) 

(Cll) and (CI2) agree that for x -- 0 

&+ __ [2ijr(t)(3)t]x2[1 + i-... x3 + ... ], 
& ___ [2ijr(!-)][I + !X3 + .. ']. 

For sufficiently large p2 there is a region of Ixl: 

1 « Ixl «'pi (C13) 

within which we may use the well-known asymptotic 
forms of (CII) and (CI2) 

&± -- (21T)-ht[exp {-ix~ - li1T T ii1T} 

+ exp {ix~ + li1T}] (l« x «pi), (CI4) 

&± -- (2j1T)t(-X)t cos li( -x)! T 11T - t1T] 

(1 « -x «pi). (CI5) 

The correct linear combination of the solutions (CI4) 
is the one that decays exponentially, i.e., 

& oc &+ - &_, (CI6) 

and for x < 0 this is given by (CI5) as 

& oc (-x)! cos [i( -x)! - 11T]. (CI7) 
If p2 is large we can find a region 

w1 « p« 1 

within which the solution (C5) becomes 

But when x is negative and in the region (CI4) we have 
(C6) p ~ 1, (l - p2N)t oc (-x)t, and 

& oc p-t cos {pp - !m1T - ~}. (C7) 

Comparing with (C3), we see that this may be written 
in the WKB form 

& oc p-t[1 _ p2N]! 

X cos {piP dp[1 - IN]t - tm1T - 11T} (C8) 

Thus (C8) is a good solution for p < 1, except very 
close to the turning point at p = 1.1 

For p very close to unity we may write 

p = 1 + x(2N p2)-t, 

and Eq. (11.15) becomes 

(C9) 

p 11[1 - p2N]t dp c:::'. i( -x)~, (CI8) 

so (CI7) may be written in a WKB form as 

& oc p-t[l - p2N]t cos {p 11[1 - p2N]t dp - 11T}. 

The two forms (C8) and (CI9) agree if 
(CI9) 

Pi" [1 - p2N]t dp = (n + !m + !)1T (C20) 

with n an integer. The integral is just a Beta function 

i1[1 _IN]t dp = r(!)r(!N) ,(C2I) 

o 2(N + lW(! + 1...) 
2 2N 

APPENDIX D. THE SAUSAGE MODES 

~ 1. d& _ & = O. 
dx x dx 

(CI0) The m = 0 case is sufficiently simple to allow the 

We find two regular solutions 

proof of some useful rigorous results. We show that 
for m = 0 the only possible modes are the Ao modes 
and the continuous spectrum. 

(Cll) For m = 0 the functionsf(r) and g(r) are 

&± = xJ±i[t( -x)~] (x < 0). (CI2) 

It is easy to check that these forms are correctly 
normalized to join smoothly at p = 1, since both 

fer) = [r()(21(r) + 2()(2(r)]j[r()(2/(r) + 4()(2(r) _ Q2], 

(01) 

g(r) = 0, (02) 
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and Eq. (6.1) becomes ary conditions on &(r) are also real, so &(r) is every­
where real. 

!!!... r[l - f(r)]!!... &(r) + q2&(r) = O. 
r dr dr 

(D3) Now, multiply Eq. (D3) by r&(r) and integrate from 

Multiply (D3) by r&*(r), multiply the complex conju­
gate of (D3) by r&(r), subtract, and integrate from 
o to R; this gives 

50 R r Imf(r) 1&'(r)1 2 dr = -1m q250R r 1 &(r) 12 dr. 

(D4) 
But using (D1), this is 

1m n2 [R roc
2
'(r) + 2oc

2
(r) 9 1 &'(r)12r dr 

~ 0 Iroc2'(r) + 4ocV) - n21" 

= -lmq250Rrl&(r)12dr. (DS) 

Thus when q2 is real, n2 is real. For q2 < 0 the bound-

o to R. We find 

50 R r[1 - f(r)]&'\r) dr = q250 R r&2(r) dr. 

Hence for q2 < 0, the real function 1 - fer) must be 
negative somewhere. Outside the beam 1 - fer) is 
unity, so we conclude that I - fer) must pass below 
zero either by passing through zero or through in­
finity; in the former case we are in the continuous 
spectrum (10.12), while in the latter case we have an 
40 mode satisfying (11.40). 

Note incidentally that (D4) does not imply that 
q2 must be real for real n2 in the continuous spectrum, 
for when (10.12) is satisfied the function &(r) has a 
logarithmic singularity which invalidates (D4). 
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Runge-Lenz Vector and the Coulomb Green's Function 
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The fact that the Runge-Lenz vector is an extra constant of the motion for a charged particle moving 
in a Coulomb potential is found to account for the especially simple structure of the nonrelativistic 
coordinate space Coulomb Green's function. Also, the study of the consequences of this extra constant 
of the motion leads to a separation of variables in the differential equation for the coor4inate space 
Coulomb Green's function, and hence to a new derivation of the closed-form expression for this Green's 
function which avoids the use of infinite series and the detailed properties of special functions. 

I. INTRODUCTION 

THE Runge-Lenz vector, 

A = t(p x L - L x p) - (mZe2j411')Ur , Ur = fj, (1) 

for particle motion in a Coulomb potential is a 
constant of the motion both classically and quantum 
mechanically.L2 Classically,3.4 the constancy of A 
expresses the fact that the orbit of a particle moving 
in a Coulomb potential does not precess. The Runge­
Lenz vector, A, together with the orbital angular 
momentum vector, L, provide a complete set of 
integration constants for the classical equations of 
motion excepting only for the initial position of the 
particle in its orbit. Also, the equation of the orbit 
follows from the constancy of A in a remarkably 
simple way. In the quantum-mechanical Kepler 
problem too, the Runge-Lenz vector has proved to 
be useful. With the help of this vector the Bohr energy 
levels can be deduced strictly within the framework of 
Heisenberg's matrix mechanics.4.5 The existence of 
this extra constant of the motion-in addition to the 
<;>rbital angular momentum vector (which is always a 
constant of the motion for a spherically symmetrical 
potential)-is equivalent to an additional symmetry 
of the Coulomb Hamiltonian beyond just invariance 
under spatial rotations. 

We here wish to investigate the consequences of the 
existence of this extra vector constant of the motion 
for the Coulomb Green's function in coordinate 
space. This function may be defined by the differential 

• Present address: University of Minnesota, Minneapolis, 
Minnesota. 

1 Equation (I) is written in its quantum-mechanical form. 
• Heaviside-Lorentz (equals rationalized Gaussian) units are 

used. 
3 C. Runge, Vector Analysis (E. P. Dutton and Company, Inc., 

New York, 1919), Chap. II, Sec. 5, p. 79. 
4 M. Born and P. Jordan, Elementare Quantenmechanik 

(Springer-Verlag, Berlin, 1930), Chap. 4, Sec. 35, p. 179. 
• W. Pauli, Jr., Z. Physik 36, 336 (1926). 

equation6 

(V~ + 2~'JI + k2)G(f2 , fl' w) = <5
3(f2 - f l), 

k 
_- (2mliw)l, 'JI __ Ze

2
m 

1m (k) > 0, 411'kli2 ' (2) 

subject to certain regularity conditions at the origin 
and at infinity, or equivalently by the equation 

G(r2' fl' w) = (f21 G(w) Irl), 

G(W) = - li2j2m(H - liw)]. (3) 

The quantity liw in (2) and (3) is any complex number 
not in the eigenvalue spectrum (discrete and con­
tinuous) of the Coulomb Hamiltonian, 

H = p2j2m - Ze2j411'r. 

That this investigation might lead to some interesting 
results is suggested by the specific form of the function 
G(r2' flo w). This is6- 8 

G(r2' rl , w) 

= - det . 
reI - iv) [WiV;I( -iku).A(,iv;l( -ikV)] 

411' Ir2 - fll Wiv;l( -iku).A(,iV;!( -ikv) , 

u = '2 + '1 + Ir2 - rll, v = '2 + '1 - If2 - rll. 
(4) 

The functions Wand .A(, here are Whittaker functions 
as defined in Buchholz.9 The dots over the Whittaker 
functions denote differentiation with respect to the 
arguments of the Whittaker functions. The Green's 
function is seen to depend upon r2 and fl only through 
the two variables u and v [the factor Ir2 - fll-l which 
occurs in (4) can be written 2(u - V)-l]. Now, on the 
basis of the spherical symmetry of the potential alone 

6 L. Hostler, J. Math. Phys. 5, 591 (1964). 
7 K. Mano, J. Math. Phys. 5, 505 (1964). 
8 L. Hostler and R. H. Pratt, Phys. Rev. Letters 10, 469 (1963). 
• H. Buchholz, Die Kol1fluente Hypergeometrische Funktion 

(Springer-Verlag, Berlin, 1953), p. 12, Eq. (7); p. 22, Eq. (25a). 
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one can only deduce that the Green's function must 
depend upon r 2 and r l through the three variables 
r2' r l , and Ir2 - rll, or three functionally independent 
combinations of these. The Green's function (4) 
therefore has a structure simpler than that required 
by invariance under spatial rotations alone. It is 
tempting to speculate that this special simplicity of 
the Coulomb Green's function may be a consequence 
of the additional symmetry of the Coulomb Hamil­
tonian, associated with the extra constant of the 
motion, A. 

This speculation is confirmed by the work presented 
here (Sec. II). In addition (in Sec. III), we are led to 
a method of reducing the partial differential equation 
for the coordinate space Coulomb Green's function 
to a pair of uncoupled ordinary differential equations 
[Eqs. (27)] for the functional dependence on the 
remaining two variables u and v. Hence we can give 
a derivation of the closed-form expression (4) which 
avoids the use of infinite series and the detailed 
properties of special functiuns. lo .n 

II. CONSEQUENCES OF [A, H] = 0 

To begin our investigation, we note that the 
constancy of A is equivalent to the commutability of 
A with the Coulomb Hamiltonian, H. But if A 
commutes with the Coulomb Hamiltonian, then it 
also commutes with any function :F(H) of the 
Coulomb Hamiltonian, 

A:1'(H) - :1'(R)A = 0. (5) 

Taking matrix elements of this equation relative to a 
basis of position eigenfunctions gives an identity 
which must be satisfied by the coordinate space 
representative, 

:F(r2 , rl) = (r21 :F(R) Irl ), 

of the operator :F(R), 

(-r2V: + r2 • V 2V 2 + V 2 - 02all):1'(r2, rl) 

(6) 

= (-"rlV~ + rl • V8l + VI - 01all):F(r2, rl), (7) 

10 This derivation is quite similar to the one given in Ref. 8, and 
the present work might be regarded as a refinement of this previous 
work. 

11 Actually, as far as the momentum space representative is 
concerned, the question of the connection between the Runge-Lenz 
vector and the Coulomb Green's function is already answered by a 
work of Schwinger [J. Schwinger, J. Math. Phys. 5,1606 (1964)). As 
shown by Fock [V. Fock, Z. Physik 98,145 (1936); see, also, L. C. 
Biedenharn, J. Math. Phys. 2,433 (1961)], the full symmetry of the 
Coulomb problem associated with the constants of the motion A 
and L is the symmetry of the four-dimensional rotation group. In 
Schwinger's treatment of the momentum space Coulomb Green's 
function, this four-dimensional rotational invariance plays a central 
role. He shows that the equation of the momentum space Coulomb 
Green's function can be written as an integral equation in a four­
dimensional spherical space, and the four-dimensional rotational 
invariance of the equations is manifest throughout the calculation. 

FIG. 1. This figure shows part 
of the infinite three-sided pyramid 
which is the domain of the vari­
ables x, y, and z of Eq. (8). The 
shaded area is a section through 
the pyramid at x = const. (The 
scale is distorted for ease of 
visualization.) If 

aI, the radius of the first Bohr orbit, equals 47T1i2jmZe2• 

Here 0 1 •2 denote unit vectors in the directions rl 2' 

Choosing :F(R) = -1i2j2m(H - liw), one finds that 
the coordinate space Coulomb Green's function, 
G(r2' r1, w), satisfies this identity, but we need not 
specialize to this case until the end of the calculation. 

The differential equation (7) involves the six 
variables r1 and r2 • However, from the invariance of 
the Hamiltonian, H, under spatial rotations, it 
follows that :F(r2' r1) can depend upon r2 and r1 only 
through the variables r2 , rl , and ir2 - rli, or three 
functionally independent combinations of these 
variables. This enables us to rewrite (7) as a differential 
equation involving only three independent variables. 
Writing :F(r2' r1) = :F(x, y, z), where 

x=rl +r2 , y= Ir2-rl l, z=r2 -r1 , (8) 

Eq. (7) goes over into 

[
rJ2:1' Z2 - l 
oyoz 2Y (02 + 0 1) 

02:F x2 - l 0:1' 
+ oxoy 2y (02 - 01) - oz (02 + 01) 

0:1' ( ) r,,- -1( ] - ox 02 - 01 -:i' a1 O2 - 01) = 0, 

'2 > 0, '1 > 0, r2 :;i:. r 1 • (9) 

The domain of the variables x, y, z is the infinite 
three-sided pyramid of Fig. 1. As r2 and r1 run over 
all possible values; x varies over the range ° :::;; x < 
+ 00. For fixed x, y = Ir2 - r11 varies over the range ° :::;; y :::;; x. For fixed x and y, z = '2 - '1 varies over 
the range -y:::;; z :::;; + y. The three edges of the 
pyramid are the three rays y = z = 0, x ~ 0; 
y = x = z ~ 0; and y = x = -z ~ 0. These corre­
spond to r2, rl values for which r2 = r1, r1 = 0, and 
'2 = 0, respectively. 

The conditions '2 > 0, '1 > 0, r2 :;i:. r1 associated 
with Eq. (9) express the fact that the domain ofvaIidity 
of Eq. (9) is the pyramid less its three edges. This 
excludes the exceptional points '1 = 0, '2 = 0, and 
r 2 = r1 which occur in the derivation of Eq. (9), and 
guarantees that the expressions entering Eq. (9) are 
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well defined. The points '2 = 0, '1 = 0, and r2 = r1 
may also be singular points of the function :F(x, y, z). 

The xy plane cuts the region '2 > 0, '1 > 0, 
r2 ;;t= r1-i.e., the pyramid less the three edges-into 
two halves, denoted by A and 93 (see Fig. 1). These 
consist ofthe points corresponding to'2 > '1 > ° and 
'1 > '2 > 0, respectively. In the following analysis 
we limit ourselves to the study of the function 
:F(x,y, z) in the region A. It is obvious that the same 
considerations apply also to the region 93. In the end 
we have to build up the function :F(x, y, z) by piecing 
together its values in the two regions. 

The vector equation (9) is equivalent to the two 
scalar equations 

i(z2 - y2)(a2:Fjayaz) - y(a:Fjaz) = 0, (10) 

i(x2 - y2)(a2:Fjaxay) - y(a:Fjax) - (yja1):F = 0. 

(11) 

Of course, (10) and (11) follow from (9) only if U2 and 
U1 are linearly independent. In region A the vectors 
U2 and U1 fail to be linearly independent on the upper 
surface y = z (u2 = u1) and on the side y = x 
(U2 = -u1). It might seem, therefore, that Eqs. (10) 
and (11) would be subject to the additional conditions 
y ;;t= z and y ;;t= x. However, the points on the surfaces 
y = z and y = x are either already excluded by our 
conditions '2 > '1 > 0, or they are regular points of 
the function :F(x, y, z). In the latter case, Eqs. (10) 
and (11) continue to hold for y = z and y = x, by 
continuity. Consequently, Eqs. (10) and (11) are 
valid throughout A. 

Equation (10) is equivalent to 

ajay(z2 - y2)a:Fjaz = 0, 

which implies that (Z2 - y2)a:Fjaz is a function of x 
and z alone, 

(Z2 - y2)a:Fjaz = cf>(x, z). (12) 

The function cf>(x, z) occurring here can be evaluated 
by evaluating the left-hand side of the equation for a 
special value of y. For each pair of values of x and z 
which occurs in region A, the point (x, y, z) with 
Y = z is a point in region A and, hence, a regular 
point of :F(x, y, z). This choice of y makes the factor 
(Z2 - y2) in (12) vanish. Since a:Fjaz remains finite, 
the entire left-hand side of Eq. (12) vanishes. It 
follows that the function cf>(x, z) vanishes throughout 
A. Thus (Z2 - y2)a:Fjaz = ° throughout A. This 
in turn implies that 

a:Fjaz = ° (13) 

and, hence, that :F is a function of x and y alone. 

Extending this result to region 93 also, we can write 

:F(x, y, z) = O(Z)F1(X, y) + O( -z)F2(x, y), 

O(z) = +1, z>o; O(z) =0, z<o. (14) 

Again assuming the only singularities of :F(x, y, z) 
occur at the edges of the pyramid of Fig. 1, the 
right-hand side of Eq. (14) must be continuous across 
the xy plane, z = 0. This implies F1(x, y) = F2(x, y) = 
F(x, y), say. From (14) it follows that :F(x, y, z) is 
represented by the single expression F(x, y) throughout 
its domain of definition, 

:F(x, y, z) = F(x, y), '2 > 0, '1 > 0, r 2 ;;t= r1 . 

(15) 

We have here (a slight generalization of) the 
result which we were looking for at the beginning: 
the coordinate space representative of any function of 
the Coulomb Hamiltonian can depend upon r2 and 
r1 only through the two variables x = '2 + '1 and 
y = Ir2 - r11-equivalently through the two variables 
u = '2 + '1 + Ir2 - r11 and v = '2 + '1 - Ir2 - r11 . 
In particular, the coordinate space Coulomb Green's 
function 

G(r2' r1, w) = -(1i2j2m)(r21 (H - IiW)-l Ir1) 

must be a function of only the two variables u and v. 
However, in addition we learned that this function 
of only two variables must satisfy the identity (11), 
and we now want to explore the consequences of this 
identity. 

Equation (11) [with :F(x, y, z) = F(x, y)] can be 
rewritten 

a x2 
- l a F -1 F ° - - y - a1 Y = . 

ay 2y ax 

This equation can be integrated once by putting 

yF(x,y) = aD(x,y)jay. 

We then find aAjay = 0, where 

A = [(a2D/axay)(x2 -i)/2y - a11D]. 

(16) 

(17) 

This implies that A is a function of x only: A = A(X). 
Now for a given F(x, y), the function D(x, y) is not 
determined uniquely by Eq. (17). We can still add to 
D(x, y) any function of x alone. In this way D can be 
adjusted such that A = 0, 

(a2D/axay)(x2 -i)/2y - al1D = 0. (18) 

The mixed derivatives in Eq. (18) can be eliminated 
by going over to the variables u = x + y = 
'1 + '2 + Ir2 - r11, v = x - y = '1 + '2 - Ir2 - '11· 
In these variables Eq. (18) becomes 

(19) 
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and Eq. (17) goes over into 

F _ _ 2_(OD _ aD) 
-u-vou ov' 

(20) 

These results "explain" the special significance of the 
variables u and v: For functions of u and v only, the 
identity (7) can be reduced to an equation [Eq. (19)] 
in which a separation of variables occurs. 

m. DERIVATION OF COULOMB GREEN'S 
FUNCTION BY SEPARATION OF VARIABLES 

We now want to apply these results to the specific 
case of the coordinate space Coulomb Green's 
function. In the domain of validity, '2> 0, '1> 0, 
r2 :;f:. r1 , of the previous equations, the delta function 
source term in the differential equation, (2), vanishes, 
and the equation for the Green's function is homo­
geneous. Writing 

G(r2' r1 , w) = (ljy)[oD(x,y)joy], (21) 

Eq. (2) goes over into 

o = ~(02D + 02D + 2x 02D + k2D) 
oy ox2 oy2 Y oxoy 

_ ~ ~(X2 - y2 02D _ D) (22) 
'2 oy 2y oxoy a1' 

As a consequence of the identity (18) this simplifies to 

o = an, n = (0
2 
D + 0

2 
D + 4kvx D + k2 D) 

oy ox2 ol x2 _ y2 ' 

a;:-l = mZe2/47T1i2 = kv (as before). (23) 

From (23) we deduce that n is a function of x only: 
n = 4",(2x), for some function ",. Changing over to 
the variables u and v, this statement becomes 

O(u)D + O(v)D = 21p(u + v), 

(
02 k2 kV) O(z) = - + - + - . 

OZ2 4 z 
(24) 

The identity (19) can be rewritten in terms of the same 
differential operators O(u) and O(v) as occur in 
Eq. (24), and gives a relation, 

O(u)D - O(v)D = 0, (25) 

involving these operators in an independent linear 
combination. Solving (24) and (25) for O(u)D and 
O(v)D, find 

O(u)D = 1p(u + v), O(v)D = 1p(u + v). (26) 

It is now shown that the "integration constant" 
",(u + v) vanishes. Operating on the first of Eqs. (26) 
with O(v) and on the second with O(u), we deduce 

that O(v)V'<u + v) = O(u)",(u + v). But for a function 
of u + v only we have 

02joU21p(u + v) = oajov~(u + v). 

Consequently, the relation 

O(v)",(u + v) = O(u)",(u + v) 

reduces to simply kv(u - v)(UV)-l1p(U + v) = 0, and 
this in turn implies ",(u + v) = O. Therefore Eqs. (26) 
become simply 

O(u)D = 0, O(v)D = O. (27) 

We have here reduced the partial differential equation 
of the coordinate space Coulomb Green's function to 
a pair of uncoupled ordinary differential equations 
for the dependence of the generating function D(u, v) 
on the two variables u and v. 

The general solution of the equation O(z)f(z) = 0 
can be expressed as a linear combination of the two 
Whittaker functions1s Wide -ikz) and .A(,iv;i( -ikz). 
Thus D(u, v) may be expressed as a linear combination 
of (the four possible) products of one Whittaker 
function of argument - iku times one of argument 
-ikv, all with the indices iv and t. Exactly which 
products are allowed is dictated by the regularity 
conditions on G(rs, r1 , w) as a function of ra. At 
'a = + 00, u = + 00. Since the Green's function must 
vanish at '2 = + 00,13 the products involving u 
through the .A(, function are excluded.14 As regards 
the variable v, this can be made to vanish in the 
region '2 > 0, '1 > 0, rs:;f:. r1 of regularity of the 
Green's function by choosing r 2 antiparallel to r 1 • 

But G(r2' r1 , w) would become infinite for this choice 
of ra if products involving v through the W function 
were allowed [because dWiV;i(z)jdz becomes infinite 
for z = 0 (cf. Ref. 9, p. 28)]. We have now eliminated 
all but one possibility, namely, 

D(u, v) oc Wiv;i( -iku).A(,iV;!( -ikv). 

Substituting into Eq. (21) [equivalently, Eq. (20)] we 
obtain 

1 
G(r2' r l , w) oc ---

Ir2 - r11 

d [
W;v;l( -iku) .A(,iv;l( -ikV)] 

x et . . . 
W;v;l( - iku) .A(,iv;l( - ikv) 

(28) 

The homogeneous equations which we have been 
working do not, of course, determine the nu­
merical factor which is missing here. To determine this 
factor one must go back to the inhomogeneous 

12 Reference 9, p. 25. 
18 Reference 6, Eqs. (1.2). 
U Here the condition 1m (k) > 0 [cf. Eq. (2)] comes in. 
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equation, (2), and match the singularity at f2 = fl of 
the expression on the right-hand side of (28) with the 
amplitude of the delta function source term in (2). 
This is achieved by the requirement 

G(f2' fl' w) -' -1/41T If2 - fll, (f2 --+- fl)' (29) 

Now when f2 approaches fl' U approaches v, and the 
determinant in (28) goes over into the Wronskian of 
the two functions Wand ..A(,. This Wronskian has 
the value12 I/r(l - iv). Hence the missing numerical 
factor in (28) is - r(l - iv)/41T. Supplying (28) with 

JOURNAL OF MATHEMATICAL PHYSICS 

this factor gives the familiar closed form expression 
(4) for the coordinate space Coulomb Green's 
function. 
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The time-dependent Green's function for a moving isotropic nondispersive medium is hereby obtained 
by taking the w-integration of the time-harmonic solution which was previously obtained by means of 
an operational method and by making use of the known result of the two-dimensional Klein-Gordon 
equation. 

INTRODUCTION THE BASIC EQUATION AND ITS SOLUTIONS 

THE time-dependent Green's function for a moving 
isotropic medium was recently found by Compton.1 

He applied a four-fold Fourier transform to the 
pertinent differential equation to obtain the desired 
result. In evaluating the reciprocal Fourier transform, 
he considers the w-integration first, followed by the 
"-integration. The steps involved in the calculation 
are rather long, comparable to those of Lee and 
Papas.2 

In this paper, we show that the time-dependent 
solution can readily be obtained by taking the w­
integration of the time-harmonic solution3 which was 
previously obtained by an operational method without 
a lengthy calculation. 

• The research reported here was sponsored by the National 
Aeronautics and Space Administration under Grant NGR-23-005-
107 with the Langley Research Center, Hampton, Virginia. 

1 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966). 
2 K. S. H. Lee and C. H. Papas, J. Math. Phys. S, 1668 

(1964). 
3 C. T. Tai, Trans. IEEE Antennas Propagation, AP13, 322 

(1965). 

The time-dependent Green's function considered by 
Compton4 satisfies the differential equation 

[ 
82 82 1 02 20 82 

ox2 + oy2 + ~ OZ2 - --;; ozot 

+ (02 

- n2:) 8:]G(R, R'; t, t') 
a C ot 

where 
= -b(R - R')b(t - t'), (1) 

(2) 

(3) 

• Compton defines the Green's function with a positive sign 
attached to the delta function. 
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Thus, if Eq. (1) is multiplied by e-irot and integrated 
with respect to t, we obtain 

[~ +~ +!~ _ 2jwn~ 
ox2 ol a OZ2 a OZ 

+ w2(n:~ _ ~) ]F(W) = _e-iCJJt'b(R - R'). 

(4) 

If we introduce an auxiliary function f(w) such that 

F(w) = eiwo."j(w), (5) 

thenf(w) satisfies the following equation: 

(~ + ~ + l~ + w
2

n
2

a)f(W) 
ox2 oy2 a OZ2 c2 

= _e-iCJJ(t'Hl.z'>b(R - R'). (6) 

Except for the factor e-iW(t' +o.z'>, Eq. (6) is the same 
as Eq. (26) considered in Ref. 3. Hence, its solution 
is given by the following: 

Case I: nf3 < 1 

few) = a~ exp {-jw[t' + nz' + (n/c)a!Ra]) , (7) 
47TRa 

where 

Ra = (a~2 + r2)!, r2 = (x - X')2 + (y _ y')2, 

~ = (z - z'). 

Case II: nf3 > 1 

{

O' lal!~ < r } 
few) = lal!exp [-jw(t' + nz')]cos(wn/c)lal!R~, , 

27TR~ 
lal!~ > r 

(8) 
where 

In view of Eqs. (3) and (5), we can obtain readily the 
solutions for G(t); they are the following: 

Case I: nf3 < 1 

G(t) = ~ foo exp [jw(7' + n~ - !! a!Ra)] dw 
87T Ra -00 c 

= L b(7' + n~ -!! a!Ra) , (9) 
47TRa c 

where 7' = t - t'. 

Case II: nf3 > 1 

lal! foo n ! G(t) = -2-, exp [jw(7' + nm cos -Ial R~ dw 
47T Ra -00 c 

= ~ 15(7' + n~ - !!.lal!R~)' lal!~ > r, 
47TR~ c 

G(t) = 0, lal!~ < r. 
(10) 

(11) 

Our expressions for G(t) appear to be of slightly 
different form as compared to Compton's, but they 
are equivalent. In fact, the present ones are simpler in 
form and also put the time-dependent part explicitly 
in the delta function. 

To discuss the locus of the wave front, we consider, 
for example, the case corresponding to nfJ < I. The 
impulsive wave front is described by 

7' + n~ - (n/c)a!Ra = 0. (12) 

The above equation can be written in the form 

where 

I: _ (n2 - 1)f3c7' A _ n(1 - fJ2)C7' 
'>c - 2 f32' - 2 fJ2 ' n - n -

_(I-lr)! B - 2 2 C7'. 
n - f3 

Equation (13) defines the same ellipsoid discussed by 
Compton. It can be shown that the same algebraic 
equation applies to the case nf3 > 1. For the latter 
case, ~c is numerically smaller than A. The detached 
ellipsoidal wave front is therefore confined within the 
Mach cone defined by lal!~ - r = 0. 
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It is shown that, given any Lorentz invariant S-matrix, it is possible to calculate from it, by purely 
algebraic operations, a Galilean invariant S-matrix, and vice versa. 

I. INTRODUCTION 

THE requirement of Lorentz invariance is more 
difficult to satisfy than the requirement of Galilean 

invariance in quantum mechanics. A formula is given 
below which shows that, if there is a theory that has 
a Lorentz invariant S-matrix, then there is a related 
theory that has a Galilean invariant S-matrix, and 
that the two S-matrices are related by only algebraic 
relations. If other conditions, such as crossing sym­
metry are required of the relativistic S-matrix, they 
may be imposed on the nonrelativistic one and the 
entire covariant problem reduced to the simpler non­
covariant one. In Sec. II the formula and related 
definitions are given. In Sec. III the proof of the 
invariance and unitarity is given, and in Sec. IV a 
motivated derivation of the formula is given. 

II. FORMULA RELATING THE RELATIVISTIC 
AND NONRELATIVISTIC S-MATRICES 

The S-matrices are taken between plane-wave 
states IpO'). The relativistic S-operator is indicated by 
S and the nonrelativistic one by s. The general element 
of the S-matrix is 

The general element of the nonrelativistic s-matrix is 

(PlO'l··· PnO'nl s Iq1'Tl •·· qm'Tm). (3) 

The nonrelativistic operator s has the invariance 
property vt(G)s V(G) = s, where V(G) is the unitary 
operator that represents the Galilean transformation 
G. The action of V(G) on the Iq'T) is given by 

VCR) Iq'T) = Dr,,(R) IRq, 'T), for rotation R; (4a) 

V(V) Iq'T) = Iq + mV, 'T), 

for a change to a moving coordinate system. (4b) 

In terms of the S-matrix elements the requirements of 
Lorentz and rotational invariance become 

(PlO'l···1 S Iql'Tl ... ) 

L D;;ll .. JR(L, PI)] .•. 
ai' ... Tl' ..• 

X (n .. ·/n ... )t 
LPI Pl 

X (LPlO'{ .. ·1 S ILql'T~ ... )(nLql •• -;nq, •• } 

X Drl'rl[R(L, ql)] . . . . (5) 

The dots indicate that the same factors are repeated 
for each of the m-incident and n-final particles as for 
the first. The analogous formula for the nonrelativistic 

(1) s-matrix is 

The invariance of S is contained in the statement 
Vt(L)SV(L) = S, where VeL) is the unitary operator 
that represents the Lorentz transformation L. The 
action of VeL) on the state Iq'T) is given by 

V(L) Iq'T) = (nLq/nq)tD~~)[R(L, q)] ILq'T'). (2) 

The vector q is the spatial part of a four vector whose 
time component nq = (q2 + m2)t, where m is the 
mass of the particle. In the above formula Lq means 
the spatial part of the transformed four vector 
L(q, nq). The rotation R(L, q) is the Wigner rotation 
associated with the Lorentz transformation L and the 
four vectorl q. The unitary matrix D is an irreducible 
representation of the rotation group of dimension 
2T + 1 when the particle in question has spin T. The 
T's and masses are usually dropped. 

1 E. P. Wigner, Ann. Math. 40, 149 (1939). 

648 

(PlO'l .. ·1 S Iql'Tl ... ) = L D;;l"l,(R) ... 
al'· .. T1" .• 

X (RPlO'{···1 S IRql'T~ ... ) 

(6) 

Given the set of initial four vectors ql ... qm for the 
initial state, there is a Lorentz transformation A that 
carries these four vectors to their center-of-mass values 
ql· .. qm that is Aqi = qi. The fs have the property 
L 4i = o. The transformation A is to be a Lorentz 
transformation without rotation. That is, if Q = 
! qi' then each qi can be separated into its component 
parallel to Q: (qi· Q)Q/Q2 and its component 
perpendicular to Q: qi - (qi' Q)Q/Q2. Only the 
component of qi parallel to Q is changed by A. 
Given the set of three vectors 41 ... 4m, a Galilean 
transformation can be made on them so that they have 
the same total momentum Q as the original set of 
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vectors ql'" qm' The Galilean transformation G 
applied to iii gives Giii = iii = iii + miQ/M, where mi 
is the mass of the ith particle and M = I m t • The 
components of qi and iii perpendicular to Q are equal, 
and only the component parallel to Q is altered. The 
Jacobian of the transformation from q to ii is 

d3ql' .. d3qm = (01 ••• Om/WI' .. W m) d3ih ... d3ijm. 

(7) 

The O's are the energies in the moving coordinate 
system, and the w's are the energies in the center of 
mass. The Jacobian is easily calculated from the 
familiar facts that d3q/o. is an invariant for Lorentz 
transformations and d3q is an invariant for Galilean 
transformations. A similar set of vectors PI ... Pm may 
be defined for the final state. 2 

The proposed connection between the relativistic 
and nonrelativistic S-matrices is 

(PIal' .. PnO'n I S I qlTl ... qmT m) 

= I D;;l~l,[R(A, PI)] ... D;;;'''n[R(A, Pn)] 
al'··· an" .. 
Tt'· .. 1m" .• 

X (W '" W /0. ... 0. )! 
PI Dn PI Pn 

X (PlO'~'" PnO'~1 S lihT~ ... iimT;") 

X (W ... W /0 '" 0. )! 
Ql qm ql 11m 

X DT1'Tl[R(A, ql)] ... DTm'Tm[R(A, qm)]' (8) 

III. UNITARITY AND LORENTZ INVARIANCE 

By direct calculation the unitarity and Lorentz 
invariance of S are shown to follow from the unitarity 
and Galilean invariance of s. The unitarity of S is 
tested by evaluation the expression: 

I Tl .~ rm f d3
ql ... d

3
qm 

X (PIal" 'PnO'nl SlqlTl" 'qmTm) 

X (qlTl'" qmTml st IrlPl' .. rlPl)' (9) 

The sums should be over all intermediate states. The 
outside sum in (9) indicates the sum over all possible 
particle types and number of particles. The inner sums 
and the integrals are the instructions for adding over 
all states with a given number and type of particle. If 
(8) is substituted for Sin (9), the sum over Ti involves 
D~,~ [R(A,pi)] from S and DiNT [R(Ap;)] from st. 

'I 'I 1 1 

Since D is unitary and the arguments of the two 
D's are the same, the result is a br;'T;"' The factors 
(w ... W /0. '" 0. )! are the same for both S 

'1 (1m Cll (1m 

and st, and 

d3ql' .. d3qm(wql ... Wq)Oql ..• Oqm) = d3ql ... d3qm· 

2 A. Chakrabarti [J. Math. Phys. 5, 922 (1964)] has discussed 
similar coordinates. 

With these remarks the unitarity sum (9) becomes 

I D;;ll"l,[R(A, PI)] ... D;l"AR(A, Pn)] 
at' ... an' n 
Pl'··· PI' 

X (W ... W /0 ... a )! 
PI On PI Pn 

X {Irl:.~rm~J d3iit ... d3
ijm 

11 ... 1m 

X (PlO'~'" PnO'~1 S liilTi ... q;"T;")bTI'T1 N 
••• bTm'rmN 

( " - I t 1-' -')} X qlTl '" qm S rIPl'" rZPl 

X (Wrl ... WrJOrl ... ori 

X Dpl'pJR(A, r l )] ... Dp1'PI[R(A, rz)]. 

The expression in braces is just the nonrelativistic 
unitarity condition so that the unitarity sum (9) 
becomes 

I D;ll"l,[R(A, PI)] ... D;;;"AR(A, Pn)] 
at" .. an' 
Pl"" Pn' 

X (W ... W /0 ... a )! 
PI Pn PI Pn 

X (PlO'{ ... PnO'~ll IrlP{ ... rlP;> 
X (W ... W /0 '" 0. )! rl rz rl rz 

X Dpl'pJR(A, rl)] ... Dp1'pJR(A, r 1)]. 

Unless the initial and final states have the same number 
and type of particles, the sum vanishes. When the 
initial and final states have the same number and type 
of particles, the spin indices a' and P' must be equal 
and the D functions are summed to b"p' The momen­
tum b functions of (p - ij) multiplied by the weight 
(wIO) gives b(p - q), so the expression is just 

(PIal' .. PnO'nl l IrlPl ... rzpz), 

and the unitarity of S follows from that of s. 
Lorentz invariance of S requires that 

(PIal' .. PnO'nl S IqlTl ... qmTm) 

= I D;;l~l,[R(L, PI)] ... D;;;"n,[R(L, Pn)] 

X (OLPl ... OLp)Opl ... Op)! 

X (LplO'i' .. LPnO'~1 S ILqlT~ ... LqmT;") 

X (0 ... 0. /0 ... a )! Lql Lqm ql qm 

X Drl'TJR(L, ql)] ... Drm'rJR(L, qm)]· (10) 

The S-matrix elements on both sides can be evaluated 
in terms of the elements of s through (8). The Galilean 
invariance of s guarantees the Lorentz of S. The 
left-hand side of (10) is explicitly given by (8). The 
S-matrix element on the right-hand side of (10) can 
also be calculated from (8). The transformation that 
takes the vectors Lql ... Lq m to their rest system 
is B. If the sum of the q's is Q, then A transforms Q 
to its rest system AQ = (0, M). Similarly, the 
transformation B transforms LQ to its rest system 
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BLQ = (0, M). These two results may be combined to 
yield BLA-I(O, M) = (0, M). The product BLA -1 is a 
rotation R(L, Q), the Wigner rotation associated with 
Land Q, since it leaves (0, M) invariant. The set of 

/'-. /'.-

vectors Lql ... Lqm is given by 

BLql ... BLqm = R(L, Q)AqI ... R(L, Q)Aqm 

= R(L, Q)4l ... R(L, Q)4m' 

The Galilean transformation to a moving coordinate 
system from the center of mass does not change the 
value of s. The matrix element 

(LpI(i~ ... LPn(i~1 S ILqIT~ ... LqmT~) 

that appears on the right-hand side of (10) is 

! D~~"lH[R(B, LpI)] ... D;n\AR(B, LPn)] 
crt'" •. tin" 
11J111'·· '1m " 

X (W ... W IQ ... Q )! 
III Iln Llll Llln 

X (R(L, Q)PI(i~ ... R(L, Q)Pn(i~1 S IR(L, Q)iiIT~ ... 

X R(L, Q)iimT;;')(Wql ... Wqm/QLql ... QLqm)t 

X DTIHT1,[R(B, LqI)] ... DTmHTm,[R(B, Lqm)]' (11) 

To simplify this, it is necessary to use the inverse of 
(4) which gives 

(RpI(i~ ... RPn(i~1 S IR(hT~ ... RiimT;;') 

= ! D"lH"l·[R(L, Q)] ... D"nH"l·[R(L, Q)] 
aI'" ... anm 

11'" " 1m'" 

( - III - 1111 1- III - "')D-l 
X Pl(il ... Pn(i n S qlTl ... qmT m Tl·Tl' 

X [R(L, Q)] ... D;;:.TmH[R(L, Q)]. (12) 

When (12) is substituted into (11) and (11) is then 
substituted into (10), the result is products of the type 

D;ll"l,[R(L, Pl)]D;l~"l·[R(B, Lpl)]D"lH"l·[R(L, Q)] 

(13a) 

on the left of the matrix element of s, and of the type 

D;;:!Tl,[R(L, Q)]DT1'Tl,[R(B, Lql)]DT1'T,[R(L, qI)] 
(13b) 

on the right of the matrix element of s. These expres­
sions can be simplified by recalling that BLA-I = 
R(L, Q), that R(LlL2' v) = R(LlL2V)R(L2' v), and 
that R(R, v) = R. The product in (l3b) is R(A, qI) = 
R[R-I(L, Q)BL, ql], since 

D[R{R-l(L, Q)BL, ql}] 

= D[R{R-l(L, Q), BLqJR(B, LqI)R(L, ql)]' 

The right-hand side of (10) becomes the same as the 
right-hand side of (8), demonstrating that the Galilean 
invariance of s implies the Lorentz invariance of S. 

IV. DERIVATION OF THE FORMULA 

The formula (8) can be derived in a straightforward 
way for the two-body to two-body S-matrix, and the 
generalization can be guessed. 3 The combination of 
the plane-wave states into irreducible unitary repre­
sentations of the Lorentz group ,is achieved by the 
formula 

IpJpLSp) =! Jd3Pl d
3p2IPl(ilP2(i2) 

(1'1"'2 

X (Pl(iIP2(i21 pJpLSp). (14) 

This formula is valid relativistically and non­
relativistically. The difference is in the transformation 
coefficients (PI (iIP2P21 pJ ,uLSp) which are 

(PI (i IP2(i 2 I pJ ,uLSp ) 

= ! o(p - PI - P2)O[P - P(PlP2)]lp2 
;." 

X C(LSJ I A(i,u)C(SlS2S I (il(i2(i)YU(Q) (15a) 

nonrelativistically, and 

(PI (i IP2(i 2 I pJ ,uLSp ) 

= ! o(p - PI - P2)O[P - P(PIP2)]ll 
;." 

X C(LSJ I A(i,u)C(SIS2S I TlT2(i) 

X D"lTJR(A, PI)]D".T2[(A, P2)](QWIW2/MQlQ2)! 

(15b) 

relativistically. The only difference in the formulas 
is the appearance of the D's and the factor 
(QWlW2IMQlQ2)! in the relativistic case. The weight­
ing factor is different from that of (8), since the 
coordinates P and P have been used instead of PI 
and P2' P(PlP2) = PI = -P2' 

To achieve interacting states, the noninteracting 
states are multiplied by a radial-wavefunction h(P) 
and integrated p2 dp. This radial-wavefunction is the 
same relativistically and nonrelativistically. The 
S-matrix elements 

(q'J',u'ES'p'( -) I qJ,uLSP( +» 
are the same relativistically and nonrelativistically. 
Finally, the different transformation coefficients (15a) 
and (l5b) lead to formula (8) when the S-matrix is 
transformed to rectangular coordinates. 
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T~is paper establishes the existence of JY and D matrices with the property that the partial-wave T 
matrIX has ~he ~orm T ~ Np- 1 

•• We conSider the case of a finite number of two-body channels and 
prove that, If ! IS analytic with rIght- ~nd left-hand cuts and is suitably bounded, then Nand D can be 
C~)flstruct~d wI.th all the usual properties-namely, Nand D have the left- and right-hand cuts, respec­
tively, N IS fillite at the bound-state poles, and D tends to one as the energy goes to infinity. 

I. INTRODUCTION 

THE matrix N/ D method is a widely used technique 
for computing scattering amplitudes in bootstrap 

calculations. l The technique was originally proposed 
by Bjorken2 as a generalization of the single channel 
N/D method of Chew and Mandelstam.3 In those 
situations where the method is usually applied, one 
is concerned with the scattering between n two-body 
channels described by a symmetric (n X n) partial 
wave scattering matrix T(s). This amplitude has a 
left-hand cut whose discontinuity is considered as 
given (corresponding to the forces of the problem) 
and, starting at So, a right-hand cut whose discon­
tinuity is to be determined consistent with unitarity. 
The matrix N/ D technique for doing this can be 
summarized as follows: One assumes that T can be 
written in the form 

T= ND-I, (Ll) 

where D satisfies the following conditions: (i) D is 
real analytic with a right-hand cut, but no left-hand 
cut. It may have a finite number of real CDD poles.4 

(ii) TD is real on the right, so that Nhas no right-hand 
cut.s (iii) D -+ I as Isl-+ 00.6 (iv) TD is finite 

• Present address: Physics Department, University of California, 
Santa Barbara, California. 

t Present address: Department of Physics, University of Colorado, 
Boulder, Colorado. 

1 See for example, F. Zachariasen and C. Zemach, Phys. Rev. 
128,849 (1962); E. Abers and C. Zemach, ibid. 131,2305 (1963); 
J. Fulco, G. Shaw, and D. Wong, ibid. 137, BI242 (1965). Other 
references may be found in F. Zachariasen, Lectures at the Pacific 
International Summer School in Physics (1965) (unpublished). 

• J. Bjorken, Phys. Rev. Letters 4, 473 (1960). 
3 G. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960). 
, L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 

453 (1956). 
S Our analysis applies equally well to cases where D cancels 

only a finite portion of the right-hand cut, as in the N I D equation 
associated with the strip approximation. 

6 If T does not vanish fast enough at infinity, one does not 
expect to find a D which tends to one. These cases are not discussed 
here. The existence of a D matrix when T satisfies weaker conditions 
at large s than those used here is established in a forthcoming paper 
of R. L. Warnock, who treats the problem from a different point 
of view. We are indebted to Dr. Warnock for a helpful corre­
spondence and for drawing our attention to his own work, an 
abstract of which appeared in Bull. Am. Phys. Soc. 9, 116 (1964). 

at the bound-state energies. One now uses uni­
tarity to derive the usual nonsingular integral equation 
for D (or N) in terms of the left-hand discon­
tinuity of T. This equation is then solved to deter­
mine T. 

The N/ D method hinges on the assumption that T 
can be written as N D-l. One might imagine a situation 
in which the T arrived at from a more complete 
calculation could not be decomposed into N D-l. In 
this case solutions of the N/ D equations might still 
exist, but they could not yield the correct T. In this 
paper we examine the possibility of decomposing T 
as N D-l and conclude that for any T with the usual 
properties this can be done with D satisfying con­
ditions (i)-(iv). 

At first, one might think that proving the existence 
of Nand D matrices should present no problem. In 
the case of a single channel, for example, the existence 
proof is direct and simple. One forms the Omnes 
expression, 

Do(s) = (s - so)-m exp (- 1. foodS' , t5(s') .), 
7T 80 S - S - IE 

(1.2) 
where we have taken 

t5( (0) = 0, 

The function Do has no left-hand cut, and N = TDo 
is real on the right, so that Do satisfies conditions (i) 
and (ii). Multiplying Do by a suitable rational function, 
one can ensure that (iii) and (iv) are also satisfied. 
This construction guarantees the existence of at least 
one D function with the properties (i)-(iv). 

For the multichannel case, however, there seems 
to be no simple generalization of the Omnes formula. 
One can, of course, write the S matrix as S = 
exp (2i~), where the matrix ~ is real and symmetric, 
and then D defined by Eq. (1.2) (with t5 replaced 
by the matrix ~) certainly has no left-hand cut. 

651 
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Unfortunately, the resulting N = TD is not real on 
the right.7 

Another obvious approach to the explicit con­
struction of a D matrix would be to diagonalize the 
S matrix, S = Ut SaU, and to construct a diagonal D 
matrix, D a, using the Omnes formula (1.2) for each 
element separately. This diagonal Da obviously has 
the desired properties, but when one returns to the 
original representation, the resulting D = ut DaV is 
unsuitable because the matrix U has a left-hand cut 
which it communicates to D. 

The situation in potential scattering (with a Yukawa 
potential for example) bears out our contention that 
the multichannel case needs special attention. In the 
one-channel case S = f(k)/!( -k), where the Jost 
functionf{k) is analytic in the lower-half k plane, and 
D defined as f( - k) has all the required properties. In 
the multichannel case S = F(K)F-l( -K), but the Jost 
matrix F( - K) in general does have a left-hand cut. 8 

The identification D = F( - K) in fact satisfies con­
ditions (U)-(iv) but obviously not (i). Thus, here too 
the existence of a proper D is unproved. 

In Sec. II we prove that one can, in fact, always 
construct a suitable D for any T with the following 
properties: (1) T(s) is an (n X n) symmetric matrix, 
analytic in the usual cut plane except at a finite 
number of bound-state poles. (2) On the right-hand 
cut T is continuous and piecewise analytic (i.e., has 
only a countable number of branch point singularities). 
(3) On the right-hand cut, each element of T and its 
first two derivatives is bounded by some power of s 
as follows: 

IpTI < CIS«, C, (l > 0, 

IpT'1 and IpT"1 < CjsfJ, {J > 1, (1.3) 

where p is the phase space matrix (S = 1 + 2iptTpt) 
and primes denote derivatives with respect to s. 
(4) T satisfies extended unitarity on the right-hand 
cut; i.e., T-l = Y - ip, where Y is a real matrix.9 

Some comment on these assumptions is in order. 
First, it may be seen that, apart from the analyticity 
of T, we use only properties of T on the right-hand 
cut. Secondly, the bound (1.3) is chosen so that the 
dispersion relation for (D - 1) is unsubtracted. The 
case where subtractions are needed is not considered 
here.6 The bounds on the derivatives of Tare 
needed to eliminate pathological oscillations when s 

7 We should remark that we are not concerned here with methods 
that use the determinant of the D matrix. It is clear that the Omnes 
formula, (1.2), can always be used to construct the determinant of 
D-or rather, the function which would be the determinant of D 
if D exists-but the existence of this "determinant of D" does not 
guarantee the existence of D itself. 

8 See, for example, R. G. Newton, J. Math. Phys. 2, 188 (1961). 
• See, for example, 1. R. Taylor, Nucl. Phys. 58, S80 (1964). 

is large. Finally, our use of extended unitarity is 
comparatively inessential. In order to prove that a 
certain equation-Eq. (4.5)-is of Fredholm type we 
need to know that 1m T-l is finite on the right-hand 
cut; this is conveniently guaranteed by extended 
unitarity, which implies that 1m T-l = -Po, the 
open-channel part of p. 

Our procedure is first to assume that D exists and 
to derive an integral equation which it must satisfy. 
This equation is a singular integral' equation for D in 
terms of the physical values of T. We show first that 
if the equation has solutions at all, then it has solu­
tions which satisfy conditions (i)-(iv) and secondly 
that it does have solutions. We present the whole of 
this analysis in Sec. II, omitting only some mathe­
matical details which are given in Sec. IV. 

In Sec. III we discuss the single-channel problem 
and compare our construction of D with the usual one. 
This discussion illustrates the role of eDD poles in 
our approach. In Sec. IV we repair the omissions 
of Sec. II; in particular, we outline the proof of the 
theorem on singular integral equations used in Sec. 
II, and we verify that the D matrix which we construct 
does satisfy condition (iii) that D --+ 1 and s --+ 00. 

D. EXISTENCE OF THE D MATRIX 

In order to derive an integral equation for D, we 
first assume that T = N D-l, where D has properties 
(i)-(iv) of Sec. 1. It then follows that D satisfies a 
dispersion relation, 

D(s) = 1 + i --BL + !. fro ds' ,1m D(s')., (2.1) 
i=1 s - ci 7T 80 S - S - IE 

where Ri are real matrices and Ci are real numbers 
less than so. To evaluate 1m D we note first that 
D = T-IN, where N is real on the right, so 

1m D = (1m T-l)N = (1m T-l)TD. (2.2) 

Extended unitarity implies that 

T-l = Y - ip = Yo - ipo, (2.3) 

where Po is the open-channel part of p, so that both 
Yo and Po are real everywhere on the right. Equations 
(2.2) and (2.3) then give 

1m D = -PoTD, 

whence the dispersion relation for D becomes 

D(s) = 1 + i ~ -!. fro ds' po(~')T(s')D~sl) . 
.=1 S - Ci 7T So S - S - IE 

(2.4) 

This relation may now be regarded as a singular 
integral equation for D in terms of the values of T 
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on the right-hand cut. Its solution in the single­
channel case can be found in Muskhelishvilpo and 
Omnesll and is given essentially by the Omnes 
formula (1.2). Properties (i)-(iv) can then be verified 
directly from the solution. In the many-channel case 
an explicit solution cannot in general be found, and 
we proceed as follows: Any solution D of Eq. (2.4) 
clearly defines a function analytic in s with the 
right-hand cut. Multiplication of D by suitable 
factors (s - b)j(s - c) can obviously guarantee that 
T D is finite at the bound states. That any solution D 
of Eq. (2.4) tends to one as s -+ 00 is certainly very 
plausible; we give a proof at the end of Sec. IV. Thus 
to guarantee the existence of a matrix D having 
properties (i)-(iv) it is sufficient to prove that: (a) If 
Eq. (2.4) has any solution, it has solutions for which 
TD is real on the right. (b) The equation does have 
solutions. 

To discuss the first question we rewrite the integral 
in Eq. (2.4) as a 15 function plus principal value and 
take the 15 function term to the left-hand side. Then, 
since from unitarity [Eq. (2.3)], 

(2.5) 

the integral equation becomes 

~ R; P food' Po(s')T(s')D(s') 
YoTD=1+ k ---- s , . 

;=1 S - ci 7T 80 S - s 
(2.6) 

The two integral equations (2.4) and (2.6) are equiv­
alent; i.e., any solution of the first provides a solution 
of the second, and vice versa. But Eq. (2.6) may be 
regarded as an equation for TD = N and, since Yo, 
R- c' and Po are all real, its solutions can always be I' , , 

chosen real.12 Since Eqs. (2.4) and (2.6) are equivalent, 
this means that if Eq. (2.4) has any solutions, then it 
has solutions for which TD is real on the right. 

We conclude that if Eq. (2.4) has solutions, they 
can be chosen to satisfy properties (i)-(iv), and it 
remains. only to show that it does have solutions. The 
existence of solutions to equations of this type is 
discussed in Sec. IV; we quote here only the results. 
With the assumptions of Sec. I for T(s) a solution for 
D exists provided that 

Joo ( I> Rt) 
ds 1 + ,L-i

- CP,.{s) = 0, IX = 1,"', k, 
80 '=1 S - Ci 

(2.7) 

where t denotes transpose and the column vectors 

10 N. Muskhelishvili, Singular Integral Equations (P. Noordhoff 
Ltd., Groningen, The Netherlands, 1953). 

11 R. Omnes, Nuovo Cimento 21, 524 (1961). 
11 If N is any solution so is l(N + N*). 

CPl' ... , CPk are a complete set of linearly independent 
solutions of the homogeneous adjoint equation of 
Eq. (2.4), 

f oo ds' 
cfo(s) = Po(s)T(s), . cp(S'). 

80 S - S + JE 
(2.8) 

This theorem is the analog of the existence theorem 
for Fredholm integral equations.13 In general, if there 
are solutions to Eq. (2.8), conditions (2.7) cannot 
be satisfied without CDD poles. However, since (as 
is shown in Sec. IV) k is finite, we can always choose 
Rl ... RI> so that these conditions are satisfied by 
choosing p sufficiently large. Thus, if we allow a 
sufficient (but finite) number of CDD poles, a D 
matrix having properties (i)-{iv) can always be found. 
It is easy to see that the minimum number of poles 
necessary to satisfy Eq. (2.7) must be greater than 
kjn, but this number may be modified by the additional 
factors (s - b)j(s - c) by which this D must be 
multiplied in order to ensure that it vanishes at the 
bound-state energies. 

This completes our proof that one can construct a 
suitable D matrix. To recapitulate briefly, we first 
derived the integral equation, (2.4), which D must 
satisfy if it exists. We next argued that if Eq. (2.4) has 
solutions, then they can be chosen to satisfy conditions 
(i)-(iv)-that D is analytic with only a right-hand cut 
is obvious from Eq. (2.4), that TD can be chosen real 
on the right was seen by inspection of the equivalent 
Eq. (2.6), that TD is finite at the bound states can be 
guaranteed by multiplication with suitable factors 
(s - b)j(s - c), and the proof that D -+ I as s -+ 00 
is given in Sec. IV. Finally, that there are solutions (if 
we allow enough CDD poles) is guaranteed by the 
conditions stated in Eqs. (2.7) and (2.8) and proved 
in Sec. IV. 

m. SINGLE-CHANNEL CASE AS AN EXAMPLE 

In this section we show that, in the single-channel 
case, our construction of the D function agrees with 
the usual solutions obtained from the Omnes formula. 
We dispense temporarily with the requirement (iv) 
that D vanish at the bound states [since in both cases 
this can be achieved by simple multiplication by 
factors of the form (s - b)j(s - c)]. 

To obtain D from the Omnes formula we define 

t5(so) - 15(00) = m7T 

and adjust 15 so that t5( (0) = O. The Omnes expression, 

( 
1 fOO t5(S'») 

Do(s) = (s - sorm exp - - ds', .' 
7T So S - S - JE 

13 See, for example, F. Smithies, Integral Equations (Cambridge 
University Press, New York, 1958); see, also, Ref. 10. 
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is real analytic with a right-hand cut, has the phase 
-6(s) on the right, is everywhere finite and nonzero, 
and behaves like s-m as s ---+ 00. The usual con­
struction of D then distinguishes two possibilities: (1) 
m ;;::: O. To ensure that D ---+ 1 as s ---+ 00, one must 
multiply Do by m factors (s - ai ). This gives a D 
function without eDD poles. (2) m < O. In this case 
Do must be divided by Iml = M factors (s - ci ); i.e., 

D(s) = Do(S)(tt (s - Ct)r. (3.1) 

Thus, D has M eDD poles. 
In our approach D is determined as a solution of 

Eq. (2.4), which in this case becomes 

P r. 
D(s) = 1 + I-'-

i=IS - Ci 

_l J 00 ds' exp [i6(:')] sin t5\S')D(s'). (3.2) 
7T '0 s - s - IE 

As described in Sec. II, solutions exist if the in­
homogeneous term is orthogonal to all solutions 4> 
of the homogeneous adjoint equation, Eq. (2.8). The 
latter equation, written in terms of 

"P = 4>* exp (it5)jsin 6 (3.3) 
is just 

1p{s) = l J 00 ds' exp [- i~(s')] sin ~(s')"P(s'), (3.4) 
7T So s - s - IE 

which is the homogeneous form of Eq. (3.2) with 15 
replaced by - 15. The analysis of Sec. II [in particular 
Eq. (2.6)] therefore guarantees that if homogeneous 
solutions 4> exist they can all be chosen so that 4> 
[or "P exp (-it5)] is real on the right; i.e., "P has the 
phase 15 on the right. Now Eq. (3.4) shows that "P is 
real analytic with only a right-hand cut. So if we 
define 

pes) = "P(s)Do(s), (3.5) 

then pes) is real analytic, and real on the whole real 
axis; i.e., pes) has no singularities at all. Now since 
Do ,..." s-m as s ---+ 00 while, from Eq. (3.4), "P ---+ 0 as 
s ---+ 00, we can distinguish two possibilities for P(s): 
(1) m ;;::: O. In this case Eq. (3.5) shows that P ---+ 0 as 
s ---+ 00. Since pes) is an entire function this means 
that P == 0; i.e., there are no solutions 4> to the 
homogeneous adjoint of Eq. (3.2). Thus one can solve 
Eq. (3.2) with any inhomogeneous term and, in 
particular, one can find a D function with no eDD 
poles. (2) m < O. In this case Eq. (3.5) shows that 
smp ---+ 0 as s ---+ 00 which means that P is a poly­
nomial of degree less than Iml = M. There are 

therefore M independent homogeneous adjoint solu­
tions 4>1' ••• , 4> M which can be chosen so that 

"P" = S,,-l/ Do(s) '"'-! l/sM-,,+1 as lsi ---+ 00. (3.6) 

If we now seek a D function without eDD poles 
we must examine the conditions f,;;: ds4>" = 0 for 
IX = 1, ... , M. Since from Eq. (3.3) 

4> = 1m "P, so::::;; s < 00, 
the integral of interest is 

(00 ds4>is) = (00 ds 1m "Pis) = ~ f dS"Pis) 
J80 J.o 21 C 

= ~f dS"Pis) = -7Tt5"M, (3.7) 
21 C' 

where the contours e and e' are shown in Fig. 1. 
The last step follows because of the asymptotic 
behavior (3.6), and it makes clear that the homo­
geneous adjoint solution 4> M is not orthogonal to 1. 
Thus there exist no solutions D without eDD poles; 
exactly as we would expect. 

The condition that a solution with eDD poles 
exists is of course 

The first integral here is given by Eq. (3.7), while a 
similar calculation shows that 

fOOds 4>,,(s) = 7T(Ci ),,-I. 

80 S - Ci Do(ci ) 

Thus condition (3.8) for the existence of D becomes 

~ ( .),,-1 -.!L = ~ 
"- C, U"M' 
i=1 Do(ci ) 

(3.9) 

If we regard the pole positions C i as fixed, then exactly 
M poles are needed to satisfy Eq. (3.9) with the 
residues r1 , ••• , r M uniquely determined. In fact, the 

FIG. 1. The plane 
of the variable s with 
the contours C and 
C' used in Eq. (3.7). 

c' 
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matrix in Eq. (3.9) whose (oci) element is (Ci)'X-I is just 
a Vandermonde matrixl4 and can be explicitly inverted 
to give the residues, 

'1 = DO(Ci)(~ (c1 - Ci) rl

, 

in exact agreement with Eq. (3.1). 
This means that the usual constructive method and 

the one based on the integral equation both yield the 
same D. CDD poles are required when m < 0 but 
not when m ;;::: O. If D is then required to vanish at 
the nB bound states, we need no CDD poles if 
(nB - m) ~ 0 and exactly (nB - m) if this quantity is 
greater than zero. 

IV. PROOF OF THE THEOREM ON 
SINGULAR INTEGRAL EQUATIONS 

The main purpose of this section is to establish the 
conditions stated in Eqs. (2.7) and (2.8) for the 
existence of solutions to Eq. (2.4). These conditions 
follow from a theorem due to Noether and Giraud,Is 
which we outline here for the sake of completeness. 
We first rewrite Eq. (2.4) as 

Kf=g, (4.1) 

where K is the integral operator with kernel, 

K(s, s') = 1<5(s - s') +!. ~o(s')T(s? , 
7T s - S - IE 

and we have written f for any column of the matrix 
(D - 1) and g for the column of the corresponding 
inhomogeneous term from Eq. (2.4). The conditions 
(2.7) and (2.8) which we wish to prove can now be 
restated: Eq. (4.1) has solutions if and only if 

too ds(g, 4» = 0 (4.2) 

for all 4> which satisfy 

Kt4> = 0, (4.3) 

where (g, 4» denotes the scalar product Zi gi(s)4>/s) 
The necessity of the condition (4.2) follows exactly 

as in the proof of Fredholm's theorem and needs no 
discussion. To prove sufficiency, we introduce the 
"reducing operator" M with kernel 

M(s, s') = 1<5(s - s') _ 1:. po(s')T(s'~ 
7T s' - S + IE 

This operator reduces the singular equation Kf = g 

14 See,forexample,J. V. Uspensky, Theory of Equations (McGraw­
Hill Book Company, Inc., New York, 1948), p. 214ff. 

15 F. Noether, Math. Ann. 82,42 (1921). G. Giraud, Ann. 'Ecole 
Norm. Suppl., 51, 251 (1934). The exposition we follow is that of 
Ref. 10, to which the reader is referred for more detail. 

to a Fredholm equation, 

MKf=Mg, (4.4) 

as we now verify. One can easily check that Eq. (4.4) 
has the formI6 

f(s) = h(s) _joodS'L(S, s')f(s'), (4.5) 
So 

where 

L(s, s') = [1 _ 2iPo(s)T*(s)] Q(s) - Q(s') Po(s')T(s'), 
s - s' 

Q(s) = ~ foo ds' ~o(s')T(s? , 
7T So S - S + IE 

and there is a corresponding expression for the 
inhomogeneous term h(s). Now using the bound (1.3) 
on T(s) , it is a simple matter to verify that Q(s) 
satisfies the bounds 

IQ(s)1 < CIs~-< and IQ'(s)1 < Cis, 

where E is an arbitrary positive number.I7 From these 
it follows that the kernel L(s, s') is L 2. The inhomo­
geneous term h(s) is bounded by CJs~-< and so, unless 
oc> t, is not L 2 ; however, by iterating Eq. (4.5) n 
times, we can rewrite it as an equation for 

fn(s) = f(s) - h(s) - h2(S) - ... - hn_l(s) (4.6) 

with the same kernel but with inhomogeneous term 
hn(s) satisfying 

Ihn(s)1 < CJs--<. 

In this way we can obviously obtain a Fredholm 
equation as required. 

A necessary condition that f satisfy Kf - g = 0 is 
that it satisfy the Fredholm equation MKf - Mg = O. 
The necessary and sufficient conditions for solutions 
of a Fredholm equation are given by Fredholm's 
theorem; in our case, 

foo ds(Mg, "Pp) = 0, {3 = 1, ... , I 
So 

or, equivalently, 

i~ ds(g, Mt Vip) = 0, {3 = 1, ... , 1, (4.7) 

where "PI,"', "Pz are independent solutions of 

16 For more detail see S. Mandelstam [phys. Rev. 140, B375 
(1965)], who treats this same equation from a somewhat different 
point of view. 

17 This can be checked directly by splitting the integral defining 
Q(s) into three parts (so, s - I), (s - I, s + I), and (s + I, co). 
Alternatively, it follows at once from the general theorem on dis­
persion integrals given by L. Lanz and G. M. Prosperi [Nuovo 
Cimento 33, 201 (1964)]. The bound on the derivative Q'(s) can be 
established by proving that [Q(s + h) - Q(s)]lh is bounded by 
CIs, where C is independent of h. 
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(MK)tVl = O. If conditions (4.7) are satisfied, then the 
equation MKf - Mg = 0 has solutions of which the 
most general is 

a 
1= RMg + !ayxy, (4.8) 

r~l 

where Xl"'" Xq are the independent solutions of 
MKX = 0 and R is the resolvent of MK. This vector 
f does not necessarily satisfy Kf - g = 0, but since 
it does satisfy M(Kf - g) = 0, it is clear that 

It remains only to show that conditions (4.13) are 
implied by the conditions of the theorem, namely, 

(00 ds(g, cp) = 0 (4.2) 
J 80 

for all cp satisfying K.t cp = O. To prove this we consider 
the equation (for f) Kf = Kh, where h is arbitrary. 
Since this equation has a solution (f = h), the 
conditions (4.13) must hold; namely, 

foo ds(Kh, rpll.) = 0, 

(4.9) which implies '0 
r 

KI - g = !b6~6' 
6~1 

where ~l' ••• , ~r are a complete orthonormal set of 
independent solutions of M~ = O. (The number r is 
finite since the ~ satisfy the Fredholm equation 
KM~ = 0.) 

We can now find conditions under which the 
arbitrary coefficients ai' ••• , aa in the definition (4.8) 
of f can be chosen so that all the bI , ••• , br in Eq. 
(4.9) are zero. If this can be done then the resultingf 
satisfies Kf - g = O. From Eqs. (4.9) and (4.8), it is 
easily seen that the bll depend on the ar as 

a 

b" = !A"yay + C", 
1'~1 

(4.10) 

where the numbers AllY are independent of the ay and 
g,and 

ClI =f 00 ds(g, [KRM - I]t ~lJ)' 
80 

(4.11) 

The necessary and sufficient conditions that the aJ' can 
be chosen so that the numbers bI , ••• , br in Eq. (4.10) 
are all zero have the general form 

r 

!B ... "c" = 0, (1 = 1, .. " t(for some t), "_1 
which, by Eq. (4.11), can be written 

fro ds(g, , ... ) = 0, (1 = 1, ... , t, (4.12) 
80 

where the exact form of the vectors 'I"'" 't is 
uninteresting. 

Thus the necessary and sufficient conditions that 
Kf - g = 0 have a solution are Eqs. (4.7) and (4.12), 
which can be rewritten as 

fOO ds(g, rpJ = 0, IX = 1, ... ,(I + t). (4.13) 
'0 

fOO t 
ds(h, K rp/t) = o. 

80 

Since h is arbitrary, this implies that Ktrp(1. = 0; Le., 
all the rpll. of conditions (4.13) satisfy Ktcp = O. Thus 
the conditions (4.2) imply the necessary and sufficient 
conditions (4.13), as required. 

In order to apply these conditions as in Sec. II, 
it is essential that the number of independent solu~ 
tions of the homogeneous equation Ktcp = 0 be 
finite. This follows from the fact that any solution 
of K.t cp = 0 also satisfies the Fredholm equation 
(KM)tcp = O. 

Finally we must check that the D matrix determined 
by the integral equation, (4.1) or (2.4), satisfies D -)00 1 
as s - 00. Since in this section we have written f for 
any column of the matrix (D - 1), we must show that 
f - 0 as s - 00. Returning to the Fredholm equation, 
(4.5), and using the Schwartz inequality, one sees that 

II/n(s)1I ~ II hnCs) II 

+ (f~ ds' lIL(s, s'W f (f~ ds' II/n(S/)1I 2)*. 
Now fn(S) is certainly L2 and using the bounds already 
given, it is simple to check that both terms on the 
right are bounded by C/s/t~. It follows that every 
element ofthe matrix (D - 1) tends to zero faster than 
C/sl1.-£ as Isl- 00. 
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The dir~t generalizati.on C?f the isoparity (or G-parity), with the defining property that it is com­
n:utable with t~e. referrIng .mternal symmetry group, is i!1vestigate.d on t~e basis of the theory of 
LI~ algebra. This IS o~e sp~lal prob~em of the group extensIOn of a Simple Lie group by an involution. 
It IS shown that the Isopanty of this type can be defined for the simple Lie groups SU(2)(A type) 
SO(21 + l)(B" I ~ 2), Sp(2l)(C" I ~ 2), SO(21)(D" I ~ 3), Ga, F., E10 and E., but not for th~ 
SU(l:+ l)(A,~ 1 ~ 2). The relation .betw~n the inner automorp~ism group and the Weyl group of 
~he Simple Lie algebra concerned IS available to construct the Isoparity operator explicitly. Some 
Illustrative examples are presented. 

1. INTRODUCTION 

AS is well known, the operation of charge conjuga­
l"\.. tion C does not commute with that of rotation 
in isotopic spin space, though the invariance of the 
strong interaction of elementary particles under charge 
conjugation leads the strict selection rules independent 
of the conservation of isotopic spin. However, MicheP 
resolved this apparent difficulty by introducing the 
isoparity (or G-parity2) Gp defined by 

Gp = CR = Re, (1) 

where R = exp (iTTI2) is the rotation by angle TT about 
the second axis of isotopic spin space in the usual 
representation. Then such an operator G p becomes 
commutable with all the generators Ii of rotation in 
isotopic spin space, 

(2) 

Accordingly, the existence of simultaneous eigenstates 
of isotopic spin and isoparity provides with an aid in 
deriving useful selection rules for many reactions. In 
this respect, the isoparity G p may be interpreted as the 
redefined particle-antiparticle conjugation instead of 
the charge conjugation C when there exists an internal 
symmetry. 

From the most general point of view, the isoparity 
problem may be regarded as that of the group ex­
tension3.4 of the internal symmetry group by an 

1 L. Michel, Nuovo Cimento 10, 319 (1953). 
• T. D. Lee and C. N. Yang, Nuovo Cimento 3, 749 (1956); C. 

Goebel, Phys. Rev. 130,258 (1956). 
3 H. Zassenhaus, Lehrbuch der Gruppentheorie (Springer-Vedag, 

Berlin, 1937), Vol. I, Chap. 3. 
• L. Michel, in Group Theoretical Concepts and Methods in Ele­

mentary Particle Physics, F. Gursey, Ed. (Gordan and Breach Science 
Publishers, Inc., New York, 1964), p. 135; F. Kamber und N. 
Stautmann, Helv. Phys. Acta 37,563 (1965). 

involution. Biedenharn et al.5 have exhausted all the 
possibilities of the extended groups. In the case of 
SU(3), the similar treatment was already carried out 
by Dothan.6 

In the present paper, the generalization of the iso­
parity to the internal symmetry built on any simple 
Lie group except for E6 is considered on the basis of 
the theory of Lie algebra in such a way that the 
isoparity operator commutes with hyper-charge as 
well as isotopic spin. Hence, our discussions are re­
stricted to the strong isoparity 5 which has an obvious 
physical meaning and is associated with the reflection 
operator described by inner automorphism. It seems, 
however, worthwhile to disclose in a simple and lucid 
way the general character of the isoparity of this type, 
and to derive the isoparity operator of the general 
form7 by means of the Weyl groups of the simple Lie 
algebra concerned. 

In Sec. 2, it is shown that our problem of isoparity 
is simply connected with that of group extension 
determined by a factor set. Such an approach to the 
problem makes clear the most general mathematical 
aspects of Dothan's discussion. 

In Sec. 3, the structure of the automorphism group 
of every simple Lie algebra is fully investigated, and 
what simple Lie group suits itself to the isoparity of 
our type is examined. For the simple Lie group 
SU(n)(n ~ 3), the isoparity cannot be defined with 
inner automorphism. On the other hand, it is possible 
to define it for the simple Lie groups SU(2)(Al type), 

5 L. C. Biedenharn, J. Nuyts, and H. Ruegg, Commun. Math. 
Phys. 2, 231 (1966). 

6 Y. Dothan, Nuovo Cimento 30, 399 (1963). 
7 K. Tanabe, Ph.D. thesis, University of Tokyo (1965). 
• N. Jacobson, Lie algebras (Interscience Publishers, Inc., New 

York, 1962). 
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SO(21 + l)(Bz, 1 ~ 2), Sp(2/)(Cz ' 1 ~ 2), SO(2/) X 

(D z , I ~ 3), G2 , F4 , E7 , and E8 • The result for SU(n) 
is essentially the same as that given by Okubo and 
Mukunda. 9 

Finally, in Sec. 4, an actual method is investigated 
to construct the isoparity operator. Some examples 
are given by means of this method. 

2. GENERAL CONSIDERATION OF ISOPARITY 

For the sake of self-contained description, we first 
make a brief survey of several definitions and a 
theorem on group extension.3 Let there be given two 
groups Nand F. A group E is called an extension of 
N by F if the following relation hold, 

E/N~F. (3) 

Such a group E includes N as its normal subgroup 
and is expressed as the sum of the coset 9)1", corre­
sponding to every element x of F. An arbitrary repre­
sentative u'" is selected from every coset 

9)1",(u",N = Nu", = 9)1",). 

Since u",u1I E 9)1"'11' it follows that 

u",u1l = w(x, y)u",'II' 3W(X, y) EN. (4) 

If, for every element x of F, an automorphism SIll of N 
is defined by 

S",(a) = u",au;1 for "a EN, (5) 

the multiplication law of E is given in the following 
way: 

(au",)(bu lI ) = as.,(b)w(x, y)u"'1I. (6) 

Thus, the multiplication law of E is completely deter­
mined by the respective ones of Nand F and by 
the set {S"" w(x, y)}, which satisfies the following 
conditions: 

As has been seen above, a factor set is determined 
by a given extension. Conversely, if a factor set is 
given, the group extension can be constructed by 
means of the set. 

Schreier's Theorem: Let the set {SIll' w(x,y)} be a 
factor set of F with respect to N. If the following 
operation is introduced into the set G = N x F: 

(a, x)(b, y) = (as.,(b)w(x, y), xy), (11) 

then E becomes an extension of N by F provided the 
normal subgroup {(a, 1); a EN} of E is identified with 
N. Furthermore, all the extensions of N by Fare 
obtained in such a way. 

This theorem is useful for our purpose. Since it is 
known that any factor set is equivalent to some 
normalized one (which means that the corresponding 
extended groups are isomorphic to each other), we 
hereafter use a normalized factor set. 

Let F = {I, C} be a cyclic group of order two 
(C2 = 1), which represents the group of charge con­
jugation. Then a normalized factor set of F is as 
follows: 

{Sa, S1 = 1; wei, 1) = 1, w(1, C) = 1, 

w(C, 1) = 1, w(C, C)}. 

For the sake of simplicity, hereafter Sa is abbreviated 
to Sand w(C, C) to w, and the former is called the 
automorphism corresponding to charge conjugation. 
These quantities Sand w satisfy the following 
relations: 

Sew) = w, (12) 

S\a) = waw-1 for "a EN. (13) 

Schreier's theorem determines the operation in an 
extension of N by F in the subsequent way: 

S",[Sia)] = w(x, y)S",y{a)w(x, y)-l, 

w(x, y)w(xy, z) = S",w(y, z)w(x, yz). 

(7) (a, I)(b, 1) = (ab, 1), (a, I)(b, C) = (ab, C), 

If, especially, U1 is equated to 1, it follows that 

(8) (a, C)(b, 1) = (as(b), C), (a, C)(b, C) = (as(b)w, 1). 

(14) 

S1 = 1, (9) 

w(l, x) = w(x, 1) = 1 for "x E F. (10) 

In general, if there are given an automorphism SIll of 
N for every element x of F and an element w(x, y) of 
N for every pair (x, y) of elements of F such that 
Eqs. (7) and (8) are satisfied, the set {S"" w(x, y)} is 
called afactor set of Fwith respect to N. Furthermore, 
if Eqs. (9) and (10) are satisfied, the factor set is said 
to be normalized. 

I S. Okubo and N. Mukunda. Ann. Phys. (N.Y.) 36, 311 (1966). 

Thus, the way of extending N by F depends on the 
choice of Sand w. 

We are now in a position to define an isoparity of 
general form by using an extension E of N by F, 
where N is taken to be the representing group [meaning 
that N = D(G), where G is the internal symmetry 
group and D is the referring irreducible representation 
of G] of an internal symmetry group by the referring 
irreducible representation. The automorphism corre­
sponding to charge conjugation, S, is defined as 

Sea) = ii for "a EN, (15) 
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where ii means the complex conjugate of a. [Needless 
~o sa~, t~e definit~on of the operation of charge con­
JugatIOn IS not umque, because the right-hand side of 
Eq. (15) may include a phase factor. But this is not 
essential for the following discussions.] It follows 
from Eq. (13) that ill belongs to the center of N. Then 
~ is ~etermined as 1 or -1 from Eq. (12). By an 
Isopanty -:ve understand an element G 2) of E satisfying 
the equatIon 

aG2)a-1 = G2) for ." a EN. (16) 

Expressing G2) as (R, C), 3R EN, we see that the 
equation above is equivalent to 

R-l aR = S(a) for ." a EN, (17) 

because (a, l)(R, C)(a, 1)-1 = (aRS(a-1), C). There­
fore, a necessary and sufficient condition for the 
existence of the isoparity is that the automorphism 
corresponding to charge conjugation is expressed in 
terms of an inner automorphism of N. 

Thus, we have constructed the most general frame­
work to treat the isoparity within and derived a 
necessary and sufficient condition for its being well 
defined. 

3. SIMPLE LIE ALGEBRAS FOR WIDeR 
ISOPARITY IS ADAPTED 

In this section, our consideration is restricted to the 
c~se when the internal symmetry group G is a simple 
LIe group, and what type of G adapts itself for our 
isoparity is investigated. In the previous section, we 
derived a necessary and sufficient condition for 
existence of the isoparity. The theory of Lie algebra 
helps us to reduce the condition to a more available 
one. 

The Lie algebras of G and N are denoted by 9 and 
n, respectively. Then the differential p, 

p(X) = lim [D{exp (tX)} - E]/t for ."x E g, 
t-+o 

of the referring irreducible representation D of G is 
also an irreducible representation of g, and n is the 
image of 9 by p[n = p(g)]. Then the condition 
menti,-_.I!d above, i.e., the condition (17) can be 
reduced to 

Here, it is to be noticed that the regular matrix R 
satisfying Eq. (18) is either symmetric or antisymmetric 
if it exists. This is proved as follows. It can be easily 
verified from Eq. (18) that R(Rt)-1 commutes with 
~(X) for all X belonging to g. Since p is irreducible, 
It follows from Schur's lemma that R(Rt)-l = cE, i.e., 

R = cRt for some complex number c. Hence, 

Rt = ±R. (19) 

Returning to the main course, we examine the relation 
~etwee~ n ~nd g. It is easily proved that p is faithful, 
smce 9 IS SImple. Hence, n is isomorphic to g. There­
fore, n can be identified with 9 [p(X) = X]. In what 
follows we make such an identification. Then Eq. 
(18) can be rewritten as 

R-1XR = _xt for ."x E g. (20) 

It is easily seen that the mapping X __ - X t is an 
automorphism of g. Thus, we can state that a necessary 
and su~cient condition of the isoparity being adapted 
for 9 IS that the automorphism X -- - X t of 9 is 
reduced to an inner automorphism of g. 

Let us now turn our attention to the relation between 
~he automorphis~ groupl0 of 9 and the corresponding 
mner automorphIsm group. Since the latter denoted 
by I(g! i~ a.normal subgroup of the former denoted by 
A(g), It IS Important for our problem to disclose the 
character of the factor group A(g)//(g). Fortunately, 
the .g~oup has already been investigated by mathe­
matiCians. It can be determined from the group of the 
automorphisms of the Dynkin diagram associated with 
g. An automorphism of the Dynkin diagram means a 
one-to-one mapping (1.i -- (1.i' in the diagram such that 
«(1.i' (1.i) = «(1.i', (1.i') and for any i, j the number of 
lines connecting (1.i to (1.j is equal to that connecting 
(1.i' and (1.;' • It can be easily verified that all the auto­
morphisms of each Dynkin diagram in Fig. 1 are 
reduced to the identity mapping (1.i -- (1.i (i = 1, ... , /) 
only. Hence it follows that A(g)//(g) = 1, i.e., A(g) = 
/(g) in this case. In other words, the automorphisms 
of 9 are all inner ones. Thus, we arrive at the con­
clusion that our isoparity can be defined for the 
simple Lie algebras of types AI' B,(I ~ 2), C,(I ~ 2), 
G2 , F4 , E7 , and E8 • 

On the other hand, another automorphism exists 
for the Dynkin diagrams of types All ~ 2), D,(I ~ 5), 
and E6 . As is easily seen, the mapping 

(1.i -- (1.'+l-i (i = 1, ... ,I) 

is an automorphism for A1(l ~ 2), the one 

(1.i -- (1.i (i ~ I - 2), 

(1.i -- (1.6-i (i ~ 5), 

(1.6 -- (1.6 for E6 . Hence we see that A(g)//(g) is a cyclic 
group of order two. There remains untouched the 
Dynkin diagram of type D 4 • This diagram has auto­
morphisms which permute (1.1' (1.3' (1.4 and leave (1.4 

10 N. Jacobson, Ref. 8, Chap. IX. 
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A: 
• 

I 
o 
a, 

I I I I 2 
C.I (.J!~ 3): o--o-----o---a::::::D 

a , a z a.z a.1 a 

G· 2 • 

F· 4 • 

laT 

a, a2 a3 a4 as as aT 
FIG. 1. Dynkin diagrams of simple Lie algebras of types Al • 

B1(f ~ 2), C,(I ~ 3}, G2 , F" E1 , and E •• 

t f 1 I 
A.e (..r ~ 2): 0--0------0---0 

a. a2 a I" a,l 

I I I I I 

~5 · ~ IJ" .. 
a. 

Flo. 2. Dynkin diagrams of simple Lie algebras of types 
A1(1 ~ 2), DIU ~ 5), and E6• 

I 

~
I a3 

a. a2 I 

a. 
Fro. 3. Dynkin diagram of simple Lie algebra of type D,. 

fixed. Consequently, it can be inferred that A(g)/I(g) 
is isomorphic to the symmetric group of degree three . 
Thus, not all the automorphisms of 9 are reduced to 
inner ones of 9 in case 9 is the simple Lie algebra of 
type A 1(1 ~ 2), Di(l ~ 4), or E6 • Therefore, it becomes 
necessary to investigate directly whether the auto­
morphism X - - X t belongs to I(g) or not. 

We first examine the case when 9 is of type A 1(1 ~ 1). 
Then 9 may be regarded as the Lie algebra of all the 
traceless matrices of degree (l + 1), and the dimension 
of 9 is equal to 1(1 + 2). We here rewrite Eq. (20) as 

R-IXtR = -X. (21) 

The set of all X satisfying this equation becomes an 
orthogonal or a symplectic Lie algebra according as 
R is symmetric or antisymmetric. The dimension of the 
Lie algebra is equal to t(1 + 1)(1 + 2) or tl(l + 1). 
Since 9 is of dimension 1(1 + 2), we must have either 
1(1 + 2) = l(l + 1)(1 + 2) or 1(1 + 2) = t/(1 + 1). 
Then we get the only solution / = 1. Hence the auto­
morphism X - - X t does not belong to I(g) if I ~ 2. 
Thus, we reach the conclusion that our isoparity can­
not be defined for the simple Lie algebra of type 
AI(1 ~ 2). 

The simple Lie algebra of type D I(/ ~ 4) is com­
posed of matrices X which satisfy the equation 
X = -X', so that the matrix R satisfying Eq. (20) 
can be taken as the unit matrix. Therefore, our iso­
parity can be defined for this Lie algebra. 

The simple Lie algebra which is not covered by the 
above considerations is that of type E8 only. There 
remains unsolved the problem whether or not our 
isoparity is adapted for this Lie algebra. 

4. EXPLICIT DETERMINATION OF ISOPARITY 

This section is devoted to construct the reflection 
operator R defined by Eq. (20). An available formula 
to evaluate R by is given on the basis of the Weyl 
groupll of g. 

As seen later, the inner automorphism associated 
with R (which is nothing but the mapping X _ - X') 
maps the Cartan subalgebra l) of 9 into l) itself. We 
examine beforehand the relationship between that 
subgroup 100g) of I(g) which makes l) invariant and the 
Weyl group W of g. For an element (1 of lo(g), let (1* 

denote the dual transformation in l)* of the restriction 
of <1 onto l). Namely, <1* is defined by 

{<1*(A)}(H)=A{<1(H)} for vAEl)* and vHEl). 

(22) 

Then the mapping <1 - (<1*)-1 is a homomorphism of 
lo(g) onto W. To see this, it is intended to investigate 

11 N. Jacobson, Ref. 8. Chap. VIII. 
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what element of lo(g) corresponds to a given Weyl 
reflection Srz of W, where S,.. is defined by 

S"O.) = A. - 2(A, oc)/(oc, oc)oc for ... A E 1)*. 
For this purpose, use is made of Weyl's standard basis12 

{HI,' .. ,HI' E(%; oc E A} of g, where I is the rank of g, 
A is the set of all the nonzero roots of g, Hi is a basis 
of 1), and E(% is an element of the eigensubspace of g 
corresponding to a root oc such that B(E" , E_a} = -1, 
where B( , ) is the Killing form13 of g, which is defined 
by 

B(X,Y}=Tr[ad(X)ad(Y)] for ... x, YYEg. 

This basis has the following properties. 

[Hi' Hi] = 0, (23) 
[E", E_(%J = -H", (24) 

[H, E(%l = oc(H)EIZ for YH E 9. (25) 
Here HIJ is the element of 1) defined by 

B(HIJ' H) = oc(H) for YH E 1). (26) 
By the use of this basis, the inner automorphism 

er(% = exp [ad{ 7T t (E,. + E_(%)}] (27) 
[2(oc, oc)J 

is introduced for every positive root oc. This mapping 
makes 1) invariant and corresponds to S" through the 
homomorphism mentioned above, as can be seen 
below. It is easily checked with the help of the mathe­
matical induction with respect to p that 

[ad(X)]2I>+Is = (_1)1>+1.,.,.21>+1 oc(H)! (EIZ - E_«), 
[2(oc, Ot)] (28) 

[ad(X)]2l>+2H = (_1)fl+l7T2fl+2 oc(H) H" for vH E 1), 
(Ot, Ot) (29) 

where X = {'IT/[2(oc, Ot)]t}(E" + E_J. It follows from 
the straightforward calculation that 

eriH) = H + i: 1. [ad(X)]2P+lH 
p=0(2p + I)! 

+ ! 1 [ad(X)]21>+2H 
:l>=0(2p + 2)! 

oc(H) • 
= H - [2(Ot, Ot)]! (sm 'IT)(Ea - E_a) 

+ Ot(H) (cos 'IT - I)Hrz 
(Ot, oc) 

= H - 2 oc(H) Ha for YH E 1). (30) 
(oc, Ot) 

It is immediately seen that era makes 1) invariant and 
that 

{er:O.)}(H) = A(H) - 2 (A, oc) Ot(H) 
(0:, oc) 

for Y A. E 1)* and Y H E 1). (31) 

UN. Jacobson, Ref. 8, Chap. IV. 
18 N. Jacobson, Ref. 8, Chap. Ill. 

[Notice that A(H(%) = (A., oc).] It follows from Eq. (31) 
that 

er:O.) = A. - 2 (A, oc) oc for v A E 1)*. (32) 
(oc, oc) 

Hence, we obtain 

er: = (er:)-1 = Sa. (33) 
In conclusion, there exists in lo(g) the subgroup 
{er,,; Ot E A} which is isomorphic to W. This group 
plays an important role in constructing the reflection 
operator R. 

We have now come to the place to determine R 
explicitly. In what follows the internal symmetry group 
G is restricted to a compact simple Lie group. 
Then 9 is a real simple Lie algebra whose Killing form 
is negative definite, and Weyl's standard basis 
{HI" .. ,HI' Ea; oc E A} can be adjusted such that 

(E .. )t = - E_ .. , (Hi)' = Hi' (34) 

[Strictly speaking, this equation should be expressed 
as p(E,,)t = - p(E_,,). p(Hi)t = P(Hi)'] Consequently, 
condition (20) can be rewritten as 

R-IE"R = E_", R-lHiR = -Hi' (35) 

This means that the inner automorphism 1 associated 
with R maps an eigenvector corresponding to a root 
oc to the one corresponding to -oc, and that 1 not only 
makes 1) invariant but also changes the sign of every 
element of 1). Thus, we arrive at the conclusion that the 
inner automorphism 1 should be determined as the 
element of lo(g) corresponding to the negative identity 
-1 of W. If -1 can be expressed as 

-1 = IT Sa; (36) 
"e6 

with the help of some ordered set 0, then the inner 
automorphism 1 is represented as 

I = IT era 
"e,) 

= IT exp [ad{ 'IT ! (E" + E_,,)}]. (37) 
"e6 [2( oc, oc)] 

In order to evaluate R from this I, we consider helow 
the reduction of an operator of the form exp {ad(Z)}. 
The transformation ad(Z) can be expressed as 

ZL - ZR(ZL: X ~ZX,ZR: X -+ XZ). 

Since [ZL' ZR] = 0, it follows that 

exp {ad(Z)} = exp Z L exp ( - Z R) 

= (exp Z)L(exp Z)Il 
= {exp(-Z)}"[}{exp(-Z)}R' (38) 

This equation enables us to derive 

R = IT exp {- 'IT t (Ell! + E_,,)}, (39) 
"";; [2(rx, Ot)] 

where iJ has the inverse order against o. 
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So far we have identified n with g. It is admitted as 
long as the referring representation p is fixed. Explicit 
description of the representation used leads us to the 
following expression: 

Rp = II exp [- TT! {peE,,) + P(E_C1)}]. (40) 
"ES [2( OC, oc)] 

This is the very equation that has been searched for. 
It is illustrated in the examples below. 

(i) Compact Simple Lie Group SU(2)(A1 type) 

Since the corresponding Lie algebra 9 is of rank one, 
the nonzero roots of 9 consist of oc and -oc only. Then 
E", E_", and HCI are abbreviated to E+, E_, and 
H, respectively. It follows that 

[E+, E_] = -H, 

[H, E±] = ±E±. 

(41) 

(42) 

The quantities E+, E_ correspond to the charge­
raising operation and the charge-lowering one, respec­
tively. Since oc is so normalized that (oc, oc) = 1, the 
Weyl reflection SCI is equal to -1. Therefore, the 
reflection operator R is determined as 

Rp = exp [- ;2 {p(E+) + P(E_)}]. (43) 

Since p(E±) and p(H) are connected with the isotopic 
spin operators II, 12 , Ia satisfying the commutation 
relation [Ii' Ij ] = iE;;klk such that 

p(E~ = =f(/l ± iI2)//i, p(H) = Is, (44) 

we obtain the usual expression 

R = exp (iTTI2)' 

In this case, R is antisymmetric. 

(ii) Compact Simple Lie Group SP(6)(C3 type) 

(45) 

The fundamental root system14 (OCl' OC2' oca) is such 
that 

and 

(OCl' OCl) = (OC2' OC2) = 1, (oca, oca) = 2, 
(OCl' OC2) = -t, (OC2' oca) = -1, 

(OCl' oca) = O. 
Since -1 = (SlSaS2)S, we obtain 

Rp = [exp {- ~ [p(E2) + P(E_2)]} 

x exp { - ~ [peEs) + P(E_3)]} 

(46) 

x exp {- ;2 [peEl) + P(E_l)]}J. (47) 

U M. Konuma, K. Shima, and M. Wada, Progr. Theoret. Phys. 
(Kyoto) Suppl. 28, 1 (1963). 

Especially, if we take p to be the six-dimensional 
representation, we get 

0 0 1 

0 0 1 0 

R6= 
0 0 

(48) 
0 0 -1 

0 -1 0 0 
-1 0 0 

In this case also, R is antisymmetric. 

(iii) Compact Simple Lie Group SO(7)(B3 type) 

In this case,14 the fundamental root system 
(OCl' OC2, ocs) is as follows: 

and 

(OCl' ocl) = (OC2' OC2) = 2, (exa, exa) = 1, 

(OCl' OC2) = -!, (oc2, exa) = -1, 

(OCl , ocs) = O. (49) 

Since -1 = (SlSaS2)S in this case also, we obtain 

Rp = [exp {-tTT[p(E2) + p(E_2)]} 

x exp {- ;. [peEs) + P(E-s)]} 

x exp { -tTT[P(El) + p(E_l)UJ. (50) 

In the eight-dimensional representation, we get 

0 0 0 1 

0 0 -1 0 
0 

0 1 0 0 

Rs = 
-1 0 0 0 

0 0 0 -1 

0 0 0 
0 

0 -1 0 0 

0 0 0 

(51) 
seeing that R is symmetric in this case. 
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It is proved that an average number of particles can be defined only in those representations of the 
canonical commutation (or anticommutation) relations which are multiples of the Fock-Cook 
representation. 

WITH C a real separable pre-Hilbert space, let g; 
be a representation of the canonical commutation 

relations (CCR) or of the canonical anticommutation 
relations (CAR) on C by operators on a Hilbert space 
Jeg;. In the case of CCR, we mean by this a Weyl 
system on C,l i.e., a map f -- {U(f), V(f)} from C to 
unitary operators U(f), V(f) on Je such that, for 
every f, g E C, 

(a) U(f)U(g) = U(g)U(f), V(f)V(g) = V(g)V(f) , 
V(f) V(g) = e-i(f,glV(g)U(f), where (f, g) is the 
natural scalar product on C. 

(b) With t a real variable U(tf) and V(tf) are 
weakly continuous in t at the origin for allfE C. 

For f E C, a",(f) denotes the corresponding closed 
"destruction operator" and N",(f) the number 
operator. One has2 

N",(f) '-.-/ Nig) 

aif)N",(f) C (Nif) + l)a",(f) (1) 

for all f, g E C, since g; is equivalent to a direct sum 
of Schrodinger representations when restricted to a 
finite-dimensional subspace of C.l 

The Fock-Cook representation [Le., the one for 
which there exists a cyclic vector 0 E Je such that 
aif)O = 0, "If E L] is denoted by g;o' 

In 'this note we want to prove some statements 
which are slight generalizations of results by Garding 
and Wightman (see Ref. 3, where a characterization 
is given of all representations of CCR and CAR; also 
Ref. 4 for a direct proof in the irreducible case). These 
authors show that the Fock-Cook representation is 

• On leave from the Istituto di Fisica Teorica, Universita di 
Napoli. 

t Sponsored by the Sloan Foundation Program. 
1 J. Von Neumann, Math. Ann. 104,570 (1932). 
2 A ~ B means that the spectral projections of the two operators 

commute; A c B means that B is defined, and coincides with A, 
on D A, the domain of A. 

3 L. Gflrding and A. Wightman, Proc. Natl. Acad. Sci. U.S. 40, 
622 (1954). 

, A. S. Wightman and S. Schweber, Phys. Rev. 98, 812 (1955). 

the only one for which there exists a positive self­
adjoint operator N", with integer eigenvalues such 
that its spectral projections En(N",) are given by 

00 00 

En(N",) =! ! bn.1:ni IT En.[Ni/;)] 
i=l ni=l i i 

with {j;} an arbitrary orthonormal complete set in C. 
We state the main proposition as follows: 

Theorem5: Let C be the linear span of vectors 
{h, k = I, 2, ... } on which a scalar product is 
defined by (he ,j;) = bki (that gives to C a pre-Hilbert 
space structure). The following conditions are 
equivalent: 

(a) There exists a cardinal number n such that 
g; = ng;o·6 

(b) The linear variety ~o C Je", defined by7 

is dense in Je",. 8.9 

Proof: (a) => (b) is well known:' To prove (b) => (a) 
we need first a self-adjoint "number operator." It is 

5 After completion of this work; we have been informed by J. 
Chaiken (private communication and Cornell University preprint) 
that he has obtained a similar result for the CCR, and in fact given 
several other characterizations of the Fock-Cook representation, 
using the Weyl form of the CCR (and avoiding therefore the use of 
unbounded "destruction operators"). 

• q; = nq;o means that there exist Hilbert spaces :re1 and :rea, 
:rea of dimension n, such that:re = :re1 ®:res and a",(!k) = a(!k) ® 1. 

• DT is the domain of the operator T. Here and in the following, 
whenever </>' fjJ E DTt. we write (fjJT</» for (TtfjJ, Tt</». 

8 One could equivalently require !:=l (</>N",(!,J</» < CX'l for one 
vector</> E nk DNtc, ), cyclic in :re relative to the algebra generated 
by the partially isokmetric operators Uk,U: where Uk is the ex­
tension to :re of the operators IN ",(!k) + 1]-1 a",([k) defined on 
D. Uk)' 

."'In the case of CAR there are obvious simplifications in the 
statement of the theorem (and in its proof), since for all ! E L, 
N",(f) is a bounded operator. 

663 
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helpful to introduce the following: 

Definitions: N == Friedrichs extension1o of the posi­
tive bilinear form 

00 

[ct>, 'Y] = I (ct>N,/fm)'Y) + (ct>, 'Y). 
m=l 

Jeo is the completion of ~o in the norm defined by 
[. ,.]. One has ~o ~ Jeo ~ Je",. N~ is Friedrichs 
extension of the positive bilinear closable form 
[ct>, 'Y]k = [ct>, 'Y] - (ct>N",(jSI'). 

We now want to prove a weak form of the com­
mutation relation 

Na",(j) c a",(j)(N - 1). (**) 

Observe that with Nk = Nih) 

Da (j;.) :2 DNI; DNi :2 DNt, 
'" k 

(3) 

ct> E DN1 => (ct>Nct» = (ct>Nkct» + (ct>N~ct» (4) 

are easy consequences of the definition of Friedrichs 
extension (see Appendix B) and of the inequalities 
Nk ~ 0, k = 1, 2, .... 

Remark next that, for ct>, 'Y E ~o, and real A 

I (eiANk<J>, NmeO .. Vk'Y) = I (ct>Nm'Y) 
m m 

from which follows (see Appendix C) 

Nk -- N. (5) 

Let E(A), E~(A), Ek(A) be the spectral projections of 
N, N~, N k , respectively. Combining (4) and (5) one 
obtains 

EiA) ~ E(A), E~(A) ~ E(A). (6) 
Define 

~ == U E(A)Je", ~ D N • 
A 

From (6) one concludes ~ ~ DNk , ~ ~ D~k. The 
domain ~ has the following properties: 

Lemma 1: 

a",(fk)~ ~ DN!; Nt~ ~ DN!. 

We give the proof of the first relation. The second is 
proved along similar lines. 

Let ct> E~. Then E(A)ct> = <I> for some real positive 
A and, in view of (6), Ek(A)<I> = <1>, E~(A)ct> = <1>. 
Since ~ ~ Jeo, there exists a sequence 'Y n E E(A)~O 
such that 

where 
111<1> - 'I' nlll ~ 0, 

111'1'1112 = ['I', '1']. 

10 K. O. Friedrichs, Math. Ann. 109.465 (1934). 

With 'I' n.m = 'Y n - 'I'm' 

IIlaifk)'I'n,mIl12 = ('I'n.mNk'Yn,m) 
00 

+ I'(a",(fk)'I' n,m' N 1Ja",(fk)'Y n.m) 
1J=1 

= i ('Y n,m' N1JNk'Y n,m) ~ A 111'1' n,m1l1 2
• 

1J=1 
Use has been made of the commutation relations 
between a",(jk) and N1J. There exists therefore a 
'Y E Jeo such that aifk)'Y n -+ '1'. Since a",(jk) is 
closed, this implies'Y = aifk)ct>, i.e., 

a",(j;.)'Y n -+ a",(j;.)<I>. (7) 

Jeo is closed and Jeo = DNt (see Appendix B). 
Therefore 

(8) 
Q.E.D. 

We are now in position to prove the following weak 
form of (**): 

Lemma 2: If <I> E~, then 

(aih)ct>, Na",(j;.)<I» = (Nk<l>, (N - 1)<1». 

Proof: From Lemma 1 and Eq. (4) 

(a",(fk)<I>, Naifk)<I» 

= (aifk)<I>, Nka",(fk)<I» + (a",(fk)<I>, N~aifk)<I» 

= (Nk<l>, (Nk - 1)<1» + (Nkct>, N~<I» 

= (Nk<l>, (N - 1)<1». 

Proof of the theorem. Let X ~ ° be the greatest 
lower bound of the spectrum of N. Let 'Yo E Je", be 
such that E(X + !)'Yo = 'Yo, II'Yoll = 1. Then 

X Ila",(fk)'I'oI12 ~ (a",(j;.)'Yo, Na",(j;.)'Yo) 

~ (X - !) Ila",(j;.)'YoI1 2, (9) 

where the first inequality follows from the spectral 
decomposition 

Nt = roo AtdE(A), JlI 
and the second from Lemma 2. Inequality (9) implies 

a",(j;.)'I'o = 0, k = 1,2, . . . . (10) 

Let E'Yo be the orthogonal projection on the cyclic 
subspace generated by application of the operators 
aifk) to the vector 'Yo. From Eq. (10) one sees that 
the subrepresentation lfJ'Yo = E;o 0 lfJ is equivalent to 
the Fock-Cook representation in the subspace E; Je",. 

, 0 

The subrepresentation lfJ'Y = (1 - E; ) 0 lfJ has the o 0 

same properties as lfJ, relative to the subspace 
(l - E;o)Jetp· One can therefore repeat for lfJ~o the 
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arguments which were given above for cp and prove 
the existence of a vector '¥l E (1 - E;'o)Je", such that 
E'Y ""'Yo 0 cp~ is equivalent to the Fock-Cook repre-

1 0 , 

sentation in the subspace E'Yo'" 'Fo{1 - E;'o)Je",. The 
proof of the theorem is now achieved by complete 
induction. To this theorem we add. 

Corollary I: Let I:. be a real separable pre-Hilbert 
space, f -+ aif) a representation of the canonical 
anticommutation relations on I:. by operators on the 
Hilbert space Je",. The following conditions are 
equivalent: 

(a) There exists a cardinal number n such that 
cp = ncpo' 

(b) There exists in I:. an orthonormal basis fk' 
k = 1, 2, ... such that the linear variety ~o E Je", 
defined by Eq. (2) is dense in Je",. 

Proof: From the relations 

aif)a!(g) + a!(g)aif) = (f, g) 

it follows 
Ila",(f)II = Ilflle (11) 

for all nonzero representation cpo We may therefore 
assume that I:. is complete. 

The implication (a) => (b) is again well known. 
To prove (b) => (a) notice first that, if E is the 

linear span of {fk}, k = 1, 2, ... , cp Ie is a multiple 
of the Fock-Cook representation. 

Let Q be a vector in Je which is a "vacuum" for 
cplc; we have a",(fk)Q = 0, k = 1,2, and, from 

(11) 
a",(j)Q = 0"1 fEI:.. (12) 

(b) The positive form 

cp -+ [cp, cp] = ! (cpN",(fk)CP) + (cp, cp) 
k 

is densely defined in Je and its closure does not 
depend on the orthonormal complete basis {fk}' 

(c) There exists in I:. a total set {fk} which is 
orthonormal for the pre-Hilbert structure of 1:., such 
that the linear variety defined in Eq. (2) is dense in Je",. 

Proof: a => b is obvious, and b => a follows im­
mediately from the proof of the theorem and the 
remark that N is independent of the basis chosen for 
its definition. 

a => c is again well known. To be more precise 
(and in order that a=> c be not "logically trivial"), if 
cp = ncpo there exists a dense set D with the properties 
required in the statement of the corollary. One can 
choose for D the set D~"'o obtained by applying to all 
vacua in Jenrpo arbitrary polynomials in the creation 
operator a:", (£.), "If E 1:.. Property (2) can be verified 
by computing the norm of a:", (f)"P with f E I:. and 
"P E D~"'o. Property (1) is true fdr D~"'o if it is true for Dro; for the latter case see, e.g., (Ref. 11, p. 48). We 
have now to prove c => a. With the notations used in 
Corollary I, the theorem states that cp I c is a multiple 

of the Fock-Cook representation. If Q is a vacuum 
for cpl-, we have 

J 
(aif)fP, Q) = 0 (13) 

for all fP E D, fEE. The continuity condition (2) 
implies that (13) holds for allfE r.. Therefore 

~a!(f)ID)*Q = 0, VjEr. 

Therefore Q is a "vacuum" for cpo Q.E.D. and condition (1) gives 

Corollary II: Let I:. be a real separable topological 
vector space which is a pre-Hilbert space for a weaker 
topology. Let I:. 3 f -+ a(f) be a representation of the 
canonical commutation relations on I:. by operators 
on the Hilbert space Je"" such that there exists in 
Je", a linear dense set D on which all the operators 
aif) , a:(f), f E I:. are defined. Assume moreover 
that 

(1) a",(f) ID = a",(j); a:(f) ID = a:(f). 
(2) "P E D implies that the maps 

j -+ a",(f)"P, j -+ a:(f)"P 

are continuous from I:. to Jerp. Then the following 
conditions are equivalent: 

(a) There exists a cardinal number n such that 
cp = ncpo' 

Q E Da",(f), a",(j)Q = 0, VfE 1:.. (14) 

This proves the corollary. 
In conclusion, we mention that a situation of 

interest in physics and to which Corollary II applies 
is, e.g., I:. == S3, the space of infinitely many times 
differentiable functions on R3, decreasing at infinity 
faster than any inverse polynomial, provided with the 
Schwartz topology. 
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APPENDIX A 

We want to show that the bilinear form 
00 

[<I>, 'Y] = (<I>, 'Y) + ~ (<I>, N m 'Y) 
m=l 

is closable. Notation is 

['Y, 'Y] = 1I1'Y11I2, ('Y, 'Y) = 1\'Y112. 

We must prove that, if III<I>n - <I>mlll--+ 0 when' 
n, m --+ 00, there exists an element <I> E Je<p such that 
III<I>n - <I>III--+ 0 for n --+ 00. 

Since Je<p if complete and II I'YII I ~ 1I'f1l, there exist 
<I> E Je<p and no such that lI<I>n - <I>II :s;; I for n > no. 

Since III<I>n - <I>mlll --+ 0, there exist n', m' such 
that if n > n', and m > m' one has, for all M, 

M 1 1 
~(Nk(<I>n - <I>m), Nk(<I>n - <I>m) < 1. (A1) 
k=l 

The operators Nt, k = 1, 2, ... , M are closed, and 
<I> n --+ <I> in Je<p; we then have, for n > n', 

Nt(<I>n - <I>m) ~ Nt(<I>n - <I», k = 1,2, ... ,M. 

This shows that <I> E DNt, k = 1,2, ... , M. 
We also have 
M 

~(Nt(<I>n - <I», Nt(<I>n - <I») < 1 for n> n'. 
k=l 

This holds for all M and each term in the sum is 
positive. Therefore 

III<I>n - <I> II I < 1 for n > n'. (A2) 

From the linearity of Jeo it follows <I> E Jeo. More­
over, since (A2) holds for sequences of vectors <I>n 
not necessarily normalized to 1, we have 

III<I>n - <I>III --+ 0 when n --+ 00. (A3) 

Q.E.D. 

APPENDIX B. A CHARACTERIZATION OF 
THE FRIEDRICHS EXTENSION 

Let Je be a Hilbert space and Do a linear manifold 
dense in Je, on which a bilinear closable form [<I>, 'f] 
is defined with the property [<I>, <I>] ~ II <I> 112. 

We denote by S any self-adjoint operator, bounded 
below by 1, which induces the form [<I>, 'Y] 

(<I>, S'Y) = [<I>, 'Y], D Bl 2 Do. 

So is the Friedrichs extension of [. , .] and Jeo denotes 
the closure of Do in the norm II I <I> II I = [<I>, <I>]1. We 
have DB £; Jeo £; Je, Dsl 2 Ds· 

Defineo Rs = S1jDo. Evidently DR;" = Jeo· 

Theorem: The symmetric transformation Rs is 
essentially self-adjoint if and only if S = So. 

Proof: (a) R;: is self-adjoint. In fact, we have 
DR"" = Jeo 2 Ds , therefore R;* 2 StlDs , and, 

80 0 0 0 

taking closures, R;: = st. Q.E.D. 
(b) Let Rs be essentially self-adjoint. This implies, 

by closure, R;* = S1. Therefore Dsl = Jeo and 
DB £; Jeo = D~. Among the operators S, only So 
satisfies this inequality. Q.E.D. 

Corollary: Dsl = Jeo if and only if S = So. 

APPENDIX C 

Let [<I>, 'f] be a positive bilinear closable form 
defined for vectors from a linear dense subspace D of 
a Hilbert space Je. Let B be a unitary operator on Je 
such that 

(a) VD = D. 
(b) [V<I>, V'Y] = [<I>, 'f] for all <I>, 'Y E D. 

Then, if S is the Friedrichs extension of [<I>, 'f], one 
has VS = SVon Ds. 

Proof: Let B be defined on Jeo (the closure of D in 
the norm [<I>, <I>]*) by (<I>, 'f) = [<I>, B'f], <I>, 'f E Jeo. 

Our assumptions (a), (b) lead to 
(1) (<I>, 'Y) = (V<I>, V'Y) = [V<I>, BV'Y], 
(2) (<I>, 'Y) = [<I>, B'Y] = [V<I>, VB'f]. 
Comparing (1) and (2) we conclude BV = VB on 

Jeo. Since B and V are bounded, it follows BV = VB 
on Je, by continuity. Therefore, making use of 
VDs CDs, BSjDs = 1jDs, SB = 1, 0 = S(BV­
VB)S = VS - SVon DB' Q.E.D. 
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