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We consider an interaction Lagrangian consisting of renormalizable and nonrenormalizable terms.
After a brief discussion of the vertex function and the boundary conditions determining the renormal-
ization constant corresponding to a pseudoscalar bound state, we derive an explicit expression for the
nonrelativistic S-matrix for scattering by the potential 1/r%. These results are then used to evaluate Z.
The explicit expressions obtained contain a strong cut-off dependence which cannot be factorized out.
However, a specific value of the cut-off reduces the equation to a well-known eigenvalue problem, so
that in this case a discrete spectrum of bound states may be obtained.

I. INTRODUCTION

ONSIDERABLE interest has recently been de-
voted to the study of singular potentials at small
distances, since the infinities appearing in non-
renormalizable quantum field theory are believed to
have some analogy with those arising in the perturba-
tion expansion for nonrelativistic scattering by highly
singular potentials. The Bethe-Salpeter equation,
which gives a covariant description of the relativistic
two-body problem, has also been widely discussed in
this context; in fact, as Bastai et al.! have pointed out,
there is a marked similarity between the behavior of
the solutions of the BS equation near the origin and
those of the radial Schrodinger equation. It is clear,
therefore, that a more detailed knowledge of the
characteristic features of nonrelativistic scattering by
highly singular potentials could shed some light on
the difficulties encountered in relativistic scattering
theory.

1 A. Bastai, L. Bertocchi, S. Fubini, G. Furlan, and M. Tonin,
Nuovo Cimento 30, 1512, 1532 (1963).

Various authors? have pointed out that the Jost
function in potential theory is the nonrelativistic
analog of the constant Z which renormalizes the
vertex between elementary and composite particles in
a field-theoretical Lagrangian. The vanishing of this
constant Z is equivalent to the condition of the bound
state, thus yielding a relationship between the masses
of the interacting particles and their coupling con-
stants. Several classes of interactions have recently
been considered by Furlan and Mahoux® in order to
examine the characteristics of the resulting eigenvalue
equations. In particular, they have shown that, for
super-renormalizable and renormalizable interactions,
the Z, = 0 condition is found to be either independent
of a cut-off or else the cut-off can be factorized out.
However, in the case of nonrenormalizable inter-
actions, the situation is not as clear.

In the present paper, we consider an interaction

2 For a list of references, see W. Giittinger, Nuovo Cimento 36,
968 (1965); L. Bertocchi, M. McMillan, E. Predazzi, and M. Tonin,
ibid. 31, 1352 (1964).

2 G. Furlan and G. Mahoux, Nuovo Cimento 36, 215 (1965).
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Lagrangian consisting of renormalizable and non-
renormalizable terms. In Sec. II, we briefly discuss
the vertex function and obtain the boundary con-
ditions determining the renormalization constant
corresponding to a pseudoscalar bound state. In
Sec. III, we derive an explicit expression for the
nonrelativistic S-matrix for scattering by the potential
r—. In Sec. IV, we use these results to evaluate the
renormalization constant Z. The explicit expressions
obtained contain a strong cut-off dependence which
cannot be factorized out. Finally, we discuss the
physical significance of this cut-off.

II. RENORMALIZABLE AND
NONRENORMALIZABLE INTERACTIONS

We consider the following mixture of a renormal-
izable and a nonrenormalizable interaction as an
example illustrating interactions which, in non-
relativistic potential theory, correspond to highly
singular potentials:

£, =g'9(s> Dy + glvs, Dyd®. (2.1
Here, the y’s represent spin-} fields (mass m) and
the ¢’s represent massless bosons. The two couplings
(ys, 1) represent Dirac matrices for pseudoscalar
and scalar interactions, respectively. The first of the
interactions (2.1) is renormalizable, whereas the second
is not. We now want to discuss the case, where the
spinors y form a pseudoscalar bound state of mass
zero by the exchange of one or two of the bosons ¢.
Then in ladder approximation, the integral equation
for the renormalized vertex function I'(p) = y;I'(p?)
is represented by the diagram shown in Fig. 1, where
p = ¥(py — po) is the relative 4-momentum of the
two spin-} particles, and where, for convenience,
we have set ¢ = p; + p, = 0. Thus, the mass of the
composite particle (taken on the mass shell) is fixed,
and quantization yields a relationship between g, g’,
and a quantum number n, say (and a cut-off, as
we see later). The scalar and pseudoscalar inter-
actions (1, y;) in (2.1) may be termed as attractive
and repulsive, respectively, since they correspond to
attractive and repulsive potentials. I'(p?), the scalar

Fic. 1. Diagrammatic representation of Eq. (2.2).
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part of the vertex function, is easily seen to satisfy the

integral equation

N f d'p’T(p"™
@m)*J (" + m)p —

__de f d'pT(p™
@mtJ (p* + m)

reh =2z

@) )
d'k
Kk +p' — p)*’

2.2)
where Z is the vertex renormalization constant,
A = g*|@2n)'m?, X' = g'*lm? and € = 1 correspond-
ing to the (y;, 1) coupling.

Now, except in the case of scalar—particle inter-
actions, the solution of (2.2) does not decrease
sufficiently rapidly at high energies due to an essential
singularity at infinity, so that the introduction of a
cut-off in the integration becomes inevitable. These
difficulties have been discussed by various authors,>¢
and arguments have been suggested to justify the
following procedure.

We perform a Fourier transformation of Eq. (2.2)
[divided by (p? + m?)] and use the Wick rotation® of
the time component of x so that we finally work in
terms of a pure Euclidean metric. Furthermore, we
use the integrals

J@1a da = ey,

f pveosa (a2 gy = (=lipy)L,(ipy),
0

eiaw d‘p _ ‘”2
f—-—(pz gy (47°[y)mK(my),

where I, and K; are modified Bessel functions
(the volume clement d% being given by

(2.3)

p®sin® a sin @ dp do do df
in four-dimensional spherical co-ordinates) and ex-
pand K (m |y — x|)/m |y — x| in terms of Gegenbauer
polynomials.® The orthogonality properties of these
polynomials then yield the following integral equation:

90) = Zmkmy) [ "ax(2 4 £2) o0
x [0(y — x)Ky(my)I(mx)
+ 0(x — y)Ky(mx)I(my)], (24)
where
¥(») = yF("),
P(pz) — L —ipT
p——-—z e iy fe F(x?) dx. (2.5)

¢ F. T. Hadjioannou, Nuovo Cimento 35, 570 (1965).

5 G. C. Wick, Phys. Rev. 96, 1124 (1954).

8 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Co., Inc.,
New York, 1955), Vols. 1, I1.
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Differentiating (2.4) (and using well-known prop-
erties of the modified Bessel functions, such as their
recurrence relations and asymptotic behavior), we
obtain a differential equation and two boundary
conditions:

(L 41 g tetd
dy?

e
- = =0, (2.6
" By =0 eo

lim [m=(d/dy)p(y) + v(»)] =0,

Y-+

lim yyd/dy)y(y) — y(»] = —2Z.

This Z is not to be confused with the argument z of
Sec. III below.

Since, in effect, the vertex function represents the
bound-state wavefunction of the composite particle,?
the interactions (2.1) may be regarded as being
equivalent to potentials of the form y~2%, y™ in the
nonrelativistic Schrédinger equation. The first of these
leads to a renormalizable interaction as discussed by
Furlan and Mahoux.®* Due to the mathematical
complexity of the solutions, however, the potential
y~* has only recently been studied in some detail.”

In the following section, we show that, at least in
the interesting case of reasonably high energies, these
difficulties are only apparent, and a simple expression
for the S-matrix may be derived.

2.7

IIl. SCATTERING BY THE POTENTIAL r*

For convenience, we consider the radial Schrédinger
equation for all partial waves / and a repulsive
potential, i.e.,

¢'(r) + [k — U + Dr* — y*/ri]e(r) = 0. (3.1)
We next introduce the substitutions

or) = rip(r), A=(+1"

X = rlr, = e’l, z' =z + }inm.

Then, y(r) satisfies a differential equation identical

with (3.1), except for an additional term r—*(dy/dr).
We also choose the parameter r, such that

(3.2)

Kt =yt = g,

and set 3.3)
Then, y(z) satisfies the modified Mathieu equation

d*p[dz? — [A — 2k cosh 2z]y(z) = 0. (3.4)

We observe that this equation is invariant under the

interchanges
(3.52)

(3.5b)

h— +h,

z— —2z F }inm,

z—> —2z,

h— Lih, ie., z'— —z.

7 R. M. Spector, J. Math. Phys. 5, 1185 (1964); L. Bertocchi,
S. Fubini, and G. Furlan, Nuovo Cimento 3§, 633 (1965); H. H. Aly
and H. J. W. Miiller, J. Math. Phys. 7, 1 (1966).
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The corresponding invariant points are (a) z =0,
(b) z = F}im z' = 0.

Now, in an earlier investigation® it was shown that,
for large values of A%, two linearly independent
solutions of Eq. (3.4) may be written as

oz, h) = A(z) exp (—2ih sinh z),

_ - 3.6)
Po(z, h) = A(z) exp (+2ih sinh 2),

where A(z), A(z) are known functions of z. The
following asymptotic behavior of these solutions is
easily verified [cf. (3.2)]

exp [¥2ih sinh z] ~ exp [Fg/x] = exp [Fy/r],
= 37D
exp [F2ih sinh z] ~ exp [Figx] = exp [Fikr].

=+

Clearly by (3.5) and (3.6), we also have the following
pair of solutions

v(z; B) = po(—z — bim; Lih)
with the property

3.8)

p(z; ) ~ eTr (3.9)
q:

r—
The S-matrix may then be derived as follows.
Writing

(rhyp(z; ) = A{y_(z; h) — S(hyy.(z; HYrH)  (3.10)

and taking the limit r — oo, we see that (3.10) is the
standard definition of the S-matrix. The solution
regular at r = 0 (i.e.,, x = 0) is

(rtyp(z; h) = Byo(z; h)(rd).

Thus, to obtain the S-matrix, all we need is the
analytic continuation of (3.11) to (3.10), i.e., [cf. (3.5)]
at z, = —}im. Hence, equating (3.10), (3.11), and
their derivatives at this point, we have

vo(z; hXd[dz)y_(z; h)
— y(z; hXd/dz)py(z; h)
vo(z; hXd/dz)y(z; h)
— (z; hXd[dz)ypz; h) |,
vo(y ; hXd[dy)yo(y; +ih)
_ __+ vly; +ibXd/dy)ve(y; h)
wo(y; B)(d[dy)yl(y; —ih)
+ wo(y; —ib)d[dy)po(y; B) l—yix

_ (d[dz)[py(z; h)yo(z; +ih)]
(dfd2)wo(z; Bpo(z; —il)] |myis

8 R. B. Dingle and H. J. W. Miiller, J. Reine Angew. Math. 211,
11 (1962).

(3.11)

S(h) =

(3.12)




370

It is now necessary to specify the function A(z) in
solution (3.6); this function is given by®

A(z; h) = Az) + @R {P,(D)Ay4q + Pi(—1) A, 4}
+ 2'h)*{Py(2)Apys + Po(1)Agia
+ Py(—DA, 4 + Po(—DAy 5} + -
=3 3 @R D),
(j#0forp>0), (3.13)

where ¢ is related to the Floquet parameter of the
Mathieu equation.® The coefficients P are known® or
can easily be calculated. They depend on g. The
functions 4, are given by

COS%('H'M_I)(iﬂ — }iz)
Cosé(q+4i+1)(i_n, + %iz) :

It is readily seen that A (z) has the following limits:

Agrai2) = (3.14)

forr—0: Afz)~ 2(rfr )} exp [—tin(g + )],
forr— w: Afz) ~ 2r,jr)} exp [Lim(q + D).
(3.15)

This yields precisely the behavior to be expected of
the solution ¢ of (3.1). Now, in calculating .S, it is
incorrect to substitute the full solution (3.13) into
(3.6) and thence into (3.12), since the phase shift is
determined by the asymptotic behavior of the solu-
tions, i.e., by their behavior for r — o0, or in the
present case [due to the symmetry properties (3.8)]
by their behavior for r — 0. Thus, S is obtained by
substituting into (3.12) the dominant terms of ¢, for
r—0 and then setting z = —%im, ie, z2=0 or
r=r,. So we set

Pz B = S 3P (a(h); DI gy a(rir)h

p=0 j=—p
x e tq(h) + 4j + 3] (r—0), (3.16)

where the dash on the sum implies j % 0 for p > 0.
We have also included an %-dependence in g, since ¢
has to be determined from the secular equation of
the Mathieu equation, i.e., as the solution of a
function F(A, g, h) = 0. We now have

vo(z; Wypo(z; Lih)f4e ¥ [q(h) + q(Lih) + 1]
~ (r/ra)e—(y/r)(lii) i gz i %/ (_1)11+J'2

21=0 j1=—>p1 P2=0 jo=—p2

Py, [a(h); j11Py,[g(L ih); o]
(27eiing)p1(;F 27e—ii1rg)pg

= (rfr)e 0 3 (27) 10 (h)],
i=0

? K. M. Case, Phys. Rev. 80, 797 (1950).

(3.17)
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where
) m j—m )
0PI =3 3 3 (—pyirs ZeldBA]
m=0 j1—m fg=m—3 (et*")
Pi——m[q(:tih);jz]
X —_—_(:F ey (3.18)
and
0P lg()] = 1.
Clearly,
(d/dz)lyo(z; Dyo(z; £iM)]—ir
4t g(h) + q(£ih) + 1]
=r, i l:_[ oM ) < Q(,F’:’[q(h)]}
dr r, j=0 (27g)j r=rq
— e—g(l:i:i)[l + g(l + l)]EQgi).Eq(h)] . (3'19)
=0 (2'g)
Now, the S-matrix assumes the simple form
o cs[Lbik i) >0 la)2'eY
P S oty
x exp (—tim)[q(+ih) — g(—ih)]. (3.20)

We have already remarked that ¢ is a function of 4;
in fact, our solutions y are solutions of the modified
Mathieu equation only if also®10

A(h2) = 2k + 2hg — ¥(g? + 1) + O(1/h),
(h = 4+ (3.21)

This equation determines the (as yet) unknown
parameter ¢g. For nonintegral values of g, the pa-
rameter /4 in (3.21) has to be taken as the positive
square root of 421! It then follows that, if we solve
(3.21) for g, ¢ is also a function of A2; in fact,

q(h?) = 4h[2 + /3] + 0(1/h),
q(+h) = g(—h), h= +(@)L

[Note: A of Eq. (3.21) is the A of both solutions
proportional to exp (42hi sinh z)]. Since g(+ik) is to
be understood as g(#) with & replaced by +ih, it
follows that these two functions must also be identical.
So their exponentials in (3.20) give no contribution.

Unfortunately, an expansion of ¢ [cf. (3.22)] in
falling powers of # does not appear to be given in the
literature, whereas expansions in rising powers of h?
are well known.!® Also, the unitarity of the quotient

(3.22)

103, Meixner and F. W. Schiifke, Mathieusche Funktionen und
Sphdroidfunktionen (Springer-Verlag, Berlin, 1954).
11 See Ref. 10, pp. 133, 139.
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of sums in (3.20) cannot be easily seen. However,
substitution of (3.22) into the coefficients?

Pyg, 1) = (g + 1)g + 3),
Pig, —1) = —(g— 1)(g — 3)

shows that to 0(1) the terms in the numerator are the
same as those in the denominator and are real (so
these terms ‘“‘preserve” unitarity and do not con-
tribute to the phase shift).

Equation (3.21) exhibits the characteristic difference
between the behavior of the phase shift 0 for potentials
of centrifugal or Coulomb type and that for the
singular potentials. We observe that, in the limit
k— o (ie., g— )

S ~ e—2ia(1 + l)/(l —i)= e}iu—zia’
so that the phase shift  has the behavior

d=1m—g+ 0(fg) ~ 7 — (Yo} (k*>0).
(3.24)

(3.23)

This behavior is completely different from that of the
regular potentials, where the phase shift decreases to
zero as k — oo. Furthermore, in the case of the
regular potentials, high energies imply small coupling
parameters, so that the Born expansion leads to the
correct high-energy behavior. However, in the case of
our singular potential, we see from Eq. (3.3) that
high energies correspond to large coupling constants,
so even from this point of view one would expect the
Born expansion to diverge; this is in fact the case, as
is well known. The result (3.24) agrees with that of
Bertocchi ez al.”

1IV. THE Z =0 CONDITION FOR
COMPOSITE SYSTEMS

We first calculate Z by the conditions (2.7). Which
is the solution y(y) we have to use? Since m* = —k?,
we have m = ik, and (3.9) shows that

(4.1

Clearly, y, is ruled out by the first of the condi-
tions (2.7). We now want to know the behavior of
rlry’(r) — y(r)] for r -0, so we have to re-express
v_(y; h) as a linear combination of regular and
irregular solutions at y = 0. The regular solution is
again yo(z; h); the irregular solution may be written
wo(z; —h). Thus, the two solutions to be matched at

pelrs B) ~ &

w0

the point z = —%im are (choosing an appropriate
normalization)
s =y (z;h
v(z; h) = y(z; h) 42
w(z; h) = po(z; B) + cyo(z; —h)

N
Then, proceeding as in Sec. III, we obtain
d .
o [wo(z; +il)pe(z; b))
c= 22
d . 3
o oz +ik)yo(z; —h)]
: z=—}in
+)
h
¢ = +e_2,,[(1 +1) + 1/g:| ZQ [g(#)] )
1-9~1g

30 (i)

where

07 la()] = Z E E

m=0 ji=—m Jg=m—J

(=) 7P,lg(£h); 1P, mla(+1h); ji]
( 4 ekir)m(_ e—iiﬂ)i—m

X

x (2'g).
We also have [cf. (3.6), (3.7), (3.13), and (3.14)]

00 ¥y
1/)0(2; :Eh) _ e:FZihsinhz z z (:I:27h)—p
p=0 j=—p
X P,lq(£h); 145(2)
~MieTa,, (4.9)
where e
piraam 2 L, (2 Pylg(£h); ]
A. =2Im ie Lina(xn) r( ) » .
+ = 2mfy] pgo ,-Zp [£27i(my)dPP
4.5)
Then
Wz )~ (r)%[A e 4 CA_et
~ CA_(r)‘} PALLS (4.6)
and Z becomes (for the repulsive case)
Z = lim 3CA_[y + dri(ntetrrn. 4.7

r—0
In order to obtain the corresponding results for the
attractive case, i.c., an attractive potential 1/r%, we
replace y in (3.1) by iy and g2 by iyk.

Then
vol(z; £h) ~ (Hte™B,, (4.8)
where o
B, = 2[m/y]}e—iin[a(:|:ih)+§]
& & (=1YP,lg(+ih); j]
X - . (49
zo =y [£27et (ym)P @9
Then
wz; h) ~ (N}B.e " + CB_¢"™"  (4.10)
and Z becomes 0
Z = lim —3(N¥@Er + iy)B,e "
r—+0
+ (3r — iy)CB_e""). (4.11)
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These results reaffirm the conclusions of Furlan
and Mahoux.? These conclusions state that, in the
case of nonrenormalizable interactions, the cut-off is
a built-in parameter of the Z = 0 condition, and,
in general, there is no way to factorize it out. This
implies, of course, that the compositeness condition
gives a continuous bound-state spectrum, which is
unphysical. The same difficulty would arise if we
tried to calculate the S-matrix—which we cannot do
with the above results, since the energy was taken to
be zero (cf. Sec. II, where ¢ was taken equal to zero);
it would also be strongly cut-off dependent.

However, Case® pointed out that the main difference
between regular and singular potentials (i.e., potentials
of the form r=" for n < 2 or n > 2, respectively) is
that the latter require the introduction of some other
parameter, in addition to the potential parameters, in
order to ensure orthogonality of the eigenfunctions,
which would otherwise be too numerous and hence
overcomplete.

But, representing an actual scattering process by a
two-point system with an interaction which becomes
infinite as the separation approaches zero, means
necessarily an oversimplification. Thus, even for the
proton which is expected to have a finite radius, the
interaction with an electron is not strictly of Coulomb-
type at r = 0. However, the eigenvalues are still
correctly given by those obtained from the vanishing
of the wavefunction with r =0 as a boundary
condition. In other words, the eigenvalues are essenti-
ally independent of exactly when or how the Coulomb
law breaks down near r = 0.

Now, since the above results are unphysical for
arbitrary values or r, one could ask which specific

H. H. ALY AND H. J. w. MULLER

value of the cut-off r would yield a normal eigenvalue
equation involving a quantum number describing the
various states of the system. The potential discussed
in Sec. II does indicate a possible answer. It is easily
seen that several transformations reduce the corre-
sponding radial Schrodinger equation to the proper
periodic Mathieu equation, for which the eigenvalues
are well known. These eigenvalues, however, are
determined by the condition that the eigensolutions
be periodic functions of the independent variable. So
the question is under what conditions would these
eigenvalues also be eigenvalues of the original
Schrédinger equation. Clearly, the condition is that
w(iZ) must satisfy the same periodicity condition.
This, in particular, implies that ¢ vanish at a point,
where iZ = p(h, q), say or

r=r,e 0 o= (y[k)}, 4.12)

p being a complex function of 4. A value of r such as
this is related to the extra parameter introduced by
Case.® It implies essentially a hard-core boundary
condition. We see, therefore, that if we choose the
cut-off as a particular function of k£ and y, then the
equation yields a discrete eigenvalue spectrum, and
the difficulties of the continuum are removed.

Of course, the singular nature of the potential
would have been avoided. Still we.see that r satisfies
very plausible limiting conditions, i.e.,

limr =0.
lr]—0

lim r = 0;
1kl>
In other words, at extremely high energies or for very
weak coupling, the cut off vanishes and the scattering
particles approach the actual scattering center.
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Motivated by recently observed deviations from quantum electrodynamical theory, we study the
possibility that our notions of space-time may need revision at small distances. In this work, we wish
to call attention to certain techniques which are available for studying different space-time structures
within the framework of topology. Our main effort is in the consideration of a non-usual topology on
space-time in which is embedded an elementary length. By working separately in each n-particle
subspace, the embedding is done in an inhomogeneous Lorentz invariant way, and we avoid any lattice
structure in space-time. Particles in this topology are in general extended structures, and we find the
surprising feature that, at high energies, the topology enhances backward and large-angle scattering.
From these preliminary investigations, we are not as yet able to make more than qualitative comparison
with experiment. Along the way, we have the opportunity to remark on ways of embedding an intrinsic
breakdown of certain invariances (e.g., parity) in the topology of space-time.

INTRODUCTION

T has often been suspected that our common notions
concerning the structure of space-time may break
down for extremely small intervals. Indeed, it would
be a priori surprising if these notions were correct
at all distances. A recent large-angle pair-production
experiment! in electrodynamics has raised the possi-
bility that, even at presently available energies, we may
in fact be entering into such a regime of breakdown.
This disturbing notion finds indirect support, perhaps,
in the various unsuccessful ad hoc modifications of
quantum electrodynamics? (stimulated by the pair-
production experiment), within the framework of a
usual space-time structure. Although one may still
hope to find an explanation of the data in essentially
conventional terms, we have been motivated by the
present situation to look into possible ways of changing
the structure of space—time.

The structure of a space is most naturally studied
through its topology.? We have in mind here the use of
topology to describe the local or microscopic structure
of a space,! rather than its global properties® (such as
torsion, macroscopic connectedness, etc.).

! R. B. Blumenthal, D. C. Ehn, W. L. Faissler, P. M. Joseph,
L. J. Lanzerotti, F. M. Pipkin, and D. G. Stairs, Phys. Rev. 144,
1199 (1966). A momentum-transfer of 6 BeV/c corresponds to a
Compton wavelength of 3 X 105 cm for the internal electron. If
we believe that this experiment is just beginning to show the effects
of the non-usual topology, then we might take this wavelength as a
very rough indication (more likely an upper limit) for the elementary
distance 4.

3F. E. Low, Phys. Rev. Letters 14, 238 (1965); N. M. Kroll,
CERN Preprint (1966); E. L. Lomon, CERN Preprint (1966).

3J. L. Kelley, General Topology (D. Van Nostrand Company,
Inc., Princeton, New Jersey, 1955); N. Bourbaki, Eléments de
mathématique (Hermann & Cie, Paris, 1948), Vol. III, Pt. 1, Chap.
8; see especially Chap. 9 for a discussion of the pseudo-metrization
of topological spaces.

4E. C. Zeeman [J. Math. Phys. 5, 490 (1964); Cambridge
University Preprint (1965)] has already considered a non-usual
topology for space-time. [See, also in this connection, D. B. Wolf,
Preprint, Computer Associates, London (1965).] Zeeman’s and our
approaches are basically different, but a marriage between them can
be contrived, as briefly noted in the text.

® See, for example, D. Finkelstein and C. W. Misner, Ann. Phys.
(N.Y.) 6, 230 (1959); U. Enz, Phys. Rev. 131, 1392 (1963).

A serious difficulty, encountered when a non-usual
topology is taken for a space, lies in setting up a
dynamics. In particular, analytic procedures with
which the physicist is familiar have been defined on the
usual topology, and any change of topology necessi-
tates a new set of operators, function theory, etc. As
physicists, this seriously constrains our ability to con-
struct dynamics on any but the simplest non-usual
topologies. Our theories are by no means as complete
as the usual theory: we content ourselves with simple
dynamical statements on some relatively straightfor-
ward non-usual topologies. Even then, we probably
raise more questions than we can answer. Nonetheless,
we hope that our considerations at least call attention
to the fact that there is a well-defined framework
(topology) within which to consider changing the
presumed structure of space-time; and we hope that
our ideas, even if (a) incorrect or (b) premature (or
both) may lead to more satisfactory ones in the future.

Among the many simple topologies one might
study, we, for definiteness, set ourselves the task of
building one in which there is embedded an elementary
length, A, but whose open-set structure is invariant
under the full inhomogeneous Lorentz group.® Pre-
vious attempts’ at the incorporation of an elementary
length in space-time have involved a lattice structure
for the manifold, and a consequent loss of translation,
rotation, and Lorentz invariance. We avoid this lattice
structure by prescribing (different) non-usual topolo-
gies on each n-particle subspace (n > 2). Most of our
discussion concerns the two-particle subspace. In this
case, we introduce the elementary length by taking a
coarse® topology only on the space of the difference
of the two particle coordinates. This means that we
—maple, of course, one would be willing to tolerate a break-
down of Lorentz invariance to order 4, if 4 were small enough.

7 Three recent papers by A. Das [J. Math. Phys. 7, 45, 52, 61
(1966)] give an adequate referencing of existing theories with an
elementary length.

8 A coarse topology is one that contains fewer than the usual open
sets, while a fine topology contains more.
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are, in some sense, giving up the ability to specify the
relative coordinate of the two particles beyond a
certain accuracy. However, the topology induced on
either one-particle subspace is strictly finer than usual.

Following Zeeman,* we define a trajectory to be a
continuous map from some parameter space into our
topological space. In this sense, all ordinary trajec-
tories are excluded by the topology, and various
interesting alternate possibilities arise. We find that,
generally speaking, these trajectories imply that the
two particles are extended in space over a minimum
distance 4.

At the dynamical level, our job is to find equations
of motion in the two-particle subspace. The difficulty
involved in setting up operators on the space is the
following: In one direction in our two-particle space
the natural “derivative” is a difference operator, while
in a perpendicular direction it is the usual differential
operator. The operators along some intermediate ray
are some unfamiliar “combination™ of these two
familiar operators. We avoid some of these problems
by making the simple assumption that the equations
of motion are separable between the sum and difference
coordinate variables. In this way, the equations involve
only differential and difference operators. It should
be emphasized, however, that this procedure picks out
only one from a large class of possible dynamics on
the topology. These other dynamics would involve the
use of the “fine” operators along an arbitrary ray ; we do
not have a great deal to say about them in this work.

We confine our considerations of classical mechanics
on the new topologies to an analysis of the possible
trajectories; then we proceed directly to quantum
mechanics. In a simple momentum, energy, and prob-
ability conserving formalism, we infer the high-energy
scattering of the theory. The surprising result is that
at high energies the topology induces an extra effective
“potential” between the interacting particles, which
serves to enhance backward and high-energy scatter-
ing! This is certainly suggestive of the results of
Blumenthal et al.; but we have not yet calculated this
effect quantitatively enough to allow more than a qual-
itative comparison with the data. Another interesting
and surprising feature of the high-energy scattering is
the presence of very high mass, but long-lived reso-
nances. In fact, the higher the mass, the narrower the
resonance. Certainly, there would be no mechanism in
ordinary field theory or S-matrix theory to generate
such particles.

We mention that the presence of the elementary
length (and the corresponding damped high-energy
behavior of the transformation functions to be dis-
cussed below) allows, in principle, the elimination of
ultra-violet divergences in the theory. The detailed
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discussion of such a problem would require the choice
of a particular theory on the topology (analogous to
a choice of a particular Lagrangian in the usual
topology); but we are content here in general with the
deduction of what seems to be the high-energy behav-
ior of any theory on the topology. By the same token,
we do not discuss “intermediate energy” scattering
on the topology, as this would also be “theory-
dependent.”

Along the way in our discussion, we have the
opportunity to present various other topologiés in
which are embedded intrinsic violations of certain
discrete symmetries, e.g., time reversal and/or parity
invariance. In particular, we mention a topology in
which, at a pre-dynamical level, some particles violate
parity, and others do not. These topologies may be of
some interest in-their own right with regard to em-
bedding certain features of the weak interactions in
space-time itself.

The order of our presentation is as follows: In
Sec. A, we consider a non-usual topology, and the
possible particle trajectories, first in one spatial di-
mension, where we take care to retain translational
invariance, then in three dimensions, where we must
also keep rotational invariance, and finally in 1 + 3
space-time, where we complete the embedding of the
elementary length in an inhomogeneous Lorentz in-
variant manner. By building up in stages, we have
illustrated the difficulties involved in incorporating
an elementary length in more and more complicated
spaces, and with progressively more stringent sym-
metry requirements. In Sec. B, we develop the simple
separable dynamics, again in first one, then three, and
finally in four dimensions. At the end of Sec. B, we
discuss very briefly some of the problems involved in
formulating a full field theory, allowing for the crea-
tion and destruction of particles.

A. TOPOLOGIES AND TRAJECTORIES ON
THE TWO-PARTICLE SUBSPACE

For the purposes of orientation and simplicity, we
first discuss intrinsically nonrelativistic topologies,
taking a non-usual topology only on space, and leaving
the usual topology on time. Things are in fact much
simpler in one spatial dimension, and we can learn
much in this simple case, which we accordingly discuss
before going on to three dimensions. After that, we
turn to a relativistic topologization, in which time and
space are kept on an equal footing.

1. Nonrelativistic One-Dimensional Motion

Consider the space of two identical particles,
located somewhere on a line, with coordinates x, and
Xp. Ordinarily one assumes the usual (Euclidean)
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topology on the two-dimensional space x; ® x,, and
on a time parameter, ¢. In this section, we want to
study another topology for this space, one which
contains an elementary length, 4, but which in no
way implies an unaesthetic lattice structure on the line
itself. In particular, the topology is completely trans-
lationally invariant.
We define the non-usual topology by the base®:

Ba(v11)®acz = {X,x:a <X<bni<x<(n+ 1)2'}’ (A)

where X = (x; + x,)/2, x = x; — X;, @ and b are any
real numbers, and » is any positive or negative integer.
As we have already indicated, 4 is to be the elementary
length in the theory. In words, we are taking, as the
topology of x; ® x,, the product of the usual topology
on the sum variable X, and an apparently coarse
topology (actually one that is strictly incomparable
with the usual topology) on the difference variable x.
We refer to this topological space as (x; ® x,, A},
the superscript indicating that the individual particle
spaces are one-dimensional. We can only separate
two points (in the Hausdorff sense) if we can cover
each of them with disjoint open sets. The coarseness
of the x topology indicates that we are giving up, in
some sense to be discussed below, the ability to specify
the distance between the particles more accurately
than A.

A question of paramount importance is of course
the induced topology*® on the space of an individual
particle. (This is the topology that should be com-
pared with the usual situation.) One sees immediately
that a base for the induced topology on, for example,
the x, space, for fixed x,, is

By = (10 <3y <b,x + 1A <% <B), (A2

where a, b, and n are defined as in Eq. (A1). We call this
topological space (x,, 4; x,)V. This notation empha-
sizes that the induced topology on x; is parametrized
by x,, indicating a pre-dynamical linkage between the
two particles. Note that this topology is strictly finer
(contains more open sets) than the usual topology.
Despite the fact that, for fixed x,, there is a set of
“preferred” points—in that an open set!! extending
to the right (or to the left, for that matter) from such
a point may or may not contain the point—this
topology is translationally invariant. This is because,
in any translation, both particles are moved by the

9 A subset B of a topology 7 is a base for 7 if each member of 7
is the union of members of B.

10 By the induced topology on (say) x; , we mean the relative topol-
ogy on the space x, with respect to (x; ® x,, )1, The topology on
a subset Y of X relative to the topological space (X, 7) is defined
to be the family of all intersections of members of r with ¥ (see
Ref. 3).

11 An alternate base for (x,,2; x5)" would be the usual open
intervals, plus the points x; + ni.
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FiG. 1. Continuous functions in (x,, 4; 0)(1).

same amount, so that the preferred points in the x;
space move also.

The fineness of the (x,, 4; x,) topology is mirrored
in the enlarged set of continuous functions!? on
(%1, 4; x,)'¥ into a space with the usual topology.
Some single-valued continuous functions on (x; , 4; 0)
into {f(x,), U} are shown in Fig. 1. This set is greater
than the usual set of continuous functions, since it
includes functions which may have arbitrary discon-
tinuities (in the usual topology) at the preferred
points nA.

Note that (x; ® x5, ) is complicated from the
topologist’s point of view because, although it is
normal and regular, it is non-Hausdorff,'¥ and is
not even T,! A space with an elementary length is
non-Hausdorff in general (because in a Hausdorff
space one can “distinguish” between any two points
by means of disjoint open sets). By the same token,
the space is not metrizable; but, as we see below, it is
pseudo-metrizable. On the other hand, the topologies
induced on the single particle spaces are Hausdorff
and metrizable.

Possible Classical Trajectories in (x, ® X5, A)WV

Following Zeeman, we take, as a natural definition
of a trajectory in the topological space, a continuous
map of a finite interval in (7, U) into (x; ® x,, 1)V,
where 7 is some invariant parameter and U is the
usual topology. For these nonrelativistic topologies,
the ordinary time will suffice as the parameter. (We
discuss more restrictive definitions of trajectories
below.) Note that this is the inverse of the prescription

1% A continuous function of one space into another is a mapping

of the first (or domain) space into the second (or range) space such
that the inverse map of any open set in the range space is open in
the domain space.

13 (x, ® x5, A)™ is the topological product of the Hausdorff
(X, U) and the non-Hausdorff (x, 1), so that our “‘information loss™
is in the distance between the two particles.
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Fi16. 2. Trajectories in (x; ® x;, D).

giving the continuous functions on (x; ® x;, ) into
a function space with the usual topology.

In general, one can find trajectories in any direction
in the x; ® x, plane. Various of these are shown in
Fig. 2. Trajectory (1) corresponds to both particles’
moving with equal velocity, keeping at a constant
distance from one another. Trajectories of this sort,
in which the particles never change their relative
distance “‘see” the usual topology (on X), and the
particle motion appears quite ordinary. Trajectory
(2) corresponds to two particles viewed in their
center-of-mass system, with the coordinate origin
midway between the particles. The topology “‘seen™
by these trajectories is coarse. Trajectory (3) corre-
sponds to the second particle’s remaining fixed while
the first particle moves. The topology seen by the
moving particle is fine. The topology seen on a tra-
jectory like (4)—with both particles moving—is in
general fine. Note that, except for peculiar cases like
(1), trajectories see non-usual induced topologies.

A representative sampling of the kinds of possible
trajectories [corresponding to (3) in Fig. 2} in x,, for
fixed x,, is given in Fig. 3. Trajectories like that shown
in Fig. 3(7) correspond to particle two’s remaining
fixed while particle one jumps forward over each
preferred line. In another frame, related by a Galilean
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FiG. 3. Trajectories in (x,, 4; O)'1),
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transformation, particle 2 would move quite normally.
(The topology allows one particle to move in an
ordinary fashion, but not both.) Such a trajectory
could be excluded by the requirement that the con-
tinuous map into (x; ® x5, A)' have an inverse in
its range. That is, one would want to be able to tell
at what time (or times) any particular position was
occupied. With this requirement, we immediately
exclude any one-to-one map: That is, the particles
automatically have an extent in space. For example,
“barb” trajectories like (if) (iii) do have an inverse
and are perhaps of some interest.

Trajectory (i) corresponds to particle one’s moving
from left to right (while particle two remains fixed
at the origin). As it approaches a preferred point,
an image of the particle suddenly appears at the pre-
ferred point, and remains there while the particle
itself passes through the point. The image survives
after this for some time, and then it dies. Actually the
images can live as long as one likes, but presumably
the longer-lived ones would be less physical, and one
would therefore want the dynamics to keep the image
lifetimes short (i.e., to pick only such a sub-set of the
trajectories). Trajectory (iif) is the time or parity
reversed counterpart of (ii). Since any barb trajectory
does have a time and/or parity reversed counterpart,
it is evident that, unless the dynamics further limits
the set of trajectories, the theory of a particle which
moves (barb-like) past a fixed particle would be time
reversal and parity invariant. (This applies also, of
course, to all Galilean transformed configurations.)
We see below that there also exist trajectories on this
space with no mirror image and hence an intrinsic
parity violation.

Other interesting barb-like trajectories can be found
by mapping directly into x, X. Some representative
maps into (x, ) are shown in Fig. 4. Trajectory (i)
is the analog of the barbs in x,—except that this time
the trajectory corresponds to two particles moving
toward one another. Whenever x = n4, an image of
each particle is suddenly created, and the two images
persist for some time, after which they die simulta-
neously. Trajectory (ii) also involves barb-like motion
on the part of both particles. In this case, when the
distance between the two particles approaches n4, an
image appears ahead of each particle and moves back-
wards, passing through the parent particle when the
relative coordinate is n4, a short time after which each
image dies. Note that all this is taking place in a
momentum-conserving manner (since the images
always co-exist and move in opposite directions with
the same speed). In general, we find momentum-
conserving trajectories most easily by mapping into
x, X.
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However, barb trajectories are not bicontinuous
between (x, 1)V and (7, U)—Dbicontinuity meaning con-
tinuity in either direction between the two topological
spaces. If we had the usual topology on x (instead of
the A-topology), then “ordinary” trajectories would
be bicontinuous. One might therefore consider bicon-
tinuity to be a reasonable further requirement on a
physical trajectory, thus excluding these barbs [note,
however, that the barbs on x, for fixed x, are in fact
bicontinuous between (x,, 1; x,)*" and (=, U})]. Bicon-
tinuous trajectories on (x, A)V are of the form shown
in Fig. 4(ii). The horizontal line-segments which are
marked C must be taken to include the points that
the line designates, while all other boundary lines do
not do so. Note that bicontinuity has eliminated even
1:n mappings into (x, 1) (where n is a finite number,
or even X,). The bicontinuous mappings are 1: X, in
both directions (where N, is the continuum infinity).
Thus each time, 7, maps into an interval, and the
trajeciories correspond to two particles, each of which
has a minimum spatial extent of }4. The innermost
edges of the two particles are always ni apart, for
some integer n. For the two particles to move at all
(say toward one another) each must simultaneously
extend a “pseudo-pod” of length 4n'A toward the
other. Then each particle pulls its ‘“tail” (again
simultaneously) into the region occupied by its
pseudo-pod. Thus the motion is amoeba-like past the
preferred points.

Note that the space (x, )V is inherently parity
breaking [due to the one-sided < in Eq. (Al), open
sets do not map into open sets under parity reversal].
This fact is apparent in the twin amoeba trajectories:
when particle one is to the left of particle two, then
the left boundary of the former and right boundary
of the latter are included in the respective particles.
The mirror image of this configuration would be with
particle two to the left of particle one, while the former
includes its left and the latter its right boundary—but
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this configuration is not allowed! The reason for this
is that particle one must always inciude its left
boundary, and particle two its right boundary. Thus
a theory of these particles would be intrinsically
parity-breaking. Such trajectories may be of interest
if one wished to embed some of the features of the
weak interactions directly in space-time. It is curious
to note that, contrary to the case for the twin amoeba
trajectories, parity need not be violated for amoeba-
like trajectories in x, , with x, constant. This is because
these amoeba-like particles can be built to include
their boundaries on either side. In three and four
dimensions, we want to preserve rotational and Lorentz
invariance, and we only consider a parity-invariant
topological space.

It is worth mentioning in passing, however, that an
intrinsic parity violation can be built into space-time,
without any elementary length. For example, if one
takes, on a one-particle subspace, the topology defined

by the base B={x:a<x<b} (A3)

for all real a, b, then one finds that the trajectories
are of necessity extended in space, although the ex-
tension can be made as small as one pleases. If one
picks the subset of trajectories that are bicontinuous,
then the particles always include their left-hand, but
not their right-hand boundaries. These trajectories
then have no allowed mirror images. One might
imagine that a theory could be set up in which
neutrino trajectories, for example, were required to
be bicontinuous between a parameter space and the
topological space defined by Eq. (A3), while this
requirement was not made for particles which inter-
act strongly or electromagnetically. The way to break
time-reversal invariance would be, of course, to take
one of these one-sided topologies on the time-axis.

Finally, we mention that our topology implies an
“action at a distance.” For example, imagine two
(twin) amoeboid particles, at rest, on opposite sides of
the galaxy. By moving one particle a small distance,
by means of conventional forces, during which it
periodically emits and retracts pseudopods, we can
cause the “fixed” particle to emit pseudopods simul-
taneously. (The “motion” of this particle never
carries its center more than 34 from its initial position.)
Action at a distance is not surprising in a nonrelativis-
tic theory. We see below, however, that this charac-
teristic can be preserved in a fully relativistic treatment.

2. Nonrelativistic Three-Dimensional Motion

The problem in three-dimensional motion is to
propose a topology that contains an elementary length
but is, at the same time, consistent with both transla-
tional and rotational invariance. The topology we
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wish to study is a natural generalization of the -
topology on the one-dimensional x; ® x,. It is defined
by the base:

BE ., ={X,xta<|X|<b

and all usual open cones in X,

nZ < x| < (n + DA

and all usual open cones in x}, (A4)
where we have kept the same definitions of X, x in
terms of x;, X, as in Eq. (A1), and where q, b are any
positive real numbers, » any positive integer. Note
particularly that in the relative topology of x, the
point x = 0 is open.

We denote this (six-dimensional) topological space
by (x; ® x5, )®. As before, the space is not
Hausdorff, nor T,. The reasons for this pathology
are similar to those for (x; ® x,, 4)¥, namely that, in
taking a non-Hausdorff topology on x, we are giving
up some ability to distinguish distances between the
particles. Again we find that the space is only pseudo-
metrizable. In that the coarsening is radial about
either particle, the topology is rotationally invariant,
and, of course, translationally invariant also.

The topology induced on the three-dimensional
subspace of one particle is again strictly finer than
the usual three-dimensional Euclidean topology. We
can specify it by means of a base. For fixed x,, a base
for the relative topology on x; is the set of usual open
e-spheres, centered about any point in the x; space,
together with each point x, that satisfies |x; — X,| = n4,
n=20,1,2,---. Hence this induced topology is the
usual topology, plus a set of “preferred points,” just
as in the one-dimensional case. In fact, the induced
topology on any straight line, in the x,; plane, running
out of the point x; = x, is the topology of the positive
X, axis in the one-dimensional example.

The (enlarged) set of continuous functions on
(x; ® x5; H)® into (7, U) is easily seen to contain, in
addition to the usual U-continuous functions func-
tions which may be U-discontinuous across the
“preferred” spheres |x; — X,| = ni.

Trajectories in (x; ® x5, A)®

Again we take Zeeman’s definition of a trajectory,
as given above. A representative sampling of allowed
trajectories that have inverses in their range is shown
in Fig. 5. As in (x;, 4; x,)™, so here the usual tra-
jectories are in general excluded. Trajectory (i) is in
fact usual: so long as a particle does not cross a
preferred sphere, its trajectory is entirely ordinary.
Note that, in another frame, particle two, originally
at rest, will also appear to move normally. Trajectory
(if) is a normal barb trajectory, with images appearing
on the preferred spheres. In another frame, particle
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Fi1G. 5. Trajectories in (x,, 4; x3)®.

two would move normally, while particle one would
be barbed. The only situations in which both particles
move normally are those in which the separation is
never equal to an integral number of elementary
lengths. Note also that the x; trajectories cannot be
U-discontinuous in the angular variables about x,.

In this topology, the barbed trajectories do not
intrinsically violate parity invariance. In fact, we have
not been able to find a rotationally invariant way of
incorporating parity violation into a topology. More-
over, since the topology on the time-axis is still usual,
there is no intrinsic violation of time-reversal
invariance.

As in one dimension, the requirement of bicon-
tinuity between the parameter space and (x; ® x,, 2)®
excludes all the barbed trajectories. Bicontinuous
trajectories are easily generated by mapping into x
and X. These have the general form shown in Fig. 6
(in x space). The trajectories correspond to a pair of
amoeboid particles with a minimal radial spread
(along their line of centers) of 41 each. The angular
extent of one particle about another can be made as
small as one pleases. Motion along the line of centers

*3

?

*2

FI16. 6. A bicontinuous trajectory in (x, )3,
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is accomplished by means of simultaneous, radial
pseudo-pods, much as in the one-dimensional case.
The angular motion of one particle about the other
is entirely normal.

3. Four-Dimensional Relativistic Motion

The problem in four dimensions is to embed the
elementary length in a way consistent with full
inhomogeneous Lorentz invariance. This involves
changing the topology along the time as well as the
space axes. This enables one to break time-reversal
invariance; but we choose not to do this: our topology
is parity and time-reversal invariant.

We specify the non-Hausdorff space (x, ® x,, H)©¥
by the base

X, x: all usual open e-spheres in X,

(x2_>_0,n}{gx2<(n+ 1A )
x*<0,nm L —x2<(n+ DA
and all usual . ' } (A5)
open hyperbolic cones in x
Here we use the quadratic form x2 = (x%)? — (x)? —
(x%)? — (x®)2 As before, n is any positive integer. With
this topology, we are sacrificing some knowledge of
the interval between two particle “observations.” It
is clear that we have retained explicit Lorentz invari-
ance in our choice of open sets.

Suppose wefix x%and consider theinduced topologyin
x%space. A base consists in all the usual open e-spheres,
together with all the points lying on the “preferred
hyperboloids” (x; — xp)! = nd,n= —1,0,1,2,---.

Note that, as it stands, the induced topology on the
light cone (x2 = 0) is very coarse. In particular, in a
1 4+ 1 subspace, the only nontrivial open sets on the
light cone would be the four quadrants of the light
cone and the point x; = x,. This means that one
could not separate points on a light ray sent between
observers at x, and x,. In the full four-dimensional
space, however, it is easily seen that x; can distinguish
(by open sets) the direction of a light ray to x;, but
cannot distinguish points on a given ray. The induced
topology on the rest of the topological space
(%1, A; x,)¥—that is, away from the light cone x* = 0
is strictly finer than usual, so that in particular, a light
ray from any point x, aimed away from x, travels over
a very fine topology. This is also the case for general
particle trajectories.

Actually, it is a simple matter to refine the topology
on the light cone as far as one wishes, without essen-
tially changing the induced topology on other sub-
spaces.! In this paper, we leave the question of the

(4) —
B-n@:»z - {

14 Although if the light cone topology were so fine as to be dis-
crete, this would add certain single point open sets to the relative
topologies on lines in x, ® x, that intersect (x; — x5)% == 0.
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desirability of refining the light-cone topology as an
open question.

The induced topology of most physical interest is
on any subspace x{ = x{? (i.e., the two particles are
usually considered at the same time). One sees easily
that this subspace is, for all times 7 = x{¥ = x{®,
simply (x; ® x;, )®®. Thus we have succeeded in
embedding our three-dimensional topological space
in space-time in a relativistically invariant way.

It is clear from the base B = that we have em-
bedded into the space some information about light-
cone structure. If one wished to complete the job of
embedding the light-cone structure into space-time,
one would need to consider the ideas of Zeeman,
according to which the topology is refined as far as
is possible, consistent with the requirement that the
relative topology on any time or space axis is usual.
There seems no reason why this thoroughgoing re-
finement could not be combined with our notion of
embedding an elementary length in a two-particle
subspace. One would simply define the topology on
x; ® xp to be the finest consistent with the usual
topology on X and an interval-coarsened topology on
x, considered along any space or time axis. We do
not consider this idea any further here.

Relativistic Trajectories

For simplicity, we limit ourselves to mapping
functions that are bicontinuous between the space
(x; ® x5, )% and (1, U), where 7 is some invariant
parameter, for example, the proper time of one of the
two particles. This means that in the variable x, with
t, — ty = 0, the trajectories are amoeba-like, just as
we found above in (x; ® x5, )®®. For identical par-
ticles, one would want to require the spread of each
particle along the line connecting them to be the same
in the center-of-mass frame.!® In this frame, the mini-
mum radial spread of each particle is 4.1 It follows
that the minimum radial spread of one particle, in its
rest frame, is 34y, where y = (1 — v¥/c®)~% > I, and
v is the velocity of the center-of-mass frame relative
to this rest frame. Hence the spread of, say, the target
particle in its rest frame increases (without bound)
as the momentum of the incident particle increases.
Again we see that the topology is coupling the par-
ticles at a pre-dynamical level.

Consider now particle one (say) in its rest frame.
Suppose we attach synchronized clocks to different

15 As in the one- and three-dimensional cases, one can find
trajectories for which one particle is not extended in space, while
the other is. This situation would persist in any Lorentz frame.

16 The angular spread of one particle about another can be made
as small as one pleases. Note that the existence of a radial, but not
an angular, spread in one frime ensures the same thing in all frames:

in special relativity, straight lines always transform into straight
lines.
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parts of the (extended) particle. Then, in a moving
frame we find that the particle is Lorentz contracted,
and also that the leading edge is younger (earlier
proper time) than the trailing edge. Of course, this
must happen in any relativistic theory of extended
particles. For example, it is presumably true for the
dressed particles of ordinary field theory, but it is
to be noted that in our case, even the bare particles
in a field theory would in general be extended.

Note that, as mentioned in the one-dimensional
nonrelativistic case, we still have action-at-a-distance
(in the same sense as above), even though the open
set structure is completely Lorentz invariant. Cer-
tainly, as we see in the section on dynamics, we can
write equations of motion on the topology which are
explicitly frame-independent. In this connection, it is
important to remember that there is no contradiction
between the Lorentz group and information transfer
faster than light. Indeed, the Lorentz group admits of
spacelike representation.’” Given (say) any “particle”
of spacelike mass, one can always find Lorentz frames
in which its velocity is infinite. (In our case these
frames are the center-of-mass frames.) This of course
is action-at-a-distance. Although causality is broken
in our theory, the violation is in general only over
intervals of order A.

Finally, we note that the topological space
(x; ® x5, AW is explicitly time-reversal and parity
invariant (in the sense that open sets map into open
sets under these transformations). This can be phrased,
as above, in terms of trajectories and mirror trajec-
tories, etc. An example of a relativisitic topology
which would intrinsically break time-reversal invari-
ance can be defined by the base
$ = {X, x: usual open e-spheres in X,

usual open e-spheres in x for x2 < 0,
and for x%2 2> 0,
AL x2<(n+ DA x>0,
<< (n+ DL x<0,
together with usual open hyperbolic cones}. (A6)

In this space, the trajectories involving spatial extent
for both particles would violate time-reversal invari-
ance, while the trajectories for which one particle was
a point particle would always go over into allowed
time-reversed trajectories. [This is much like the
situation with parity in (x; ® x,, 4)™.]

B. QUANTUM DYNAMICS ON THE
NON-USUAL TOPOLOGIES

Our order of presentation in this section parallels
that of Sec. A. After a brief discussion of the

17 E. Wigner, (Lecture) Seminar on Theoretical Physics (Trieste,
1962), p. 64.
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concept of metrization (explicitly only for the one-
dimensional case), we discuss dynamics first in the
one spatial dimensional case, then in higher dimen-
sions. The metrization for each higher dimensional case
is left to the corresponding section on dynamics.

1. Metrization

To study the dynamics of the particles on these
topologies one must first seek a metric (or pseudo-
metric) on the spaces. In general, each of the spaces
discussed above is in fact only pseudometrizable—
that is, if d(x, y) is the “best distance function”
available on the space (compatible with its topology),'®
then it is always necessary that for some distinct
points x, y, d(x, y) = 0. As in Sec. A, we discuss first
the one-dimensional motion and then work up to
more dimensions.

What is a metric for (x;, 4; x,)®? Since this topo-
logical space contains the continuum of points x,, the
ordinary Euclidean metric is certainly a metric. It is
not, however, the metric which metrizes the space,
because the metric topology would be the usual
topology, whereas (x,, 4; x5)" is strictly finer than
usual. [The metric topology associated with a metric
d(x, y) is that topology defined by the base of open
e-spheres d(x, y) < e.] We want to use a metric which
metrizes the space, because this metric corresponds
to making maximal use of our open sets.'® An e-
parametrized class of metrics with this property is

0 e, -
(>0 |x; — %,| if neither x, nor %,

equals nd + x,,
dxy, %) = { |x, ~ %| + € if either x; or %,
equals nl + x,,

0 whenever x; = %;. (B1)

To see what this class of metrics means physically,
imagine the following thought experiment: An ob-
server riding on the first particle (x;) watches the
second particle (at point x,) as he approaches it.
Because x, is a preferred point, the observer sees the
particle at a distance |x; — x,| + €. As x; approaches
X, the observer sees the distance decreasing to e,
then the distance changes abruptly to zero, and then
to e in the other direction, again abruptly. That is,
the observer finds it impossible to approach the second
particle smoothly.2® This is, of course, essentially the
statement that the continuous functions on the space
into (¢, U) may have U-discontinuities at the preferred
points. In general the induced topology along any

18 That is, the (pseudo-) metric topology should be the A-topology.

1% Since (x; ® xp, A) M is a T;-space, we are guaranteed that it is
metrizable.

%0 This emphasizes the difference between finitely curving a space
{with the usual topology), and changing the topology.
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direction in x, ® x, except (1) and (2) of Fig. 2 is
fine and can be metrized in a similar fashion.
The space (x, ) cannot be metrized. However,
a pseudo-metric which pseudo-metrizes the space is®
d(x, X) = A[x[A] — A[X[A], (B2)
where [x] is the number theory function meaning the
largest integer not greater than x. In particular, the
pseudo-metric distance between two points that lie
within the same preferred interval, say ni < x <
(n + DA, is zero. However, the triangular inequality
is never violated, and d(x, %) is truly a pseudo-metric.
We find it convenient to set up a dynamics which is
separable (in a sense to be explained below) in x, X,
since adequate operators are to hand (difference and
differential operators, respectively). This is only a
very simple way to proceed, but we envisage that a
more thorough-going dynamics, freed from any such
artificial separability constraint, would in general use
some unfamiliar “combination” of differential and
difference operators (such as, e.g., a U-discontinuity
operator, which, when operating on continuous func-
tions, would be different from the null operator in
most directions). We do not discuss a classical me-
chanics on the topology, but, rather, go directly to a
quantum mechanics. At this level we verify that our
simple dynamics seems to describe quantized amoeboid
trajectories.

2. One-Dimensional Quantum Mechanical Motion

We want to build a quantum mechanical description
of the scattering of two particles of momentum and
energy (E;, p,) and (E,, p,), respectively, on the topo-
logical space (x; ® x,, A)V). The easiest way to do
this is to suppose that the wavefunction can be written
as the product
Y(x1%5,1; p1 p2) =V (X)p(x)exp {(i/A)E, + Ep)t}.  (B3)
As ordinarily, we demand that the wavefunctions be
continuous on their respective topologies into the
usual topology. That is, ¥'(X) can be taken in the
usual form

V(X) = exp {—([/)PX}, P=p,+p;, (B4
whereas y(x) is a block-type function.

Our job now is to set up a dynamics on x. First we
must seek a suitable momentum operator on the space.

31 The pseudo-metric function (B1) is not bicontinuous between
its range and domain spaces. (The Euclidean metric is bicontinuous
on the usual topology.) If one wanted to define a distance function,

ﬁ(x, %), (on the usual topology) that was bicontinuous between the
range and domain spaces, one would in fact be forced to use a
multi-valued function, which is essentially an amoeboid trajectory

(see Fig. 4) turned on its side. dtx, X) is not a metric or pseudometric
(since, for example, the triangular inequality cannot be unambig-
nously satisfied—although the violation is always only of order ).
It is curious to note also that had we taken the base for x slightly
diffetently, e.g., (n — 1)A € x < nA, then the space would not even
be pseudo-metrizable.
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With the pseudo-metric discussed above, we clearly
cannot define an ordinary differential operator. The
closest analog to the usual correspondence p —
—ih(d/dx) that we can define on the space is p — —ihD,
where D is the symmetric difference operator, such
that for any continuous function f(x)

YR =/ +H~fx—Al22.  (BS)
This momentum is Hermitian with respect to the
inner product

(5as 09 = p*000I900) dx

=1 S yA0mAp(nd).  (B6)

Note that, with this inner product, the right and left
difference operators are not Hermitian.
If we define a position operator, g, with the diagonal

representation g = Alx/A], (B7)
then we find the following Lie algebra involving p
and ¢q

[%M=W,hﬂ=%w,MQ=Q(N)

where a, proportional to the commutator of p and g,
is an Hermitian averaging operator. It is defined in
the ¢g-diagonal representation by

af(x) = 3f(x + 1) + f(x — D). (B9)
Note that, as A — 0, a — 1 (unity) and we recover the
usual relations of quantum mechanics. In that the
operators p, a are nonlocal (they couple functional
values over a range 21), one expects the particles to
be spread in a way that involves both %fm and A.22
Suppose that |¢") is an eigenket of g with the eigen-
value ¢, and |p’) a ket in the dual (momentum) space
with eigenvalue p’. Then it is easy to show that

' |9 = g) exp {%’- sin™! (%)} (B10a)

g(p) = =t (f: - '2)‘i (B10b)

is a normalization function which guarantees the
unitarity of this transformation function:
P |p" =3 &' [ndynd|p") = d(p' — p"),(Bl1a)

n=—o0

(mA| ndy =f (mA| p)dp(p| nd) = 8,,,.  (Bl1b)

The cut structure of (p’|g¢’) and the evaluation of
these sums are discussed in the Appendix.

One can guarantee that (p’|gq’) is also the wave-
function of a freely moving particle of energy®

where

22 Raising and lowering operators for g are s, = a F iAp/h which
generate the eigenvalues nd, n = - - - —1,0, 41, 2, - - - starting from
q = 0. These are closely related to the right and left difference
operators. With s, one sees immediately that the Lie algebra
(B8) is reducible. In fact, [gq, "i] = ;i;lsi, [s,s_]1=0.

23 We are using the relative coordinate language; remember that

P =¥p,— p3)-
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FiG. 7. Two-particle scattering above the critical energy.

E = p'%[2m, m being the reduced mass, by taking as
the Schrodinger equation

(p¥2myp = —(i22m)D* = Ey.  (B12)
If one adds the time-dependence appropriate to the
difference variable, it is easily seen that, with (essen-
tially) usual assumptions at x = 4 oo, there is overall
probability conservation.

%f:dx (s, [t = 0.

This also holds if a time-independent potential is
added to the Schrédinger equation (B12).

However, it is not possible to define a probability
current that is meaningful to distances of order 4.4
That is, although there is never any probability loss
or gain for regions large compared with A, one cannot
watch the probability flux too carefully.

We turn now to a discussion of the potential-free
motion of the two particles, in particular to a discus-
sion of the function (p’ | ¢"y = v,(g’). For all momenta
|p'l < BfA = p, the particles move past one another
freely, as in the usual topology. Above the critical
energy E, = p%/2m, y (¢’) has an exponential growth
or decay in ¢’. To keep probability conservation,
we retain only the decay (in regions allowing arbi-
trarily large ¢'). For example, imagine two acceler-
ators, at a distance x, from each other, directing beams
of particles of equal energy at one another (we choose
this center-of-mass experiment purely for simplicity).
For clarity, suppose that all ordinary interactions
between the particles are negligible (this is actually
a high-energy approximation). At energies E < E,,
the particles move past one another freely, so the
transmission coefficient is unity. For E > E,, one
finds backward scattering! In fact, the reflection and
transmission coefficients depend on the location of
the accelerators and detection apparatus (assumed
located at the accelerators). The wavefunctions of the
two beams® are shown in Fig. 7. (The continuous
curves of the figure should of course be the step-type
functions appropriate to x. For simplicity we forget

(B13)

24 This sort of difficulty is common to any nonlocal theory. See,
for example, P. Kristenson and C. Meiller, Dan. Mat. Fys. Medd.
27, (1952), and C. Bloch, ibid., 27, (1952).

25 We assume for clarity that the particles of each accelerator are
distinguishable, so that we can talk of individual wavefunctions.

D. ATKINSON AND M. B. HALPERN

this in the subsequent figures.) The absence of expo-
nential tails outside —ix, < x < $x, is the boundary
condition that the detecting apparatus stops any
particle which reaches it. That is, the wavefunction
of each beam decays exponentially after it leaves its
accelerator. This is strikingly analogous to barrier
penetration in ordinary quantum mechanics. Our
situation is like having a strong repulsive potential
of magnitude

2
V= —1—[ n {E sinh™ (1’3);] >E (Bl4)
2m A h

between the two particles. (Actually this “topological
potential” fills the whole of space.) Thus, holding x,
constant but increasing the beam momentum, one
finds fewer and fewer particles from accelerator 1
reaching accelerator 2, and vice versa. The same
thing happens for constant p as the distance of separa-
tion (x,) increases. Thus, in this topology, experiments
at very high energy become “‘configuration dependent”
—observers close to the scattering region may observe
different scattering patterns than more distant ob-
servers. All this is probability conserving, just as in
the case of barrier penetration; that is, any particle
from accelerator 1 not reaching accelerator 2 is
found in the reflected beam detected at 1. Also, be-
cause the “barrier” is a function only of |x; — x,l,
the scattering is momentum conserving, just as in
ordinary quantum mechanics. Note, however, that at
supercritical energies the back-scattering will take
place independent of the distance of separation of the
two particles. (The topology is effectively propagating
information at infinity velocity.) This is action-at-a-
distance again, just as discussed in Sec. A.

We can say a few things qualitatively about scat-
tering in the presence of an ordinary potential [to be
added to Eq. (B12)]. We do not study any particular
potentials (although the Schrodinger difference equa-
tion is in general no more difficult to solve than the
corresponding differential equation), but it is inter-
esting to note the qualitative effect of attractive and
repulsive potentials on the “topological scattering.”
Consider a scattering in which the free wave ap-
proaches an attractive potential step with a somewhat
sub-critical momentum; on the far side of the step the
momentum p = [2m(E — V)]t is larger than on the
near side. If it exceeds p,, the effect is repulsion,
or, more accurately, backward scattering of the attrac-
tive step. This occurs for a small step in ordinary
potential theory, but in our topology, the repulsive
effect is enhanced by taking the attraction stronger!
On the other hand, in the vicinity of a repulsive
potential, the topological scattering is not set in until
E = pY2m + V > p[2m.
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We also note that our quantum mechanics does
indeed seem to describe quantized amoeboid trajec-
tories (rather than quantized barbs or quantized
discrete trajectories). To see this, one tries to construct
the tightest possible wave packets. Clearly, these
cannot be tightened below 4, regardless of how large
a momentum spread is allowed. Moreover, re-
attaching the correct time dependence, we see that
the “particle” is always present (i.e., does not dis-
appear and reappear rapidly, as it would for a
discrete trajectory).

Finally, we mention that the wave equation (B12),
taken together with (B3) and (B4), does not allow the
calculation of a ome-particle wavefunction or wave
equation (say, for x, independent of x,). The topology
has inextricably interwoven the two particles. This
peculiarity will carry over into four dimensions.

3. Three-Dimensional Quantum Mechanical Motion

In the three-dimensional case, we again separate off
the (ordinary) dynamics in X as above, and pseudo-
metrize the difference variable x in analogy with the
one-dimensional situation:

d(x, ) = [0 = x)* + (xa — 23 + (50 — %P,
x, = A[r{A] sin 6 cos ¢ (r, 6, @) are the
Xy = Mr/A]sin 6sin ¢ } spherical polar
x3 = A[r/A] cos 0 coordinates of x,
(B15)
and similarly for the primed quantities.

It turns out that it is not possible to find a set of
three commuting momenta in this space. For example,
define p 1 3 .

Do, = i l:cos 60, X sin 0 66:" 1= Zl:};l, (B16)
where D, is the symmetric difference operator
[f(" + A’ b, ¢P) "_f('z — 40, (P)]/2}'

2 70,
[f(/Z + ]‘, 6’ (P) _f()" 0, ‘P)]/}*

2=0

(B17)
(and similarly for p, p,, taking 0/0r — D, in the usual
spherical polar expressions). Although these operators
are Hermitian with respect to the usual inner product,
they do not commute. Physically, this is because they
are not really generators of orthogonal translations.
(This in turn is because the r translation cannot be
infinitesimal.) On the other hand these “momenta”
commute for very large r and can be thus used to
classify “plane” waves®*® according to a momentum
vector p, at least very far away from the target.

One can build parallel translation operators on the
space in the following manner: Define D, , the trans-

i)af(/‘, b, p) =

26 We see the form these take below.
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Fig. 8. Noncommutativity of Dg,, Dg,. P’ is Dg,D,(P), while
P”is D,, D,,(P).

lation operator in x;, as that operator which, having
changed r by A, readjusts 0, ¢ so that x,, x; are in the
end unchanged.?” One finds that D, depends on x,
and x3;, which means that it fails to commute with
D,,, D, (defined in a similar way). Physically, this
means that, for example, a translation in x; followed
by a translation in x, is not equivalent to the opera-
tions in the opposite order—i.e., the difference space
x is curved. The noncommutativity of D, , D, is
illustrated in Fig. 8.

We take, as the coarsened form of the free
Schrodinger equation on the difference variable

(p = hk),

Dix + —a-sinﬁ 1 —2x+k2x=0
Y7 4%sin 696 o¢* (B18;
where y = »p. Note that, although the energy E =
p*[2m is well defined, the solutions are not (except at
very large r) eigenfunctions of p, . Thus, although we
can classify each wave according to its (asymptotic)
momentum, we cannot, in the interaction region,
resolve E accurately into the sum of the squares of
any momenta. This is a general feature of spaces
with noncommuting momenta. There are of course
other ways of coarsening the Schrodinger equation,
but the qualitative results we extract from the dy-
namics are independent of the particular dynamics
we choose. With essentially the usual boundary con-
ditions on the wavefunction, one can show that overall

probability is conserved with this wave equation.
We turn now to solutions of the wave equation. It is
easy to find spherical waves in the topology. The waves
_ B Gt 2&)} _ 2
2(2) _exp{;i; 7 sin (h , E o
are exact solutions of (B18). Thus, for super-critical

27 These operators do not in general approach the usual transla-
tion operators for large r. That is, for example, far out on the x,
axis, the only allowed translations in x, are very large. Moreover,
these operators are not Hermitian.

ax
00  %sin®0

(B19)
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FIG. 9. Bending of flux-lines in the three-dimensional topological
potential.

momenta, waves trying to approach the scattering

center will tend to be reflected, and waves attempting

to radiate from the center will tend to be reflected back

towards the center.?

Of more physical interest are the analogs of plane
waves on the topology. These are much more difficult
to obtain. Towards this end, we guess a solution to
Eq. (B19) of the form

20,6, @) = 2 exp {ff sin” /)], (B20)

This function solves Eq. (B18) up to terms of order
(A4/2) with the proviso that

[(@d[dB)fO)F = (1 — (1 — 2?).  (B2])
Thus f'is an inverse elliptic function. We content our-
selves with a discussion of fin certain energy ranges.
To second order in Ak, one finds

¥(r, 8, @) ~ exp {‘—; sin~! (k cos 6)), (B22)
r>A

which becomes more and more like a plane wave as
Ak tends to zero. If we loosely define a current® as
proportional to p*Vy — pVyp*, where V is a coar-
sened gradient in spherical coordinates [as in Eq.
(B16)], then one finds that the flux lines corresponding
to the almost plane-wave solution (B22) bend into
the scattering center as shown in Fig. 9, but straighten
out again as usual for very large r. Physically, this is
like having a potential which is attractive for large |x|
and repulsive for small |x|, balanced in such a way
that there is no scattering in the absence of a real
potential. In the presence of such an ordinary poten-
tial, it is clear that scattering would be epnhanced in
the lower partial waves® (since the effective impact
parameter of each flux line is reduced by the
“topological potential”).

%8 This latter situation is reminiscent of a bound-state wave-
function—the binding being done by the topological potential.

2% Recall that probability currents cannot be believed over
distances of order 4.

30 As we see below, the breakup into partial waves is essentially
normal.
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At supercritical energies the solution (B22) is also
valid so long as 0 is in the cone |0 — #| < 1/Ak. In
this range the sin—? is imaginary and we find damping
in this cone. That is, part of the incoming beam is
back-scattered through the angles in this cone. Pre-
sumably this cone of backward (and large angle)
scattering first appears at the critical energy with zero
solid angle along the backward z axis, the solid angle
of the back-scattering increasing as the energy in-
creases. We have not yet been able to calculate the
exact dependence of the solid angle on energy. Finally
we note that, as the energy goes to infinity, the space
becomes more and more opaque to the scattering wave,
which is back-scattered completely—just as in the
one-dimensional case.

At this point in our discussion, it is worth consider-
ing a variant of the present model. In particular,
suppose our non-usual topology extended only out to
a radius (say) b in x space. (This could roughly simu-
late an elementary length which decreased to zero for

hed

FiG. 10. Scattering off an embedded, non-usual topological sphere.

larger particle separations.) In terms of the topological
potential, we would be chopping off most or all of
its long-range attraction, leaving only the repulsive
core. In this case, there would be scattering in the
absence of an ordinary potential; the scattering would
be like that from a soft repulsive sphere of radius b
and hardness proportional to (4k)23! The overall
scattering effect is shown in Fig. 10. We have in mind
a smooth joining of flux tangents at the sphere
boundary, but we do not go into the difficult questions
associated with a rigorous embedding of the non-
usual sphere in the usual topology.

As the scattering energy increases further, the
bending effect becomes more pronounced, until finally,
at the critical energy, a cone of large angle scattering
opens up. (The cone begins purely backward as above,
but subtends a larger solid angle with increasing

energy.) At still higher energies, the embedded sphere

31 We learn more about the structure of this topological potential
in the discussion below on partial wave analysis.
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CENTRIFUGAL BARRIER

(ro)1 b

Fic. 11. High-energy scattering off the centrifugal barrier in the
Ith partial-wave.

becomes totally opaque, large angle-scattering

everything that hits it. As usual for hard-sphere

scattering, there will be a forward diffraction peak

as well at high energies.

We can discuss some other interesting properties of
this model in terms of the individual partial waves.
Because our coarsening of the space is spherically
symmetric, and the angular part of the Schrodinger
equation is unchanged, we can expand the wavefunc-
tion in the usual Legendre polynomials:

o
y(r, 0) = X (21 + 1)P(cos O)y(r). (B23)
i=0
The (free) partial wave equation for x,(2) = »p,(») is

Dix(») + [k — I + D)*1p() = 0. (B24)
If we keep the topology throughout all 2, the asymp-
totic solutions for large + are

1(2) ~ exp {£(iz/A) sin* (Ak)}.

The partial wave equation is very much like the one-
dimensional wave equation discussed above—but this
time with a repulsive centrifugal barrier. It is inter-
esting to discuss the interplay of this barrier with the
topology. For this it is convenient to go to the em-
bedded case. At super-critical energies, the free solu-
tions will look much as in Fig. 11. That is, the wave
(of energy E > E,) propagates freely inward to b, at
which point it senses a repulsive thick spherical shell.
This shell extends into roughly
(ro), = 0 + DE2m(E — E}t  (B26)
at which point the momentum p becomes again less
than critical and the wave propagates freely (again)
until it hits the centrifugal barrier itself—after this it
decays into the barrier as usual. As the energy in-
creases at fixed /, the spherical shell becomes thicker
and higher, the height growing with E essentially as
in Eq. (B14). At fixed energy, the shell is thicker for
smaller /. Thus this effective potential induced on the
topology is both energy-dependent and nonlocal.?
A very curious feature of the shell is its hollow

(B25)

32 In the sense that the partial waves are decoupled, the induced
potential is stili central.
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center, in which resonances (of energy) can easily be
trapped. (Actually, they are trapped between the
inside of the topological potential barrier and the
centrifugal barrier.) The really peculiar thing about
these topological resonances is their long lifetime:
Because the shell is thicker and tougher at higher
energies, the higher mass a resonance has, the longer
it lives! Certainly there is no mechanism in ordinary
dynamics which could produce such a particle.

4. Relativistic Quantum Mechanical Motion

Analogously to the one- and three-dimensional
cases, we pseudo-metrize the difference variable x, in
such a way that the interval x2 is discretized. More-
over, we for the most part content ourselves with
checking that the equations in a 1+ 1 space (one
space and one time dimension) still yield the back-
scattering effect.

A serious difficulty in a naive time quantization is
always that probability may leak in time. For example,
if one quantizes a single particle’s time (¢) with the
“Schrédinger” equation

Dy = Ey, (B27)
then one finds the solutions decaying in time for
E > E,. This is highly undesirable, and we want to
check that it is not occurring in our “difference-
interval” quantization.

We study the scattering of two free bosons of mass
u on (x; ® x5, A)®. To get a suitable wave equation,
we first factor the solution of the Klein—-Gordon
equation® on the usual topology

(O} + O + 2%)9p(x1, ) =0 (B2§)
into a product of a center-of-mass factor exp {iP - X}
and a solution of the equation in the relative co-

ordinate:

(0F + 4 — 19)9(x) = 0, (B29)
where s = (p; + p,)®>. Our main interest is in the
system as it appears to some observer whose time is
ty,1.e,t; = t; = tyand 4, — ¢, = 0. Thus we specialize
for the moment to x2 spacelike. In particular, for
spatial x positive, the equation in the difference vari-
able can be written
19 9¢(c,0) 1 0

~ o == 5 #0,0) + (s — w)g(0, 0) = O,
(B30)

where ¢ = (—x%)? and 6 = tanh-! (x,/x,). We can
separate off the angular dependence by the “partial
wave analysis”

#o,6) =5 [“dn R, (@); R0
g% Jo
_n+3

+[as - -EE R0 =0, @)

38 Qur quadratic form is p? = p} — Ipl® = u?.



386

where a “prime” means differentiation with respect
to ¢. With this form in mind, we are in a position to
write a suitable generalization of the 2 particle Klein-
Gordon equation on our space. We define ¢(x,x,;) as
the product of exp {iPX} and ¢(o, 6) as shown in
(B30), but this time with R, satisfying

DIR,(0) + [(ds — ) — (n* + D)/*IR (o) =

This is of the form of the coarsened partial wave
Schrédinger equations (B24) in three dimensions—
but with

“k~ds—pd I+ 1) ~n'4 %
we have in mind the same procedure for each of the
other three orbits about the light cone; that is, coarsen
only the “partial wave” equations.

As in the three-dimensional case, we find that there
is a critical point in Eq. (B32) for increasing s. In fact
(ignoring for the moment the ““centrifugal barrier”),
the propagation is no longer free for energies s greater

than 5, = A[u® + (ic/ Ay, (B33)

Physically, this means that the aforementioned ob-
server sees at any time f, a system wavefunction
like Fig. 7—i.e., the particles are back-scattering off
each other’s topological potential—just as in the non-
relativistic cases. This is not surprising—as we pointed
out in Sec. A, the topology induced on this observer’s
subspace at any time is exactly (x; ® x,, )®. In
particular, the “bounce” of the two particles is sim-
ultaneous in the center-of-mass frame. In this frame
then the “forces of topological repulsion” propagate
at infinite velocity (although in other frames there is
in general a time lag between the bounce of one
and the bounce of the other). As mentioned in Sec. A,
there is no contradiction between the Lorentz group
and action-at-a-distance. Of course, the *“centrifugal
barrier” introduces the same qualitative features dis-
cussed in the three-dimensional section. Note that the
behavior of the system with 7, is entirely independent
of t; — t,. Thus, our coarsening of the difference
variable has avoided any loss of probability with z,.3¢

0. (B32)

5. Many Free Particles and Interactions

Thus far we have treated only the two-particle
subspace with our non-usual topology. The analog of
our relativistic topology on the n-particle subspace

8 It is curious to note that in the analogous partial-wave equations
inside the light cone, the energy term (}s — u?) appears with the
opposite sign. In that the effective “‘energy” is always negative, there
is no critical point in this region. If there had been a critical energy,
it would have meant that, above this point, the appearance of a
particle in some small spatial region would herald the rapid appear-
ance of the second particle in that region—i.e., the topology would
have simulated some sort of powerful attractive force that drags
one particle after the other. This, however, is nor what happens.
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would be to coarsen the topology on some subset of
difference variables. Requiring that all n(n — 1) dif-
ference variables are coarse would be too restrictive:
For large n, there would be in general only one
available configuration for the particles (collinear)
even at low energies. This precludes a coarsening that
puts all » particles on an equal footing.

In electrodynamics one could certainly, for example,
coarsen the topology between every electron and posi-
tron that were created together. In this way, every
electron (or positron) would have a “memory’—
showing up only when the relative momentum of the
pair was supercritical: If one could obtain, say, the
electron of a pair created on the other side of
the galaxy, then, by raising the electron’s momentum
above critical (relative to the positron), one could
affect the positron. (For example, firing the electron
towards the positron, they would scatter off one
another at a large angle.) In this way, one could trans-
fer information over large distances instantaneously.
Notice that these long distance effects could be avoided
by cutting off the topology at a relativistic radius
analogous to b in the three-dimensional case.

In the case of the recent pair production experiments,
one would obtain enhancement of large angle produc-
tion due to the “topological repulsion” between the
electron and the positron. On the other hand, there
would be no effect on ordinary electron—positron
scattering (unless they were originally created to-
gether). Putting the new topology only between ete™
and not between utu~ could distinguish between these
two situations, leaving the x4 case normal.

Because the new topology is always on a two-
particle subspace, and one-particle wave equations
(say, for x, independent of x,) cannot be found, it
does not seem possible to formulate a one-particle-
equation-of-motion type of field theory, or for that
matter, to write down a Lagrangian in any simple
sense. It seems to us that the simplest way to con-
struct a Lorentz-invariant theory allowing for particle
creation would be in terms of the generalized unitarity
equations of axiomatic field theory.?®> For example,
consider the equations for the retarded functions.
These equations are ordinarily written in terms of
difference variables. One could then use the coarsened
Klein-Gordon operators (discussed above) in the
(appropriate electron-positron) difference variables.
For A, (# — v) one would want to use the solution to
our coarsened difference Klein—-Gordon equation

A (x) ~ f e "”“(") : (B34)

35 See, for example, K. Nishijima, Phys. Rev. 119, 485 (1960);

122, 298 (1961); 124, 255 (1961).
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where ¢, is a counterclockwise circle about ko =
+(k2 4 u?t for x,>0, and a clockwise circle
about ko = —(k* + u?? for x, < O—with the pro-
viso that when a pole meets a branch point of ¢,(x),
it moves onto that side of the cut with exponentially
decreasing behavior. Thus one can begin the usual
iterative solution of these equations. Of course there
will be the usual equal-time ambiguities at each order—
which can be used as usual to specify the “inter-
action.” To obtain the scattering amplitudes from the
retarded functions, one would want to use the usual
formulas, only this time replacing appropriate pairs
of Fourier transform factors by solutions of our
coarsened Klein-Gordon equation. Detailed dis-
cussion of such a program is beyond the scope of the
present work. However, it should be emphasized that,
whatever the interaction chosen, at ultra-high energies
the elastic back-scattering will dominate, in that it will
in general prevent the particles from reaching the
interaction region.
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APPENDIX

The transformation function from configuration to
momentum space [Eq. (B10a)}, can be written

_{( = 2P rE + i(Aphh)
<P l nl) - W%(hz/lz _ pz)i .

This function is defined to be cut for (—0 < p <
—#4/2) and (5/A < p < ), and the first (“physical”)
sheet is specified by

—m < arg {(1 — 2p2[E2)t + i(Ap)/h} < =.

It can be seen easily that, for n > 0, (p [ nA) tends to
zero as p — £+ + ie, € > 0, while it is unbounded
as p—> + 00 — ie. For n <0, the same statements
hold if the sign of € is changed. Hence we make the
rule that, whenever, an integral over —c0 < p < ©
of an integrand involving (p | n1) has to be performed,
we take the integration contour just above/below the
cuts in the p-plane for n>>/<0. With this prescription
it is easy to demonstrate Eqs. (B11).
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The Ehrenfest model has been used to explain the “irreversibility” of thermodynamics and statistical
mechanics. The modification described in this paper allows transitions to occur in both directions between
the two “boxes™ at each step of the model procedure. The equilibrium probability distribution is given in
the form of a finite product, or in an iterated form particularly suitable for machine calculation. The
analysis is illustrated by a simple model of an ionization-recombination process.

HE Ehrenfest model' of heat exchange between

two bodies has been used successfully by Kac? in
discussing the relationship between ‘“irreversibility”
of thermodynamic laws and statistical mechanics. In
this model two boxes represent two bodies in thermal
contact, and their temperatures are represented by a
number of balls contained in each box. At successive
intervals of time, a single ball moves from one box to
the other- according to a probabilistic law: the
probability of transition is simply the ratio of the
present number of balls in the box to the total number
of balls in both boxes. Since the sum of these two

1 P, Ehrenfest and T. Ehrenfest, Z. Physik 8, 311 (1907).
2 M. Kac, Am. Math. Mon., 54, 369 (1947).

ratios is unity, there is always exactly one transition
at each step of the model procedure.

This note is concerned with a slightly more
complicated set of transition probabilities in which
transitions occur both ways between the two boxes at
each step of the model procedure. Furthermore, the
transition probabilities are not necessarily the ratios
of the number of balls in each box. To illustrate, let
P1s(k) be the probability of a ball going from box 1 to
box 2 at a given step of the procedure when there are
exactly k balls in box 1 prior to the transfer. Similarly,
let p5,(k) be the probability of a ball going from box 2
to box 1 at a given step of the procedure when there
are exactly k balls in box 1 (not box 2) prior to the
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complicated set of transition probabilities in which
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are exactly k balls in box 1 (not box 2) prior to the



388

transfer. Thus, box 1 can exhibit a net increase of
m balls (m = —1, 0, 1) after the transfer. Let P(m; k)
be the probability of a net increase of m balls in box 1
when there were exactly & balls in box 1 prior to the
transfer. By simple enumeration, it is found that

P(—1; k) = pa(k) * [1 — pou(K)],
P(0; k) = pyo(k) * pu(k)
+ [1 — pa(B)] - [1 — pauy(K)],
P(1; k) = pau(k) - [1 — pra(K)]. 0y

Now, let U(k; n) be the probability that box 1
contains exactly k balls after » steps of the model
procedure. Again, by simple enumeration, it is found
that U(k; n) must satisfy the recurrence relationship

Uk;n+ 1)=P1; k) Uk — 1;n) + P0; k)
“Ulk;n) + P(—=1;k)- Uk + 1;n). (2)

The appearance of this equation is improved through
the substitution .

Utk; n) = W(k; n) 5]1:'{ pau(j — 1)

11 = pie(j — DYpr() - [1 — pal D],
whence Eq. (2) becomes

[Wk; n + 1) = Wik; )] = pry(k)
[ = pu®NW(k — 15 ) — Wik; m)] + pulk)
L = WKk + L n) — Wk n)]. (4
A general solution of Eq. (4) has not yet been
found; however, in the limit as » — oo (leading to a
steady-state solution), it is clear that W(k; n) — W,
is a solution. This implies that the steady-state
probability of &k balls in box 1 is given by

Hle(J =11 = pis(j — 1]

*Wolpra(3) - 1L — pua( D) (5)
[The dependence upon 7 is omitted since U(k) is the
steady-state solution.] The constant W, must be
chosen so that the sum of the U(k)’s is unity. Notice
also that Eq. (5) can be rewritten as

Uk) = par(k — 1) [1 — pra(k — 1)]
- Utk — Dfpyatk) - [1 — pu(B)]. (6)

This form of the solution is particularly suited to
machine evaluation; in this case the constant W, is
determined through the initial value U(0) necessary
to make the sum of the U(k)’s equal unity.

Finally, as a simple although somewhat artificial
example which leads to an analytic solution consider
the following: let N atoms be contained in a vessel,
and let them be subjected to ionizing radiation. The
probability of ionization in a small time interval
is proportional to the number of un-ionized atoms in
existence at that time; at the same time, however,

©))

Uk) =

EDWIN D. BANTA

recombinations are occurring, and the probability of
a recombination depends upon the number of ions
existing at that time. In general the ionization and
recombination rates are not the same. To relate
this example to the mathematical model, let box 1
represent the ions and let box 2 represent the un-ion-
ized atoms. Now, assume that recombinations occur
faster than ionizations, so that if M < N ions exist at
a given time, it is certain that a recombination
occurs in the previously defined short-time interval.
Clearly, this implies that
pulk) = k|M, pun(k) =1—Kk[N. )
(Remember that k refers to the number of ions in
both definitions.)
Upon substitution of Eqs. (7) into Eq. (5), it is
found that
Uk) =

k

14/0-?1?_11(N+1—i)(M+1—j)/j2

- W(]Z) ("k‘) ®

In addition, it is found that the moment generating
function?® is given by

G(t) = Wo- S UK) - t* = Wy oFy(—=M, N; 15 9), (9)

where ,Fy(, ; ;) is the hypergeometric function?t;

but, by a well-known formula concerning these
functions, it is found that

G(1) = W,,(M:; N) =1

[This last equality follows from the fact that G(1) is
the sum of all the individual probabilities and thus
unity.] Therefore,

G(t) = oF{(—M, —N; 1; z)/(N+M). a1

Again, by well-known formulas, it is easy to find the
mean and variance of k as

k = MN/(M + N),
op = N*M¥[(N + MP(N + M - 1)]. (12

Notice that if M <« N these formulas indicate that the
number of ions is concentrated at the maximum
possible number, M, with very little dispersion. On
the other hand, if N = M, the mean number of ions
and un-ionized atoms are identical; the dispersion
about this mean is inversely proportional to the
number of atoms, N.

(10)

3 H. Cramer, Mathemartical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946).

4 E. T. Whittaker and G. N. Watson, 4 Course in Modern Analysis
(The Macmillan Company, New York, 1944).
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The equilibrium statistical mechanics of the Bardeen—Cooper—Schrieffer model of superconduc-
tivity, as well as that of a wide class of similar models, can be evaluated exactly by the “‘thermodynami-
cally equivalent Hamiltonian” method of Bogoliubov, Zubarev, Tserkovnikov, and Wentzel. It has
been pointed out by Wentzel that this method can be extended to certain weakly nonequilibrium
situations. It is shown here that the method allows an exact evaluation of the nonequilibrium statistical
mechanics of the following situations: (a) temporal evolution of the statistical expectation value of an
observable O(r) whose initial deviation from equilibrium is spatially localized, but not necessarily
small; (b) temporal evolution of the statistical expectation value of an observable O due to a per-
turbation V which is spatially localized, but not necessarily small.

1. INTRODUCTION

IT was shown long ago by Bogoliubov, Zubarev, and
Tserkovnikov! that, for the model Hamiltonian
of the BCS theory? of superconductivity, the equilib-
rium thermodynamic functions can be evaluated
exactly in the thermodynamic (infinite-system) limit.
Their method was subsequently extended by Wentzel®
to a wide class of model Hamiltonians of the general
structure

H =3 (Ep;bis + EZ}bL) + Q71 Y Jk).,k’l’b;).bk'l"
Py kAkA M

Here Q is the volume of the system (which even-
tually — o), k refers to linear momentum as in
the BCS Hamiltonian, each b,, is bilinear in Fermi
or Bose annihilation and creation operators, and 4
takes on a finite (volume-independent) set of values.
It is assumed that

Ek}. = O(l), Jk).,k').' = 0(1)’ (2)

where O(1) denotes a volume-independent quantity.

We briefly review the method of BZT and Wentzel
here, in order to provide a foundation for its general-
ization to nonequilibrium statistical mechanics. The
method relies on a linearization of the interaction
terms b},b,.,- through the identity

blibir = (bhs — e (byr — Mes)
+ (ﬂltlbk’l’ + ﬂk'z'brtz) - nlti.ﬂk’).” 3

1 N. N. Bogoliubov, D. N. Zubarev, and Yu. A. Tserkovnikov,
Dokl. Akad. Nauk SSSR 117, 788 (1957) [English transl.: Soviet
Phys.—Doklady 2, 535 (1957)); this paper is referred to as BZT
herein.

2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

3 G. Wentzel, Phys. Rev. 120, 1572 (1960).

where the 7, are c-number parameters to be deter-
mined. In this way, H is separated into a Hamiltonian
H, quadratic in annihilation and creation operators,
plus a residual Hamiltonian H':

H=H,+H,
Hy=U+ g (Grabxa + G:zbl;.),

H = Q—lk;'%ll-]k).,k'z'(b;;. - ﬂ:z)(bk'z' — Ner) (4
with ’
U=-Q7 Z Jkl,k'l’nlti.nk’).’,
kAKA

Gy = Ep + Q_lk%:,-]k';.',kﬁ:w- &)

The exact thermodynamic potential? of the system
described by H is

F=—f"InTrefE ©)

One now observes that, since Hj is only bilinear in
single-particle annihilation and creation operators®
a, and af (each b,, or b}, is bilinear in the a and a'
operators), H, can be brought into diagonal form

Hy=E, + % ek“’ltak Q)

by a linear® canonical transformation to new Fermi
or Bose operators o,, «f, which have the physical
significance of quasiparticle annihilation and creation-
operators. It is assumed that the bilinear operators
b,,, bf, are constructed from the a,, af operators in

¢ The term —uN is included in H, and the trace in (6) runs over
states belonging to all eigenvalues of the total particle-number N.
Thus F here is the grand potential.

5 In the Fermi case the a, and a] also carry spin indices; these
are suppressed since they do not enter the argument in any essential
way.

¢ Hence tractable.
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such a way that when transformed into the quasi-
particle representation, they have the general structure”

+
byy = cpy + Z Z (A, w9 O

%'e8y k€S
+ .t
+ ety +fic1,k’k"ak'ak")a (8

where the coeflicients ¢, d, e, f are all volume-
independent, and where, for each fixed k, 8, is a set
of a finite, volume-independent number of wave
vectors; e.g., for the BCS Hamiltonian 8, = {k, —k}.
Then, applying statistical-mechanical perturbation
theory to the evaluation of the trace (6) in powers of
the perturbation H ‘, BZT and Wentzel showed that
the contribution of H' to the thermodynamic potential
F is only O(1) (finite in the thermodynamic limit
Q — o with y fixed) to all orders in H” provided that
g, in (3)~(5) is chosen as the thermal average® of by,
in the ensemble of H,:

s = Brado = G +k,§:8 RS W ()
Here ‘
(0)y = Tr (O™ Hoy Tr ¢, (10)

(1

The term O(1) is completely negligible in the thermo-
dynamic limit since —pg~1ln Tr e*Ho, the thermo-
dynamic potential of Hy, is proportional to the volume
Q; for this reason, Wentzel calls H, the ‘“‘thermo-
dynamically equivalent Hamiltonian”. The reason for
the negligibility of the contributions of H' is that with
the choice (9), H' becomes bilinear in fluctuations
by — (brs)o; these fluctuations are negligible under
the conditions (2), (8).? Since H, represents a system
of noninteracting (but temperature-dependent) quasi-
particles, all quasiparticle interactions are contained
in H'. Thus, another way of stating the results is that
quasiparticle interactions are negligible in the thermo-
dynamic limit to all orders in H' provided that the
quasiparticles are defined properly [so that (9) is
satisfied].

The exact thermodynamic equivalence of H, and H
does not extend to arbitrary nonequilibrium situations,
nor is there any reason to expect it to. Nevertheless,
since H' is completely negligible in equilibrium, an
obvious continuity argument indicates that the
effects of H' should be small near equilibrium. This

Then
F = —fInTr e ?H + 0(1).

? This form of the requirements on the bi, is somewhat more
general than that employed by BZT and Wentzel and is more
convenient for our subsequent analysis.

8Since H, is diagonal in the w, ol representation, one has
(aparrdo = (afalede = 0, (afiayrdo = Syalexp e + 1

® We do not give further details of the BZT-Wentzel proof here,
since they are clear from the generalization carried out in Sec. 3.
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was first pointed out by Wentzel,?® who showed that
quasiparticle interactions could be ignored in a
first-order calculation of the momentum transferred
to the system by a weak force center dragged through
the system with constant velocity.

In Secs. 2-4 we consider the slightly different
problem of the time evolution of the statistical
expectation value, (O(r, ), of a position-dependent
observable O(r) due to an initial spatially localized
deviation from equilibrium, (O(r, 0)) — (O(x, 0))eq.,
in the absence of any external driving force. We
prove that in evaluating (O(t, 1)), all effects of H' are
negligible [O(Q1) as  — co]. This result is proved to
all orders in H' and to all orders in the departure from
equilibrium. The conclusion thus goes beyond the
continuity argument which led us to expect the result
to hold for small departures from equilibrium. The
physical reasons for the more general result are not
clearly understood at present, but we emphasize that
the proof only goes through for localized deviations
from equilibrium.

In Sec. 5 we study the temporal evolution of the
statistical expectation value, (O(t)), of an observable
O due to a spatially localized perturbation ¥, given
that the system was in equilibrium before ¥ was turned
on. It is again found that H’ is negligible in the
thermodynamic limit, to all orders in H' and in the
perturbation V. It is emphasized that the spatial
localization of the deviation from equilibrium or of
the external perturbation is quite essential in the
proofs. Also, the operator O in Sec. 5 must not have
any delta-function singularities in its matrix elements
in momentum space. This restriction rules out the
total linear momentum but not the momentum
density; this somewhat paradoxical distinction is
discussed with reference to the orders of noncom-
muting limits.

In Sec. 6 we comment briefly on the dangers of
a perturbation-theoretic proof “to all orders,” and in
Sec. 7 applications and unsolved problems are
suggested.

Before proceeding with the analysis, we wish to
say a few words concerning motivation. It might be
objected that, since our results only apply to Hamil-
tonians of generalized BCS type, they are not
applicable to real physical systems. It is certainly
true that such Hamiltonians are highly simplified
relative to real physical systems. Nevertheless, since
exactly soluble models are even rarer in nonequilib-
rium statistical mechanics than in the equilibrium

19 G, Wentzel, in Werner Heisenberg und die Physik unserer Zeit
(Friederick Vieweg und Sohn, Braunschweig, Germany, 1961),
p. 189. ’
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case, we feel that the solubility of localized non-
equilibrium problems for such Hamiltonians may
prove illuminating. In this connection, it should be
noted that the operator O(r) whose time evolution is
investigated in Secs. 2-4, or the external perturbation
V and observable O in Sec. 5, need not have the
simplified pairing structure typical of the interaction
terms of the generalized BCS Hamiltonian. Further-
more, the validity of our method does not rest on any
assumption of small distortion of the equilibrium
ensemble. We find, instead, that problems involving
large local distortions of the ensemble can be dealt
with by the method of the thermodynamically
equivalent Hamiltonian.

2. INITIAL-VALUE PROBLEM IN

NONEQUILIBRIUM STATISTICAL MECHANICS

We employ Jaynes’ formulation!! of nonequilibrium
statistical mechanics. Suppose that at time ¢ = 0 not
only the mean energy, but also the statistical average
values of certain other observables F;, are known.
Then the statistical expectation value, at time ¢, of
any observable 0 is given byl

Tr [O(t) exp (—ﬂH - ;%F 1):1

Tr exp (—ﬂH -> ljF,)
7
where O(t) is the Heisenberg operator

0(t) = 'HoeH (13)

and the Lagrange multipliers 4; and 8 are determined
by the known initial statistical expectation values
(F/0)) and (H(0)). We are interested in the case that
the only initial data consist of the values of the total
Hamiltonian H and of a position-dependent operator
O(r) = Ofr, 0) at all positions r. Then the expectation
value of O(r) at any other time ¢ is given by!?

, (12

0@) =

Tr {O(r, t)exp [— fH — fd"r’lo(r’)O(r’):l ;

{O(r, 1)) = Tt exp [_ BH _fd3r’lo(r')0(r’)]

(14)
In order to evaluate (14), it is convenient to define

1 E, T. Jaynes, Phys. Rev. 106, 620 (1957); Phys. Rev. 108, 171
(1957); in Statistical Physics: Vol. 3. Brandeis Summer Institute, 1962
(W. A. Benjamin, Inc., New York, 1963). Also unpublished work
of E. T. Jaynes presented in an informal seminar at the University
of Oregon.

12 The extension to the case where more than one such observable
O(r) is known initially, or O(r) is a vector or tensor instead of a
scalar, is obvious (just extend the meaning of r) and is not treated
explicitly.
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a nonequilibrium partition function & and thermo-

dynamic potential W by

E=e¢?" =Trexp [— BH -—fw dtfdsr}.(r, HO(r, t)]
- (15)

Then (O(r,t)) can be expressed as a functional
derivative:
(O(r, 1)) = [6(BW)[SA(r, Dlze,=20matns  (16)

where the subscript denotes that A(r, #) is to be set
equal to Ay(r)d(z) after the differentiation. The multi-
pliers!® 8 and A(r) are determined from the known
initial data (H(0)) and (O(r, 0)):

[0(BW)|0B)ae,1 =208y = C(H(O)),
[B(BW)[8A(x, 0)] e, 110 maiey = (O(x,0)).
We next apply a standard form of statistical me-

chanical perturbation theory to the evaluation of the
trace in (15), obtaining

an

B = (TI‘ e—ﬂH)l:I +§(_1),f°° .. 'fdtl “en dt;
=1 —o
Xf‘ . -fd3r1 s dr My, 1) Ay, ty)

1 81 8j-1
xf dslj dsy - J. ds;
0 0 (1}

X (O(ry, t, — ifis) - - O(ry, t; — iﬁsj»eq],
(18)

where ( )eq denotes a thermal-equilibrium average:

(0Yeq = Tr (0 PH)[Tr ¢ PH, (19)

With the use of (13) and cyclic invariance of the trace,
one finds

E=Eeql + A +A2:+-") (20)
with
Beq = Tre 2 21D
and
A1 = _J- dtfdar}u(l', t) <O(l', O»eq 3
1M N
Az = _J. dS \J:J\dtl dtz
2Jo o
xffd Oy dorad(ry, 1)A(x,, 15)
X <0(l'1 > 0)0(]’2 ’ t2 -t + lﬂS) )eq- (22)

13 8 reduces to 1/kT in the equilibrium limit A¢(r) — 0, but does
not, strictly speaking, have that significance when 4, 7 0.



392

The definition (15) of W then gives

W=W0+W1+W2+"'a
W1=—ﬂ_1A19

.

Wo = _ﬂ-‘llnEeq’
Wy = _ﬂ—l(Az - %Ai),

(23)

Finally, evaluation of the functional derivative in (16)
gives

(O, 1) = (O, Meq
_ % f s f Pri(r)(OF, 00,  + ifs)eq
+ (O(r, t — iBs)O(ry, 0))eq]
+ (O(r, 0))eq f dPrilg(r;){0(xy , 0) Yeq T 0(4),
24)

where O(4%) denotes terms bilinear in A,. Since
{0) — {0Yeq as Ay — O, the neglected terms in (24) are
of second and higher orders in the departure from
equilibrium, i.e., in (0) — (O)eq.

Defining a kernel

K(r, t; 1y, 0) = (O(r, 0))eq{O(ry, 0) Yeq
1

- —21- fo ds[(O(x,, 0)O(r, t + ifs)eq

+ (O(l', t— iﬂ's)O(l'l ] 0))9‘1];

we see that (24) can be written as
<0(l', t)) = <0(r1 0)>eq
+ K0 550, O8e) P+ 0GD. 29

(25)

The function Ay(r,) is to be determined by inversion
of the integral transform

fK(r, 0; 1y, 0)Ag(ry) d°ry = (O(r, 0)) — (O(r, 0))eq,
@7

given the initial (in general nonequilibrium) statistical
expectation value (O(r, 0)) of the observable O(r).
The second term in the expression for X [the only
term if the mean value of O(r) vanishes in equilibrium]
is a space-time correlation function of a type already
familiar in the theory of transport.!* Actuaily, the
transport kernel can be expressed purely in terms of
the true correlation function even in the case that O(r)
has nonzero mean value in thermal equilibrium.

14 See, ¢.g., R. Zwanzig, in Annual Reviews of Physical Chemistry
(Annual Reviews, Inc., Palo Alto, 1965), Vol. 16, pp. 67 fI.
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Defining a true correlation function ( ){3™ by sub-
tracting off the uncorrelated part:

(0(r, HO(T', t))eq” = (O(r, DHO(Y', t'))eq
— (O(r, 1))eqO(r', t'))eq  (28)

and noting that (O(r, t))eq = (O(r, 0))eq by cyclic
invariance of the trace, one can rewrite (25) in the
form

K&, 51,0 = — 1 f ds{(0(e, 00, 1 + iBS)

+ (O(r, t — iBs)O(ry, 0)eq 1. (29)

In conclusion, we note that the expansions (20), (23),
(24) are only useful if the initial deviation from
equilibrium is spatially localized, i.e., of finite (Q-
independent) range. Only in that case can one expect!®
Ao(r) to be of finite range. On the other hand, if
(O(r, 0)) — (O(r, 0))eq Were appreciable throughout
the volume of the system, one expects that the same
would be true of 1,(r). Then the integral over r; would
be proportional to the volume,'® the term O(42)
proportional to Q2, etc. In such a case the expansion
would be useless; to obtain meaningful results one
would have to replace the expansion (20) of the
partition function by a linked-cluster expansion for
the thermodynamic potential W. The analysis then
becomes much more involved; we therefore do not
consider nonlocalized deviations from equilibrium
here.

3. THERMODYNAMIC EQUIVALENCE OF H,
FOR LINEAR TRANSPORT OF
ONE-PARTICLE OBSERVABLES

We now assume that O(r) is a one-particle operator
of the general structure

o@r) = o g Okk'(r)alak'

with volume-independent matrix elements O (r).
We furthermore assume that the canonical trans-
formation from the a4, a' representation to the «, x
representation [in which H, of Eq. (7) is diagonal] is
of the form

(30)

ay = Z (U + vkk’a;’), (31)
k€S

where 8, is the same as in (8), and the u,,- and v, are
volume-independent. We show that, subject to the

15 It is easy to show by Fourier transformation of (27) that A4(r)
will be of finite range if {O(r, 0)) — (O(r, 0))eq is, provided that X
is translationally invariant, i.e., K(r,0;r’,0) = Ky(r — r’). This
restriction on X can probably be weakened without affecting the
conclusion.

16 Since the systems for which the thermodynamically-equivalent
Hamiltonian is useful (e.g., superconductors, superfluids, and
ferromagnets) have long-range order in equilibrium, the kernel X
will in general not vanish as [r — r,| — co.
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assumptions (2), (8), and (31), the contributions of H’
to the transport kernel K [Eq. (25)], evaluated to all
orders in H’, are only O(Q?), hence negligible in the
thermodynamic limit  — co. In other words, H, is
also a thermodynamically equivalent Hamiltonian for
linear transport theory. In order to show this, one
must go beyond the original BZT'-Wentzel® argument,
since that argument only applies to the equilibrium
thermodynamic potential. In evaluating the transport
kernel (25), H' enters in two ways: in the factor
ePH = ¢~ #E+H) occurring in the definition of the
equilibrium average ( )eq, and in the evaluation of
the Heisenberg operators (13). On the other hand,
in the BZT-Wentzel proof for the equilibrium case,
H’ only enters in the factor e=#,

We consider first the term (O(r, 0))eq{O(r; , 0))eq in
K; in this term the Heisenberg operators are evaluated
at t =0, so that H' enters only through e#¥. Our
proof for this term will thus be only a minor extension
of the BZT-Wentzel proof. Using the perturbation
expansion

0 —iff i
e-pH —_ e-—ﬂHo[l +z(_l)af dty ldt“‘ e
J=1 0 0

-1
X f di;H' (1) - H '“”(t;)}, (32)
1}
where
0(0)(0 = eitHoOe—itHo’

(33)

the definition (19) of ( )eq, and cyclic invariance of
the trace, one finds'?

® —i8
(0(r, 0eq = [<0°(r, 0o + 3 (=)' f dty-
§=1 0
xft"‘dr,w'“"(tl)---H"°’(r,)0‘°’(r,0)>o]
0
@ —if ti—1
X [1 + > (—i) dtl---f
j=1 0 0
-1
X dt,<H"°’(t1)---H"“’(t,»o] :

(34)

where (O), is defined by (10). Since H, is bilinear in
single-particle annihilation and creation operators,
one can apply Matsubara’s theorem!® to decompose
the averages ( ), into sums of products of contractions,
each such contraction being the average ( ), of an
operator bilinear in single-particle annihilation and

17 By (13) and (33), O(r,0) = O)(r, 0) = O(r). Nevertheless,
the notation 0'® has been employed in order to make the generali-
zation to the case ¢ 3 0 more transparent.

18 T, Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).
A complete proof of the theorem, in the form which we employ, is
given by C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 (1958).
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creation operators. In this way one sees that

(HO(t) - - HOt)0r, 0))o
= (H'91) - - - H'V(1,))(0"(r, 0)),

+ (HOt) - HO )0, 0));, (35)
where the prime on ( ), implies the omission of all
terms in which O“(r, 0) is self-contracted, such terms
being already included in ( )o( ).

The expression ( ), can be further reduced by
noting that, according to (8) and (9),
bea — M = 2 Z [dkz,k'k"(“;c'“k" - 6k’k”<a1l;’ak'>0)
k'e§, k€S,
. F Cpain Xy +fkl,k’k"a1'a'lt”]' (36)
But since
(oagrdg = ooy Yo = O
€)

by (7), it follows on application of Matsubara’s
theorem that, for any two operators 4 and B,

(A(bez — Mea)Blo = (Aby,;B)o,cross -

(o atndg = Gy (“;'“k')o s

(38)

Here

— t
bia = 2 2 (draptty + gty

k'eS; k"e8, + ot
+ fornr %), (39)

and the subscript “cross” on ( ), implies omission
of all terms in which b, is self-contracted in the
expansion of (4b,,B), according to Matsubara’s
theorem. Introducing the definitions (4) and (30) of
H’ and O(r), and applying the lemma (38) and its
Hermitian conjugate repeatedly, one finds that

(H'(O)(tl) e H’“”(t,)O“”(r, 0))(; = Q—(f+1)
3 > > 'Okk’(r)"kxll,kl’ll’ e

Kk’ kydy---kjAj ky'Ay’ - o ki’ Ag
t+(0) 1(0) S A 1 ()]
X Je,a5p 2, Diray t)by 2, (20 by,
1{0) t ”
X (t)biy1,(t)a Yo s

where the double prime implies omission of all terms
in which either the operator ala,- or any of the »'©®
or b operators is self-contracted.

Finally, noting (39) and (31) and recalling that §,,
for each k, is a finite (volume-independent) set of wave
vectors, we see that each expression ( ); in (40)
vanishes unless not more than j of the (2j 4 2) vectors
ky- kg kyoee k’;, kk' are independent ; the complete
proof is given in the Appendix. Thus, on converting
k-sums to integrals by the prescription

(40)

% — Qm)2Q J' %,
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one obtains only j factors of the volume Q from the
summations, so that!?

H(ty) - - - HO1t)0(x, 0)); = O(Q ). (41)
Finally, substituting (41) into (35) and (35) into (34),
one finds that®®

(O(r, 0))eq = (O(r, 0))y + O(Q7"),  (42)
from which it follows that no error in evaluating the
term (O(r, 0))eq{O(r;, 0))eq in K [Eq. (25)] is made
in the thermodynamic limit if one replaces H by H,.

The proof for the more complicated correlation-
function terms in K can now be constructed by
analogy. By (13), (19), and the cyclic invariance of
the trace, one has

(O(r, t — ifs)O(ry, 0))eq
= (O(r, 0)O(r;, — ¢ + ifis))eq. (43)
Thus it is sufficient to consider correlation functions

of the form (O(r, 0)O(r', t))eq in evaluating (25).
Making use of the formulas

eit(Ho+H') — exp‘ [iftdt'H'(O)(t'):l eitHo’
’ t @4)
e—it(Ho+H:) — e—itHo exp, [_ lf dt’H’(o)(t’):l ,
0

where exp, and exp_ are the positively (ordinary) and
negatively time-ordered exponentials, one finds® with
(19), (13), (33), and (32), and cyclic invariance of the
trace

(0, 00(F", )eq
=[ iy ar,- f Tt HO@) - HO)
0

| j=0 0

x 0, 0)U_()0“(r', 1) U+(t)>0jl

[ S f Tt t"’dtj<H"°’(t1)--~H'“”(tj»o}
0

|_i=0 0
(45)
where

U_(t) = exp_ l:ij:dt’H ’“”(t’):, ,

U.(H) = exp +[— 'J:dt’H"“’(t’):I. (46)

1% This result fails in the exceptional case of a system of bosons
below the Bose-Einstein condensation temperature, since contrac-
tions involving the zero-momentum single-particle state then give
additional factors of the volume. In order to apply the formalism
to such a system, the zero-momentum mode would have to be
eliminated first by methods which are well known, but will not
be discussed here.

20 Note that the denominator of (34) is only O(1) by the BZT-
Wentzel proof, which involves essentially the same arguments as
ours.

21 The j = 0 term is the denominator of (45) is 1, and that in the
numerator is (0'(r, ) U_()O(r’, DU (1)), -
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As in (35), upon applying Matsubara’s theorem and
noting that
U.()U, (1) =1, CO)

one finds that
<H’(0)(11) e H’(O)(tj)o(m(r’ 0) U_(t)O“”(r’, t) U+(t) >o
= H (1) (1)), 00, D)
+ HO (1) HO(1)0 ), OU_()
x 0, HU.(1)), (48)

where the prime on ( ), now implies omission of all
terms in which neither O'O(r,0) nor OO, t) is
connected to operators in U_, U, , or any of the H'®
factors by one or more contractions. When U_ and
U, are expanded, the expression { ), in (48) becomes a
sum of expressions of the form

<H'(0)(tl) e H"‘”(t,)o“”(r, O)H'(O)(t;) e
x H'O(DOV(w, oH O (t) - - - H'(t7));.  (49)
By a derivation paralleling that of (40) one then finds

(49) = Qi+ l+m+2) Z e z [0(1)]<b111')(.(1))b1’c§9/)11' P

fr0)gr(0) F 11(0)g,¢(0)
X bkﬂ-i bkj'if’ak ak'bmuz bm’m’

Tr(0)g7(0) b 11(0) 3, 7(0)
X b?wl bm'ﬂl’aﬂaﬁ'balvl b!h'vl'

X bT'(O)b/(O) ”

AmVm” am vm'/ 0

(50)

where > -+ denotes summation over all (2j +
21 4 2m + 4) k-vectors appearing in { );, [0(1)] is a
product of factors O(r), O,,(r'), and J’s, all of
which are volume-independent, and the inessential
time arguments (which lead only to phase factors) have
been omitted. The double prime on ( ); now implies
omission of all terms in which any &'® or »"® js
self-contracted, as well as the omissions implied by
the single prime in (48).

A further reduction can be made by noting that
contractions in which either ala, or ala, is self-
contracted are included in (50); on the other hand,
contractions in which both ala, and ala, are self-
contracted are excluded by the definition of ( ), in
(48), being already included in (OXr, 0)0O(r’, t)),.
Suppose, e.g., that ala, is self-contracted. Then the
remaining factor (which excludes self-contraction of
ala,) is of the same general structure as (40) with j
replaced by j + / 4+ m. Hence by the previous argu-
ment, it vanishes unless not more than (j + / + m) of
the (2j + 2/ + 2m + 2) vectors k, - - k,, kj - - -k},
Py P PLTUUP @Dy 9y s KK are
independent. Furthermore, (a}a, ), vanishes unless 8,
and 8, overlap, so that k and k' are not independent.
One thus has (j+ /+ m + 1) free k-summations,
giving a factor Q#++™+1, When pre-multiplied by the
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factor Q~U+7+2 in (48), one obtains a negligible
contribution O(Q1).

The only contributions remaining are of the form
( Y3 » where the triple prime denotes omission of
terms in which any 5'® or ", or either of ala,. or
a};ap» , is self-contracted, as well as omission of terms
in which ala, is contracted with ala, leaving no
connection to the other factors in (50). By topological
analysis similar to that employed in proving (41), one
then shows that all expressions ( ), are O(Q#+Hm+1)
or smaller, so that (49), and hence the term ( ), in (48),
are O(Q™). The structures of all contributions to
(Y of O(++™+1) are shown in Fig. 5 in the
Appendix; all other contributions are still smaller.
One thus concludes by (48) and (45) that

(Ox, 0)O(r', t))eq = (Or, 0)Or’, 1)), + O(Q).
(1

Substitution of (51), (43), and (42) into the expres-
sion (25) for the transport kernel K gives

K(l‘, t; rl 3 0) = <0(0)(ra 0) >0 <0(0)(l'1 ’ 0) >0
-1 flds[<0‘°’(r1,0)0‘°’(r, t+ ifs)o
2J0

+ <0(0)(l', t— iﬂS)O(O)(l'l, 0))0]
+ 0(Q™). (52)

Thus, no error is made in the transport kernel K in
the thermodynamic limit (Q — o) if H is replaced by
H, in evaluating K. This is what we wished to prove:
the quasiparticle interaction Hamiltonian H’ has no
effect on linear transport in the thermodynamic limit.

4. GENERALIZATION TO NONLINEAR
TRANSPORT AND TWO-PARTICLE
OBSERVABLES

The terms beyond A, in the expansion (20) lead to
terms in (O(r, t)) which depend in a nonlinear way on
the initial value (O(r, 0)) — (O(r, 0))eq; they become
important when the initial deviation from equilibrium
is not small. Extending (20), (22), and (23) to the next
order, one finds

W; = —ﬂ_l(As —AA; + 1AY), (53)

with

1 1 1 F
A3 = - _J‘ dsJ‘ ds’fj\fdtl dtz dt3
3J0 V1

xJ] d®ry @y dPrad(ry, 6, 12)A(ry, t5)
x (O(ry, 0)0(xy, ty — t, + ifs)

X O(rg, t; — t; + ifis"))eq- 549
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Applying (16) to (23), one finds, with (53) and (54),

(O, 1) = (O(r, 0))eq + (O(r, 1)), + (O, ))s + - - -,
(53)

where ( ), is the linear term of Secs. 2 and 3:

(O(r, ) =fK(r, t;11, OA(r) d’ry,  (56)

and ( ), is the first nonlinear?? correction:

1

O(r, 1)), = —¥O(r, 0)>qu; ds
xf dry dProdo(r)Ag(x,)(O(xy , 0)O(rs, iBs))eq

— (O(r, t)>1fd3r 1Ao(® (0 (xy, 0))eq

1 1
+§ fo dsf ds'ﬂ By Proo(e)Ao(ry)

X [<0(l‘, t)O(l'l ’ lﬂS)O(l’z, iﬁs,)>eq
+ Oy, 0)O(x, t + ifs)O(rs, ifs')eq
+ (O(ry, 0)O(x,, ifs)O(r, t + ifs")deql-

It has already been shown in Sec. 3 that only errors of
order Q! are introduced in evaluating (O(r, O)eq,
(O(r, )O(r', t"))eq, and (O(r, 1)), if H is replaced by
H); hence it only remains to be shown that the same is
true of the triple correlation functions (0OOQO)eq. The
reasoning in Sec. 3 and the Appendix is easily extended
to show that this is, indeed, true. In fact, the reasoning
is easily extended to the general term (O(r, 1)), in
(55), for any finite n; such a term involves n-fold
correlation functions, i.e., n factors of O. Noting that
the product of n O-operators must contain at least
two linkages to H' factors [cf. Fig. 5], one finds that
if all chains®® are of minimum possible length, then
there will be exactly n O-chains and (m — 1) H'-
chains, where n is the number of factors of O, m the
number of factors of H’, an O-chain is one terminated
by labeled sets 8,,, S, as in Figs. 1-5, and an H’-chain
contains no such labeled sets. One thus has (n + m — 1)
free k-summations, giving a factor Q"*”~1. When
pre-multiplied by the factor Q~"*™ coming from the
explicit Q! in each O and H’ factor, one obtains a
contribution of O(Q1). Thus, to all finite orders in 4,
(i.e., in the departure from equilibrium) and in H’, one
concludes that only errors of order Q! are made in
evaluating (O(r, 1)) [Eq. (16)] if H is replaced by H,

(57

22 Being quadratic in A4, { ), is quadratic in the departure from
equilibrium.

23 Qur terminology and reasoning should be clear from reference
to the Appendix; the details of the proof are left to the reader.
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and O(r,t) by O(r,¢) in (15), provided that the
initial deviation from equilibrium,

(0(]‘, 0)) - <0(l', 0)>eq s

is spatially localized.

We have so far taken O(r) to be a single-particle
operator [Eq. (30)]. There are, however, physically
interesting operators which, though labeled by a single
position variable r, are nevertheless two-particle or
several-particle operators, or at least contain portions
which are. One example is the energy (Hamiltonian)
density operator J(r), which is important in heat
transport. Let “U(r) be the two-particle interaction-
density operator, i.e., the contribution of two-particle
interactions to JE(r). Then “U(r) has the general struc-
ture

V) =Q? 3 Cl)klkgksk.(r)a;la;gak.aks (58)

k1kaksks

with volume-independent matrix elements Uy . 1, (r)-
It is easy to see that our proofs still go through for
such an operator; U(r) behaves as the product of two
one-particle operators (30). Thus the only essential
property of O(r) is its locality, together with the
spatial localization of (O(r, 0)) — (O(r, 0))eq .

5. TRANSPORT DUE TO EXTERNAL FIELDS

Our analysis has thus far been restricted to cases in
which the temporal evolution of (O(t)) is due not to
any external field absent in thermal equilibrium, but
instead is a result of the noncommutativity of O with
H together with an initial localized deviation,
(0(0)) — (O(0))eq, from equilibrium. An equally
interesting case is that in which the temporal evolution
of (O(t)) is due to the presence of some perturbation
Hamiltonian V not contained in H. We call V the
“external field”, although in applications it might be
entirely due to internal influences, e.g., fixed impurity
centers in a superconductor. Thus “external” means
merely “not contained in H.” A time-independent
external field will be of the general form

V = Q—l 2 fdsr ka:(l')akak/ ,
[

where V,;(r) is volume-independent.

Let us consider, in particular, the case that V is not
present for ¢ < 0, and is turned on instantaneously at
t = 0. Then for ¢ > 0, the statistical expectation value
(O(t)) of any observable O is given by

(0(®) = Tr [p(0)0()], (60)

where p(0) corresponds to thermal equilibrium in the
absence of V:

(59)

p0) = e PE|Tr e *H, (61)
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and O is propagated for ¢ > 0 with the full Hamiltonian
H+V:

O(t) — eit(H+V)Oe—it(H+V). (62)

Let us make a perturbation expansion of (O(¢)) in
powers of V:

0(1)) = <exp_ I f V) |0t

t
X exp, I:—i J; dt'Veq(t’)]>e
q

= (0(0)eq + OOH + - -, (63)

where
Oy = i fo A(Vealt' = 1, 0ea,  (64)
{ Yeq is defined by (19), and
Oeq(t) = e*HOe ™R, (65)

A further expansion in powers of H’, as in (45), gives
([Veo(t” — 1), Oeq
0 B ti-1
= [Zv) [ -
=0 0 0
X HO@)U_(t — oV Oy — U (¢ — 1), 0])0]
x [ S
=0 0 -
X <Hl(0)(t1) e H'(O)(tj)>0] ,

where all quantities are defined as in (45). Application
of Matsubara’s theorem as in (48) gives

(Vea(t' — 1), OVeq — (VO — 1), O,
- [i(—i)i _lpdtl T 'fn_ld‘KH'(m(tl)' .
i=0 0 0

x HOW)U(t =)V O —)U(¢ 1), 0]>3:I

© —i8 tj—1
X l:z(—i)” dt, - f dt;
(1]

i=0 0

—i8 ti—1

dtl tet dtj
0

(66)

X H( - B, |

where the prime on ( ), implies omission of all terms
in which none of the annihilation and creation
operators in O, U_, U,, or V' are contracted with
those in any of the factors H'()(t,) - - « H'O)(¢)).

In order to proceed with the analysis, it is now
necessary to make definite assumptions about the
form of the operator O whose time evolution is being
investigated. Let us first suppose that O is a single-
particle operator of the same general structure as V,
ie.,

(67)

0 =Q7*Y Oyala, (68)
kk’
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with volume-independent O;; . Then by an analysis
almost identical with that used in proving (51), one
finds that the right-hand side of (67) is O(Q™)
provided that the perturbation V is localized in the
sense that Vi (r) in (59) has finite (Q-independent)
range with respect to some fixed center or with respect
to a finite?* (Q-independent) set of such centers. On
the other hand, it is easy to see® that, subject to the
same conditions

Ve’ — 1), O], = O(1) (69)

the analysis can be extended to all orders in ¥, just as
that in Sec. 4 was extended to all orders in 4,. One
thus concludes that, for localized perturbations V,
(O(t)) can be evaluated with negligible error in the
thermodynamic limit by replacing H by H, in (60)-
(63). The analysis can be generalized to show that the
conclusion is also true for two-particle operators of
the general structure of (58) (with the r dependence
omitted).

On the other hand, our formalism is not easily
extended to the case of nonlocalized perturbations V,
i.e., cases in which Vy,(r) in (59) is of infinite range with
respect to a finite (Q2-independent) set of centers or of
finite range with respect to a volume-proportional set
of scattering centers.2® In such a case, the expansion
(63) becomes useless since successive terms involve
higher and higher powers of Q. To treat such a
situation one would have to use linked-cluster
perturbation theory for the generalized thermodynamic
potential, rather than perturbation theory for the
trace. It is almost certainly not true that for non-
localized perturbations ¥, the quasiparticle-interaction
(H') effects on the evolution of O are negligible to all
orders in V. On the other hand, a continuity argument
suggests that the effects of H' might be small for a V'
which, though nonlocalized, is “small” in some sense.
However, we cannot draw any definite conclusions
about such a case here.

Even for localized V, the effects of H' on the
evolution of all observables O is certainly not
negligible. Consider, e.g., the case

0 =3 O,ala,, (70)
k

where O, is volume-independent. Although this is

formally of the form (68) with Oy = Qb , we

assumed in (68) that Oy, is Q2-independent; thus (70)

is not of the form assumed before, and requires

34 Note that this rules out the case of a nonzero density of
scatterers.

25 Self-contractions of O cancel due to the commutator; otherwise
the left-hand side of (69) would be O(Q).

8 This would be the case for a nonzero density of scatterers.
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separate investigation. One in fact finds that, for O
of the form (70), the right-hand side of (67) is O(1) for
localized perturbations V. On the other hand, it is
easy to see that (69) still holds with O of the form
(70).25 Thus in this case, the contributions of H' to
the time evolution of (O(z)) are of the same order as
those of H,, i.e., the thermodynamically equivalent
Hamiltonian method fails.

An illuminating example is provided by taking O in
(68) to be the momentum-density operator
P() = ¢'O(V/i)p) = Q7 3 ke *)glq,. (71)

kk'

in a free-particle representation. Then one can cal-
culate the temporal evolution of P(r) due to a scattering
center® ¥ exactly in the thermodynamic limit
(Q — o) by ignoring the quasiparticle interactions
H'. As expected physically, the effect of ¥ on P(r) is
O(1) (Q-independent), whereas that of H’ is only
O(Q™"). Suppose, on the other hand, we try to
calculate the temporal evolution of the fofal momentum

P =J.d“rP(r) =3 kala,. (72)
k

Then the effect of H' on (P(t)) is not negligible, being
O(1) just as is the main contribution (the effect of V'
via Hy). This seems somewhat paradoxical, since the
evolution (P(t)) can be calculated indirectly by first
calculating (P(r, t)) and then integrating over r; H' is
negligible in evaluating (P(r, t)). Note, however, that
these two different methods of calculating (P(t))
differ in the order of performing the limit @ — co and
the r-integration. Apparently these two operations
may not be interchanged with impunity. If the exact
(P(r, 1)y — (P(r, 0)) is known to have finite range with
respect to the center of ¥V, then the right answer for
(P(t)) must be obtained by first calculating (P(r, t))
with neglect of H’ in the limit Q — co, and then
integrating over r, since the integral of the O(Q2?)
contribution of H' over a finite range is still O(Q™).

6. INADEQUACIES OF A PROOF
“TO ALL ORDERS”

Just as is the case for all proofs “to all orders,” our
proofs are not rigorous since the following possi-
bilities have not been excluded: (a) the series in the
numerator or denominator of (34), (45), or (66) might
fail to converge, or (b) the effect of H' might be
nonanalytic and hence not admit any such series
expansion. It is, however, reassuring that Bogoliubov
has presented an intricate, but apparently rigorous,

27 This is essentially the case considered by Wentzel (Ref. 10).
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proof® which confirms the conclusions of the original
BZT proof* “to all orders.” Since our proof is almost
identical with the latter, it seems not unreasonable to
expect that its conclusion is also correct.

7. DISCUSSION; SUGGESTED APPLICATIONS;
UNSOLVED PROBLEMS

We have shown that the BZT-Wentzel method of the
“thermodynamically equivalent Hamiltonian™ can be
extended to the following nonequilibrium situations:
(a) temporal evolution of the statistical expectation
value, (O(r,t)), of an observable O(r) due to
an initial deviation from equilibrium, (O(r,?)) —
(O(r, 0)), which is spatially localized but not necessarily
small; (b) temporal evolution of the statistical
expectation value, {O(t)), of an observable O due to a
perturbation V which is spatially localized, but not
necessarily small. In order that the proofs go through,
it is necessary that O(r) and O are “‘well-behaved” in
the sense that their matrix elements do not contain
delta functions in momentum space. It is noted that
this requirement excludes, e.g., the case that O is the
total linear momentum, but does not exclude the
momentum density.

There are a number of interesting problems which
can be investigated with this formalism. Examples
which come to mind immediately are transport of spin,
energy, and current in superconductors and ferro-
magnets. We hope to report on such investigations in
the future.

The more difficult question of the influence of
quasiparticle interactions on nonlocalized transport
ought to be investigated, in view of its importance to
problems of thermal and electrical conductivity. Such
investigations require linked-cluster perturbation ex-
pansions or their equivalent.
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APPENDIX

We wish to show that each expression ( )7 in
(40) vanishes unless not more than j of the 2j 4 2
vectors k, -k, ki -k, kk' are summed over
independently.

Note first that according to (39), (33), and (7),
b\9(¢) differs from b, only by phase factors; thus the
time argument can be ignored in discussing the

28 N. N. Bogoliubov, Physica, Suppl. 26, 1 (1960). A nonrigorous
proof different from that of Ref. 1 was given by N. N. Bogoliubov,
D. N. Zubarev, and Yu. A. Terserkovnikov, Zh. Eksperim. i Teor.
Fiz. 39, 120 (1960) [English transl.: Soviet Phys.—JETP 12, 88
(1961)).
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Fi1G. 1. Topology of nonzero contrac-
tions for the case j = 1.
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a,I and a, are contracted
with different 57" or &

factors.
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a, are contracted
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of a contraction with
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topology of contractions. Now, consider the simplest
case j = 1. If af and a,, are both contracted with &,T,
or both with b, ., ., we get no contribution since the
remaining factor &, ., . or b]’, is not allowed to be
self-contracted according to the definition of ( );.
If af is contracted with, e.g., b, and a,, with b .. ,
then we only get a contribution when 8, overlaps 8,
and 8, overlaps 8, .. But then S, must overlap 8, in
order to get a nonzero contraction of the remaining
two o« and o operators. This situation is illustrated
schematically in Fig. 1; §, and S, are labeled by k&
and k', whereas S, and 8, are unlabeled. It is clear
that only one free k-summation remains, giving a
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single factor Q. Thus, because of the explicit factor

Q-U+D in (40), we get a net O(Q) contribution.
The terms with j > 1 in which 4} and g, are con-

tracted with different b’ or " operators have a similar
structure, denoted by Fig. 2. They differ from Fig. 1

Fi16. 5. Topology of
all  contributions to
{ Yo of order Qiti+m+1
The labels &, &', p, p’
may be permuted sub-
ject to the restrictions
that §; and 8, may not
overlap, and 8, and §,
may not overlap.
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only in that the remaining (2j— 2) b' and &'
operators are paired in order to avoid self-contractions.
The dashed line connecting the two members of each
such pair denotes one contraction between a f§
operator in one b’ or ' and a ' operator in the other;
the other contraction is implied by the overlap of the
circles. There are also nonzero terms with j > 1 in
which af and a,; are contracted with the same b or
b’ factor; in order to .avoid self-contractions of b!’
or b’ factors, these will have the structure shown in
Fig. 3. It is clear that both Fig. 2 and Fig. 3 have j
free k-summations, giving a factor /. When pre-
multiplied by the explicit factor Q¢+ in (40), they
give net contributions of O(Q?).

Finally, there are nonzero contractions for j > 2 in
which there are some chains of longer than optimal
length. All such contractions have fewer than j free
k-summations, and hence give contributions to (40)
which are even smaller than the already-negligible
contributions O(Q™) already considered. An example
is given in Fig. 4.

The topology of all contributions to { ); [see Eq.
(50) and subsequent discussion] of O(Q/+i+™+1) jg
shown in Fig. 5. All other contributions are O(Q++™)
or smaller, due to the presence of chains of greater
than optimal length.
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A group G of local weights is constructed which assigns to closed paths in the square lattice the
enclosed area and the number of turns of the tangent vector (mod 2) to the path. Special cases of this
group have been used previously in explicit evaluations of the partition function for the Ising model in
2-dimensions. Properties of G are examined to cast light on the combinatorial approach to the Ising
problem developed by Kac and Ward, Feynman, and Sherman. It is shown that their method breaks

down in the general case.

1. INTRODUCTION

ET £ denote the two-dimensional square lattice in
the plane with vertices (m, n), where m and n are
integers, and with unit-long-segment edges con-
necting vertices in the horizontal and vertical direc-
tions. By a path, we mean a well-defined sequence of
directed edges in £ touching terminal to initial such
that two consecutive edges are not the same, This

means that a path can never reverse direction at a
point. It can back up, however, provided only that
the initial point of the first edge touches the terminal
point of the second edge (see Fig. 1).

In a recent paper on the Ising model by the author,!
there was constructed a group G of “local” weights for
£ which assigned to a closed path in £ a weight from

1 Glen Baxter, J. Math. Phys. 6, 1015 (1965).
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operators are paired in order to avoid self-contractions.
The dashed line connecting the two members of each
such pair denotes one contraction between a f§
operator in one b’ or ' and a ' operator in the other;
the other contraction is implied by the overlap of the
circles. There are also nonzero terms with j > 1 in
which af and a,; are contracted with the same b or
b’ factor; in order to .avoid self-contractions of b!’
or b’ factors, these will have the structure shown in
Fig. 3. It is clear that both Fig. 2 and Fig. 3 have j
free k-summations, giving a factor /. When pre-
multiplied by the explicit factor Q¢+ in (40), they
give net contributions of O(Q?).

Finally, there are nonzero contractions for j > 2 in
which there are some chains of longer than optimal
length. All such contractions have fewer than j free
k-summations, and hence give contributions to (40)
which are even smaller than the already-negligible
contributions O(Q™) already considered. An example
is given in Fig. 4.

The topology of all contributions to { ); [see Eq.
(50) and subsequent discussion] of O(Q/+i+™+1) jg
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1. INTRODUCTION

ET £ denote the two-dimensional square lattice in
the plane with vertices (m, n), where m and n are
integers, and with unit-long-segment edges con-
necting vertices in the horizontal and vertical direc-
tions. By a path, we mean a well-defined sequence of
directed edges in £ touching terminal to initial such
that two consecutive edges are not the same, This

means that a path can never reverse direction at a
point. It can back up, however, provided only that
the initial point of the first edge touches the terminal
point of the second edge (see Fig. 1).

In a recent paper on the Ising model by the author,!
there was constructed a group G of “local” weights for
£ which assigned to a closed path in £ a weight from

1 Glen Baxter, J. Math. Phys. 6, 1015 (1965).
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Fic. 1. The three path configu-
rations at a lattice point.

which one could determine the change in the argument
of the tangent vector (mod 2) in one traversal of the
path and the number of enclosed squares (mod 2).
These weights were used to evaluate explicitly the
partition function for the two-dimensional Ising model
with a certain imaginary external magnetic field. In
order to evaluate the partition function for the two-
dimensional Ising model with arbitrary external mag-
netic field, one would have to determine for closed
paths the number of enclosed squares in general and
not just mod 2. This raises the question: Can we
construct a weight group G of local weights which
assigns to a path a weight (an element of G) from
which we can recapture the exact number of enclosed
squares? In other words, is area a “global” property
which allows itself to be analyzed “locally "’ Our goal
here is to show that it is.

The area enclosed inside a simple closed noninter-
secting path is very easy to describe. But what is the
area of a path which intersects itself? In Fig. 2, we
have drawn two paths which “enclose” the same two
squares. At first glance it seems clear that any group G
of local weights must assign area weight 2 to both
paths. However, we see in Sec. 2 that, necessarily, the
possible groups G assign area weight 2 to path (a) and
area weight 0 to path (b). That is, the group G which
we construct assigns a positive area weight to a simple
closed path with a clockwise sense and an equal
negative area weight to the same path traversed in the
opposite sense. Figure-eight paths like path (b) of
Fig. 2 are assigned weights which come from the
difference of the “clockwise” and “‘counterclockwise”
portions of the path. Only in the case of area (mod 2)
is the area assigned to path (a) the same as that
assigned to path (b) in Fig. 2.

The comments of the preceding paragraph indicate
difficulty in using the more general weight groups G
to solve the Ising model with nonzero external mag-
netic field. The combinatorial approach to the Ising
problem is based on a “figure-eight” cancellation.
However, since it is not true that the assigned areas
are the same for paths (a) and (b) of Fig. 2, the weights

F1G. 2, Two closed paths enclosing
the same lattice squares.

{a) (b}

BAXTER

do not cancel as desired. In Sec. 4, we discuss the
Ising model with an eye toward understanding the
difficulty just mentioned. As yet, we have been un-
able to find any specific information on the two-
dimensional Ising model with arbitrary external
magnetic field using our general area groups G.

In Sec. 2, we construct the group G of local weights
which assigns to a simple closed path traversed in a
clockwise sense the enclosed area [or enclosed area
(mod r)] and which also assigns to any closed path
the change of the argument of the tangent vector
(mod 2). Properties of this group are examined in
Sec. 3, where we also look at specific examples with
r = 1, 2, 3. We show that the area (mod r) groups G,
are all finite, and that they have the order 8r2. As we
said earlier, some combinatorial aspects of the Ising
problem are discussed in Sec. 4.

2. CONSTRUCTION OF THE GROUP G

Let € be the lattice as described in Sec. 1. For any
path which does not double back on itself at a vertex,
there are three path configurations that are possible
as illustrated in Fig. 1 We assign a local weight &, 8, «
to the one-step motion along the direction shown for
the configurations (i), (ii), (iii), respectively. The
weights for backing up are assigned the inverses of
weights for the forward motion. For any path we
assign a weight as follows:

Let v,,- -, v, be the vertices of the path and let
&, ", «, be the corresponding weights assigned
to the path configuratign at these vertices according
to the above. The weight of the path is then
W= 00y """ &p,.
The question which we posed in the introduction can
now be re-phrased. Can we find a group G (resp. G,)
generated by &, B, and « such that the weight assigned
to any simple closed path traversed in a clockwise
sense gives the enclosed area [resp. area (mod r)] and
the change of the argument of the tangent vector
(mod 2) to the path? To describe the area, we use an
element b (an element of G, if it exists) and to describe
the “twist” of the tangent vector we use an element a
(again an element of G, if it exists). That is, for a
simple closed path the weight assigned should have
the form ab’, where j is the number of enclosed units
of area. Since any closed path can be described in a
variety of manners using different directed edges as

L] LJ
F1G. 3. Two closed paths which
differ only by inclusion or non-

uoI_‘ I&q uQ, u
inclusion of sides from a particular .

square. 1

N~
~——

-
~
’
~
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FiG. 4. The seven positions for
the directed edge of the closed path
as the path leaves the central square.
. T . 2 L)
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the start, it follows that ¢ and b must lie in the center
of G. Also @* = I, but as yet b has no finite order. If
we want simply the enclosed area (mod r) we would
require that b" = I. We propose to find necessary
conditions for the groups G and G,. From these we
find that groups G and G, do actually exist.

Let us look at Fig. 3. There we have shown two
paths which differ only in the fact that one of them,
namely the second, contains one more area unit than
does the other. If there is a group G of weights, then
we can cancel out the common weight associated with
that part of both paths lying between u,; and u, and
deduce the relation bo? = fa®8. Actually, there are
seven relations like this one which can be deduced,
one for each of seven different path pairs correspond-
ing to different positions of u, as shown in Fig. 4.
Adding the obvious condition «* = gb to the others,
we get a list of eight conditions

(@ ba?=fu®f, (e) bad’x = f?,
(b) baf = Ba2&, (f) bai?f = fp4,
(c) bada = fuf, (g) badlu = &,
(d) badf = Bak, (h) ot = ab. 1
These conditions can be simplified to the following
four:
@ =47,
(i) &187'& = o fa,
(iii) bo? = fu?p,
(iv) ot = ab. [#)]
In fact, (i) follows from (a) and (b). From (b) and (c),
it follows that f~1&a = & '«~1f, and from (i) we get
(ii). It is also true that (a)-(h) follow from (i)-(iv). In
fact, (a) and (b) follow from (iii) and (i). Reversing the
steps just above shows that (i), (ii), and (b) implies
(c). Then, (c) and (i) implies (d), etc. Conditions (b)
are thus necessary for the existence of the group G.
The additional relation

W pr=1 €)
will be added to the conditions necessary for the
existence of G,.

Theorem: There exists a group G containing ele-
ments «, 8, & such that (2) is satisfied. If X, = {f", b"}
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F1G. 5. The possible positions for : =
the ending vector for simple paths o I 2 r~l
whose weights will be different
in G,.
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given
vector

is the subgroup of G generated by 8" and ", we take
G, = G/K,.

Proof: A heuristic discussion aids in understanding
the next argument. We are going to think of writing
every element of G in the form (possibly non-uniquely)
of a multiple a’4’ of

B ap B ot (wf7Y = (oms). (@)

The element in (4) has a geometric interpretation. The
term «f~! amounts to a rotation of a vector clockwise
about a point through an angle of 90°. The term g*
amounts to a translation of £ units along the direction
of the directed edge or vector. Thus, (k, m,s) geo-
metrically amounts to a motion from a starting vertex
with a given direction to a new vertex displaced k
units along the original direction, displaced m units
to the right (looking along the original direction),
and rotating by s 90° turns clockwise. Thus, we are
going to identify elements of G with multiples a'b’ of
weights for simple paths starting with a given vector
(directed edge) and ending with another vector. In
the case of G, with condition (v) in addition to (b),
the elements are identified with multiples a'b’ of
weights for simple paths starting with a given vector
and ending with a vector lying in a square of size r
adjacent the original vector (see Fig. 5). The ending
vector of the path occupies one of extreme most line
segments of this square as pictured in Fig. 5 only if
the direction of the ending vector is toward the
central square. There are 4r? ending vectors and 2r
multiples a’b’ so that we find for G, a group that has
8r3 elements.

Let us continue with the heuristics for a moment
longer. Suppose we want the product

(kl s My, 0) ' (k2 s My, S2)’ (5)

where for simplification we have taken the case where
s, = 0. In Fig. 6(a), we have drawn two paths which
represent the combined parts of the two “motions”
(ky, m,,0) and (k,, m,, s,). We have also shown in
Fig. 6(b) a path given by a single term (ky, mj, $5),
which would have the same starting and ending vector.
The path in Fig. 6(b) contains m;k, more area units
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F1G. 6. The composite of two motions along the lattice and a
single motion with the same terminal vector.

(b)

than does the path in Fig. 6(a). Thus, we would

expect a relation

(ky, my, O)(ky, my, S3) = b=™ (ks + kg, my + my, s5).
(6)

By a completely analogous procedure, we can write

three other relations depending on the particular
value of s; .

(kl > My, 1)("2 » My, 32)
S b"umg-l—m.kz(kl - mz, ml + kg, 1 + SQ),
(kl s My, 2)(k2 s Mg, 32)
] bm1k2(k1 bt kz, ml - mz, 2 + SQ),
(kl s My, 3)(k2 s My, Sz)
= bmimatmiba(k, 4 my, my — kg, 3+ 55). ()
Finally, we would expect that
k,m,s) = a(k,m, s — 4). ®)
We now drop the heuristics and define a set of

elements G°: a*b’(k, m, s) which have a multiplication
defined by (6), (7), and (8), and

a'bivk,, my, spa*b’y(ky, my, s5)
= il+i2bjl+“(k1 > My, Sl)(kz s Mo, 52)- (9)

We intend to show that G is a group. According to
(8), we can always reduce the consideration of values
of s between 0 and 3. We have first

I=(0,0,0) (10)
and
(k3 m, 0)“1 = b—mk(_k’ —m, 0)’
(k’ m, l)-‘l = (_m’ k9 —1),
k, m, 2yt = b=k, m, —2),
(k,m, 3y = (m, —k, —3). (11

Finally, we must show associativity, There are exactly
16 different cases to consider according to the values
of s, and s, in the product

(ky, my, s))(ks, mg, s3)(ky, my, 55). (12)

We consider just one such case and leave the remain-
ing 15 to the interested reader. First, (12) can be
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written in the form
bi(-- -,

s 81+ 83 + 83) (13)
in perhaps two different ways according to the different
ways of forming the product in (12). There is no diffi-
culty in seeing that the k& and m terms of (13) are the
same in either case. This is because the general
relations (6), (7), and (8) show with a = b = 1 that
(k, m, 5) can be identified with a geometrical motion
from (0, 0) with direction “up” to (i, k) with a direc-
tion s 90° turns clockwise. Thus, the k and m com-
ponents of (k, m, s) combine in products just as they
would if (k, m, s) were identified with a geometrical
motion or transformation, and transformations are
associative. Thus, we need consider only the two
possible values for ¢ in (13).

Consider for s, = §3 = 1

[(ky, my, Diky, mp, 1)](ks, my, s3). (14)
One can compute (14) to show that it has the form
bm1m3+mzkgbk,(ml+k2)(, ey ree, 24 sa)_ (15)
Also
(ky, my, Dlks, my, D(ks, my, 55)]
can be shown to be equal to
bmama-]—msk,bml(m2+k,)+(m2+k3)(k2—ma)(. s, e, 2 4 ss).

(16)
Comparing the exponents ¢ in (15) and (16) shows that
they are the same. Thus, the associativity condition
is satisfied in this case. In a similar manner, the
associativity condition can be verified in the other
15 cases. We have thus shown that G° is a group.
Next, we show that our desired weight group G can
be taken to be G°. We use the fact that (2) is satisfied
for the terms

o= (0,1, 1),
&=(0, -1, —1), (17)
g=(1,0,0).

To assist in the computation, we note that
ol = (_1’ 0’ _1):

41 = (—1,0,1),
p1=(-1,00).
We have
i oPp=(-1,0-1)1,0,0)=(-1,—1, —1)

= (=1,0,0)0, —1, —1) = 3,
(i) &1 = (=1, 0, 1)(—1, 0, 0)(0, —1, —1)

= b(0, —1, 0)

= (—=1,0, —1)1, 0, 0)(0, 1, 1) = a—fa,

(i)  bo? = B0, 1, 1)(0, 1, 1) = b(—1, 1, 2)
=~ (1’ 07 0)('—13 1’ 2)(19 0’ 0) = ﬂazﬁ’
(iv) ot = (0, 1, 1) = b¥(—1, 1, 2)* = b(0, 0, 4)

= ab.

(18)
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This completes the proof that G can be taken to be G°.
Now, if b" = I, then " = I is consistent with b" = 7
according to (6), (7), and (8). Thus, we can take
G, = G/[{f’, b"}, which is a group of order 83,

3. PROPERTIES OF G AND OF G,

Let N be the subgroup of G of elements of the form
a'tl, i =0, 1, j integral, and let N, = N/{b"}. Some
facts are stated below assuming that the weight
group is G. Analogous resuits hold if G is replaced by
G, and N is replaced by N,.

Fact 1: All closed paths in € are assigned weights
from N. Simple closed paths traversed in a clockwise
sense have a weight ab*, where k is the enclosed area.

Proof: Any closed path with no backward steps can
be generated out of a path surrounding a single square
by successively adding some or all of the edges of
another single square (in general, with the removal of
others). But relations (1) were established so that the
alteration just described would change the interpreta-
tion of the “enclosed” area in just the right way so
that an element of N would result for the weight of the
new path if the old path had a weight which is an
element of N. Of course, the second statement of the
theorem follows in a similar way. To be precise, we
would need to check that the two paths pictured in
Fig. 7 have weights which differ by ab?, and even
more importantly to show that a list of eight conditions
(plus another like that implied by Fig. 7) analogous
to (1) with « replacing &, & replacing « (and 5! re-
placing b) are valid. These latter relations would
arise out of considering counterclockwise motions
around simple closed paths just as we consider clock-
wise motions in Figs. 3 and 4 to establish (1). The
fact that b is replaced by 5~ in these counterclockwise
relations follows from the fact that all of the desired
relations are implied by the assumed (i)(iv). For
example, we can show that from (i) we have fa! =
&f71, and premultiplying ba® = fa?f by this we get
bfo = Gu2B. This latter equality is the counterpart
of (f) in (1). The other counterparts can be obtained
by more or less the same argument.

By means of a rather messy argument, we can now
remove the condition that the closed path have no
backward steps. Basically, we need to show that Fact 1
is valid for closed paths which contain no area. More

FiGg. 7. Two pairs of path segments
which differ only in their motion
y around the central square.

Y| /Yo Yo

(a) (b}
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Fic. 8. A path of one step,
traced out in both directions with
two rotations of 180°.

simply even, it reduces to showing the following. Let
P be a path with no backward steps assumed to be
not closed, and let Q be a path formed from P by
tracing out P, rotating 180°, tracing out P in reverse,
and rotating 180° again. Rotating through 180° in-
volves two forward and one backward steps and can
be carried out in 6 different ways. We must show that
O has a weight from N. Having shown this, we can
then replace the “backward segments” of a closed
path by the same segment traced in reverse (forward
sense) and alter the weight only by a factor from N.
By an inductive argument, we can reduce the problem
further to the case where P contains only one step.
Even so there are 36 cases to consider. In Fig. 8 we
have illustrated one case. The weight assigned to the
path 1-2-3-4-5-6-1is B&a~'fa& 1, which according to
(i) of (2) is the identity. The other 35 cases as well
as the filling in of details is left to the reader.

For the next fact, we start with the assumption that
directions are labeled as in Fig. 9, and that our path
begins at (0, 0) in direction O with the terminal point
of the directed edge at (0, 0). We wish to show the
following.

Fact 2: All paths which start at a given directed
edge and end at another given directed edge have
weights which are elements of the same coset of Nin G.

We remark that it is not really significant that the
path begins in direction state 0, since our weights are
not direction oriented, so we stated Fact 2 quite
generally. Fact 2 sheds some light on the definition of
(k, m, s) given in (4) since (k, m, 5) is defined there to be
the weight of one of the more convenient paths from
one given directed edge to another.

Proof: For the proof of the Fact 2, let A ~ B, where
A and B are elements from G, meaning that 4 = a’b’B
for some i, j. We know from Fact 1 that the weight
w of a closed path which is in £ satisfies w ~ I. Let
P and Q be two paths starting and ending with the

2

Fig. 9. The labelings of directions at

a point. ! 3
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Fic. 10. Two paths starting and
ending with the same directed edges.

same directed edges with weights p and ¢, respectively
(see Fig. 10). If we reverse the path P, we get a new
path whose weight is denoted by A. Similarly, the
reverse of the path Q has a weight denoted by 4. We
take into consideration two closed paths. First, we
take P, then rotate clockwise 180° (a three step pro-
cedure involving a right turn, a step back, and a
right turn), then reverse the path P, and finally rotate
clockwise 180°. For the second path, we take Q,
rotate clockwise 180°, reverse the path P, and finally
rotate clockwise 180°. The weights of these two closed
paths are
prafla-prafla~l,

(19)

The fact that p ~ ¢ is immediate from the fact that
~ is an equivalence relation. This proves the fact.

g oaf o prafla~ 1

Fact 3: Every element of G,/N, can be identified
with a class of paths starting at (0, 0) with direction
state 0 and ending at (m, k), 0 <m, k<r—1, in
direction state s, 0 < s < 3.

We now turn our attention to some explicit cases.
Examples:

n = 1. In this case § = I, b = I and, according to
(2), @ = a1 and a* = a. In this case G, is a cyclic
group of order 8. This is the weight group which
is useful in the combinatorial method for evaluating
the partition function of the two-dimensional Ising
model with zero external magnetic field.? G, assigns
the “index” =1 to any closed path.

n=2. In this case 2= b® =1, and the group
G,/N; is according to Fact 3 a group of order 16. G,
is a group of order 64 whose defining relations are

Bt = I = apip,

ot = ab.
(20)

The author! used this group to evaluate the partition
function for the Ising model in two dimensions with
a particular external magnetic field. The method in-
volves finding via G, the enclosed area (mod 2) of a
closed path. There is figure-eight cancellation in this
case, typified by weights assigned to paths in Fig. 2(a)
and 2(b) which differ only by a factor of a.

o026 = b, ab = &a,

2 M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).
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n = 3. In this case G;/N; has 36 elements associated
with the four directions at each of the nine points in
the diagram of Fig. 5. These elements have the form
Brap1pmpoi(@pty, 0<k, m<2 0<s<3
The group G is of order 216. As yet we have not been
able to connect this group with the two-dimensional
Ising model. In any case, use of the weights in G
would lead to a “modified” enclosed area (mod 3) for
any closed path. Reversing the direction of the path
would give the inverse weighting and hence the nega-
tive area. Figure-eight cancellation, typified by G,
assigning weights to the paths in Fig. 2(a) and 2(b)
which differ only by a factor of g, is absent in this case.
Path 2(a) is assigned weight ab? while Path 2(b) is
assigned weight 1. Unfortunately, the combinatorial
approach to the Ising problem is based in part on
figure-eight cancellation. There are also other diffi-
culties encountered in trying to use the weights in G,
in a combinatorial approach to the Ising problem.
These difficulties are discussed in the next section.

We remark in passing that we have been able to use
the above ideas in evaluating the partition function
for the Kagomé lattice for a particular external mag-
netic field. In the computation one uses the weight
group G, for the triangular lattice. Explicit results will
be presented elsewhere.

4. STRONG COMBINATORIAL IDENTITIES
AND THE ISING MODEL

Beginning with a determinantal identity by Kac
and Ward,? the combinatorial approach to the Ising
problem has been based on what we call a “strong”
combinatorial identity. The best way to describe the
situation is to repeat the identity of Sherman.® A
graph K of n vertices is given in the plane with no
intersecting edges in which every vertex has an even
number of edges touching it. Loops are allowed, and
they are counted twice at the vertex in question in
calculating the number of touching edges. To each
edge i there is assigned an indeterminant d; particular
to that one given edge i. An admissible subgraph K,
of K is a subgraph of X which also has an even number
of edges touching each vertex. To each admissible
subgraph, we assign a product yg of the indeter-
minants d; associated with the edges in K. A closed
path (p) in the graph K is a sequence of directed
connected edges touching terminal to initial in which
no two successive edges are the same and such that
the last edge touches the first edge terminal to initial.
We do not allow backing up. That is, at each vertex
the path continues in the direction of the directed edge

3 S. Sherman, J. Math. Phys. 1, 202 (1960).
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going out of the vertex along another edge. The other
edge must exist by the fact that the graph X is ad-
missible. To each closed path (p) we assign a weight

W(p) = (_ l)k(”)rﬁdis ,

s=1

where 2mk(p) is the change in the argument of the
tangent vector to the path (p), where n(p) is the number
of edges in the path (p), and where the d; are the
indeterminants associated with the successive edges
of the path (p). The Feynman—Sherman identity states
that

S e (3378 an

K¢CK 2{» n(p)

where the summation on the right extends over all
closed paths (p) in K and where the summation on the
left extends over all admissible subgraphs of K. When
L = £ and d; = x (independent of i), the left-hand
side of (21) can be identified with a constant multiple
of the partition function for the Ising model with zero
external magnetic field.

We note how *strong” must be the combinatorial
cancellation in this formula, since we have assigned a
different indeterminant to each edge. Cancellation on
the right can occur only among paths which in total
have the same edges. Thus, for example, if we are
dealing with the lattice of the previous sections, then
paths of the type pictured in Fig. 11, which appear
on the right of (21) but not on the left, must cancel
out on the right. Note that the paths in Fig. 11 cannot
be subdivided into more basic closed paths. The only
possibility for cancellation is that the four paths in
Fig. 11 have weights which cancel in (21). This is
actually the case as is easily seen, since 1/2# times the
change in the argument of the tangent vector k(p) is
1, 0, 1, O, respectively, for all the paths (p) in Fig. 11.

For computing the partition function in the case
of nonzero external magnetic field what is needed is
an analog of (21) which gives on the left the enclosed
“area” of the graph K| in addition to the weighting
xx,- If there were an analog of (21) for the lattice £
using the weight group of the previous sections, i.e.,
a strong combinatorial result, then once again the

(a} (c}

L

e

(b) (d)
Fic. 11. Four closed paths enclosing the same two lattice squares.
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cancellation of the paths in Fig. 11 would be required.
Now, according to the weight group G,the paths in
(@), (b), (c), and (d) are assigned weights x, times
—b% I, —b78, I, respectively. Only the cases b = Iand
b = I give the desired “‘strong™ cancellation. One
might ask, why not change the group G so that the
desired cancellation takes place? But a simple closed
path in £ with clockwise motion would have to be
assigned the weight (—1)bA™*Ild; in any case, and
only this was used to construct G. Thus, we cannot
find in general an analog of (21) giving strong cancel-
lation and providing us with a formula for computing
the partition function of the two-dimension Ising
model with nonzero external magnetic field.

Having disproved the strong combinatorial nature
of the géneral problem, we may now inquire as to how
to proceed. Certainly functional-analytical techniques
will be required. Assuming that the weight groups
constructed in this paper play a role in the solution
we can point out one additional feature. Recall that
the evaluation of the partition function for the lattice
£ with nonzero external magnetic field can, for low
temperatures, be reduced to the evaluation of the
generating function

Z(2) = g(n; mx"a™

for the number g(n; m) of closed graphs in £ of »
sides and having m units of enclosed area. The enclosed
area of a closed graph is defined to be the minimal
area contained inside a set of simple closed paths
whose union is the graph and no two of which have
a side in common. The problem is to evaluate Z(2)
for 2 on the unit circle. If the weight groups G
constructed here play a role in the evaluation, then
one has to evaluate a function which is sym-
metric in 4 and A. This is because the group G disting-
uishes between areas circumscribed clockwise and
those circumscribed counterclockwise, assigning nu-
merically equal areas with opposite sign to the two
senses of traversal. Thus, 7™ and A~™ = A™ should
appear symmetrically in the problem. We suspect that
one should try to evaluate |Z(1)|>. Note that this is
exactly what Kac and Ward evaluated by their method
in the case that 4 = 1. Also, the Feynman-Sherman
identity can be rewritten so as to give Z(1)? simply
by removing the factor  in the exponent on the
right-hand side. Of course, if one can evaluate | Z(1)|?,
then Z(4) can be determined from a Wiener—-Hopf
factorization.
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An elementary derivation of the system of phase factors defining the ray representations (those faithful
to within a phase factor) of the Galilei group is presented. The proof employs the group elements
themselves. In particular, the operation of conjugation (which corresponds to coordinate transformation)
is used extensively to effect the desired result, i.e., in the notation of Levy-Leblond,

u®’, a’, v, R)U(b,a, v, R)

= xexp[idm)@’ * Ry — v'- Ra + bv' « R'Y)] x U(¥’ + b,a’ + Ra + bv,v' + R'v, R'R).

N a classic mathematical paper dealing with arbi-
trary Lie groups, Bargmann'® has shown that the
ray representations of the Galilei group are not all
equivalent to vector representations. In addition,
only those representations which are not equivalent
to vector representations are capable of physical
interpretation.>® Furthermore, a superselection rule
occurs, requiring a well-defined mass for states in
nonrelativistic quantum mechanics.* This paper? pre-
sents an elementary derivation of Bargmann’s result.
Hopefully, the interested physicist will find it easier
to follow than the previous works since the use of
the group elements themselves (instead of their
infinitesimal generators) makes the physical content
more apparent. This approach was originally used by
Wigner in his work on the Poincaré group.® In the
interest of brevity and simplicity, mathematical rigor
has occasionally been sacrificed, particularly in the
continuity arguments. The interested reader may
easily supply additional rigor, by arguments similar
to those presented in Wigner’s paper.5
To state the desired result we adopt the notation
of Levy-Leblond.® An clement of the Galilei group is

denoted
G = (b,a,v, R), ¢))]

where b is the time displacement, a the space trans-
lation, v the pure Galilean transformation, and R
the rotation. The element G transforms x and ¢
(a point in space and a time) into X' = Rx + v¢ + a
and ¢" = ¢t + b. The ray representations obey
U(GHYU(G) = (G, GYU(G'G)
= exp [i(G’, G)IU(G'G), 2

1V. Bargmann, Ann. Math. 89, 1 (1954).

2 E. In6nu and E. P. Wigner, Nuovo Cimento 9, 705 (1952);
M. Hammermesh, Ann. Phys. (N.Y.) 9, 518 (1960).

8 J.-M. Levy-Leblond, J. Math. Phys. 4, 776 (1963).

4 This is the “Bargmann superselection rule” [A. S. Wightman,
in Les Houches 1960 Summer School Proceedings (Hermann & Cie.,

Paris, 1960), pp. 159-226].
5 E. P. Wigner, Ann. Math. 40, 149 (1939).

where U(G) is the unitary operator representing G;
o(G’, G) is the phase factor in question; and £(G’, G)
is a real, continuous function of the parameters
specifying G and G'. We show that for any real
number m, a representation of the covering group of
the Galilei group exists such that

G,GY=(Fm)@ - Rv—vVv :-Ra+byv'-Rv). (3)

[The covering group is simply connected, two-to-one
homomorphic to the Galilei group, and is obtained
by replacing the rotation subgroup with SU(2).]
Except for a possible additional sign ambiguity in
w(G’, G), the result for the Galilei group is the same
as that for the covering group.

Although the desired result [Eq. (3)] follows directly
from the laws of multiplication of the “vector” oper-
ators (accelerations and translations), our proof
requires that we first know their transformation
properties under rotation. Any standard work on
group theory demonstrates that every ray representa-
tion of SU(2) is equivalent to a vector representation.’®
Thus, if R and Q are pure rotations [or, more ac-
curately, pure SU(2) transformations in the covering
group], no phase factor is required in the equation

URU(Q) = URQ). @
The operators of translation must now be adjoined
to this subgroup.

Let us choose translations in one direction, for
example, that of the Z axis. Rotations about the Z axis
leave these translations invariant. But multiplication
in a ray representation could introduce a phase factor
® SO we must write

U(a, HU@DU (e, 2) = w(a, a)U(at), %)
where U(a, Z) represents a rotation about £ through
an angle a and U(aZ) a translation by aZ. Conjugating

8 See, for example, E. P. Wigner, Group Theory (Academic Press
Inc.,, New York, 1959), Chap. 14.
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Eq. (5) with a rotation (8, £) through § rad about the
£ axis, and using Eq. (4), we have

w(a, Qo(B, a) = w(x + B, a). ()
The solution of (6) is w(, a) = exp [ix(a)f], where y
is a function of g, the length of the translation vector.
The representative of a rotation through 2w rad
(about any axis) is +1, so x(a) must be an integer for
all values of a.

Since translations along the Z axis are a one-
parameter subgroup, any representation is equivalent
to a vector representation.! We therefore have
U(a, £)U(a)UYa, 2)
= U(a, £)UFat)UYa, H)U(a, HUGRaDHU Y, 2), (7)
which implies x(3a) + x(3a) = x(a). But x(3a) must
be an integer as well as y(a); therefore, y(a) must be
even. The argument may be repeated any number of
times; since the only number which remains integral
when repeatedly halved is zero, we conclude that
2@ =0, or w(x, a) = 1.

With this result in hand, all translations are un-
ambiguously defined by conjugating the operators of
£ axis translations with the appropriate rotation. Thus,
we define

U(aR%) = U(R)U(a2)U7(R), 8)
where R is any rotation. If there is another rotation
Q such that RZ = QZ, then Q—*RZ = 7 and Eq. (5),
with o = 1, gives

U(Q'R)U(az)UY(Q1R) = U(as).

Repeated use of Eq. (4) shows

URU@)UHR) = UQUE@HUHQ). (9
The operator U(aR¢Z) is therefore well defined. Further-
more, the operators U(aR%) form a vector representa-
tion of the one-parameter subgroup of translations
along RZ, since the translations along Z form such
a representation.

Obviously, everything that has been said of trans-
lations applies equally well to the other subgroup of

“vector” group elements, the pure Galilean trans-
formations. In other words,

U(R)U(a)U-Y(R)=U(Ra), UR)UVU-R)=U(RY),

(10)
for any rotation R and any translation (a) or
acceleration (v).

We have arrived at the crux of the derivation,
determining the phase factors for the products of
translation and acceleration operators. It is conven-
ient to deal with group elements specified by perpen-
dicular vectors first. Let

U@UMU(a) = exp [ip, (a, IU(Y), (1)
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where a and v are mutually perpendicular and each
may represent either a pure Galilean transformation
or a spatial translation. Conjugation of this equation
by U(R), where R is a rotation about a through = rad,
gives

U@)U(—v)U~'(a) = exp [ig, (a, N]U(—V), (12)
by Eq. (10). Multiplying Eqs. (12) and (11), we find

I = exp [2i$, (a, V)]

Of the two roots of this equation, ¢, (a,v) = 7 is
ruled out by the continuity of ¢, in a and the value
¢,(0,v) = 0. Thus ¢, = 0, and any two operators
which are specified by perpendicular vectors commute.

Two operators specified by parallel vectors of the
same type also commute, for they are members of a
one-parameter subgroup. On the other hand, a phase
factor might occur in the mixed product; indeed the
determination of this phase factor is the essence of
the proof. Let

U@U(W)U(—a) = exp [ig)(a, VIUW), (13)

where a and v are now parallel; a is a translation and
v an acceleration. Clearly, we may ‘“rotate” this
equation to the Z axis by conjugation with the appro-
priate rotation operator. Then

U(a2)U(vZ)U(—az) = exp [i(a, V]U(vZ), (14)
where a and v are the lengths of the corresponding
vectors. Therefore ¢, is a function of the lengths of
a and v only; ¢,(a,v) = f(a, v). Substituting f for
¢, and conjugating Eq. (14) with a translation along
the 2 axis, U(b%), yields (after equating exponents)

f(a,v) + f(b,v) = fl(a + b), v]. (15)
The solution of Eq. (15) is f(a, v) = k(v)a, where
k(v) is a real function of v.

By a similar argument k(v) must also be linear.
Multiplying Eq. (14) on the right by U(aZ)U(—v%) and
conjugating the resulting equation with the accelera-
tion U(uZ) and substituting k(v)a for f(v, a) results in

k(v)a + k(u)a = k(v + w)a. (16)
The solution of Eq. (16) is k(v) = mv, where m is any
real number. Thus Eq. (13) becomes
U(ar)U(vii) = exp [im(a - v)]U(vA) U(af)
for any unit vector 7.

The general mixed product may now be constructed
by analyzing the multiplicand operator into perpen-
dicular and parallel components. The result is the
desired one,

U(a)U(v) = exp [im(a - v)]U(W) U(a). (18)

To arrive at the complete result, Eq. (3), we must

17)
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introduce the time displacement operators. It is clear
that a vector representation can be chosen so that if
(b) and (b) are elements of the time displacement
subgroup, then

U@BUp) = U@ + b)), (19)
because this is a one-parameter group. The conjuga-
tion of a time displacement by a rotation must now

be shown to be devoid of a phase factor.
Let

U(a, AUBYUNa, #i) = exp [ig(a, 7, b)] - UB), (20)

where («, /i) stands for a rotation through angle «
about the unit vector 4. Conjugation of this equation
by a rotation through f about 7 leads to

$(a, A, b) + (B, A, b) = S« + B, A, b).
Again the solution is linear,
$(a, A, b) = g(#, b)a. @n

Using this substitution in Eq. (20) and multiplying by
a similar equation in which b’ has replaced 5, gives
(after equating exponents)

g(A, by + g(A, b = g(h, b + b« (22)

Thus g(#, b) = h(A)b, and ¢(a, A, b) = h(A)bo. But, as
noted above, U(#A, 27) = +1, so ¢(#, 2w, b) = 2k,
where k is an integer. Again, this forces A(A) = 0, so

URYULYUYR) = U(b) 23)

for all time displacements b and rotations R.
Using the trick of conjugation by rotation (through
r rad about an axis perpendicular to a) on the equation

U@)U(b)U(—a) = exp [ig(a, H)IUGB),  (24)
where a is any translation, produces
U(—a)U(b)U(a) = exp [if(a, D)IU).  (25)

Multiplying Eq. (24) on the right and Eq. (25) on the
left by U(a) yields
U@)U(b) = exp [ig(a, B)]U(B)U(a),
U(b)U(a) = exp [ig(a, IU@UB).  (26)
Comparison of the above equations shows that
exp [i¢] = exp [—ig], and the continuity of ¢ allows
only the solution ¢(a, b) = 0. This permits us to
define a representative for the combined operations
of space and time translations,
U@@)U(b) = U(b)U(a) = U(G),
where G = (b, a,0, I).
For the conjugation of a time displacement by an
acceleration, the group law gives
UW)UB)U(—v) = exp [id(v, H)]U(b, vb, 0, )
= exp [ig(v, )IUMB)U(vb),

(27

(28)
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where U(v) is again an acceleration, U(¥h) a transla-
tion, and U(b, vb, 0, I) is a combined time and space
translation. Rotating through = rad, this time about
an axis perpendicular to v, we have

U(—wUB)U) = exp [ig(v, BUG)U(—vb).  (29)
Sufficient manipulation of the last two equations
produces

exp [2i¢(v, HIUMWU(b) = U(—vhYUWU(vb)U(b).

(30)

Here the connection with the previous results [Eq.

(18)] becomes apparent. Substituting into the right-
hand side of Eq. (30), we have

exp [2i¢(v, BIUMU(D) = exp [im(—vb - ]UMWYU(b).
@31
Again continuity allows only one solution for ¢,
$(v, b) = (Fm)(—vb - v), (32)
U(v)U(b) = exp [—i(3m)(vb - V]JUB)U(bv)U(¥).
Together with Eq. (18), this suggests defining the

operator U(a, v), which corresponds to the group
element (0, a, v, /), as

Ula, v) = exp [—i(3m)(a - V)]U(a)U(y)

= exp [i(3m)(a - V]UWU(a). (33)
Thus, Eq. (31) takes the simple form
. UwU(b) = UB)U(bv, v). (34)
The final result is now at hand. Defining
U(b, a, v, R) = U(b)U(a, v)U(R), (35)
we may easily check that the desired limits of
U,0,0, )= Up), U@©,2a,0,1)= Ula),
UQ©,0,v,I) = U(v), U(@O,0,0,R) = U(R), (36)

all occur. Thus, the definition is consistent, and all the
multiplications occurring in the definition are free
from phase factors. The product of two operators,
U, a', v/, R’y and U(b, a, v, R), may be easily shown
to be
U, a', v/, RYUb, a, v, R)
= exp [i(3m)@ - R'v — v - R'a + bv' - R'V)]
X Ub+b,a+vb+ Ra, Rv+v,RR). (37
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The electromagnetic radiation emanating from a source immersed in a linear, homogeneous, con-
ducting medium moving with a uniform velocity v with respect to the rest frame of the source distribution
is investigated. It is shown that in the nonrelativistic limit, that is for v/c, and v/c, & 1,where ¢, is
the velocity of light in free space and ¢,, denotes the phase velocity of a wave in the medium considered
at rest, the electromagnetic field intensities can be expressed in terms of a pair of scalar and vector
potentials by specifying a modified Lorentz condition. The time-dependent Green’s function associated
with the hyperbolic partial differential equations satisfied by these potentials is determined explicitly.

L. INTRODUCTION

N view of its relevance to astrophysical and spatial
studies, there has recently been a renewal of
interest in the subject of electrodynamics of moving
material media. Critically reviewed and reformulated
by Tai,»? the fundamental work of Minkowski® and
Sommerfeld* has been used to examine the problem of
electromagnetic radiation in a homogeneous, isotropic
moving medium in the nonrelativistic approximation
case.>® The same problem, but without restrictions
as to the velocity of the medium, was approached by
Tai’ from an operational point of view introduced
originally by Levine and Schwinger,® whereas Lee
and Papas® followed a four-vector covariant formula-
tion. More recently, Tai!® examined the first-order
theory of the electromagnetics of moving anisotropic
media, and Lee and Lo solved for the radiation in a
moving uniaxially anisotropic medium. The afore-
mentioned investigations are restricted to lossless
media and time-harmonic variations of the source
distribution. Collier and Tai,%!® however, have
presented a brief discussion of plane-wave propagation

t Present Address: Bell Telephone Laboratories Inc., Whippany,
N.J.
1 C. T. Tai, Proc. IEEE, 52, 685 (1964).

2 C. T. Tai, University of Michigan, Radiation Laboratory Report
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in lossy media. Lastly, Compton!* has determined the
time-dependent Green’s function for a lossless,
isotropic medium.

The purpose of this paper is to examine the electro-
magnetic radiation resulting from sources of arbitrary
time dependence in a homogeneous, isotropic,
conducting medium of infinite extent. The material is
assumed to be moving at a uniform velocity v with
respect to the rest frame of the source distribution.

Because no solution of this problem could be found
in the literature, it was thought worthwhile to find
the modification of the character of the radiation due
to the presence of conductivity. To avoid excessive
difficulties in the ensuing development, only the
nonrelativistic approximation situation is considered.

It is determined first that the electromagnetic field
intensities referred to the laboratory coordinate
system are expressible in terms of a pair of scalar
and vector potential functions satisfying symmetric
hyperbolic partial differential equations of the second
order with respect to time and the space coordinates.
This is made possible by invoking a generalized
Helmholtz theorem, and specifying a new type of
Lorentz gauge.

Ordinarily, one would solve for the time-dependent
Green’s function associated with the potential
equations by using both time and space Fourier
transformations. Instead of following this classical
approach, however, we introduce an alternative method
which is based on the fact that there exists a relation
between the fundamental solution of a radiation
problem and that of a corresponding Cauchy initial-
value problem. In addition to its being ideally suited
for bona fide initial-value problems, it is believed that
this technique is “‘operationally” easier to apply,
especially when dealing with simple, single partial
differential equations, or small systems of partial

14 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966).
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differential equations of the first order with respect
to time,

II. THE MAXWELL-MINKOWSKI EQUATIONS
FOR A CONDUCTING MEDIUM

Let K and K’ denote two inertial systems in relative
motion. We identify the primed coordinate system as
being at rest with respect to a homogeneous, isotropic,
conducting medium of infinite extent which moves
with a uniform velocity v relative to the laboratory
system K.

As measured by an observer in the laboratory
system, the electromagnetic fields must satisfy
Maxwell’s equations

V x E = —0B/01, (1a)
V x H=0D/ot + J, + J, (1b)
V-D=p,+p, (o)
V-B=0, (1d)

where E, H signify, respectively, the electric and
magnetic field intensities, D, B the electric and
magnetic displacements, p,, J, the free charge and
current densities and, finally, p, J the externally
applied charge and current distribution densities, all
referred to the mks system of units.

Due to the invariance of the fundamental laws of
physics in the light of the special theory of relativity,
Maxwell’s equations in the K’ frame can be written
down as follows:

V' x E' = oB'/at’, (2a)
V x H =oD'or + 3.+ ¥, (2b)
VD =p;+p, (2¢)
V.B =0. (2d)

It is assumed that the constitutive relations in K’ are
given by

D = ¢E, (3a)
B = u'H, (3b)
I =oFE. (3¢)

The electric and magnetic permittivities and the
conductivity are taken to be independent of time and
the space coordinates.

If v is small compared with the speed of light, the
following first-order relativistic transformations apply:

E'=E + v xB, (4a)
D=D+c*xH, (4b)
H=H-vxD, (4c)
B=B—c%xE, (4d)
Jr=J;— p, (4e)
pr=p;— V3. (4f)
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In view of the brevity of the relaxation time, it may be
assumed that the free charge density p, is zero inside
the conducting medium. Bearing this restriction in
mind, by substituting Eqs. (4a)-(4f) into Eqs. (3a)-(3¢)
and neglecting terms of the order of v/c,,, we
obtain the constitutive relationships

D=¢E+ AxH, (5a)
B=pH-AxE, (5b)
J,=0dE+ p'vxH), (5¢c)
pp=ct-J, (5d)

where A = (u'e’ — upeo)V, €, Ho being, respectively,
the electric and magnetic permittivities of free space.
Maxwell’s equations in K assume now the “definite”
form
VxE=—(3/ot}y'H— A x E), (6a)

V x H=(3/0t)(¢'E+ Ax H) + o'(E+ u'vx H) + J,

(6b)

V(E+AxH)y=0dc-(E+ uvx H)+ p,
(6¢)
V.(WH— A xE)=0. (6d)

These expressions, commonly known as the Maxwell-
Minkowski equations, may be rearranged into the
following more convenient form:

D, x E = —(9/0t)u'H,
D, x H = (9/0t)¢E + ¢’'E + o'y'vx H+ J,

(7a)

(7v)
Dy-(e€E)y=¢€u'oc'v-E+p+ A J, (7
D, (WH) =0, (7d)

in which D, represents the differential operator
V — A(0/0¢).

III. SCALAR AND VECTOR POTENTIALS

It is shown in this section that the electromagnetic
field intensities can be given in terms of appropriately
defined scalar and vector potentials satisfying a
generalized Lorentz condition,

In view of the identities

Do'Do p_ 4 F=0, (sa)

Dy x Dy =0, (8b)

which hold for all twice differentiable scalar and
vector functions ¢ and F, a generalized Helmholtz
theorem can be formulated such that for any vector

field C, there exists a scalar field ¢ and a vector field
F, satisfying the equation!?

C =Dy +D, xF. ©)
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On the basis of Eq. (7d) and the above remarks, a
vector potential A is defined by

H = (1/u")Dy x A. 10)

This result, in conjunction with Eq. (7a), suggests that

E = —Dyy — 0A/0t, 1

where y is a suitably chosen scalar potential function.
Substituting these expressions for E and H into the
second of the Maxwell-Minkowski equations, one
finds that

D2A — p'e'(0°A[0r%) — u'c'(A/0D)
=D¢D, - A) — p'o’v x (D, x A)
+ We@[ar(Doy) + wo' Doy — wI. (12)
However, since
v %X (Dy x A) = Dy(v+ A) — (v+ Dg)A — (A + Dy)v

—Ax(Dyxv)=Dyv-A)—v.-VA
and

DA ~ [V? — 2(d/or)A - V]A
v.m > it follows that
[V2 —2(0[0t) A -V — u'€ (02[01?) — u'a’ (9]01)
— u'o'v-V]A = Dy[D,+ A + y'€’ (dy/01)
+ po'y + po'v- Al — 43 (13)
Similarly, from Eqs. (7c) and (11), it can be shown that
Dgy — p'a'v + (Doy) + (Dy — p'a’v) - (0A/01)
=—(p+A-D (14

to first order in v/c

or, since
D}~ [V? — 2(3/0D)A - V]
and, furthermore,
veDyw)=~v:-Vy
to order (v/c, )%
[V2 — 2(8/o)A -V — u'a’v - V]y + (9/0)
X (Dy-A—p'a'v-A)= —(p+ A-D/. (15)

If A and y are chosen to satisfy the generalized
Lorentz condition

D, A + p'eoplot + y'o'y — pa’ve A=0, (16)

it is seen immediately that the potential functions
obey the following partial differential equations:

[V2 — 2(8/0t) A -V — p/€'(0%/0t2) — u'a’(9]01)
—wo'v-VIA= —u'J, (17a)

[V2 — 2(8/0t) A -V — u'€'(0%/0t2) — u'o’(3]01)
— W'Vl = —(1f)p + A-J). (1Tb)

Let us for convenience assume that v = ve,,. This
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condition does not constitute a serious restriction,
since a coordinate transformation of the final result
can be used to treat the more general case. To solve
for the potentials under this assumption, it is custom-
ary to define the time-dependent Green’s function
G(r, tjr', t') as the solution of the equation

[V2 — €u'(0%/012) — u'o’(0/0t) — 2A(0%/0t0z)
— u'a'v(0/02)1G(x, tr', t') = 6(x — ¥')o(¢t — t'),
t>t'; A= |7l (18)

The Green’s function should satisfy the causality
condition; namely, G =0 for ¢t <t'. The electro-
magnetic potentials are given in terms of G in the
following fashion®:

A f) = — JE I, )G, 1), ) dr’ dt', (19a)
4

wr = -1 fE o, ) + A~ 3, )]

X G(r, t/v', ) dr' dt'. (19b)

It has already been established that E and H can be
derived from the potentials [cf. Eqs. (10) and (11)].

IV. RELATION BETWEEN RADIATION AND
INITIAL-VALUE PROBLEMS

Ordinarily, when dealing with a radiation problem,
one determines the time-dependent Green’s function
using a combination of temporal and threefold
spatial Fourier transformations and residue theory.
It is shown here, however, that in certain cases it is
simpler to examine first the associated Cauchy
initial-value problem. This alternative technique is
described briefly in the following two subsections and
is illustrated in Sec. V by exhibiting a solution to the
radiation problem (18).

A. The Riemann Matrix

An elementary solution to the partial differential
equation
Ly(r, 1) = f(r, 1) (20)

is the time-dependent Green’s function G(r, ¢/r’,t")
satisfying the equation

LG, tjr', 1) = 8(r — r')8(t — ') 21)

and the causality condition, as pointed out in the
previous section. On the other hand, if L is considered
to be a second-order partial differential operator with
respect to time, the fundamental solution of the

16 The integration in Eq. (19b) extends over a four-dimensional
Euclidean space containing the space coordinates and time.
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Cauchy initial-value problem

LO(r,t) =0, (22a)
o, ))—p = 0, (22b)
(9]0 (x, )i = &(r, 1), (220
is defined for ¢ > ¢’ by the equation
LH(x, th',t)=0 (23a)
with H satisfying the initial conditions
H}ip =0, (23b)
dH/[ot],_, = 6(xr — 1’). (23¢)
G is related to H as follows'¢:
. 0 , 1<t
G, t/r', t') = {H(r, g, > (24)

It is essential for the development of the new
approach to the solution of the radiation problem that
we formulate the associated Cauchy initial-value
problem as a system of partial differential equations
of the first order with respect to time. Let us therefore
write

(0/0t)u(x, t) = Pu(r, 1),

where, in general, w(r,¢) is the (column) matrix
representation of an n-component vector function,
and P is an n X n matrix whose entries are poly-
nomials in the differential operators with respect to
the spatial coordinates.'” With this problem we
associate the initial condition

u(x, )=y = Uo(r, t). (25b)

It is our intent here to determine a solution u(r, ¢)
which satisfies the initial conditions and depends
continuously on the initial data for > ¢ It is
assumed that the Cauchy problem is well posed so
that the solution is unique and sufficiently differenti-
able.8

The n-fold spatial Fourier transforms are introduced
next:

(25a)

Fou(r, t) = w(s, t) = f e~ sy(r, t) dr, (26a)
E,

Flow(s, t) =u(r, ) =

(zl)nf (s, 1) ds. (26b)
kg E,

The integration is over an n-dimensional Euclidean

18 I, M. Gel’fand and G. E. Shilov, Generalized Functions, trans-
lated by E. Saletan (Academic Press Inc., New York, 1964), Vol.
I, pp. 204-205.

17 In general, P = P(d/dx,, x,, ¢). In the subsequent work, how-
ever, we shall restrict the discussion to homogeneous, linear media
whose characteristic parameters are independent of time.

18V, M. Borok, Am. Math. Soc. Transl. 2, 285 (1957).
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space. Taking the Fourier transform of the system we
obtain
(0/0t)w(s, t) = P(s)w(s, t). (27a)
Note that the Fourier-transformed initial condition
becomes
Feuyr, t') = wys, t). (27b)
We remark here that the problem of the correctness
of the Cauchy problem (22) is equivalent to the
correctness of the problem (27). On the basis of this
remark, a unique solution exists for # > ¢’ and can be
written in the form
w(s, 1) = QCs, £, t)wes, t'), (28)
where
Q(s, t, ') = exp [P(s)(t — 1)]. (29)
A solution of this type is written down by analogy to
the scalar case. The matrix exponential in Eq. (29) is
defined by means of the infinite series

1

=1+ Pt =Pt (30)
ni

This matrix series exists for all P for any fixed value
of ¢, and for all ¢ for any fixed value of P.**

Operating with the inverse Fourier transform on
both sides of Eq. (28), we arrive at

u(r, t) = F7'.w(s, 1)
= [F-Q(s, 1, )] * [F - w(s, t)]
=f R(x, t/r' uy(r', t') dr'.
Ey
The matrix function
R(x, t/r’, t')

E1Y)

= (21)n fE exp [i(r — r') - st + P(s)(t — )] ds

(32)
is known as the Riemann matrix of the initial-value
problem. Its connection with the scalar fundamental
solution H(r, #/r’, t') introduced earlier in this section
is given in Sec. V. The Riemann matrix satisfies the
system

oR/dt = PR (332)
with the initial condition
Rl,_y = 6@ — )L (33b)

Both of these statements are easily verifiable.

B. Sylvester’s Interpolation Formula

It is clear from the preceding subsection that a
significant task for the determination of the Riemann

18 R. Bellman, Introduction to Matrix Analysis (McGraw-Hill

Book Company, Inc., New York, 1960), pp. 159-169.
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matrix is to expand the matrix exponential
Q(s, 1, 1) = exp [P(s)(t — 1))

in a simple form. Towards this goal we now state a
basic property of functions of matrices.

Let Pbe an n x n matrix which can be diagonalized
by means of a similarity transformation, namely,

D = SPS. 34

Furthermore, it is assumed that the eigenvalues
A;,j=1,2,---, n, of Pare distinct. Although these
are serious restrictions, the following result is suffi-
cient for the illustration to be given in the next
section.

If f(A4) and f(P) denote corresponding analytic
scalar and matrix functions, it can be proven that

1) =§ FOIA,. (35)

The constituent idempotent matrices A; are defined
by the expression
A, =S,S (36)

in which e, is obtained from an n X »n null matrix by
replacing the (jj) entry with 1.

One usually needs the eigenvectors of P in order to
find the matrices A;. This is because the A;’s are
defined in terms of S, the matrix whose columns are
the eigenvectors of P. Nevertheless, it is possible to
determine the constituent idempotents directly as
polynomials in P, without knowing the eigenvectors.
Specifically, we have

A, = q,(P). 37
The interpolatory polynomial g,(4) of degree n — 1
in A is given by®

roA— A

g (A = H 2 o
=1 Ay — A,
iFk

Finally, by virtue of Egs. (35) and (37), we obtain

Sylvester’s interpolation formula

(3%)

1P) =§lf<zk)qk(9). (39)

In particular, we write

Q(S, t, tl) — ielhl:ﬁ P(S)(t - t,) - li'] (40)

=1 A, — A
iFk % s

If the characteristic roots of P are not distinct, or P
cannot be diagonalized by a collineatory trans-
formation, the above result no longer applies. For a

20 J. S. Frame, IEEE Spectrum 1, 102 (1964).
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complete discussion of the general case the reader
should consult Refs. 18 and 21.

V. THE SOLUTION FOR THE TIME-DEPENDENT
GREEN’S FUNCTION

Consider the Cauchy problem
[V2 — 'u'(0%0t%) — p'o'(9/0t) — 2A(0%/020¢)
— wa'(0/0n)ly (r,1) =0, (4la)
‘P(l', t)]t:t’ = 0’ (41b)

(9[08)y(r, D]y = g(x, ). (41c)
Its solution can be simplified considerably by the
substitution

D(r, 1) = (x, 1) exp (az + ft).

If the scalars o, B are chosen so that

(42)

VI wao'A(l + vA)
* Hpow) + 2u'e + A?%)
and
g = uw'a’'(1 + vA)
2u'e + A%’

@(r, 1) satisfies the “semicanonical” equation?®?
[V2 — €'u'(02/0r2) — 2A(0?/010z2) + ¢2]P(r, 1) = O

(43a)
with the modified initial conditions

(D(l', t)]t:t’ = 0’ (43b)

©/0H®(x, t)],_, = g(r, ') exp (az + St') = h(r, 1).
(43c)

In Eq. (43a), g2 = p'€'f? + 2Aaf — o

We now apply the notions and results of the
previous section to the Cauchy problem for the
scalar function Of(r, ). First, we convert it into a
system of two first-order partial differential equations
with respect to time by defining

u
Uy =®, uy= 003, u= [ 1]. (44)
Us
We may therefore write

(8/30)u(x, t) = Pu(r, t), (45)

where

0 1
P= .
va + Pwe —QA[p'XO| 32)]

21 F, R. Gantmacher, The Theory of Matrices, translated by
K. A. Hirsch (Chelsea Publishing Company, New York, 1959),
Vol. 1, pp. 89-129.

22 The second-order partial differential equation would be in the
‘“‘canonical” form if the term involving the mixed derivatives with
respect to z and ¢ were absent. See R. Courant and D. Hilbert,
Methods of Mathematical Physics (Interscience Publishers, Inc.,
New York, 1962), Vol. II, pp. 180-184.
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A threefold spatial Fourier transformation yields the
relation

(0/8)w(s, t) = P(s)w(s, t) (46)

in which

1 ]
_(2A/1u,€,)isz ’
s*=s2 + sZ+ si-
A solution of the characteristic equation
det [P(s)t — Al =0

P(s) =

(47)
results in
Ao = (—wg % iw))t, (48)

where

wo = (Afp'e)is,,

o = (wey st + s} + i1+ A%ue) ~ g1
for the eigenvalues of P(s)z. The interpolatory poly-
nomial is given by
Aoy
12 - }*1

A—14
Z= 2 11+
q(4) /11—/128

. -
= e’“’"t(l SIn oyt + w, 30 DL cos wlt). (49)
oyt w,

Hence, by Eq. (40),

QG 1, 1) = e-wof[ﬂ‘—‘"—l—’ P(s)

wy
+ (wo S0 OST 4 os wlf)l] (50)
(]
in which 7 = ¢ — ¢,

By reason of the definitions in Eq. (44) and the fact
that we are involved with a second-order differential
equation [cf. Eq. (43)] in this particular discussion, we
need only be concerned with the (12) entry of Q’, viz.,

(Q)re = €™ (sin wy7/wy). (5D
The corresponding term in the Riemann matrix is
found by taking the inverse Fourier transform.
Thus,??

(Ryz = F7 +(Q)ye
1 f £is ) (e—o)of M) ds (52a)
Es

~ @y o,

or, more explicitly,

’ — _1___ iR
(R =5 La"

ity SID Ur(sh + 52 + s2/b® — g*)t
X (e 2 2 21,2 ok ) ds,
u(sa:+sv+sz/b _'q)

(52b)

23 Q’ and R’ are used in connection with the scalar function
@(r, £). The corresponding unprimed quantities are referred to
p(r, 7).
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where the following abbreviations are used:
u=@Weyt, b=010+ Aueyt, R=r—r.

Let s and R undergo the following linear trans-

formation:
(53a)

(53b)

SO=A°S,
Ry = A"1:R,

where the matrix representation of A is given by

1 00
A=(01 0
0 0 1/b
and
3 3
So=252;, Ry= ijaf-
=1 i=1

We should recall at this stage the general equivalence
relation

1 .
R)p = —— | R
(R (277)3L,,e F(s) ds

_ 1
@m?
which is easily shown to hold for the above linear

transformation.?* As a consequence of these results
we have

f eiso‘Ro F(A"l . so)(det A —1 dSo ’ (54)
Eg

b f ok, Sinur (5§ — g9*
@n) Ja, u(s — a9t
In this equation, R; = x;a; 4+ x,a, + (x5 — y7)ag,
y = ubA. This integral can be brought into a more
manageable form by considering a spherical coordi-

pate system and choosing the polar axis in the R,
direction. Then,

, b o M2 isFty COS 8
(R)12=—(27)3_LJ;_L ek
3

: 2 __ 2
snur(ss =97 2 in g ds, db d¢
u(st — g%
__2 J‘ ® sin soR; sin ur(st — qz)t
@m*le Ry u(st—gdt
2% 1 d
o T T I R ’ ’
@m* R, R, 2™

(R)ye = ds,. (55)

8o ds,

(56)

where

© : 2 nt
sin ur(s; — q°)
I(Rl , T) =f cos SoR; ————2—0——2'T-
o u(so — q°)
24 G, Birkhoff and S. MacLane, A Brief Survey of Modern Algebra
(The Macmillan Company, New York, 1962), pp. 212-254.

dsy (57)
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or,® since the integrand is an even function of s,,

1 f ” Lyl S—-—-—in uT(sﬁ — q:)* ds,
2J-w u(ss — g%

= ’E’Jo [a(R? — u¥?)]

I(RI’T) =

% fo TR, + ur') + &R, — ur)l d'. (58)

By direct differentiation, it follows from Egs. (56) and
(58) that?®

( )12 = a(Rl )

R1
1

_ u21_2)}

+ J0a(R® — w5t
4n (R? 1[9(Ry )]

X 1,(R, — ur), (59)

1,(x) designates the Heaviside unit step function
defined as
0, x<0,

1+(x)={l Ny

As a result of Eqs. (31), (41), (43), and (44) we may
write

O(r, ) = (R * h(r, ')
—f [R'(x, tfr', t))se our’, t)]

X exp (az’ + Bt’) dr’,
On the other hand, we recall that

9(r, 1) = exp (—az — fOD(r, 1)
= fE exp [—a(z — 2) — fi(t — )]

=1’

(60

' a ,’ 7
x R 1, Ol P02 ]

= [, e e 0] e o

Ey at =t/

This yields immediately the relationship
(R = exp [—a(z — 2') —=B(t — t)IR)2. (62)

On the basis of Eqs. (24), (59), and (62), we finally
assert that

G(r, tfv, ') = 0 (63a)

28 G, F. D. Duff and D. Naylor, Differential Equations of Applied
Mathematics (John Wiley & Sons, Inc., New York, 1966) p. 412.

26 Since the following solution apphes only for ¢ > ¢, there is no
contribution from the term involving the Dirac delta function
O(R, + wr).
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fort < t', and
G(r, t/r', ') = u*(R),y = v exp [—a(z — 2") — fr]
b 1 b 1
x (= &Ry, — ur) — - —
(47m Ry =) = R —

x J1[q(R? — w1 (R, — uf)) (63b)

for ¢t > ¢'. In this equation,
Ry={x—xP+(y—yr+p
X [(z — 2') — (y/b)t — ). (64)

Before an attempt is made to give an interpretation
of the above solution, we consider the following
interesting special cases:

(1) Ifv=0and o 0,
G, tfr', ') = u® exp (_ 9 )
2¢’
1 1

1
x (= LoR—un - L —L1
(47ruR R=w0) = R~ i

X Lo (IOHRY LR = w) ) (69)
is the solution of the problem
[V2 — u'€(0%0r%) — u'a’(9/01)] G(x, t/r', t')
=dr—r)(t—1t), t>1t. (66)
It is also very interesting to note here that if the
factor exp [—(o'7)/(2¢")] were absent in Eq. (65), the
remaining expression would correspond to the time-
dependent Green’s function for the three-dimensional

Klein-Gordon equation of relativistic quantum
mechanics, viz.,

[V2 — w801 + 4% GG, tjr', t')
=0r—r)o(t—~1t), t>1t. (67

A solution to this equation has been obtained by
means of contour integration in the Ref. 27.

(2) Ifv#0and o’ =0,

G(r,tfr', t") = (bu[4m)R;* (R, — ut)  (68)
satisfies the equation
[V2 — u'€'(6%/01?) — 2A(%/0t02)] G(r, t/r', t)
=dr—r)(E~1t), t>t, (69

which is the nonrelativistic approximation of
Compton’s result (cf. Ref. 14). The reader is also
referred to a recent communication by Unz and
Chawla.?®

27 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I,
pp. 854-857.

28 B, R. Chawla and H. Unz, Proc. 1EEE 54, 307 (1966).
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(3) Lastly,if v =0 (or u'e’ = upee) and ¢’ =0,
G, tr',t) = (ufdm) R1LIR —ur)  (70)

is the well-known solution of the simple wave
equation

[V2 — u%(0%/01?)] G, t/r', t')

=dc—r)e—1t), t>¢t. (7D

VI. CONCLUSIONS

The part of the Green’s function G(r, ¢/r', t") [cf.
Eq. (63b)] containing the Dirac ¢ function can be
interpreted as an expanding wavefront which arrives
at R, = ur diminished by the geometrical factor 1/R,
and modified by the exponential term

exp [—a(z — 2') — fr].

R,, as given in Eq. (64), can be taken as the ‘“‘radial”
distance between the point (x', ', z’ + y7/b) and the
observation point r(x,y,z) with a scaling of the
z axis dimensions by the factor b% which, in turn, is
associated with the Lorentz contraction along this
axis.

Whereas for a “stationary” medium (v =0 or
€'u’ = €yu,) the expanding wavefronts are spheres
centered at the spatial position of the source, in the
more general problem under consideration here, apart
from the multiplicative factors 1/R, and

exp [—alz — 2') — 7],
the wavefronts obey the equation
(72)

It is quite easy to show that, for constant 7, the
wavefronts are spheroidal surfaces with semiaxes ur,
ur, and ur[b along the directions of the x, y, and z
axes, respectively. Since b > 1, itisseenthatur/b < ar;

‘Rl = Uur.

IJIOANNIS M. BESIERIS

hence the wavefronts are oblate spheroids with
respect to the z direction.?® The wavefront center
(x', ', 2" + y7/b) moves along the z direction with
a speed y/b. Inasmuch as y = u?bA, it follows that

ylb=wtA = (1 —n 2 < v; n= (e ue)t.

Thus, the center of the spheroid cannot keep up with
the medium. Furthermore, since ur/b > y7/b for the
nonrelativistic approximation case, the wavefronts
enclose the source point; that is the source radiates in
all directions. This excludes the important phenom-
enon of Cerenkov radiation which takes place in the
arbitrary-velocity case if av/c > 1 (cf. Ref. 14).

The effect of a pulse at a distance R, and at a time
T after its onset vanishes for R, > ur, that is as long
as the wave initiated by the pulse has not had sufficient
time to reach the observation point r. At R, = ur,
the original pulse arrives, diminished by the geo-
metrical factor 1/R, . The wave then leaves in its wake
a residue or tail which persists for an infinite time at
points which have been traversed by the wavefronts.
This contribution is represented by the second part of
G(r, t/r',t") in Eq. (63b). The entire solution is, of
course, attenuated exponentially in the z direction.
Furthermore, it subsides exponentially with respect to

time.
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A linear representation of spinors in n-dimensional space by tensors is proposed. In particular, in
three-dimensional space a set composed by a scalar and a vector is associated to any two-component
spinor, while in four-dimensional space the set corresponding to a four-component spinor is composed
by a scalar, a pseudoscalar, a vector, a pseudovector, and an antisymmetrical tensor of second order.
The resulting formalism is then applied to Schrodinger’s and Dirac’s equations. In three-dimensional
space it turns out that the proposed procedure automatically assigns an intrinsic magnetic moment to an
electron in a magnetic field without introducing any relativistic ideas or ad hoc assumptions. In four-
dimensional space we can write the Dirac equation in a generally covariant fashion, without introducing
new concepts with respect to the usual tensor analysis. The zero-mass Dirac equation splits into two sets
of equations, describing respectively the neutrino and the photon. The possible bearing of the proposed
approach upon the theories of elementary particles is briefly discussed.

1. INTRODUCTION

T is well known that one of the strongest objections
which can be raised against the theories which aim
to describe quantum phenomena in the frame of a
classical space-time geometry consists in the difficulty
of deriving the concept of spinor out of the concept
of tensor.!? As a matter of fact, the inverse pro-
cedure of deriving vectors and tensors out of spinor
fields®—® has been sometimes suggested.

It is also well known that tensor quantities can be
constructed by means of spinors. However, these
tensors are quadratic in the spinor components and
the tensor equations equivalent to the Dirac equation
lose the important property of linearity, at least
explicitly. The quadratic character of the mentioned
tensors also suggested the idea of spinor as *‘square
root” of a vector.?

The aim of this paper is to exhibit a systematic
procedure to transcribe any (linear) spinor equation
in pure tensor terms. The advantages of this tran-
scription are not merely formal (among other things
the resulting equations are generally covariant), but
could turn out to be essential for (1) the above-
mentioned unitary theories; (2) any theory, where the
linear equations of quantum mechanics are assumed
to be an approximation (which ceases to hold at small
distances) of a nonlinear theory.”® In fact, in such

L' W. Pauli, Teoria della Relativita (Boringhieri, Torino, Italy,
1958), p. 317.

2 J. A. Wheeler, Geometrodynamics (Academic Press Inc., New
York, 1962), p. 89.

3 P. Jordan, Ergeb. Exakt. Naturw. 7, 158 (1928); Z. Physik. 105,
229 (1937).

4 P. Jordan and R. de L. Kronig, Z. Physik., 100, 569 (1936).

5 R. de L. Kronig, Physica 3, 1120 (1936).

8 L. de Broglie, W. Heisenberg, and H. A. Kramers, in L. de
Broglie, Physicien et Penseur (Paris, 1953).

7 L. de Broglie, Introduction to the Vigier Theory of Elementary
Particles (Elsevier Publishing Company, Amsterdam, 1963).

8 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957).

a case the spinor and tensor descriptions could no
longer be equivalent, and neglecting one of them
could mean discarding useful alternatives.

The problem of a tensor transcription of spinor
equations has been recently considered by Klauder.?
In our opinion, however, the solution given by
Klauder is not satisfactory, because arbitrary tensors
devoid of any physical significance appear in his
tensor equations. The choice of these tensors is
equivalent to the choice of an explicit representation
of the Dirac matrices in the usual spinor description;
here we propose circumventing this particular diffi-
culty that Klauder encountered by introducing a
formalism which appears to be interesting. To be
precise we exhibit a method which leads to tensor
equations free of any quantity to be chosen arbi-
trarily. In Sec. 2 we describe the simple rule to
transcribe an arbitrary spinor equation in a n-dimen-
sional space into a system of tensor equations. In
Sec. 3 an application to the three-dimensional case
(Schrodinger-Pauli equation) is made; in Sec. 4 the
much more interesting case of space-time is considered.
Finally, in Sec. 5 the possible objections to the
abandonment of the usual description in favor of the
presently proposed one are discussed.

2. FUNDAMENTAL RULES

The spinor equations in a n-dimensional space
make use of square matrices of order 2%, i.e., with
22N elements, where N is determined by #; it is well
known that N =1 for n = 3, N = 2 for n = 4. The
algebra of these matrices is a Clifford algebra, which
can be thought of as generated by » elements (this is
not the only possible choice of the generators, but is
convenient from our standpoint). We denote such

? J. R. Klauder, J. Math. Phys. 5,.1 (1964).
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generators by ;. They are assumed to satisfy the
anticommutation rules

Yiyj+7jyi=6ij (i=j=12"-,n, (1)
where the upper index y’s are related to the lower
index ones by means of the fundamental tensor g,
according to the following relations:

yj = gtii; Vi = gi:iyj (l:j = 1’ 29 T n)- (2)
The above matrices are assumed to operate either
on one-column matrices at their right or on one-row
matrices at their left: these four elements matrices are
usually referred to as spinors,'® once a precise trans-
formation rule when going from a Cartesian reference
system to another is associated with them. Usually
only orthogonal Cartesian coordinates are adopted
and the 9’s are treated as invariants. However, if
general coordinates are considered, it is more con-
venient to treat “spinors™ as invariants and the four
matrices y; as components of a vector [see Ref. 11
for a general review of the literature].

In any case, in a given reference frame, a linear
spinor equation can be written as follows:

Ly =0, &)
where L is a square matrix whose elements are
operators (e.g., differential operators) operating on
the components of the one-column matrix y. Of
course, a row-by-column product between L and y is
understood.

The matrix L can be written as a linear combination
of those elements of the Clifford algebra which
generate the whole algebra additively. These elements
are the ¢’s and suitable combinations of multiple
products of the y’s. The products are chosen in such
a way as to form a linearly independent set together
with the p’s. Under this respect the algebra is treated
as a 2*¥-dimensional space, Syev.

In the three-dimensional case the mentioned
elements are simply the p’s and the identity 1 of the
algebra, while in the case of space-time we have to
consider a set of 16 elements, which are conveniently
individuated as follows:

1,

yﬂ b
Yop = $[¥a¥s — Vo¥abs
Yapy = %b’a’yﬁy + Y8¥re + ?’ﬂ’aﬂ]:
Vapys = HVaVprs — Vp¥yoa + VyVoas — VsVaps]
(o B, i) 6=0,1,2, ) @
It is evident that each element endowed with two or

1¢ From the standpoint of the theory of the algebras, a spinor can
be described as an ideal of the considered Clifford algebra. [M.
Riesz, Lund University Math Seminar 12, 241 (1954).]

11 W. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953).
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more indexes is completely antisymmetric in these
indexes; therefore it is easily verified that we have
exactly 2¢ = 16 linearly independent elements.

If y, is assumed to transform as the ath component
of a vector, y,; transforms as an antisymmetric
tensor of second order, y,5, as an antisymmetric
tensor of third order (i.e., as a pseudovector in
space-time) and y,4,5 as an antisymmetric tensor of
fourth order (i.e., as a pseudoscalar).

Generally speaking, in a »n-dimensional space y;
denotes any one of the above-mentioned generators;
accordingly a capital letter as an index denotes a set
of different indexes of the previous kind (lower case
letters). Such capital letters can in turn be considered
as numerical indexes, varying from 1 to 22¥, provided
that an arbitrary pumeration of the above sets of
indexes is introduced.

Therefore L can be written as follows:

L= LJ?"J (J = 15 Tt 22N)’ (5)
where by L; we denote scalar operators (e.g., differ-
ential operators) of the same kind as the components
of the matrix L.

Let us note now that also the spinor y can be con-
sidered as an element of the Clifford algebra; it suffices,
e.g., to write in place of the original one-column matrix
a square matrix having 2% — 1 columns of zeros and
the remaining column equal to the column which
constituted the original spinor. In such a way we can
also write

Y =Y5Vs V=12, 22N)' ©
As a consequence, Eq. (3) can be written as follows:

Iy)yys =0, )
where the quantities (Ly), are linear combinations of
the quantities L;pz, which can be determined
through the multiplication table of the algebra.
Thanks to the linear independence of the y,, Eq. (7)
immediately gives

(Ly); = 0. @®)
Now, if the generators of the vector space Sy, v,
have been chosen in such a way as to have tensor
properties in the n-dimensional space (this is always
possible), the above equations are grouped immedi-
ately to give tensor equations. This important result
seems to be partially overshadowed by the circum-
stance that the number of the required components
is to be increased (from 2% to 22¥) and the new
components, though more numerous, can be expressed
as linear combinations of the old ones.

3. THE CASE OFn =3

In this section we consider in some detail the
transcription of the Schrdinger-Pauli equation,



LINEAR REPRESENTATION OF SPINORS BY TENSORS

which regulates the quantum mechanics of a non-
relativistic electron in a magnetic field. In three-
dimensional space we conform to the usual notations
and write o, in place of y,.

As we have already noticed, in the three-dimensional
case any element of the Clifford algebra can be
written as follows:

Gy + aiai (l = 1: 2’ 3)9 (9)
where, if the whole expression is treated as an
invariant and the ¢’s as the components of a vector,
a, is a scalar and a = (q,, a,, ay) is a vector.

The translation of the usual Schrédinger-Pauli
equation in the new language is straightforward and
is not effected explicitly here. Instead, we give a direct
derivation of this equation from classical mechanics
through the usual rules of correspondence between
classical observables and quantum operators. This
derivation is very interesting, since it shows that an
accurate use of the quantum-classical analogy leads
one to automatically foresee the existence of spin,
which is usually considered as an ad hoc assumption
or a consequence of introducing relativistic invariance.

We note that the classical Hamiltonian is character-
ized by the presence of the square of a vector (the
momentum p in absence of magnetic field, p — eA/c
in the general case). Therefore we need a definition of
the square of a vector when its components are not
¢ numbers, but ¢ numbers. This gives no trouble if
the components of the vector commute. However,
the rule that the square of a vector is the sum of the
squares of its orthogonal Cartesian components is
usually given even in the case of noncommuting
components. This rule does not appear to be con-
sistent with the vector concept, which is primarily
synthetic and only subordinately analytic. Such
conception of vectors is not correctly appreciated even
in the ordinary vector calculus, which is only formally
synthetic. On the contrary, the concept of vector as a
whole is completely expressed in the concepts of
quaternion algebra, according to the views of
R. W. Hamilton, or, alternatively, of the Clifford
algebra corresponding to n = 3, which is isomorphic
to the quaternion algebra (on the complex field).
Classically we can write a vector in the following
form:

v= gt = o%;. (10)
Then, according to the multiplication rules of the
o’s and taking into account that the components of v
commute, the square of v is given by

v = (oo )(o0)) = dPou’
= %(Gio"j + 0"?'{)”{”5
= éjv,0° = v,

(03Y)
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ie., it is the same as obtained by operating on the
components according to usual rules. But, if the
vector components are noncommuting operators, we
get
v = o'ou0’
= }d'e; + 0,007 + Yoo, — 0,000
= 8’ + iel ot 0!
;1

= o'+~ ealvg, 0,10* (12)
Here we have taken into account that the following
relation holds (n = 3):

oo, — 0,0°) = ie'0F, (13)
where €, is the completely antisymmetric tensor
of Ricci and Levi~Civita. In Eq. (12) [v,, v;] denotes,
as usual, the commutator between v, and v;.

It appears that the result given by Eq. (13) is not
only different from the result which can be obtained
by operating on the components, but is not even a
scalar, being a more general quaternion or element
of the considered Clifford algebra.

In the case of interest, where v =1p
p = —ik grad, we have

—eAfc with

— A, + 2iked, 2 a4
ax. ¢ Ox;

+ %Az - -—-—Hko"‘ (14)
C
Here H, = }¢,;,(04,/0x, — 04,{0x;) is the magnetic
field corresponding to the vector potential A. It
follows that the Hamiltonian operator v?2m + U is
given by

K iie 0 ike 0A,
~ 2 A g, e o,
2m o ‘ox,  2mc ox,

oy eiu @5
2mc* 2me "

It is easily verified that Eq. (15) gives just the
operator which could be obtained from the usual
Pauli-Schrodinger equation by means of the rules
given in Sec. 2. Therefore the present procedure turns
out to automatically ascribe a magnetic moment
wo = €hi[2me to a nonrelativistic particle of charge e
and mass m, as a mere consequence of the commu-
tation rules.

In order to clarify the procedure, let us write the
Schrodinger equation separating the scalar and the
vector parts of the quaternion equation. If X,
denotes the scalar part of the Hamiltonian given by
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Eq. (15),%* we easily find
oo — woH - § = ih(9y,/01), (16a)
Ko — poHyy — iuH x § = ik(@/[or),  (16b)
where v, is the scalar part of the quaternion wave-
function and « its vector part. In the above equations
a dot denotes the ordinary scalar product, x the
ordinary vector product.

From Egs. (16) we can easily obtain well-known
results in the case of an uniform magnetic field. In
such a case, in fact, if we assume that ¢ is not parallel
to H, the component of Eq. (16b) along the normal
to the plane individuated by H and ¢ gives

Hx ¢ =0, a7

i.e., against our assumption, ¢ is parallel to H. Then,
if we put ¢ = Hy,/H, where H denotes the absolute
value of the magnetic field, we easily get

Ko — ooy = ih(9y,/01), (18a)

Ropo — pollyy = ih(0g,/01). (18b)
It follows that ¢, and w, are proportional to each
other: ¢, = Ay, and, in order that Eqgs. (18a) and
(18b) can be contemporarily satisfied, 2 = 1. Then
¥y, satisfies

Joyo £ poHpy = i(0y,/01). 19
Hence the well-known result of the splitting of energy
levels follows. We note that this result has been
obtained immediately in a form which is valid in any
reference frame without using the single components.
The above treatment is open to criticism; as a
matter of fact, it seems puzzling that a magnetic
moment g, = efi{2mc is ascribed to a nonrelativistic
particle of charge e and mass m, while, e.g., the
charged = meson has zero spin. Different answers can
be given to this objection. Firstly we note that the
known charged particles with spin different from %
can be hardly regarded as nonrelativistic. Secondly,
since the properties of the particles should depend on
the fields with which they can interact, the exclusion
of the nuclear field could be of vital importance for
the result we have found. Finally, since we have
replaced the ordinary unit vectors of rectangular
coordinates by the o,’s and this is not a strict con-
sequence of the discussion on vectors given at the
beginning of this section, one could suggest'® that
this replacement is a matter of experiment, i.e., the
fact that the procedure works is an a posteriori proof
that the algebra of the o,’s underlies the theory of
nonrelativistic electrons.

12 This scalar part of the Hamiltonian coincides with the Hamil-
tonian which is obtained according to the usual rules without
introducing spin with an ad koc assumption.

13 This opinion was expressed by an anonymous referee, whose
observations suggested the present discussion.
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4. THE CASE n =4

In this section we consider in some detail the
transcription of the Dirac equation which regulates
the quantum relativistic mechanics of an electron.
We neglect the electromagnetic fields, since the
extension of the equation in absence of fields to the
equation in presence of fields is trivial, following from
well-known rules based on the principle of gauge
invariance.

The mentioned transcription is easily effected,
provided that the following multiplication table is
taken into account:

Yy =05 + v,
YV = Vg + Va0l — Va¥h»
ypyazﬂy = y:“aﬁy + ?’aﬂé;‘ + yﬁya: + ?}!aéf?‘s
Vuyaﬁyé = yﬂy&'}/g - yyﬁaég + 7’5«;355 - 7aﬁv6;
(,B8,y,6=0,1,2,3). (20
We obtain
Viy = idy,
vlp + 29, = idy’,
Uy — 9]+ 3y, = iy,

Hy™P 4 9P - 8] 4y, = iy,

%[waﬂv/u — 1/)Iiwlat + 1pvuat/ﬁ — w#aﬂ/y] =i Mp“"‘ﬂ”

(OC, ﬁ’ 7> é’ "= 03 13 29 3)’ (21)
where 4 = mc/h.

It is to be noted that the above equations are
automatically covariant with respect to general
coordinate transformations. After a careful review of
the literature, we have found that the above tensor
transcription of the Dirac equation had already been
found by Lanczos as early as 19294 as a con-
sequence of a quaternion treatment of the Dirac
equation. However, it turns out that this work
remained unnoticed in the subsequent papers dealing
with the covariant form of the Dirac equation.

Now two cases are to be distinguished, according
to whether 4 is equal to or different from zero. In
the second case, we can express ¥, Y.z, Yupys IN terms
of y, and vy, through the first, third, and fifth
equations of system (21), and eliminating the former
quantities from the second and fourth equation gives

qua + 32’!)‘: = 0; Dy}aﬁy + Azwmﬂy = 03 (22)
i.e., the vector y, and the pseudovector y,,, satisfy a
Proca-Yukawa equation. Equations (22) are the
only restrictions on y, and y,,,. Alternatively, we

can eliminate v, and y,, in favor of ¥, ¥, Yepys
and find

Oy + By =0; DOy, + APy, =0;
way + }'zzpaﬁy == 0;

14 C. Lanczos, Z. Physik. 57, 447, 474, 484 (1929).

(23)
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while y, and y,,, are given by the second and fourth
equations of system (21).

If A = 0, then the first, third, and fifth equations of
system (21) decouple completely from the second and
fourth ones. The latter become

v, + 3y =0,
1pauﬂ/z? + ,pﬂ«i/«z + wéa/ﬁ + 121p“ﬁy"/y =0
(¢, B,7,0=0,1,2,3), (24)
and are therefore a generalization of the Maxwell
system (which can be obtained by putting ¢ = 0,
y*f% = (). The remaining equations can in turn be
written as follows:

l/)ﬂ/ﬂ =0; %[wﬁ/a — wa/ﬂ] + 3¢aﬁu/” = 0.
1)umliv/u _ 1pﬁw/a! + wvualﬁ — wuuﬂly =0

(B, y,0=0,1,2,3). (25
It is easily seen that the system of Egs. (25) is equiv-
alent to the Pauli-Yang-lee equation for the
neutrino. In fact, the second equation of system (25)
can be written as follows:

3¢6ua/a + ‘%(‘Pu/a - (P&/u) =0

(a, 6, u = 0, 19 25 3)’ (26)

where
Poua = (I/6)esap¥’s ¢ = iepv™".
Here ¢;,,, is the four-dimensional Ricci-Levi-Civita
tensor with components 0, +(—g)} (g = det [|g;|).
We see that the ¢’s and the y’s satisfy the same
equations; accordingly they can be assumed to be
proportional as follows:

Y = Cqp = iCepp, v,
Voua = CPsuz = ¥iCesu0pv’.
But substituting Eq. (27b) into Eq. (27a) gives
P = —$C%0p ey, = §C7600y; = C*y,, (28)

ie.,

(27a)
(27b)

C= %1, (29)

and consequently

Yo = icop ¥ Yo = Tdicsuey”  (30)
The equations satisfied by v, can now be written as
follows:

'/)a/u = 0’ TPM“ - ‘PW + ieuﬂyay)cily = Os (31)
where the first equation is the transcription of the
first and third equations of system (25), which now
coincide because of Eq. (30). Only the upper sign of
Eq. (30) has been retained, since if 4> solves system
(31), p* clearly solves the analogous system corre-
sponding to the alternative choice. Here the bar
denotes complex conjugation.

In order to show that system (31) is equivalent to
the Pauli-Yang-Lee equation for neutrino and
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antineutrino, we note that the latter can be written!®
by equating to zero the result of operating on a
spinor with the operator

(9/0xo) + o* (9/0xy). (32)
Introducing the vector transcription discussed in
Sec. 3 gives

[(9/9x0) + 6*(9[0x)Ny° + o,y7) = 0. (33)
By means of the multiplication table of the ¢’s and in

particular Eq. (13), Eq. (33) can be rewritten as
follows:

Yo+ vk =0, v+ ¢¥l + ic gy, =0
(rk,s=1,2,3). (34)

These equations have tensor character in three-
dimensional space, but can be immediately rewritten
in the four-dimensional formalism by introducing a
vector y* = (y° 1, v%, v°). The result coincides with
system (31) provided we take into account that the
second equation of this system, if verified for the
values a = 1, 2, 3, f = 0 of the indexes, is true for
any couple of values of x and $, thanks to its duality
invariance.

We note also that the second equation of system
(31) is invariant under the gauge transformation

Yo > v + 9L, (33)
accordingly the first equation of system (31) appears
as a gauge normalization condition.

Finally we mention that system (21) can be obviously
considered as the consequence of a stationary action
principle with the following Lagrangian density:

1, - _ _ _
= @Y = Py + 20 P =y

+ 3! (Pagy ¥ — 9,77

+ 4! ('I-)apya#’ﬂw“ - ‘/’aﬂyd‘l_fﬂ 78/a)

— Mpy + 1! Py, + 21 Gep™

+ 3 Py ¥ + 41 P09} (36)

In particular, if A = 0, systems (24) and (25), though
decoupled, can be deduced from a joint variational
principle.

5. DISCUSSION

The procedure which has been introduced and
illustrated in the previous sections can meet with
many objections which are presently examined.

A first objection concerns the considerable in-
creasing of the number of components to be intro-
duced. On the other hand, this circumstance is
counterbalanced by the properties that the equations

15T, D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956); 105,
1119(L) (1957).
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are symmetrical with respect to all the space-time
coordinates (this is not true if one writes the com-
ponents of a spinor equation) and are automatically
covariant without introducing any new concept with
respect to the usual tensor analysis (in particular the
Christoffel symbols are enough to introduce covariant
differentiation, without any need for the Fock-
Ivanenko matrices or equivalent devices).

In connection with the increased number of
unknowns, the question can be raised whether the
number of possible solutions for a given problem can
increase. The answer is negative, if only completely
defined problems are considered. This means that if
we have only one solution in the original spinor
formulation, we can have possibly more than one
solution in the tensor version, but all these have the
same eigenvalues, give the same quadratic quantities,
etc. Therefore it appears that this larger arbitrariness
plays, in a certain sense, the same role as the
indeterminacy in the explicit representation of the
»’s in the usual spinor formulation. This does not
mean that the multiplicity depends on some explicit
representation of the y ;. On the contrary, the origin
of the multiplicity clearly lies in the lack of uniqueness
of the decomposition of the spinor field  into a
superposition of y; [Eq. (6)]. In fact, the representa-
tion of a spinor as a single column of a square
matrix is not the only acceptable one. We could have
taken any square matrix g such that it satisfies the
matrix equation

¥ —y(Spw) =0, (37

where Sp ¢ denotes the spur of y. This equation in
turn implies a quadratic relation between the tensor
components associated with the spinor individuated
by the matrix . The discussion of these quadratic
relations leads us into another subject, which is not
pursued further here. In fact, this matter seems to be
especially important in the study of interacting
particles, for which the present formalism could turn
out to be very helpful.

In the frame of the matter considered in this paper,
the advantage of the proposed point of view consists
in the possibility of exploiting the undeniably more
intuitive concepts of vector and tensor in place of
spinors, in order to choose, among the possible
equivalent solutions, that one endowed with the
symmetry features of the physical system under
investigation. This circumstance was exploited, e.g.,

CARLO CERCIGNANI

in the three-dimensional case (Sec. 3), where the
vector ¢ was treated as it had a real unit vector,
although ¢ itself has complex components. In such a
way we singled out a solution where the mentioned
unit vector coincides with the unit vector of the
magnetic field. But one can be easily convinced that
there are infinitely many solutions with a nonreal
“unit vector.” These solutions are destitute of any
significant symmetry, but are essentially equivalent
to the explicitly found solution.

Another advantage of the proposed approach is
that it appears to be the only consistent realization
of the standpoint that the ¢’s transform as vector
components, without encountering the objection that
this standpoint violates the spirit if not the letter of
the relativity idea.’! This objection arises in the usual
theory with a smaller number of components since
the Dirac equation, when written in full, is not the
same in all Lorentz frames.

A second objection which immediately arises is
suggested by the connection between the tensor
character of a field and the spin of the associated
particle. Of course, a precise description of this
question requires to study the field not free but
interacting with other fields. We restrict ourselves
merely to note that inconsistencies cannot arise on
this point since the present description is just a
transcription of the usual theory in different terms;
therefore differences in physically significant results
cannot be present, provided that the definitions of the
different physical quantities are consistently tran-
scribed.

Concerning the suggestions that the present
treatment can give for subsequent developments, we
note the noticeable fact that, from a single Dirac
equation with zero mass (and a single action principle),
one obtains the wave equations of the two known
massless particles, i.e., photon and neutrino. This fact
suggests the possibility that from a single equation
(with a nonlinear self-interaction term) one can
derive the wave equations of both massive and mass-
less particles. Of course, this is not a new idea; how-
ever, the present formalism seems able to suggest a
limited number of possible choices for the nonlinear
term. In this frame the multiplication of the number
of required components could be important in order
to explain the existence of particles very similar but
distinguishable as electron and muon or v, and ¥,
neutrinos.
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The stability problem of a system of charged point particles is discussed, and a number of relevant
theorems are proven. The total energy of a system of N particles has a negative lower bound propor-
tional to N3 when no assumption is made on the statistics of the particles. When all particles belong
to a fixed number of fermion species, a lower bound exists proportional to N.

1. INTRODUCTION

N a recent paper, Fisher and Ruelle! raised the
question: Is a quantum-mechanical system of
electrical point charges stable ? By stability they mean:
There exists a lower bound for the total energy
proportional to the total number of particles. In this
and a following paper we address ourselves to this
problem, by proving with rigorous analysis a number
of theorems which are relevant to it.

The question of why matter is stable was very much
the center of attention of physicists during the years
after the discovery by Rutherford that matter consists
of positive and negative point particles interacting by
Coulomb forces, and before the establishment of wave
mechanics. The origin of quantum theory, starting
with Planck’s work, is intimately bound up with this
question. Planck’s quantization of the radiation
oscillators and Bohr’s quantization of orbits in atoms
served to stop the energy in matter from disappearing
into the bottomless sink of the classical radiation
field. In 1925 wave mechanics provided a quantitative
solution to this problem. It became clear that an atom
with a nuclear charge Ze and Z electrons of charge —e
could not have an energy state lower than —Z°Ry,
where Ry = me*[2h* is the natural atomic energy
unit, the Rydberg, formed from the fundamental
constants m, e, and A.

This solved the problem of stability for single
atoms. However, matter in bulk consists of a very
large number of particles, positively and negatively
charged, attracting and repelling each other by the
Coulomb force. The effects of the Coulomb force are
manifold and subtle, and often cooperative. They
include such diverse phenomena as chemical binding,
metallic cohesion, Van der Waals forces, super-
conductivity, superfluidity, and (in all likelihood)

* On leave of absence from the Plasma Physics Laboratory,
Princeton University, Princeton, New Jersey. Present address:
Department of Mathematics, Indiana University, Bloomington,
Indiana.

1 M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966).

biology. The stability problem for matter in bulk is
not a simple one. We need to understand why all these
subtle effects have in common a saturation property,
so that the binding energy per particle remains
always bounded.

The empirical stability of matter does not depend
on non-Coulombian forces (nuclear forces, magnetic
dipole interactions, retardation and relativistic effects,
radiative corrections). These contribute very small
corrections to the binding energies of atoms and
molecules. We are therefore justified in adopting the
point of view that “matter” is a collection of point
charges, interacting only through Coulomb forces, and
subject to the laws of nonrelativistic quantum me-
chanics. If stability for this mathematical model is
understood, stability for real matter is understood
too.

We now give a formal definition of stability. Let
the Hamiltonian operator of N > 2 charged particles
be

N h2
HN=2("'2_‘A1) +

Here we use the standard notation; the charges e; may
have either sign. We write

Emin (Na e, m) = Inf ('P, HNw)’

iz (1.1)

1<5<GEN [ — 1y

(1.2)

where the infimum is taken with respect to all N-
particle wavefunctions = y(r;,r, - *,ry) nOI-
malized according to (y, ) = 1, all values of the
masses satisfying

0<m<m, (1.3)
and all values of the charges satisfying
—e<Leg<Le (1.4

If there is a numerical constant 4 such that for all N
E. . > —ANRy, (Ry = me*2h?), (1.5)

we say that the system is stable.
In this definition, we have not mentioned the

423
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statistics of the particles. Fisher and Ruelle in their
paper® conjecture stability “with perhaps the re-
striction that either the positive or the negative
particles obey Fermi statistics.”” The complete state-
ment of stability or instability therefore involves a
specification of the statistics of the particles. In that
case the constant 4 may depend on the number and
kind (in the sense of statistics) of different particle
species.

The recent consideration of the stability problem?
arose in connection with the need to establish a
mathematically rigorous basis for statistical mechanics.
Statistical mechanics makes physical sense only if
thermodynamic quanitities such as the energy, entropy,
etc. are extensive, i.e., proportional (asymptotically
for a large system) to the number of particles. Thus,
stability in the semse (1.5) is necessary for the
definition of a finite free energy per particle. The
investigations of Ruelle? and Fisher® were restricted to
models with short-range forces only. Thus, our
investigation of the stability problem for Coulomb
systems may be regarded as a necessary first step in
establishing a rigorous statistical mechanics based on
Coulomb forces alone, a challenging and difficult

task.
2. STATEMENT OF RESULTS

Quite simple arguments suffice to give lower
bounds for the energy of a system of charged particles,
provided we do not require these bounds to be good
for large N. We begin by stating two theorems of this
nature. They are superseded by later theorems, and
are only interesting because of the simplicity of their
proofs.

Theorem 1: Under the hypotheses (1.3) and (1.4)

we have
Enin = —N¥N — 1) Ry. 2.1

This is the result of Fisher and Ruelle.! For the sake
of completeness, we reproduce their proof.

The following theorem, whose proof is slightly more
difficult, is a refinement of Theorem 1 for N > 5, and
it holds under the same hypotheses.

Theorem 2:

Epin > —[N(N — D/V2] Ry. (2.2)

Both of these theorems give lower bounds which
are far too low (except for small values of N). Our
first nontrivial result is a further improvement which
comes much closer to the truth.

2 D, Ruelle, Helv. Phys. Acta. 36, 183; 36, 789 (1963).
3 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).
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Theorem 3:

Eqip > —AN® Ry, 2.3)

where A < 52 is an absolute constant.

Again, we assume inequalities (1.3) and (1.4) of the
Introduction, but no assumption is made on particle
statistics.

In connection with these theorems the question
arises, what is the best possible result of this type?
We believe that it is

Egip > —ANF Ry, (2.4)
To prove that the exponent £ cannot be decreased it

is sufficient to exhibit states g, of N particles such
that for some constant 4’

vy, Hypy) < —A'N*Ry. 2.5)

Because the inequality (2.5) states an upper bound
for the energy, conventional variational techniques
are adequate for proving it. The result (2.5) is suggested
by both a simple heuristic argument and by a detailed
calculation based on the work of Foldy* and others.
Since we are interested in lower bounds for which new
techniques must be used, we do not discuss the
derivation of (2.5) in this paper but refer the interested
reader to the lectures one of us held at the Summer
Physics Institute of Brandeis University in 1966.5 We
find later that an improvement from (2.3) to (2.4)
would necessitate going in an essential way beyond
the techniques of the present work.

While (2.5) indicates that a Coulomb system
without any restriction on particle statistics is unstable,
the following result shows the importance of the
exclusion principle for stability.

Theorem 4: Suppose that N particles whose masses
and charges satisfy (1.3) and (1.4) belong to ¢ > 1
distinct species of fermions. Then

Epn > —AqEN Ry, (2.6)

where 4 < 500 is an absolute constant. Briefly, a
system whose particles belong to a fixed number of
Fermion species is stable.

In counting the number of species, each spin state of
a type of particle must be counted separately, for the
antisymmetry of the spatial wavefunction holds only

4 L. L. Foldy, Phys, Rev. 124, 649 (1961).

® M. Girardeau and G. Arnowitt, Phys. Rev. 113, 755 (1959);
M. Girardeau, ibid. 127, 1809 (1962); J. M. Stephen, Proc. Phys.
Soc. (London) 79, 994 (1962); W. H. Bassichis and L. L. Foldy,
Phys. Rev. 133, A935 (1964); W. H. Bassichis, ibid. 134, A543 (1964).
Another paper concerned with the stability problem, with a point
of view closer to ours is: E. Teller, Rev. Mod. Phys. 34, 627 (1962).

8 F. J. Dyson (to be published).
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between particles of the same type and spin quantum
number. Note that the constants 4 appearing in (2.3),
(2.4), (2.6), and (2.7) below are not the same.

Theorem 4 falls short in two ways of what we need
in a theorem establishing the stability of matter.
First, it ought not require that all particles be
fermions. The statistics of the nuclei are irrelevant to
stability. Therefore the hypothesis that only particles
of one sign of charge (say negative) are fermions should
be sufficient. Second, it is an empirical fact that all
chemical binding and cohesive energies are determined
by the Rydberg constant Ry = me*/2A% formed with
the electron mass and not the nuclear mass. Stability
should be independent of the nuclear mass and should
persist even if the nuclear mass is taken infinite. Both
of these defects are removed in our final theorem.

Theorem 5: Let N negatively charged particles
belong to ¢ different fermion species. Let their masses
and charges be subject to (1.3) and (1.4), respectively.
Let an arbitrary number of positively charged particles
be subject to the sole restriction (1.4) on their charges,
their statistics and their masses being arbitrary. Then

E,im > —AqiN Ry, 2.7
where A is an absolute constant.

In this theorem there are no unnecessary hypotheses.
However, its proof is longer and more difficult than
those of the others. In this paper we prove only
Theorems 1-4 and delay Theorem 5 to a separate
paper. It turns out that the proof of Theorem 35
requires all the preliminary results needed for the
proofs of the earlier theorems, and a number of
additional ones besides. Because of its fundamental
significance, it would be desirable to simplify the
proof of Theorem 5. We hope that this is possible by
using ideas different from ours.

We may remark that the dependence of Theorems 4
and 5 on the number g of fermion species is probably
not the best possible. The results stated should hold
with the exponent 3 replaced by 2. For some
discussion of this point the reader is referred to
Ref. 6.

3. PROOFS OF THEOREMS 1 AND 2

The following simple argument is due to Fisher

and Ruelle.! Write the Hamiltonian (1.1) in the form

hz

Hy= - A
N 2m(N — 1)

h® e.e, }
2m(N —1) " |5, —
= ZZ Hy;.

1Si{<4=N

(3.1)
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The operator H; is the Hamiltonian of a two-particle
system with charges e;, e; and masses m (N — 1),
myN — 1). We have then

Emin = Inf(w, Hyy) > >3 Inf(y, Hyy), (3.2)
1<i{<j<N
(N — l)mimj_eiej
T m+m, 2R
0 (e;e; > 0).
(3.3)

Among the pairs (7,j) there are at most }N? for
which e,e; < 0, and for these

(eiej < 0),

Inf (‘/’, Hu'/’) =

(N — Dm,m; eiel
2
This proves Theorem 1.

The proof of Theorem 2 is slightly more com-
plicated. We now write

Hy= 33 H

! <

—— 4 —
(N — Dme =N2 lRy. (3.4)

m; + m; 452

+ zz HU’

15:< 1<4< (3.5)
where
2 2
Hi:}' = - h Ai - = h i
2mAN — 1) 2my(N — 1)
€85 el (3.6)
Jr; — 71
and
H}; = (eie;flr; — r,)(1 — eI ml),  (3.7)

and y is a positive number. We need a lemma which
asserts that a particle in a Yukawa potential cannot
have negative energy if the range of the potential is
short enough.

Lemma 1: The one-particle Hamiltonian

H = —(F[2Zm)A — (é¥/r)e " (3.8
is nonnegative if B
phtme® > 2. (3.9)
Thus if we choose B
= (N — Dme?/v/25? (3.10)

all H,; are nonnegative operators. For the second
sum in (3.5) we write

22 H =13 2

15i< 2i=1 =1 ]r ]
N
X (1 — e Hrenl) — g e,
J=1

By Fourier transformation the double sum may be
written in the manifestly positive form

= f dak(k‘* Z s

(3.11)

5 + = ) 'S0 (G.12)
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Hence we have from (3.10)
Epm > —iuNe* = =[NV — 1)/V2]Ry. (3.13)

It remains to prove Lemma 1. We write the energy
in momentum representation

(v, Hy) = h— f PR [
FHRFK)

d3k d3/ ,
A e

where (k) is the Fourier transform of the wave-
function. By the Schwarz inequality we have

(3.14)

| PHRFE) f s b
dskfdak AN <fd’kk k) J
| L | < [ 190
(3.15)
with
1
J = dskfdsk = 27%u2.
f K RTGE + =Py o
(3.16)

Therefore,

K é 3 3712 | .~ 2
(v, Hy) > (— ay )fd KK® |9(K)|
2m 2=

>0, 3.17)
when the condition
B2m > (e22x%) J2, (3.18)

which is the same as (3.9), is fulfilled. This proves
Lemma 1 and Theorem 2.

4. A THEOREM OF ELECTROSTATICS

We begin to work toward the proof of Theorems 3-5
by a simple consideration of electrostatics. We obtain
a lower bound on the Coulomb energy of an arbitrary
finite system of point charges. The resulting inequality
is one of the essential tools for all that follows.

Letr; (i =1, 2, -, N)be points in space at which
there are charges e;. Let a; be arbitrary positive
numbers and let S; be the spheres r —r| = ;.
Suppose that each of the charges e, is distributed
uniformly over the corresponding surface S;. This
results in a surface distribution of charges, where the
element of surface do carries the charge e, do/4ma? if
do is on S;. If E = E(x) is the electric field at the
point x, produced by this charge distribution, we have
for the total energy

_fds IEIZ

2t 141ra

1
x Yy —i- .
121 41ra, fs, % Ix —y|

(4.1)
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The double surface integral depends only on the
distances |r; — r;| between the centers of the spheres
S; and §;, and on their radii q; and a;. For two
spheres S, and S, of radii @ and b, respectively, whose
centers are at a distance r, we write

f do, f oy, _ 1 _1_Agab). @42
ss 4ma®Js, dnbP|x —y| r
This defines the function A, One finds
l—mm(l l) 0<r<la— b,
r ab
J— 2
A(r,a, )= (a+b—r) (la—bl<r<a+b),
4abr
0 @+b<n. 43)

A is positive and monotone decreasing with r in the

interval (0, a + b), zero beyond it.
Let us write

€:€;

Wre= 33 ——, (4.4)
15i<iSN r, —r;
Ur,e,a)= — 3 ;;
1SjSN 24,
Z Z ee;A(lr; — 1), a;,a5).  (4.5)

St
Theorem 6: W(x, e) > U, e, a).

The proof consists in merely observing that the
total electrostatic field energy (4.1) is positive, and
then rewriting the right-hand side in terms of the
notation (4.2). Note that whenever

g, +a;Lr;—r1 1<Li<j<N), (46)
we have
U(r,e,a) = _2 @.7
i=1 2 1’

and the inequality W > U is specially simple. The
inequality in this form was used by Onsager in a
little known paper? in which he established an additive
lower bound for the Coulomb energy of a system in
which the particles are assumed to possess hard cores.
Indeed, if it is required that

rs—rl22a 1<i<j<N) (4.8)
for some fixed positive a, one has
W > —N(e*2a) (e = max |e))). 4.9)

This observation was also made by Fisher and
Ruelle.
In our work where there are no a priori given hard

? L. Onsager, J. Phys. Chem. 43, 189 (1939).
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cores it is essential to keep the g, variable. Indeed, the
power of Theorem 6 lies largely in the freedom with
which the a; may be chosen.

One useful choice is a; = }R;, where
R,= mi =1,
! (15:’1211\71.11'#1)lrt gl (4.10)
Then evidently (4.6) is fulfilled. Thus we have
Theorem 7:
14 4.11
>-35. R @.11)

In this paper we use Theorem 6 only in the form of
Theorem 7. The right-hand side of (4.11) may be
interpreted physically as the potential energy of a
fictitious system in which each particle is attracted by
a Coulomb force to its nearest neighbor alone. The
fictitious system always has a potential energy lower
than the real Coulomb system, and—what is most
essential —the number of terms out of which this
fictitious potential energy is made up is N and not of
the order of N? as for the true energy.

5. PROOF OF THEOREM 3

Let ry, ¥y, -+, Ty be N distinct points in space.
For a fixed j we write R;;, Ry, -, Rjy_, for the
N — 1 distances |r; — 1|, [r; — 1y, -, |r; — 1yl
arranged in increasing order. Thus R;, [the same as
R, defined by (4.10) above] is the distance between r;
and its nearest neighbor among the other points, R;,
is the distance between it and its second nearest
neighbor, and so on. Conventionally we define
R;, = ooforl > N. The R, are well-defined functions
of the N variable points R;; = Ry(ry, ¥z, *, Iy).

Suppose we consider a quantum-mechanical system
of N particles in a state described by the wavefunction
v = p(r;, Iy, * * *, Ty) normalized in the usual way

(w,«p)=f---fd“r|w|==1.

Let us introduce the following quantities:

_-1_ SN 2N —1 = . e
K,—Nf J'd Pt SR (1= 1,209, (52)

By definition of the R;, we have

Ki2 K 2Ky 2+ 20, (5.3)
and K, = 0 for / > N. The K, have the dimension of
an inverse distance; K;* is a measure of the typical
linear dimension of regions which contain / + 1 (but
no more) particles.

The quantity K, is particularly important in
connection with the inequality (4.11). From it we

(5.1)
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immediately see the following fact: If the charges of a
finite system of particles satisfy (1.4), then the total
Coulomb energy satisfies the inequality

(y, Wy) > —NeéK, . 5.9

On the other hand, if the masses satisfy (1.3) we
have for the kinetic energy

=3 [ [evrmpran e s
where i
1 X
=23 j f PV (56)
N i=1
Thus the total energy satisfies
(v, Hyy) > N[(#2m)t — e*K,]. (.7

Our aim is to derive an inequality involving both ¢
and K, which allows the establishment of a lower
bound on the right-hand side of (5.7) independent of
both.

We begin by deriving an upper bound on the
cumulative sum

S K, (5.8)

in terms of K., and ¢. By definition, the sum (5.8)
may be written out in detail as follows:

8 feufons e

3 3. ...
f drakf d’rg,
in out

3 : lpl®

J:’“t Wriras l=zl |ra, — il
P is a partition of the set of N — 2 integers {1, 2, - -,
i—1L,i+1,->+,j—1,j+ 1,--+, N}into two sets
{a, ", ) and {B,, -, By_ar}, ODE containing k
integers, the other N — 2 — k integers (k being fixed).
The sum over P runs over all such partitions. The
phrase “in” under the integration signs means that
the domain of integration is

|a,_ ,l<ll‘5—l',| (l=1:2,""

5.9

k), (5.10)

while “out” means the opposite

|rp,—ri|2|rj"il (I=12,- N-—2—k).

(5.11)

In other words: r, is the (k + 1)st nearest neighbor,
and r, , r,’ "+, T, are (in some order) the first,
second, - - +, (k)th nearest neighbors of the point r;.
We now make use of the following.
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Lemma 2: For any positive A, and any complex
valued function ¥'(r), having continuous derivatives
and defined in the sphere Q: |r] < b,

f Pr ,1’}:;2 ( f;;) Ldar mu-ﬁ- Ld”’er‘I’l“’.
(5.12)

The proof of Lemma 2 is given later. The inequality
(5.12) is applied to the integration over the variable
r,, (to be carried out first). The sphere L is given by
(5.10), with the radius & = |r; — r,| and center r;. It
follows that an upper bound for (5.8) is obtained if we
replace the integrand in (5.9) by

2 2 1 ) -%V 2
(3 +2‘J_ri| + 3 Wl

For the first two terms the sum over / in (5.9) gives
merely k equal integrals, so that for these one obtains

(5.13)

(k[2) + 3KkKp iy - (5.14)

The gradient term may be rewritten
asv, Va 2 5.15
L[ ferzma o

where the prime on the summation sign indicates that
only those values of « are to be included in the sum
for which r, is the (/)th nearest neighbor of r; with
1 € 1< k. (The set of these values of « is a function
of the integration variables ry, -, ry, of course.)
This, in turn, may be written

VMg |Vl
4Na—1f f r ak‘ u"/}'

where M, = M_(r,, -, ry) is the number of those
r; to which r, is the (/}th nearest neighbor with
1<I<k

(5.16)

Lemma 3: For any finite set of points {r;, 1y, -+,
ry}anda=1,2,--+, N,
M, < (dmjw)k < 15k, (5.17)
where _
w = 2m(l — cosinm) = w2 —/3) (5.18)

is the solid angle inside a circular cone of half-angle 3.

This Lemma is a purely geometrical fact which is
proved later. Since trivially M,; < N — 1, we have
now the upper bound for (5.16)

$At min {N — 1, (4=/w)k} (5.19)
in the notation (5.6). Thus we have obtained the
following inequalities

k 3k kAt

E.K,<—K,c+1+~+—mm{ -1, ﬁk}

=1 2 A 4 w
(k=1,2,---,N—1). (520
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For k = N — 1 one has to set Ky = 0 (the proof
makes use of Lemma 2 with Q all space and b = 0).

Lemma 4: Let the sequence of nonnegative numbers
Xy, Xg, ¢+ * satisfy
k
E X; < akxk+1 + bk (k = 1, 2, c '), (5-21)
1=1

where the coefficients a,, and b, are nonnegative. Then

X L A+ B, (k=1,2,-+1), (522)

where
A, =a 5.23

and
k-1 -1 k-1
b, a; a;

B, = -4+ b 2 5.24
* z§11+a,31;[11+a,- kpl;[ﬂ a; (5.24)

In the last two equations empty sums are interpreted
as zero and empty products as unity. The proof is
given later.

We use Lemma 4 to eliminate K, K,, - - -, K, from
(3.20) and obtain a single inequality which involves
only X, K, ,,, and ¢. Indeed, (5.20) is precisely of the
form (5.21) with

(57

a, = 3k (5.25)
and

= (k/1) + }Ar min {N — 1, dnjw)k}. (5.26)
We have then

x ; 1 T(2
4 =T—2— = HIO (5
=13 —1 T(k+ %)
A simple upper bound on 4, is obtained by noting
/G - DF <G+ DG -2, (528)
so that
A, < Bk + D3, (5.29)
In particular
Ay < BN (5.30)

The computation of B, is more complicated due to
the two different analytic expressions involved in
(5.26). We temporarily ignore this complication and
set simply

by, = kl(1/2) + (m/w)A1].

(The inequality will be somewhat worse but the
calculation is easier.) One finds with (5.25) and (5.31)
the identity

(5.31)

By = 2(4, — DI/ + (m[0)Ae].  (5.32)
In particular, using (5.30)
By < GNHQ/A) + Qmlw)d).  (5.33)
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We now write down the inequality which follows from
(5.20) by Lemma 4 for the case k = N — 1

Ky < BGNHMQ/D) + @mfw)ii], (5.34)
or equivalently (since A is arbitrary)
K, < 43N} (rtjw)b. (5.35)

We are now ready to complete the proof of
Theorem 3. From (5.7) and (5.35) we have

(v, Hyy) > N@2[2m)t — 4e2NGN) (x| w)r]t
> —AN*Ry (5.36)
with

A = (167|w)3% = 1242 --. (5.37)

The last inequality in (5.36) arises by minimizing with
respect to 7.

A lower value of 4 can be obtained by using (5.26)
instead of (5.31) to compute By_;. We find 4 < 52.
However, the exponent § cannot be improved. The
latter originates in the factor § in (5.25) and that goes
back to the factor § on the right-hand side of (5.12)
in Lemma 2. The inequality in (5.12) can be made to
approach equality with arbitrary precision, as the
example ¥ = const and

f d"’rl—\p—Iz =if a*r |¥)?
Q fr| 2b Jo
3

shows. It is clear that no constant larger than $
would do.

It is also easy to see that as long as we use not the
true Coulomb energy W but rather the lower estimate
given by Theorem 7, it is impossible to improve on
the exponent § of Theorem 3. For we can exhibit a
sequence of states y, such that

(5.38)

(wy, [T+ Ulpy) ~ ~AN*Ry  (5.39)
as N — oo, Take wavefunctions of the form
N
wN(rla Y l'N) = H uA(ri)’ (540)
i=1

where u,(r) is a smooth wave packet of spatial extent
A. The energy is about

{ﬁ_zi_ezﬁ}
2m A? Af

because in the absence of correlations the nearest-
neighbor distance is about the mean interparticle
distance AN-(®_ If N is taken large and A = A(N)is
taken to minimize (5.41) one obtains (5.39). Therefore
a significant improvement over our Theorem 3 can be
achieved only by giving up the use of Theorem 7.

(5.41)
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6. PROOFS OF LEMMAS 2, 3, AND 4

In order to complete the proof of Theorem 3 we
now have to prove the three lemmas used in the last
section.

We begin with Lemma 2. Suppose first that Q is an
arbitrary region and V(r) an arbitrary potential. The
ground-state energy e of a particle of mass (24%/4) in
this potential is defined by

= Inf{ fﬂ dr (B VT + V [P / fn dyr |‘FI2},
(6.1)

where the infimum is taken over all wavefunctions ¥
defined in Q. No boundary condition is imposed on'¥,
but the minimizing ¥ satisfies the “natural” condition

m-VY¥=0 (6.2)
on the boundary of Q. The eigenvalue equation for
€ is

—HPVY + VY = Y.

Since the minimizing ¥ is positive and nonzero in Q,
we may introduce the vector

w = —(V¥),
so that (6.3) becomes

(6.3)

e =V 4+ {(div w — w?). 6.4
Taking the gradient of (6.4), we find
(w - Vi = {Viw + (2/A)VV, (6.5)

an equation identical with the Navier-Stokes equation
for steady flow of a fluid with velocity w and with
kinematical viscosity equal to 4. We do not pursue
this peculiar hydrodynamical analogy any further
(see note added in proof). Integrating (6.4) over the
volume €, we obtain

€ = (Vav — {0y, (6.6)

where ( )av denotes an average over (, and the term
in (div w) has vanished by virtue of (6.2).
We apply this analysis to the special case of a
Coulomb potential
V()= —r1
in a spherical shell Q defined by a < |r| < b. In this
case

PMay = —3[(B% — a®)/(b® — a®] > —3/2b. (6.7)
The conclusion (5.12) of Lemma 2 states that
€ > —(3/25) — (1/4) (6.8)

for the spherical region [r| < b. If (6.8) holds for the
shell a < |r| £ b, then Lemma 2 follows by taking
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the limit @ — 0. By (6.6) and (6.7), we have only to
prove

(WHhav < (4/27)

for the spherical shell Q.

For a spherically symmetrical {, the ground-state
¥ is spherically symmetric, and the vector «w is
parallel to ». We denote by w the component of the
vector w in the radial direction. Then (6.5) becomes

®” + 20'[(1/r) — o] + 2/rH2/) — w] = 0,
(6.10)

where the prime denotes differentiation with respect
to r, and the boundary condition (6.2) gives

o(@) = () = 0.

6.9)

(6.11)

If w(r) were ever negative in @ < r < b, there would
be at least one minimum with

0" >0, o =0 w<0,

which contradicts (6.10). If w(r) were ever greater
than (2/4), there would be at least one maximum with

w' <0, o =0, w>2/A),
again contradicting (6.10). Therefore
0< () <(2/4) for a<L|r|<h,

which proves (6.9) and also Lemma 2.

(6.12)

Lemma 3 deals with a geometrical property of a
finite set of points in space. Let this set be {ry,
ry, -, r,}. We distinguish a point, r, say, and attach
an index to each of the rest of them. The index of r,
is said to be the integer / if r, is the (/)th nearest
neighbor of r; in the given set. Let now k > 1 be
fixed, and define a certain subset, say {r;, ¥y, - -, I},
consisting of all those points whose indices do not
exceed k. We want to prove

m < (4njw)k,
with o defined in (5.18).

Let C, be the circular cone with vertex at r,,
half-angle §7 and axis pointing in the direction 6.
Let » = #»(6) be the number of points among {ry,
Iy, * **, I} which are inside C,. We have

f dQu(0) = mo,
where the integration is over the solid angle element
formed by varying 6. Thus (6.13) follows if we show

»(0) < k. (6.15)

Let now 0 be fixed, and suppose for the sake of
definiteness that out of {r,, 1, -, r,} the first »

(6.13)

(6.14)
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points are inside C,. If » =0 or 1, (6.15) is true
trivially, so we may suppose » > 2. We choose the
notation so that

fro—nBl <K —Rl <~ <=1 (6.16)

Take an i (1 < i< v — 1) and consider the triangle
(ro, r;, r,). Since the angle at ry is <}, the largest
angle of this triangle must be either at r; or at r,. But
the latter is excluded because |r, — 1.} < lrp — r,} and
in a triangle the largest side occurs opposite the
largest angle. Thus the angle at r, is largest and so, by
the same principle,
fr, — 5| <, — 1. (6.17)

Since thisis true of i = 1,2, -+, » — 1, ry cannot be
less than the (¥)th nearest neighbor of r, or, in other
words, the index of r, is at least ». By assumption this
index does not exceed k, therefore » < k which is
what was to be shown. This completes the proof of
Lemma 3.

We may remark that the numerical factor 4w =
8 + 4y/3 =14.928--- in Lemma 3 is close to the
best possible (if indeed not the best). To see this we
display a set of n = 12k + 1 points such that 12k of
them possess the index k. Choose one point r, at the
center of a regular icosahedron and the rest of them,
Iy, Iy, ", I, in groups of k very close to the 12
vertices. Since the edge of an icosahedron exceeds the
distance of its center from its vertices, the center 1y
is the (k)th nearest neighbor to all 12k points. Thus
the best constant of Lemma 3 must be >12.

To prove Lemma 4 we choose a fixed & > 2 (the

case k =1 is trivial), and define coefficients 4, as
follows

-1
1 a;

hy = 1=12,--,k-1,
! 1+ a,gl + a; ( )
h ﬁl 4 6.18
= . 1
* =11+ a; ( )
These quantities satisfy
k
Zhi =1,
=1

k
zhi = al_1h;_1 (l = 2a 3, k)' (6-19)
=1

Now multiply the first k of the inequalities (5.21) by
hy, hy, -+, By respectively and add (this is valid
because 4; > 0). The inequality which results is just
(5.22) with A, and B, given by (5.23) and (5.24).

7. PROOF OF THEOREM 4

We now assume all particles are fermions and that
they fall into ¢ > 1 groups so that the exclusion
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principle holds between particles of the same group.
No assumption is made about the number in each
group except that the total number is N > g + 1.

We make use of the antisymmetry of the wave-
function of identical fermions only by the application
of the following inequality.

Lemma 5: Let¥ =Y(x;, x,, - - -, X,) be a function
of »>2 space points having continuous first
derivatives, antisymmetric with respect to interchange
of any two points, and defined with all points in a
sphere Q of radius A. Then

v 2
f dx I |\VPE> (@ —1) 5—2 f d¥x Y%, (7.1)
Q =1 A*Ja
where & = 2.082 is the smallest positive root of the
equation

(d?/dx?®)(sin x/x) = 0. (1.2)

For simplicity take » = 2 (the proof for » > 3 is
analogous). Expand

¥ =¥ y) =3 3 Comt@un(y)  (13)
in terms of the complete orthonormal set of eigen-

functions {u,(x)} defined by the eigenvalue problem
—Aacun(x) = €nuh(x) (74)

with the boundary conditions

éa—u,,(x) =0 for r=|x|= A1 (7.5
r
One finds
[Lox[ avwrr=3 5 qic.ar
Q Q n=0 m=
1 « =)
= z (€n + €m) Icn m|2
2 n=0 m=0
(7.6)
because the antisymmetry of ¥ implies C,, ,, = —C,, ..
Also
[ o[ avwe =3 Sic.r an
Q Q n=0 m=0

The ratio of (7.6) to (7.7) is smallest when C, ,, # 0
only for those two values n % m for which ¢, and ¢,,
are the two lowest eigenvalues. There is one s-state
eigenvalue €, = 0 with uy(x) = ($w4%)~%, and three
degenerate p-state eigenvalues

(7.8)

The remaining ; all lie higher than (7.8). This com-
pletes the proof of Lemma 5.
The proof of Theorem 4 is based on an inequality

€ = € = €5 = £2[)2,
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which is important in its own right. It involves only
t and K,_, for some p > g + 1. It depends purely on
the antisymmetry of the wavefunction and has
nothing to do with the Coulomb problem as such.

Theorem 8: For a system of N > g 4 1 fermions
belonging to ¢ > 1 species

(43/8[p/(p — @)t > K5y
forg+1<p<N.

(1.9)

The proof of Theorem 8 is based on Lemma 5.
Before proving it we show how Theorem 4 is derived
from Theorem 8. Since for ¢ = 1 the physical content
of Theorem 4 is vacuous, we may assume g > 2. From
(5.20) and Lemma 4 we derive, using (5.29) and (5.32),

Ky < GpHK, + (2/3) + @ujw)a).  (7.10)

The inequality (7.9) may be rewritten in the alternate
form

B2k +is0, @
U

where p is an arbitrary positive number. From (7.10)
and (7.11) we eliminate X,_,, obtaining

27, 43 p 1.1

K <G (Zi+ 2= 2 2(= 4+ ).

1 <6p) [(w't+8£2p—qﬂ)t+ (l+u)]
(7.12)

Comparing with (5.34) we observe that (7.12) is a
weaker inequality when p > N. Thus we may ignore
the restriction p < N given in Theorem 8 and choose

p=2 (7.13)

for any N > ¢ + 1. Finally, A and u are chosen to
minimize the right-hand side of (7.12). This results in
the following.

Corollary to Theorem 8: Under the conditions given
in the theorem,

Ky < Aqit, (7.14)
with the constant ,
4mt /43
A=2- 6% — —
(&) + G
=22.2---. (7.15)

The proof of Theorem 4 is now completed by using
(7.14) in (5.7)

(p, Hyy) > NI(B*2m)t — €*K,]
> N[(B2m)t — Agtett]
> —A%EN Ry,
with 4% < 500 by (7.15).

(7.16)
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8. PROOF OF THEOREM 8§

We begin by introducing an arbitrary length 2
and writing

423\t
t=|— d“’Nr— \Y zf d%. (8.1
() [evrkswe| am @
If the order of the integrations over the r; and over y
is interchanged, this becomes

_ (AL L 3. ... 3
_( 3 ) Nfdy%foutdr,-l J:mtdr’”""

xf dSr‘.l o .f darivllv‘ilwlz + +‘Vtvw 12]'
in in
(8.2)

The summation is over all partitions P of the set of
subscripts {1, 2, , N}into two parts {i;, i, - * -, i,}
and {j,j, "', jy-,)- The phrase “in” under an
integral sign signifies that the corresponding integra-
tion variable is restricted to lie inside the sphere of
radius A around the center y, while “out” means the
opposite restriction.

We now drop all terms from the sum over P which

do not satisfy

PLSv<N, 8.3)
where p is an arbitrary integer satisfying
g+1<p<N. 84

Consider now a particular P and the particles labeled
iy, Iy, = * +, i, which are inside the sphere of radius 4
around the center y. Let v;, »,, - - -, », be the numbers
among them which belong to the first, second, - - -,
(g)th species respectively. We apply Lemma 5 to the
integration over the », variables belonging to the
first species, then over the », variables belonging to
the second species, and so on. Since

Q —
So—D=v-q22=4y (83
s=1 P
under the restriction (8.3), we obtain

3,—~1 2
> (4#3.) lf

3 N 22 P J f d3 21
J:mt driy J\m d’ry, - 'J;n d’ry, 1yl% (8.6)

The prime on the summation sign stands for the
restriction of the sum to terms P for which v = »(P)
satisfies (8.3). We now restore the original order of the
integration variables. This gives

—1 2
rz(““"”) L1ép - fd‘”" Sy [ @

8.7
3 N 242 v=p Jfy ( )
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Here Q = Q(r;,1,, ", 1y) is the set of points y
such that the inequality [r, — y| < 4 is true for
exactly » (and not more) values of the subscript i, We
find it convenient to rewrite (8.7) somewhat differently

N N
So| av=3 | &

v==p Q, i=1 JE;

(8.8)

Z, is a set of points y, defined by the condition that
fr; — ¥yl £ 4, and at least p — 1 more inequalities of
the same type [r; — y| < A (j# i) hold. The identity
(8.8) is verified easiest after its intuitive content is
grasped in terms of simple examples.

The next step is to obtain a lower bound for the
volume of I, (as a function of the ry, - - -, ry). It is
at this point that we introduce the (p — 1)st nearest-
neightor distance R, , , of the point r,. When
R; .y > A we write

f 4y > 0.

Let then R; , ; < A. There are precisely p — 1 values
of j (j # i) such that '

(8.9)

=l <R pa- (8.10)
Consider the set E; of y satisfying
y—r]<2—R; ;. @8.11)
I, is a sphere of volume
[ov=Ya-r,0 @D

For any y inside it and any j satisfying (8.11) one has
ly — ;] € 4, which shows that Z/ is a subset of E,.
So we have

L @y > 43” (=R,  (813)

We now take (8.13) and (8.9) into (8.8) and (8.7).

This gives
N .3
t> jzp —fdwr [pl* 3 max {0, (1 - B—;——‘) }

(8.14)

This inequality holds for any positive 1. We average
it over all values of 1 in the interval 0 < 1 < a. We
have

a 3
1 ‘—I&max {0, (1 - 5)}
A A

a Jo
3
=—1—(1 - B—) max{O, (1 -—8-)}

4aR a a

> (1)4aR) — (1/a®.
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Therefore (8.14) implies

t> 5”’—_—‘1(&‘—1—1). (8.16)
p 4a a?
The best value of a is 8(K,_;)™?, yielding
(> EPTdye (8.17)
64 p

This completes the proof of Theorem 8,-except that
64 appears instead of the coefficient 43 on the left
side of (7.9).

We have succeeded in deducing (8.17) with the -

coefficient 43, starting from (8.14). This requires only
elementary but complicated manipulations which we
do not present here.® In mathematical terms the
problem is the following. Given some probability
distribution function F(tf) on the positive real axis
[F is nondecreasing and F(0) = 0, F(o0) = 1], such
that

Jz(x — 1 dF(1) < C%® (8.18)

for all positive x, where C is a constant. Write

K f = dF(1). (8.19)

What is the best pos51ble inequality of the type

K? < aC2? (8.20)

The argument above shows « < 64. Our more
elaborate argument gives « < 43. It is easy to see
that the best « cannot be less than 40. For if F(t) =
min {1, 10C%2}, then K2 = 40C2% To determine the
best o is an amusing problem, but it would give only
a trivial numerical improvement of Theorems 8 and 4.

9. SMOOTH BACKGROUND CHARGE

Theorem 4 can be generalized by adding a smooth
external charge distribution to the N fermions. The
particles now interact not only with each other but
also with the field produced by this background
charge. Let p(x) be the charge density producing the

external field. The Hamiltonian is now
N 2 . .
HN=Z(——h—A) %
i=1 2m; 1<<5EN |1, — 1)
N
+ Z ei dsx (X) + fds fd3 P(X)P(y) . (9.1)
i=1 1| 'X - Y|

The last term is a C number, the self-energy of the
background charge. We assume that it is finite.

8 For details, see Ref. 6.
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Theorem 9: Suppose N particles satisfy the con-
ditions of Theorem 4 and are subject to an external
field generated by a smooth charge density with finite
self-energy. Then

Ep > —AQ29N Ry,

where A is the same constant as in Theorem 4.

0.2

To prove this we consider a fictitious system
consisting of 2N particles, N of them having the given
masses m; and charges e;, and the other N of them
having the same masses m, but opposite charges —e;.
The total number of species is 2¢q. Let H,, denote
the Hamiltonian of this system, which includes the
kinetic energy and the Coulomb energy due to the
interactions between all 2N charges. Consider now
the energy of this system in a state V" defined by

IIj.(rl’ e ) r2N)'

9.3)

sTan) = Py, s TNy, *

Itis

(¥, Hy¥) = 2(p, Hyv) — f N (e -,

2N

l'zv)l2

ee;

,r

wl 1213 =N+1 |1, — rl
%.49)

Here by Hy we mean the Hamiltonian (1.1), ie.,

the energy of the first N particles alone. Theorem 4

asserts that

(¥, Hyy W) > —A2N(2g)E Ry.

X I'P(TN+1, .

(9.5)

We compare this with the expectation value of the
operator Hy given by (9.1) in the state yp.

(1/)’ gNW) = (1/)9 HNQ/)) +fd3Nr I'P(l'l PI rN)szdax
N () f f PR
1-—1[1‘ —X| |x—yl
(9.6)
Therefore we have
(v, Hyy) — 3(¥, HoyY)
2 Ix — i
where

P(x) = p(x) + f d“rwizzea(r —x. (98)

The integral on the right-hand side of (9.7) is non-
negative. Therefore

(v, Hyy) 2 $¥, HGY), 9.9)
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and comparing this with (9.5) the conclusion of
Theorem 9 follows. Equality can occur in (9.9) only
when p’ = 0 identically, that is when the given
background charge density exactly cancels the charge
density [ d3¥r |y|2 >, e,0(r; — x) of the particles.

In this proof it is essential that we included the last
term in (9.1), the self-energy of the background charge,
in the definition of the Hamiltonian Hy . Thus it is
impossible to think of p(x) as the (singular) charge
density of a certain number of fixed point charges, for
in that case the self-energy is infinite and Theorem 9
is vacuous. This consideration shows that our
Theorem 5 is a significantly deeper result than
Theorem 9, because it asserts the stability of a system

F. J. DYSON AND A. LENARD

of charged fermions in the field of fixed point charges
where the energy, by definition, does not contain any
self-energy term.

Note added in proof: For a deeper discussion of
(6.5) see E. Nelson, Phys. Rev. 150, 1079 (1966).
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The translational invariance properties of a one-dimensional fluid with finite range forces are investi-
gated. For N particles in the interval [0, L], with a two-body interaction potential w(x) = 0 for x > R,
we find the following: (a) If w(x) has a hard core of diameter d and R < 2d, each a-particle distribution

function D,(x,, -

, X,) is translationally invariant if and only if L > 2(N — n)R and x;, - -

-, Xn lie

in [(N — nR, L — (N — n)R]. (b) For arbitrary finite values of R, with or without a hard core, the
above conditions are sufficient for translational invariance of the D,. These conditions hold for all

temperatures.

I. INTRODUCTION

N a recent paper! (referred to as 1), translational
invariance properties for a finite one-dimensional
hard-core fluid were established. It was found that,
for densities less than half the close packing density,
there exists a central region in which the one-, two-,
», N-particle distribution functions are transla-
tionally invariant. It is the main purpose of this paper
to extend these results to one-dimensional systems
with arbitrary forces of finite extent, R.

In I, use was made of the fact that, for systems with
nearest-neighbor interactions, the n-particle distribu-
tion functions, D,, are expressible in terms of the
configurational partition function. For pure hard
cores (no attractive forces), this function is well known,
and its precise form was used explicitly throughout
the investigation of paper I. In order to extend the

1 H. S. Leff and M. H. Coopersmith, J. Math. Phys. 8, 306
(1967).

investigation to a general class of potentials of finite
extent, we employ a method which expresses deriva-
tives of distribution functions in terms of other
distribution functions. These expressions are in the
form of recursion relations which lead to the transla-
tional invariance properties of the n-particle distribu-
tion functions. The bulk of this paper deals with the
derivation of these recursion relations. Once obtained,
the translational invariance properties are immedi-
ately established using mathematical induction.

The main result is that, for N particles contained
in the interval [0, L], where L > 2(N — n)R, there
exist central regions, [(N — n)R, L — (N — n)R], in
which the functions D, for n = 1,---, N are trans-
lationally invariant. It is rigorously established that,
for nearest-neighbor potentials, these translational
invariance properties do not hold outside the central
regions and evidence that this is also true for poten-
tials of arbitrary extent is presented. An interesting
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and comparing this with (9.5) the conclusion of
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impossible to think of p(x) as the (singular) charge
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in that case the self-energy is infinite and Theorem 9
is vacuous. This consideration shows that our
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of charged fermions in the field of fixed point charges
where the energy, by definition, does not contain any
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(6.5) see E. Nelson, Phys. Rev. 150, 1079 (1966).
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The translational invariance properties of a one-dimensional fluid with finite range forces are investi-
gated. For N particles in the interval [0, L], with a two-body interaction potential w(x) = 0 for x > R,
we find the following: (a) If w(x) has a hard core of diameter d and R < 2d, each a-particle distribution

function D,(x,, -

, X,) is translationally invariant if and only if L > 2(N — n)R and x;, - -

-, Xn lie

in [(N — nR, L — (N — n)R]. (b) For arbitrary finite values of R, with or without a hard core, the
above conditions are sufficient for translational invariance of the D,. These conditions hold for all

temperatures.

I. INTRODUCTION

N a recent paper! (referred to as 1), translational
invariance properties for a finite one-dimensional
hard-core fluid were established. It was found that,
for densities less than half the close packing density,
there exists a central region in which the one-, two-,
», N-particle distribution functions are transla-
tionally invariant. It is the main purpose of this paper
to extend these results to one-dimensional systems
with arbitrary forces of finite extent, R.

In I, use was made of the fact that, for systems with
nearest-neighbor interactions, the n-particle distribu-
tion functions, D,, are expressible in terms of the
configurational partition function. For pure hard
cores (no attractive forces), this function is well known,
and its precise form was used explicitly throughout
the investigation of paper I. In order to extend the

1 H. S. Leff and M. H. Coopersmith, J. Math. Phys. 8, 306
(1967).

investigation to a general class of potentials of finite
extent, we employ a method which expresses deriva-
tives of distribution functions in terms of other
distribution functions. These expressions are in the
form of recursion relations which lead to the transla-
tional invariance properties of the n-particle distribu-
tion functions. The bulk of this paper deals with the
derivation of these recursion relations. Once obtained,
the translational invariance properties are immedi-
ately established using mathematical induction.

The main result is that, for N particles contained
in the interval [0, L], where L > 2(N — n)R, there
exist central regions, [(N — n)R, L — (N — n)R], in
which the functions D, for n = 1,---, N are trans-
lationally invariant. It is rigorously established that,
for nearest-neighbor potentials, these translational
invariance properties do not hold outside the central
regions and evidence that this is also true for poten-
tials of arbitrary extent is presented. An interesting
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feature is that the translational invariance of D, does
not require a hard core and depends only upon the
finite extent of the potential. Furthermore, the results
are independent of the temperature.

In Sec. II, we establish a notation convention and
recall several useful formulas from paper 1. Section
I introduces the general method of this paper and
the major results of paper I are rederived. In Sec. IV,
these results are extended to the case of general
nearest-neighbor forces. Section V is devoted to the
case of arbitrary forces of finite extent. A discussion
of the results is contained in Sec. VL.

II. NOTATION AND REVIEW

Consider a one-dimensional system of N 41
particles contained in the interval [0, L]. (We use
N + linstead of N for algebraic convenience.) Assume
the particles interact according to a two-body poten-
tial energy w(x), where x is the interparticle separation.
The configurational partition function for the system
is
Z(L,N + 1) = (N + 1!

N+1 N+1
xf -*fexpl: ﬁZw(x”):ldek H
(U3 i<y
Here x,; = [x; — x|, B is the inverse temperature and
O is the ordered domain0 € x; < - - < ¥y < L.
The n-particle distribution functions
D;Nﬂ)(xl, o xnlL)
are defined by?
D:aN+1)(x19 Y xn‘ L)
_ N+ D! 1
(N+1—-m! Z(ILLN+ 1)

N+1

N+1
ﬁz w(xza):] H dxlc (2)

L L
X f . J exp [
0 [ i<y
fo<x, <L fori=1,-:
zero otherwise.
If w(x) contains a hard-core part with diameter 4
and is zero for x > 2d, then, according to I, the
ordered n-particle distribution functions have a

particularly useful form

<X, | D)=

,n and are identically

1

DLN’H)X < e
(o< n! Z(L,N + 1)

(N + D!
X g} HN' Z(xl,Nl)Z(L'“xn7Nn+l)

X HZ(x;c — Xp1> Ni)- 3
k=2

2 This notation is slightly more detailed than that in paper I,
indicating both N and L dependence.
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This function is normalized to

N+1
C)
over the ordered domain O, . The prime indicates that
the summation over the set {N;, -, N} is to be

carried out under the constraint

n+1

i=1
When # = 1, the product of Z functions does not
appear. Z and Z are modified configurational integrals

which are defined by
Z(x,n) = n! L o j exp [—ﬂiiw(xu)

~ 83 wxi— x| T ds,
Z(x,n) = n'f fexp [—ﬂzn w(x;;)

= 83w = xh = § 3 (x| IT d.
(4b)
For the special case when w(x) is a pure hard-core
potential, one has (see Appendix B of I)

(4a)

Z(x,n) =[x — (n — Dd}", for x> (n— d, (5a)
Z(x,n) = [x — nd]*, for x > nd, (5b)
Z(x,n) =[x — (n + Dd]*, for x>+ 1)d. (50

These functions are identically zero outside the indi-
cated domains. It should be emphasized that Eq. (3)
holds only for the case of nearest-neighbor forces and
requires that w(x) contain a hard-core part.®

III. ONE-DIMENSIONAL PURE HARD-CORE
FLUID

In this section, we rederive the main results of I
without resort to the explicit evaluation of the partition
function. Specifically, we prove that, for N hard-core
particles of length 4 in the one-dimensional interval
[0, L], where L > 2(N — n)d, the distribution func-
tion D™M(x,, -+, x| L) is translationally invariant
for(N—nd<x;, <L~ (N—ndandi=1,2,-«-,
n. To do this, we first look at the derivative of
D{¥+1(x | L) with respect to x. From Eq. (3), we have

DiN-i—l)(x l L) = (N + 1)
Z(LLN+ 1)
»{x) N -
x '3 ( )Z(x, WZ(L — x, N — n),
n=g{x) \N
(6)
3 The concept of nearest-neighbor forces is meaningful only if

the potential has a hard-core part. The requirement of a hard core
is dropped in Sec. V.
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where o(x) and y(x) are given by*
k for kd<x < (k+ 1)d;
?’(x)= k=0, ,N~—1,
N for x> Nd,
k for L—Nd+(k—-1Dd<x<L
o(x) = —(N—-Kkd;k=1,---,N, (b
0 for x <L~ Nd.
The derivative is then given by

9 D(1N“’(X| L)= N+ 7z (N)
Ox Z(L, N + 1) n=a(x) \ N

(7a)

g
X [Z(L —x,N —n) P Z(x, n)
+Z(x,n)5a;Z(L—x,N-n]

+ terms proportional to dy/0x and do/dx. (8)

If we now restrict ourselves to values of x which are
not integral multiples of 4, then the terms involving
the derivatives of y(x) and ¢(x) vanish. This restriction
is of no consequence since this set of points has
measure Zero.

It is necessary now to evaluate the derivative of Z.
For the pure hard-core case, this can be done easily
since we have an explicit expression for Z as given by
Eq. (5b). For x 2 nd,

(0/9x)2(x, n) = n(x — nd)* ' = nZ(x — d,n — 1).
®
However, this equation can be derived without explicit
use being made of Eq. (5b). To do this, we go back to
the original definition of Z as given by Eq. (4a) applied
to the nearest-neighbor case.

2(x,n) = n! f@; . f exp [—égw(xm -x)
— Bw(x — x,,)] kIZIIdxk, (10)

where w(x) is the hard-core potential given by

) = {oo for x < d,
wix) = 0 otherwise.
Differentiating Eq. (10), we find

a%Z(x, n) = n!Lﬁ- . ‘fexp [—ﬁ:gw(xm - x,._)]
X {% exp [—pw(x — x,,)]} Ic]':[l dx,

=n J; ”dx,,{‘% exp [—fw(x — x,,)}}
X Xx,,n—1)
=nZ(x —d,n—1) (12)

4 Here, we are explicitly using the fact that Z~(x, n) =0 for
x < nd.

(n
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in agreement with Eq. (9). In Eq. (12), the integrand
of Z evaluated at x, = x vanishes because of the
Boltzmann factor exp [—fAw(0)]. The last step of Eq.
(12) is true since

d/0x exp [—Bw(x — x,)] = d(x — x, — d),

where d(x) represents the Dirac delta function. Simi-
larly, we have

a
axZ(L—x,N-n)

= (N — n)Ldel{i exp [—pw(x; — x)]}

X Z(L—x,,N—1—=n)
=—(N-mZL—-x—d,N—1—n). (13)

We now proceed to use Egs. (12) and (13) in Eq. (8).

5a_D§N+1)(x l L)
X
yia) - -
- W+ DN 5 [(N 1)Z(x —din—1)
Z(L, N + 1) n=a(x) n—1

XHL—d—(x—d,N—1=(n—1)
- (N‘“I)Z(x,n)Z(L-d—x,N—1-n)]
n

(N + DZ(L — d, N)
Z(L,N + 1)
X [DiV(x —d|L —d)— DM(x| L — d)).
(14)

The last step follows from a change of variables
{(n — 1 —n) in the first summation. As in I, the
binomial coefficient takes care of any error in the
limits on the summations. Equation (14) is a recursion
relation which expresses the derivative of a D{N*1 in
terms of a difference of two D{¥’s. We now observe
that D{(x | L) is a nonzero constant for 0 < x < L
and vanishes otherwise. Therefore, from Eq. (14) it
follows that

2

X

DP(x| L)

2Z(L —d, 1
=~fm){pgl’(x—d[L—d)-D§1>(x[1;~d)]

=0 (15)
for d<x < L—d; ie, D{®x|L) is constant in

the interval [d, L — d]. Furthermore, outside of the
interval [d, L — d], D{®(x | L) is clearly not constant
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since
2Z(L—d, 1)
=D —d|L - d),
ZL2 ° (x—d| )
PR for L—d<x<L,
ax DU D) = 2Z(L — d, 1)
— =22 D(x|L —d),
Z(L,2)
for 0 < x <d.
(16)

These results can now be used to show that D®(x | L)
is constant in the interval [2d, L — 2d] but is not
constant outside this interval. Working up step by
step, one eventually arrives at the results

DM(x | L)
is constant for
(N—-Dd<x<L-—(N-1d

and
L>2N— 1),
with
N> 1. (17a)
D™(x | L)

is not constant for

x<(N—-1d, x>L—-(N—-1d
and
L> (N — 1y,
with
N> 1. (17b)

A formal proof by induction follows. Assume that
DM(x | L) is independent of x in the interval
[(N—1)d, L —(N—1d] for L>2N—1)d and
N = r. By Eq. (14), D{’(x | L) independent of x in the
interval [(r — 1)d, L — (r — 1)d] for L > 2(r — 1)d
implies that DY *V(x | L) is independent of x in the
interval [rd, L — rd] for L > 2rd. Since D{V(x | L) is
independent of x in the interval [0, L] for L > 0, we
have by induction that D{(x | L) is independent of
xfor L > 2(N — 1)dand all N > 1 when (N — 1)d <
x < L—(N—1)d. To prove (17b), assume that
D{™(x | L) is dependent on x for L > (N — 1)d and
N=r when x<(r—1d or x>L—(r—1)d.
Again using Eq. (14), D{”(x | L) dependent on x for
L>@F—Ddwhenx <(r— Ddorx>L—(r—1)d
implies that D{"+V(x | L) is dependent on x for L > rd
when x <rd or x> L —rd. Since D®(x|L) is
dependent on x for L > d whenx < dorx > L — d,
we have by induction that D{¥)(x | L) is dependent on
xforL > (N — l)dandall N > 1 whenx < (N — 1)d
or x > L — (N — 1)d. This completes the proof of
(17a) and (17b).

Due to the existence of Eq. (3), we may use the
translational invariance properties of D™ to deter-
mine the corresponding properties of DY), Combining
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Eqgs. (3) and (6), we have
DV, < < x,| L)

1 ” N1 n
= . Z _ ~ ’N
n!Z(L,N)z n!Nzl"‘N"!g (Xx — Xz-1, Ny
u S~
* (n)Z(xl’Nl)Z(L_(x"_xl)—xl,ﬂ—N1)
Ni=0\N,

= 1 ZHN!Z(L_(xn_xl)sn'*_ 1)
n! Z(L, N) M+ 1)!N,!---N,!

X{H Z(xk = Xg—1> Nk)}D{"+l)(xl l L — (x, — xy)).
= (18)
The doubly primed summation is over N,,--+, N,
and # = N, + N,,;, with the constraint N, + - -+ +
N,+n=N—n It is clear that when D{"*D is
independent of x,, then DY) depends only upon
(xg — x1),* -+, (x, — x,_,). The condition for this in-
dependence is d < x; < L — (x, — x;) — #d. Since
this must hold for =0, 1, ---, N~ r and x, —
x, 2> 0, each term of Eq. (18) is x;-independent if
N—-—nmd<x< "+ <x, <L~ (N~ ndwhen
L > 2(N — n)d. Furthermore, it follows that if one or
more of the x; is outside [(N — n)d, L — (N — n)d]
then for fixed values of the nearest-neighbor spacings,
D®(x,, -+, x,| L) is a nonconstant function of x,.
For further details the reader is referred to paper I.

IV. ONE-DIMENSIONAL NEAREST-NEIGHBOR
FLUID

Since the form of the one-particle distribution
function [Eq. (6)] remains the same when we add
nearest-neighbor forces to the hard core, we are
tempted to derive an equation similar to Eq. (14),
that is, a recursion relation for the D,’s. We now show
that it is possible to do this and thus extend the results
of Sec. 111 to include all nearest-neighbor forces.

We start with Eq. (8) which is correct for nearest-
neighbor forces. Using Eqgs. (12) and (13) and making
the variable changes z = x — x, and z = x; — x, we
have

ga;Z(x, n) = nf:dz{éa; exp [—ﬂw(z)]}Z(x —z,n—1),

' (19a)
iZ(L —~x,N—n)
ox

= —(N—=n) L L_zdzf{g’; exp [—ﬂw(z)]}

X ZHL—x—2z,N—1—n), (19b)
where R(<2d) is the range of the potential defined by

o0, x < d, (20a)
w(x) = {w(x) > —0, d<x <R, (20b)
0, x> R (20¢)
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Using Eqs. (19), Eq. (8) can be written, for non-integral values of x/d, as

0

ox
ylx)

__(N+D
Z(L,N + 1)

DM (x| L)

N-—1
n—1

| | xdz{a—az exp [— ()]
N-—-1

n

[J:dz{—a— exp [—Bw(2)]

0z

= exp [—pw(2)]

__(N+1 (F Z{
Z(L’N + 1) 0

}Z(L -z, NDM(x| L

ai exp [—fw(2)]
yA

The last step holds if R < x < L — R. We can now
proceed by induction as before. Since the argument is
identical with the previous one for the pure hard-core
case, we omit the details. It is only necessary to replace
d by R in the induction proof of Sec. 1I1.> The result
is that
D(x| L)
is constant for

(N—DR<x<L—(N—1DR

and
L> 2N — DR,
with
N> 1. (22a)
D™(x | L) is not constant for
Xx<(N—=DR, x>L—(N—1R
and
L> (N — DR,
with
N>1. (22b)

Furthermore, due to Eq. (18), the translational in-
variance properties of D{™(x | L) again ensure that
D¥(x,, -+, x, | L) will be translationally invariant
for(N—nR<x <+ <x,<L—(N—mn)Rwhen
L > 2(N — n)R and will not be translationally in-
variant when one or more of the x; lies outside this
interval.

8 Strictly speaking, the upper limit of Eq. (21) should be R + ¢
where € is an arbitrarily small positive number. Then, for the pure
hard-core system R == d and the delta function peak is within the
domain of integration. For this case, Eq. (21) reduces to Eq. (14).

}Z(L — 2, N)[DW(x — z| L — z) — D{V(x | L — 2)].

}Z(x—z,n—I)Z(L—z—(x—z),N—1-—(n—1))

) ﬁ Hdz{-a% exp [—ﬁw(z)]}Z(x, WAL —z—x,N—1— n):l

}Z(L ~z, N)DM(x — z| L — z)

_ Z)]

(21)

V. LONG RANGE FORCES: TRANSLATIONAL
INVARIANCE OF DM

Since the key to the results of Sec. IV lies in Eq. (21),
we are tempted to develop a similar recursion relation
when the force range is of arbitrary, but finite extent.
Specifically, we consider the case where R in Eq. (20c)
is arbitrary and the condition (20a) is unnecessary.
The most direct approach is to begin with D{¥+V (x | L),
as given by Eq. (2) for n = 1. Differentiation of this
unordered multiple integral leads to®

DN (x | L)
0x

—ﬂ(ﬁzdzw’(z)D(zN“’(x —z,x|L)

_J‘L—mde'(Z)D;NH)(x’ x+z| L)). 23)
0

If R < x < L — R then both integrals run from zero
to R.” One then sees that translational invariance of
D+ over some range of its variables implies trans-
lational invariance of D{¥+V over a corresponding
range of x. Similarly, an examination of

0

Ox

¢ Here, it is convenient to explicitly use the form
(9/9x) exp [—Bw(x)] = —fw'(x) exp [—Bw(x)].

In the preceding sections this was not the case.

7 For the case of nearest-neighbor forces, this equation becomes
a recursion relation for D{¥+1) being identical with Eq. (21). This
can be seen using Eq. (3) applied to D@ +1(x — z, x| L) with
0 < z < 2d. Since Z(z, n) = exp [—pw(2)] So,«, Eq. (3) yields
D@FFU(x — 2, x| L) = (N 4+ DZ(L — z, N) exp [—Bw(2)]

X D{¥x —z|L— z)/Z(L,N + 1).

D;N+1)(x, x + z, L)
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shows that the translational invariance of D{¥+V
implies this property for D{¥*. One might hope to
continue this process for (6/9x)D!¥+V with n =1,
2,++-, N. However, for n = 3, one already finds that
the integrand, which is a sum of D{¥*! functions,
does not vanish in an obvious way. Furthermore, this
process appears to become untractable as » becomes
large. These difficulties lead one to adopt a slightly
different approach.

In Secs. III and IV we first discussed the transla-
tional invariance properties of D{¥+V. We then used
these to determine the translational invariance prop-
erties of DV for 2 < n < N. Since Eq. (3) is not
valid for the case of long range forces it is not a priori
clear that the translational invariance of DNV
implies this property for D¥*1. The method of the
preceding paragraph, if tractable, would establish a
chain leading from the translational invariance of
DY*D 1o the translational invariance of D{¥*. The
method which we adopt retains this desirable feature
and, in fact, allows us to relate the translational in-
variance properties of DW¥*Y to those of D{¥~*,
where 0 < k < n.

To begin, we define the functions
by g:LN+1)(x1 Tt Xy I L)
gSnN+1)(x1’ Tty Xy I L)

=Z(L,N + DD (xy, -+, x, | L) (24)
forn=1,--+, N+ 1. Note that

gf\Z/\-’:-ll)(xn C s XN | L)
N+1
= (N + Dlexp [—ﬂ > w(xi,-)}
t<j

is translationally invariant for all values of x,,- - -,
X, in [0, L].5 We denote the set x;, -, X; by X;
and write

L
dH(Xy | L) = f dyg Xy, v | D). (25)

To determine the translational invariance properties
of g+ (and thus of D{+V), we investigate
(0]0e)g ¥+ Xy + €| L) for e —0, where Xy + ¢
represents x; + €, -, xy + € Using the transla-
tional invariance property of g'%"’, one easily sees that®

lim :— gY(Xy + €| L)

€—~0 0€

.0 [Ef=
= lim é_ dyg%’,vﬁl’(XN, y I L)

€-+0 U€ J—¢
= g Xy, 0| L) — g5 (Xy, L| L). (26)

8 Recall that if one or more of the {x,} lies outside [0, L], g{/ 1,1’
vanishes.

® Equation (26) may be interpreted as signifying a translation of
the container, holding the particles fixed. The fact that the e-
dependence can be removed from the integrand and isolated in the
limits of integration is crucial to the present method.
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It follows that if the set X liesin [R, L — R]theneach
term of Eq. (26) reduces to (N + 1)gd(Xy | L — R)
and the right-hand side vanishes.!® Thus, for X, in
[R, L — R], g (X | L) is translationally invariant.
If X, does not lie in this interval then the two terms
on the right are in general unequal and g+ is not
invariant under translations of the set X .

It is now desirable to generalize this discussion to
gAY, gV ... | oN+D The general situation is far
more complicated because, after the differentiation
(9/0€)g'¥+1, there still remain n integrations of gi& iV
and one must prove that these vanish under appro-

priate restrictions on the set X,_, . Thus, we consider

tim & g (X, + €| L)
€0 ae
1 .0 (L=
=—-—1Iim = .-
(n + 1)' €0 U€ J—e¢
= van sy
X J‘ gN+T (XN—n’yl".'syn+llL)].:];dyi

= g (X o, 0| L) — g5 (X v, L| D). (27)

In order to show that this expression vanishes under
certain restrictions on the Xy_,, we decompose the
integrals involved on the right-hand side of Eq. (27).
For n = 1, for example, we write

R
g (X y 1, 0] L) = f dygd (X s, 0, 7| L)

L
+ [ vt 0y [ D @)
If no member of the set X,_, lies to the left of 2R, then

gV (X v, 0| L)
_(N+1
- ( )
+ (N + 1)g¥(Xya — R| L — R).
Similarly, using the decomposition

I L—-R I,
L=l +l.
0 [}] ~R
g%v“)(XN—ls L I L)y=(N + 1)8%\7—)1()(1\’—1 I L —R)
N+1 _
+ ( 5 )g‘f’(R | R (Xnoa | L — B)

(29b)

101f the set Xy lies to the right of R, g f'(Xy,0|L) =
(N 4+ 1)gi#¥'(Xy — R| L — R).If the set Xy lies to the left of L — R,
eI Xy, L|L — R) = (N + g (Xy| L — R). These express-
ions are equal since g{? is manifestly translationally invariant. Since
Xw is restricted to [R, L — R] one could denote the domain in the
g functions by L — 2R, rather than L — R. The precise label is
irrelevant for our purposes.

)gi”(o | R)g¥5"(Xys — R| L — R)

(292)

we find that
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when no member of the set X,_; lies to the right of
L — 2R. Combining Eqgs. (27) and (29) we see that
g¥V(X,_, | L) is translationally invariant if the set
Xy, liesin [2R, L — 2R].

We may gain an understanding of the integral
decomposition by a simple graphical notation. We
represent the two integrands of Eq. (28) by Fig. 1.
Here, one sees that in the first term, y interacts with
the fixed point at zero, but not with the set Xy_;. In
the second term, the reverse situation holds. The fact
that y cannot simultaneously interact with the set
X1 and the fixed point accounts for the factorization
which occurs in Eqs. (29). This provides a clue as to
how to proceed with Eq. (27) for arbitrary n. Sym-
bolically, we write

gﬁt{:l(XAV—n H 0 | L)

1 L
= ;'[J‘O dy} 85{7\{51)()(1\'%’ 0’ Yis°

using an obvious notation. Now, let I, and I, be
integral operators defined by

G+DR
I; _=.f dy,
iR

L
I, Ef dy.
nR

Since g@¥*V(Xy_n, 0,1, ",y | L) is symmetric
under permutations of the y, variables, we may com-
bine Eqgs. (30) and (31), using the multinomial expan-
sion, as follows:

gV (X 0, O] L)

s ¥a| L) (30)

for j=0,---,n—1, (3la)

(31b)

=;(Io+11+"'+ln)n
X g%\-]:il) (XN--rn 0’ y1, Tt ynl L)
IloIll R
- 3 B e, O D)
1; 0- 1. *
(32)

It is understood using this notation that each integral
operator acts on a different y; variable. The primed
summation signifies that [, /,, ** -, /, each run from
zero to n under the constraint

2l =n.
i=0

The utility of Eq. (32) lies in the fact that, for any
configuration of the {/;}, at least one I; must be zero
since there are n 4+ 1 intervals and » integration
variables. Graphically, this means that the integrand
of Eq. (32) consists of a sum of terms, each of which
has at least one gap of length R separating two group-
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—t N~ + Xy —]
0 y R 2R L 0 R 2R ¥ L

F1G. 1. Graphical representation of the two integrands of Eq. (28).

- GAP: £=0

,
2, 2, £ 2
0 R R

ra

- Xn-n ——N—1

nR (n+)R L

mit
mR {mtl)R

F1G. 2. Graphical representation of a typical term of the sum-
mation in Eq. (32). The set Xx—, is assumed to lie to the right of
(7 + 1R, and /,, = 0 where m < n.

ings of the y; variables. For example, if /,, = 0, the
configuration may be represented by Fig. 2 if the set
Xy_, lies to the right of (» 4+ 1)R. This condition and
the occurrence of gaps allows a factorization of the
g% function which is essential to the translational
invariance proof.
To continue, we represent the summation in Eq. (32)
as a sum over the various possible gaps, as indicated
by Eq. (33).

2 =23"+3+ 3 +-

i lo=0 ;=0 1;=0
1o>0

I o

10,11>0 losty, ** *»ln-1>0

In each sum, the prime means that

i ll = Rn.
=0

The other indicated restrictions are necessary to pre-
vent the overcounting of 2-, 3-,« - -, (n — 1)-gap con-
figurations. An analysis of the first three summations
enables one to see that a useful pattern emerges.

120 (N + Dgi¥(Xy_n —R|L—R), (34)
, N+ NI o
2= ZE (, + 1)10' gir (0, y1, 7, vy | R)
1= 0— 0
x z (n—l)'[lz"-l,ll”
l"(n'_ lo)'12 'ln!
X gN— i (XN—n! ylo+l’ T, yn' L— 2R)
N+1
51 ol
0=1 0
X gVl (Xy_, —2R|L—2R).  (35)

In Eq. (35), the summation over ly, - - -, [, is performed
with I, + -+ + I, = n — I,. The binomial coefficient

(u3)
lo + 1
arises from the identity
g%\l’\-’i:‘il)(XN—n’ 0,91, ", ¥a l L)
N +1
=“+)%%hwumm

X g8 (Xn-ns Vigt15" " *» ¥n| L — 2R), (36)
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which holds when a gap separates (y,, - -, y;) and
(Vig+15 " s Yn» Xn—n); 1., when ], = 0. For the third
summation we have

< N+ 1\ I I gkt
! = -_— O 3", 2R
12=0 lo+ll=k=2(k + l)lo! 1! gert Oy yk, )
10, 11>0  lg,i1>0
x (n—k' e -Tin
gt tin=n—k (B — )V LY - - 1)
X gN_‘k)(XN—'ns Yev1s " s yn| L—- 3R)
e N+ 1\ I Iy glerD)
= — 0,1, ", Vx| 2R
zo+zl=k=2(k + 1)1.,! Iyt Bt CERNRAES
10,1130
X gW="(Xy_, — 3R| L — 3R). 37

It is now clear that Eq. (32) is expressible in the form
g%\itll-lil(XN—n ’ 0 I L)

= 2 Z Cullos -+ 114)

J=0 lp+ - - '+lj_1=k=5

19, *,14-1>0

X gV Xy — G+ DR|L—(j+ DR), (38)

with
N+ 1K1

Cplly, -, 1,_) = —_——

allo -1 (k+1)lo!"'l,~_1!

x g, yrs s ye [JR)-(39)
The j = 0 term in Eq. (38) is understood to be given
by (34).
It is possible to decompose the integrals in
g (X, L| L)
using the following operators

L
dy=J + I+ -+ J,), (40)
1]
where
L-iR
J,Ef dy for j=0,1,--,n—1 (4la)
—(+1R
L—nR
J, Ef dy. (41b)
)

The analysis is identical to that above and leads to the
following expression [as before, the j =0 term is
understood to be (N + 1)g' (Xy_, | L — R)].
g%v—.*;tlll(XN—n H L | L)

n n

= 2 z Bik(IO’ Tty lj_l)
=0 lot - -~ +lgy=k=]
Lo, ylicy >0
. X g (Xy-n|L—=(j+ DR) (42
with
N+ 1\I -
B,(ly,"**,1,_ )= —_
Jk(O :11) (k+1) 10!"'15_1

X gE (L, yy, o, Y| JR) (43)
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when the set X_, lies to the left of L — (n + DR.
Making the transformation of variables y; = L — y,
fori= 1,2, ---, k and utilizing the reflection sym-
metry of g"‘“) about 3L it is obvious that!!

k+1
Bjk(IO’ Y l:i—l) = Cik(IO’ tT T, lj—l)' (44)

Therefore, the combination of Egs. (27), (38), (42),
and (44) yields the result

.0
lim— g (X y_, + €| L)
i n
3=0lot -+ ljoy=k=j
19, " " *»1j-1>0

X [V X y—n = (j + DR| L — (j + DR)
— gV Xyon|L — (j + DR)] 45)

fort+ DR x;, < L—(n+ HRi=1,--,(N—n)
andn=1,---,(N — 1). Inthej = 0 term the second
sum is ignored, k = 0, and C,, is taken to be N + 1.
Equation (45) is the desired recursion relation repre-
senting g\¥*1 in terms of differences of g7 s with N —
n < M < N. The proof of translational invariance
is again by induction. Assume that gi"*™(X, | L) is
translationally invariant for any n, 0 < m < r, and
L such that mR< x; < L—mR, i=1,--+,n By
Eq. (45), this implies that

(n+r+l)(X | L)

is translationally invariant for (r + DR < x; < L —
(r + DR. But g{”(X, | L) is manifestly translationally
invariant for any » and L such that 0 <x, < L,
i =1, n. Therefore, by induction, g**™(X,, | L)
is translationally invariant for any #, all m > 0, and
L such that mR < x; < L — mR. Replacing m by
N — n and using D, functions, we have as our major
result:

Cﬂc(lo, e

b lj—l)

DEnN)(xla e ,xn IL)
is translationally invariant if
L >2(N —n)R
and
(N—nR<Lx, <L—-(N—nR for i=1,-",n
and
n=1'--,N
with
N>1. (46)

It should be emphasized that this result holds for all
potentials of finite extent, with or without a hard core.

11 Note that the intervals [0, jR] and [L — jR, L] are both denoted
simply as jR in the g;"j M functions. The specific interval involved is
clear from its context.
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The result (46) gives sufficient conditions for trans-
lational invariance. It appears to be very difficult to
establish whether or not these conditions are also
necessary. Some evidence exists indicating that the
stated conditions are necessary, and we are content
to state this evidence with the hope that a general
proof ultimately will be found.

First, consider Eq. (26) and the remarks which
follow it. Clearly, the condition that the set X, lies in
[R, L ~ R] is necessary and sufficient for g1 to be
translationally invariant for arbitrary temperatures.
Next, we consider g+ (X,_ | L)wherex,, -+, xy_,
lie in [(n+ )R, L —(n+ )R], but x; lies in
[nR, (n + 1)R]. Going back to the preceding analysis,
one finds that for n > 1

lim 2 Xy + | )
€=0

= - X —n L — nR
(n l 1) N ( N l )
X I0 : In—lg(rﬁ:il)(os yl’ T, ,an nR)

X {exp [—pw(x; — y )] — 1}.  (47)

Performing the integrals over y,, - -, y,_;, one has

lim Q‘ g(N+”(XN_n + El L)

€0 0€
N+1 (N=n)
= v (X L— nR
(n ; 1) (Xn_ ] )
nR
x [ dvFOexp [=Bws, — 7)1 = 1)
(48)
with
F(yn) = IO ot In Zg(nrfi-—l—ll)(os y19 T ynl nR) (49)

In general, Eq. (48) does not vanish for all values of 8,

which shows that g!¥*1 is not translationally invariant
if x5, -, xy_p liein [(n + DR, L — (n + )R], but
x; lies in [nR, (n + DR].

In order to demonstrate that the stated translational
invariance properties are necessary, one would have
to show that

0
lim - g1
€0 gN_"
is nonzero for any configuration where one or more of
the x; lies outside the interval [(n + 1)R, L — (n + 1)R).
Although we have not been able to prove this, the
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above examples suggest that the conditions in Eq. (46)
are indeed necessary.

VI. DISCUSSION

We have seen that it is not necessary for the length
of a one-dimensional system to become infinite in
order to have translational invariance of the n-particle
distribution functions. It is a remarkable fact that the
container walls have no effect on the property of
translational invariance as long as they are a sufficient
distance apart. The method which we have used in
Sec. V provides a particularly transparent physical
interpretation of this distance. DM(X, | L) is trans-
lationally invariant when each member of the set X,
is far enough from the walls so that it cannot interact
with a particle fixed at either wall, through a chain of
interactions with the remaining particles. That is, trans-
lational invariance of D™ is assured when x,, -+, x,,
are all at least a distance (N — n)R from either wall.

The translational invariance properties are strictly
geometrical in nature and do not depend in any way
upon the temperature of the system. Furthermore,
these properties do not require a hard core and depend
only upon the finite extent of the potential. They
therefore hold even for systems which may be unstable
in the thermodynamic limit.

On the basis of the physical picture in the first
paragraph of this section one might expect three-
dimensional systems to have the same translational
invariance properties as one-dimensional systems. If
this is indeed so, then one intuitively expects the devi-
ations from translational invariance outside the central
regions to be exceedingly small in three dimensions.
To see this, consider a box of volume L3 with N = 1022
and R = 1078 cm. The above conditions for transla-
tional invariance would require that L > 2 x 10 cm,
corresponding to a density of ~10~2! particles/cm?!
On the basis of known homogeneity properties for
real fluids, this suggests that either (a) less stringent
conditions than (N — n)R < x, < L — (N — n)R are
necessary for the translational invariance of D) in
three dimensions, or (b) if these conditions are neces-
sary then approximate translational invariance must
exist for realistic densities. This open question poses
a challenging problem for future study.

ACKNOWLEDGMENT

This work was supported in part by the United
States Atomic Energy Commission.



JOURNAL OF MATHEMATICAL PHYSICS

Symmetry Group of the Hydrogen Atom

R. J. FINKELSTEIN
Department of Physics, University of California, Los Angeles

(Received 31 May 1966)

1t is shown how the complete dynamics of the hydrogen atom is related to the three-dimensional

rotation group.

1, INTRODUCTION

HE angular momentum, L, is an integral of the

motion and gives rise to a (2/ 4~ 1)~fold degeneracy
for every spherically symmetric potential. The
Coulomb potential has in addition a second vector
integral of the motion, V, the Runge-Lenz vector,
and a total degeneracy N%, where NV is the principal
quantum number. These two integrals, L and V,
were related to the six generators of 0, by Fock! and
by Bargmann.? More recent papers have discussed
the relation of this problem to larger symmetry groups.
Here, on the other hand, we base our treatment
entirely on the group 0;.

Our method depends on the fact that the Schrodinger
equation in the momentum representation may be
interpreted as an integral equation on the group
space of 0,; the connection with 0, arises because the
group of motions of this space is just 0,. Here,
however, we discuss the intrinsic geometry of the
group space instead of embedding it in a space of
higher dimensions as is usually done. Therefore our
entire treatment is based on 0,. One may then say
that the dynamics and symmetries of this problem,
which determines the magic numbers (N?) of atomic
physics, are both determined by a single group.

2. MOMENTUM REPRESENTATION AND
SPHERICALLY SYMMETRIC POTENTIAL
We first consider a spherically symmetric attractive
potential which is not necessarily Coulomb. In the
momentum representation, we have

(E - 5%) #(p) =j¥7(p —P)e()dp’, (2.1)

where P(p) is the Fourier transform of the potential
with the property
V(p) = V(lp)- 22)
Let
E = —p22m. (2.3
Then p, is real for bound states and imaginary for

1¥V. Fock, Z. Physik 98, 145 (1935).
2 ¥, Bargmann, Z. Physik 99, 576 (1936).
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scattering states, and
— 1 >3 ’ ’ ’
6o =2 [P~ w1y, 29
where
G(p) = p3/(p* + PP (2.42)

is the propagator.

Equation (2.4) may be written as an integral
equation on the group space of 0; by using p itself
to parameterize a rotation. Let the spin representation
of the rotation w be

D¥(w) = exp (4iwo)
= (p, + iop)/(p, — iap).

In terms of p the invariant volume element in group
space is (as shown in paragraph 4)

(2.5a)
(2.5b)

(2.6a)

where the group metric is simply related to the
propagator G of (2.4),

dr = g% dp,

gt = G° (2.6b)
Then (2.4) becomes
1 7 ¥ 7
Op) = z fU(p, p®(p) dr', Q7
where
O(p) = G Ap)e(p), (2.72)
U, p') = G@)V(lp — P NDG(p). (2.7b)

The kernel U(p, p’) is now symmetric in view of (2.2).
Since U(p, p’) is real and symmetric, the eigenvalues
E are real. The transformation just made is of course
valid for any spherically symmetric potential.

The function g? is positive definite for bound
states (E < 0). For scattering states (£ > 0), gt
may become negative.

3. GEOMETRY OF ROTATION GROUP

Every three-dimensional rotation may be rep-
resented by a vector w giving the magnitude and
axis of the rotation and, therefore, by a point in a
sphere of radius . This spherical ball is the group
space and has a well-defined geometrical structure
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which may be characterized by its metric and con-
nection. It may be mapped into an unbounded
three-dimensional continuum, but its total volume
must, of course, remain finite.

Since this space has constant torsion and therefore
absolute parallelism, its metric and connection may
be derived from either of two sets of absolutely
parallel triad fields 2{’(=) as follows,®*

8ap = 2 AD(E)AF(2), G.D
12
02 (£)
ozt
where the (+) means that there are in fact two
parallels at P’ to a vector at P, and one may describe
the space equally well by using either the right (+)
or the left (—) parallel triads. [Here Af,() means
the reciprocal triad.]
In terms of A¢,, one defines the displacement
operators,

Ly = 2 M) (32

X(4) = %M‘»(ﬂ:)au, (3.3)

which have the commutative properties,

X (L), X, (N = FQi[Ro)esnXi(£), (3.42)

[Xi(£), X,(F)] = 0, (3-4b)
where R, is the radius of curvature of the space. The
Casimir operator has the simple geometrical inter-
pretation,

S X(£) = —A, (3.5)

where A is the Laplace-Beltrami operator,

1 9t 0
o0a®’

and a* is any coordinate system in group space. The

matrix elements of the irreducible representation are

solutions of the differential equations,

X*(£)D}da) = [4i(j + D/R3)ID}mAa), (3.62)

(3.52)

Xy(+)D}pm(a) = 2m[Rg) D, (a), (3.6b)

Xy(—)Djml@) = (2m'[Ry) Dy, {a), (3.60)
and satisfy

J‘DZnn(a)Drjr;’,n'(a)g% da = 6H,6mm’6nn’ ;I'/ L] (37)

i
where d; = 2j + 1 is the dimensionality of the repre-

3 Most of the geometrical background referred to here may be
found in L. P. Eisenhart, Continuous Groups of Transformations
(Dover Publications, Inc., New York, 1961); see particularly
Chap. V.

4 R. Finkelstein, J. Math. Phys. 1, 440 (1960).
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sentation and
fg’} da=V

is the invariant volume of the group space.
The eigenfunctions of (3.6) also satisfy the following
integral equation’:

(3.8)

Dl (a) = /% [Kia rpi @ e, 39

where
dr, = gt da, (3.92)
K0, a) = 3 D@Dl (.10
imn
_Llssin(G W (3.100)
Vi sin 4w
1 1 . (3.10b)

=V1—2,ucos%w+,u2

where w is the magnitude of the rotation R'R’
connecting the points a and ', and |u | < 1.

The two triads of displacement operators X ()
are the generators of motions which carry the group
manifold into itself while preserving the metric and
connection. Both the left- and right-hand triads
generate 0, and the complete group of motions is
0y = 03 X 0g.

4. STEREOGRAPHIC COORDINATES
Let us put

D(a) = [l + }R@YIl — $iR(@)],  (41)

where R(a) is Hermitian. Choosing the spin rep-
resentation D}(a), one may introduce stereographic
coordinates as follows:

R = or/R,, (4.2)

where R, may be shown to be the radius of the group
space. In this coordinate system, the metric and
connection take the following form?##:

(a) metric
8 = G, (4.3)
g% = G3; (4.33)
(b) symmetric part of connection
L‘(‘aﬁ) = (éﬂaaﬂ + 6uﬂaa - 5,,,3‘,) ]n G; (4.4a)
(c) torsion
3
L, = % 2%, (4.4b)

0

5 R. Finkelstein, J, Math. Phys. 7, 1632 (1963).
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In these formulas the scale factor G is

GYr) =1 + Hr*|RD), 4.5)
and the invariant group volume is
fg% dr = 27*R3. (4.6)

The fundamental triads with which we began are?
AfE) = G’l2 — G, + $(1/Ryyr'r,
F (R[R)T (4.7

and the corresponding displacement operators are

X(+) =d, — (1/4R0)4, £ (1/R)L,,  (4.8)

where
d, = (1/i)(0/dr)), (4.82)
Ly=r;d,—r,d, (4.8b)
A, =r¥d, — 2r0, (4.8¢c)
6=rsd,. (4.8d)

To terms of order 1/R, the X are helicity operators;
the terms of order 1/RZ are present in an Einstein
space without torsion and may be interpreted in
terms of an acceleration operator.®

The kernel of the integral equation is now expressed
directly in terms of r with the aid of the relation

Q/RHG((r — r')’G(r') = 4sin® (}w). (4.9)
Therefore,

N1 pt
Kulrr) = V((u* — i+ RGO — r')za(r'))'

(4.10)

5. CORRESPONDENCE BETWEEN MOMENTUM
SPACE AND GROUP SPACE

By Eq. (2.5b) we may parameterize a rotation with
the components of the momentum itself. By com-
paring (2.5b) with (4.1), one establishes the following
correspondence:

Plpo = 1r/R, (.1
between momentum space and group space described
in stereographic coordinates r. Let us put

Po=2R,, (5.12)

(5.1b)

Then the energy —pZ/2m determines the radius (Ry)
of the group space and

G =G(p) =1 + p*/ps.
The invariant volume element is by (4.3a)
dr = gt dp = G3 dp,

p=r.

(5.2)

(5.3)
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as assumed in (2.6). The invariant group volume is
then

V = 27°R} ~(5.4a)

= }m°p. (5.4b)

The main point now is that the integral equation,
(3.9), on the group space is the same as Schrodinger’s
equation in the momentum representation when the
potential is of the Coulomb type. For then (in the
attractive case)

Vi —p) = —(E27*n)j — p')), (5.5)
and therefore,
2
Up, p) = — = L1 1 (559

2%k (p ~ )" G(p) G(p")
By comparing with (4.10), one has the result

2

e v e? p,
— Ki(p, p') = — =22 K\(p, P).
227 R 1ps p) P 12, )
(5.6)

U(ps P,) ==

Then (3.9) becomes

2
D (p) —}-e—p"le(p, PYOy(p) dr’. (5.7)

E 2h
The eigenvalues are by (3.9)

—epo/2Eh = d, (5.8)

or
po = mé’lk d;, (5.8a)
E = —(2mA*(1/d3), (5.8b)

which is the Balmer formula, where d; is the principal
quantum number N.
The eigenfunctions are

Ox(p) = D7ul(p). (5.8¢)

The total degeneracy is d2 = N? since both m and n
run from —j to +j.

In the general case (1 # 1) we may again construct
an integral equation for ®(p) by defining

7(p, p)

= G(PU(p, P)G() = — 52% G(p)K(p, p')G(p')

(5.9

e
2Lt — PGPy G(p) " + 41p — p 12
(5.92)

This is not the Fourier transform of a central sym-
metric potential in configuration space. Nevertheless,
if we regard the dynamical problem as given in the
momentum representation, we may say that the
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particle behaves as if it were moving in a Yukawa
potential with a velocity-dependent mass or range,
with the limiting value for p = p’ = 0 given by

(ut — phye.

On the other hand, for large values of p and p’ and a
fixed value of momentum transfer,

Ao, p) ~ 7t — pIG(RG(") 0.
The spectrum is now determined by

me®[hipy = d,[u*

or

E(N) = p* " PE(N)gammer .~ (5.10)
The wavefunctions are the same as in the case u = [,
but they are differently correlated with the energy.
For small g there is effectively one bound state
(N = 1); the rest of the bound states are crowded
into a small interval lying just below zero energy;
thus the true continuum is extended into a quasi-
continuum lying just below zero.

6. HAMILTONIAN

It appears most natural to formulate this problem
in the momentum representation and to ignore the
Hamiltonian, since the natural operators are the six
displacement operators X,(4), which do not include
the Hamiltonian. In order to connect with the usual
formulation, however, let us express the Hamiltonian
in terms of the X,(+). We have

E; = —eu®|Q2j + 1)% ©.1)
where —e is the lowest Balmer energy and where
2j + 1 may be regarded as an eigenvalue associated
with the integral equation, (3.9), or with the differential
equation, (3.6a).

It follows from (6.1) and (3.6a) that the energy
operator which works on the bound states of the
Coulomb potential may be expressed as follows:

= —¢/[R3X(£)" + 1]. (6.2)

Since R, also depends on the energy, the relation

(6.2) may be re-expressed in the following operator
form:

X% +) = (H + ¢)/mH?, (6.3
where m is the mass. Therefore the Hamiltonian
commutes with X, (4+) and X,(-).

The Hamiltonian also commutes with the six
operators (U, Uy,) defined as follows:

Uim = X(+) — X(—)], (6.4a)
Uk4 = %[Xk('l") + Xk(_)]' (6-4b)
From (4.8) we see that U, is, except for p,, the
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ordinary angular momentum,
U= PalLk’
and that
U = di, — pa° A
According to Bargmann,? the Runge-Lenz vector is
Vi = (ih]2*m)p,G*U G2,
and in three-dimensional notation,
V=(1/22m)[L x p — p x L] + 1/r.
It follows that L and V both commute with the
Hamiltonian defined by (6.3).

The (U, U,,) together generate 0, while the X,(£)
are the screw displacement operators which carry the
group space of Oy into itself. Therefore the angular
momentum and Runge-Lenz vectors are also simply
related to the left- and right-handed screw motions
which carry the group space of 0; into itself.

7. ANGULAR MOMENTUM STATES

The angular momentum, like the Hamiltonian, is
not included in the original set of six generators
X,(+). The functions D/ . are therefore not eigen-
functions of the angular momentum; in fact, the
index j labels the energy and the set D} .(m, m' =
—j -+ +j) spans the complete manifold belonging
to that energy and therefore includes all values of the
angular momentum from /=0 up to and including
I = N — 1. If we wish to obtain eigenvalues of the
angular momentum, we must form the linear com-
bination,

¢nruP) = 2 'C(NLM;jmm')D,"m,(p)Gz(p),

such that @y 1 has the correct angular dependence,
namely,
@) = My (P)GP) Y a6, ). (7.12)

Therefore,
My r(P)Yru(l, @) = 3 IC(NLM;jmm’)Dfnm,(p).
' (7.1b)

The right side, since there is no sum over j, must also
satisfy (3.6a) but not (3.6b) and (3.6¢c). In fact, if we
can write (7.1), these states must be eigenfunctions of
(L3, L,), where

L = §po[X(+) — X(-)].
These states may be determined by either differential

or integral equations as follows.
(a) Differential Equations: Let

(@) Y0, @) = Xy u(p)- (7.2)
Then
Afyry = —[4i(j + D/RnLy
= —[2(N* — ON¥em¥yrar- (7.3)
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If we express A in stereographic coordinates, we
obtain

A = G[V® — 2(G/pppV]

where
vy Z
op;
190 ,0 1<1a.a 162)
—_ e — — = 6_ —,
=gl ap  pPsn026 " 30 T sint0 24"
pV = p(d/dp).
Hence,
1d ,d 2x d
LN 4
x3dx dx 14 x?dx
L(L4+ 1) 4(N? — 1)}
=0 (74
+ x? + (1 + x¥? (742)
where

x = plpy = Np{(—2me)t.

The solution of (7.4a) leads to the Gegenbauer
functions C}(x) as follows®:

7 _ 3
Ty, (p) = E; N-—-L 1)!} N2

(N + L)!
LI NFpE .. (N2p2— 1)
(N2p? + 1)L+ N-L+1 N*p? + 1 >
(7.9)

where C}(x) is the coefficient of 4% in the expansion
of (1 — 2hx + x?)~°. The Fourier transforms of the
G¥(p)Iy;(p) are the associated Laguerre functions.
The S-state solutions are sphericaily symmetric and,
therefore, can only be the character functions,

sin (2j + D(Ew)

¥=>Di, =—"—=——=2 7.6
% sin (3w) (7.6)

where w is the angle of rotation or
cos tw = (p; — p)/(p5 + P). a.n

The ¥/ satisfy the integral equation,

o) =% fK“(a, @ydr,  (18)
M
and the orthogonality relations,
f%f(a)xj'(a) dr, = Vo'’ (7.9
If one puts
X = cos iw, (7.10a)
Upy(x) = X/(p), (7.10b)

then U,,(x) are the Tschebyscheff polynomials which

¢ H. Bethe and E. Salpeter, Quantum Mechanics of One- and
Two-Electron Atoms (Academic Press Inc., New York, 1957).
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satisfy by (7.9) and (7.10), the orthogonality relations,

1
f Uz (x)Uys(xX1 — xz)% dx = 6}, (7.11)
-1

The momentum amplitude of an s state may be
very simply expressed in terms of the momentum
itself,

¢'(p) = GA(D)X(p),
oa(p) = —%% [(;’) f Z’))N— (i: I Z’))N]' (1.12)

Of course the ¥/(p) are the same as IIy(p) and must
also satisfy (7.4) for L = 0.

(b) Integral equation. We again make the ansatz
(7.1)—but now in (5.7). Then

Hyr(p) Y6, ¢)

-1 ﬂfxl(p, PV ya(0) Y@, @) dr,

where

1 1
7o G(p)(Ip — P'’G(P)
Choose p along the z axis and Y7 (6, ¢) = 1. Then

(p)lg(p)Ntp dp'
G(p")G(p)
9 f Yoo, @) du' dg’
p*+ p® —2pp'u
Oy (P)lg(p))p? dp’

G(p")G(p)
2 2 2
< [ o 5EE
pp 2pp
e2 0
y2p) = = [ "k, 9 ey, (713)
whE Jo
where

Kip, p) =

1 & (1
HNL(p)=;T;h—b:f AL

L e f
27* KE

or

= [g(p)1¥p2 dp, (7.13a)
1 1 PP+ p
.0 =L e 0,
@ » p’ G(p)G(p") 2pp
ps + P ps + p*° p’+p”
_ op2p it ( *! ) (7.13b)
o PoP pp

The solution of (7.13) for general L are again the
Gegenbauer functions while the special case L =0
leads to the Tschebyscheff functions.

8. GENERAL COORDINATE SYSTEM

The fundamental correspondence between the
Schrodinger equation in the momentum representation
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and an integral equation on the group space has so
far been discussed in a particular coordinate system
(the stereographic system). However, since this
integral equation has been written in a generally
covariant form, it is possible to introduce other
coordinate systems in the group space. For example,
we may parameterize the rotations by Eulerian angles
(&, £, v) and adopt these coordinates in group space,
and therefore in momentum space.
The differential equations are now

X (£)DYap = —[(N* = D/RIDY 5, (8.1
X +)D¥rar = 2M[R) DYy 8.2+4)
Xy(—)DYa = QM'[R) DYy, (8.2—)

where
RE = }(me/N?).

In order to express either the integral or differential
equation in a particular coordinate system, one needs
a general method for going from an arbitrary param-
eterization of the group to the metric and connection
of the group space. This may be done as follows.?

Let U{a) be some representation of the group,
where a is an arbitrary coordinate system in the group
space. The fundamental triad fields may be expressed
as follows:

Ai(+) = R, Tr A(+)d’, (8.3)
where

A(+) = —i(@U[da YU, (8.4+)
A (=) = —iU(9U[0a,) = i(0U/da )U. (8.4—)

It is then possible with the aid of (3.1) and (3.2) to
calculate the metric and connection and also to
obtain

8 = Ry Tr A A, (8.5

LY = R2Tr A*94A,. (8.6)

We may illustrate these formulas with FEulerian
coordinates. Then

U = Us(3)Us(38) Us(3), 8.7
where
U, (6) = exp (iv,0). (8.7a)
We find
oUJ0u = (Riog)U, (8.8a)

oU[9B = Us(3e)U,(3A)Us(—4y)(3ios), (8.8b)
oU/dy = U(dioy), (8.8¢)

and therefore

A(4) = oy, (8.92)
Ay(+) = Us(0)(F02), (8.9b)
A(+) = UGon) U (8.90)
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To obtain A (—), calculate the right side for U™
instead of U. By (8.3) one finds

1 0 cosp
go=| 0 1 o | (8.10a)
cosf 0 1
1 0 —cos
= ;nz 7 CHE LU A}
—cos f 0 1
gt = iR%sin . (8.11)

Finally,
V = (1/g%3,¢t"

1 0% o8 0°
 sin? 5(8;; + 8—713 ~ 2cos ﬂaaay)
0* 0
+ P + cot B 2’ (8.12)
X3(+) = 2(+)0, = (2/Ry)(9/0x), (8.13)
X3(=) = A(—) 9, = (2/Ro)(9] 9y), (8.14)

so that (8.1), (8.2—) may be expressed in Eulerian
coordinates.

These equations have been separated in other
coordinate systems by Wenger,” who has also shown
that the Eulerian system has a geometrical inter-
pretation in terms of cylindrical coordinates.

The different possible coordinate systems are most
simply related through the spin representation. Thus
if we write
1+ %z.cr/R,, 8.15)
1 — }ior/R,

_ ( cosfexp[fi(x+y)]  sinfexp [Fi(x—y)] )

—sin}fexp [3i(y — )] cosifexp[—}i(a+ )]
(8.16)
then the w, r, and («, B, ) are Riemannian, stereo-
graphic, and Eulerian coordinates, respectively. Then
we find, for example, the following relation between
the Riemannian and Eulerian coordinates:

(ws/w) sin 3w = cos }f sin #(x + ), (8.17a)

(w,/w)sin $w = sin 48, (8.17b)
where

exp(}iwe) =

cos 4w = cos 48 cos 3« + y). (8.17¢)

Let us finally note that the invariant kernel of the
integral equation now takes the following form,
instead of (4.10),

1
1 4 u® — 2ucos 38 cos ¥ + )
7 D. Wenger, J. Math. Phys. (to be published).

K (a,a)= (8.18)
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9. SYMMETRIC TOP
The correspondence between the Eulerian angles
and the components of p are determined by (8.15)
and (8.16) as follows:
( exp [}i(x +y)lcos3f  exp [}i(x — y)]sindf )
—exp [—}i(x — y)]sindf  exp [—}i(x + y)]cos 3p

_( Pg — p* + 2ipops 2ip(p1—ips) ) 1

2ip(p; + ipy)  pE— p® — 2ip,ps i+ P
9.1)
Therefore,
sin 38 = 2p,p.[(ps + P, (9.2a)
tan }(« — ») = p1/p., (9.2b)
tan (o + y) = 2popsf/(py — P°).  (9.20)

Note that the character of the spin representation is

x%(w) = 2 cos w = 2 cos ¥« + y) cos 3f;
Therefore

cos tw = (ps — P)/(ps + P), .3)
where w is the magnitude of the rotation.

In the Eulerian system we may solve the differential
equations (8.12), (8.13), (8.14) simply by D? («fy),
where m and n are the eigenvalues of the operators
Xs(+4) and Xy (—). But the vector operators X(+)
and X(—) obey just the same commutation rules as
the angular momenta of a top with respect to body-
fixed and space-fixed axes. Therefore D! («fy) may
be interpreted as the state function of a symmetric
top where m and n are the quantum numbers giving
the z component of angular momentum with respect
to body-fixed and space-fixed axes. These functions
may be expressed in the familiar form

D},.(«fy) = exp (ima) d;,,(B) exp (iny),
where
dpy = LML = !
(G+m(—n!

X (cos 3)™ "(sin §8)™ " P "(cos ).
The orthogonality statements (3.7) now factor into
the familiar exponential relations and the corre-
sponding equation for the Jacobi polynomials P,
That is, from

27 Pr 27
L f [ Do Dtentapyy sin p do d dy

= 6mm’6nn'6”‘ d;l’
one finds the following orthogonality relations:

J 1(1 — X)L + x)" PV )PL(x) dx

_ outvil Tn+u+-DIn+v+1)
n+u+r+ 1T+ Dn+pu+r+ 1) nm?
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as well as the corresponding relations for the ex-
ponential functions.

The problems of the top and the Coulomb field are
then reciprocal in the sense that momentum space and
configuration space are interchanged. The correlation
of the states with the energy is of course different in
the two cases.

10. CONFIGURATION SPACE

Momentum space is natural for the Coulomb
problem since it is isomorphic to the group space. In
momentum space the natural operators are the
generators X (4) and X,(—), in terms of which

L = {po[X(+) — X(—)l,

V = (ipo/4e'm)G?[X(+) + X(—-)IG2,

where L, V are the angular momentum and the
Runge-Lenz vectors. If one diagonalizes L%, Ly one
gets Gegenbauer functions in momentum space and
Laguerre functions in configuration space; in this case
the natural coordinate systems in both momentum
and configuration space are spherical. On the other
hand, if one diagonalizes Xj(+) and X,(—), one
obtains

@(p) ~ G*D},.  Vap(p) ~ (m + m)g(p).

In this case one is led to the Wigner functions in
momentum space. The corresponding natural co-
ordinate system is («, 3, y) since

Xo(+) ~ 0/0a, Xo(—)~ 0/0y.

In configuration space the corresponding natural
coordinate system is parabolic and the corresponding
functions are the confluent hypergeometric functions.?

The statements of this paragraph as well as of Secs.
6, 7, and 9 relate known results® to our use of the
geometry of 0.
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This paper discusses a theorem concerning the variational description of the eigenfunctions and
eigenvalues of the two complementary reduced density matrices for a many-particle system in a bound

state.

IN this paper, we discuss a theorem concerning the
variational description of the eigenfunctions and
eigenvalues of the two complementary reduced
density matrices for a many-particle system in a
bound state. This theorem is the following:

Theorem: Given a bound state |y) of an N-particle
system, any state vector |p) of a m-particle subsystem
(m < N), for which the functional ||(y |p) | is station-
ary, is an eigenvector of the reduced density operator
D, associated with the subsystem. The stationary
i | p) 1l gives the corresponding eigenvalue to which
the eigenvector belongs. (yp | p) corresponds to an
eigenvector belonging to the same eigenvalue of the
reduced density operator D, associated with the
(N-m)-particle subsystem. The operators D, and D,
in the Schrddinger representation correspond to the
Dirac density matrices.!

Proof: Consider the N-particle system to be com-
posed of two interacting subsystems, each consisting
of m and N-m particles and each with associated
Hilbert spaces £, and E,, respectively. Take the
Hilbert space E for the system to be the tensor
product of £, and E(E = E, ® E,).

Consider the stationary conditions of the functional

S={(pq|y

of the space E, where |y) is a given unit vector, and
|p) and |g) are some arbitrary unit vectors in E, and
E,. The quantity S is, of course, the amplitude of
finding the state |y) of the N-particle system in the
state |pg).

By means of the method of Lagrange mulitipliers,
the stationary condition of S reads

8S + 2,9(p | p) + A,9(q|q) =0, (1)

where A, and 4, are the Lagrangian undetermined
constants.

Upon calculating the variations and rearranging
terms,

(Og] [<p | w) + A 1901 + (gl 4, |9g)
+ @Epllig | vy + A, 1p)] + (Pl A, 10p) = 0. (2)

1 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 27, 240 (1930).
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Since |dp) and |dg) are arbitrary, one may replace
the kets |dp) by i[dp) and |dg) by i|dg), and the bras
(dp| by —i(dp| and (p| by —i(dq|, where i = (—1)2.
Taking a linear combination of the new equation with
(2), results the nontrivial equation

Ogl [p | 9) + &)1 + @pl g | v) + 2,1 p)] =0,
€)

where (dp| and (dg| are also independent of each
other. It turns out that condition (1) satisfies the
two following simultaneous equations:

v+ Alg =0, €Y
G|y + Alp) =0. O)

With the aid of the normalization constraints on
|p) and |g), the two Lagrangian undetermined con-
stants 4, and 4, are now determined to be equal to the
negative of the stationary S. Hence, we write both as
— 1 and Egs. (4) and (5) become

(| =Alg), (6)
q|v) = Ap). @)

The above two equations were previously*™
derived from the theory of integral equations and are
valid only when the kernel of the integral operator is
symmetric in a finite-dimensional space. In this case,
it is known that the eigenvectors [p,), |¢;) belonging
to the eigenvalue |4,/* of the respective density
operators D, and D, associated with the two sub-
systems satisfy this theorem. In fact, one may
alternatively adopt a variational definition of the
reduced density matrices by taking the totality of the
set of independently admissible solutions from (6)
and (7) to construct the two complementary reduced
density operators

D, = 2 |21 lp:{pil,

D, = 3 |42 14:)gil . QED.

2 B. C. Carlson and J. M. Keller, Phys. Rev. 121, 659 (1961).
3 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).
4 T. Ando, Rev. Mod. Phys. 35, 690 (1963).
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It may be noted that, due to the following identity,

w—pg|v—pgy=@|v) + pq|pg
—~2Re (pq | y),

the solutions of |pg) stationary to S also give the
stationary solutions to the mean-square deviation of
|pgy from |y). A discussion in terms of the latter
quantity was given by Coleman® Much of the
motivation for the present work, however, came
from earlier discussion by Lowdin and Shull® of the
overlap properties in connection with the first-order
density matrix.

The theorem presented in this paper may be
applied to the direct computation of the largest
eigenvalues of reduced density matrices by a simple

5 P. O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956).
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iteration procedure. We have, in particular, applied
the variational generating equations (6) and (7), of
these eigenvalue problems to the natural expansion
of a many-clectron wavefunction. A detailed dis-
cussion of this work with illustrative examples will be
represented elsewhere.®
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The partial wave series for the scattering amplitude for high-energy electron scattering is not uni-
formly convergent. The singularity responsible for the nonuniform convergence containing terms in
(sin 46)**2—2, (sin $6)2* ™1, and (sin 46)*' is separated from the rest of the series so that an accurate
partial wave analysis may be carried out for any scattering angle.

1. INTRODUCTION

OR high-energy electron scattering the long-range

nature of the Coulomb interaction causes the partial
wave series for the amplitude to converge slowly. In
some calculations? this difficulty was overcome by
calculating f(0) = foou(®) + [f(0) — feou(6)], where
Joow(8) is the point Coulomb scattering amplitude.
This method is analogous to the one used to calculate
nonrelativistic nuclear scattering when the Coulomb
interaction is present.® In both instances the series
represented by the term f(0) — foou(f) converges.
However, for relativistic scattering of Dirac particles
the point Coulomb amplitude is not available in

1 L. R. B. Elton, Proc. Phys. Soc. (London) A63, 1115 (1950).

2 R. Herman, B. C. Clark, and D. G. Ravenhall, Phys. Rev. 132,
414 (1963).

® See for example, L. 1. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), 2nd ed., Sec. 20.

closed form, although an accurate evaluation can be
made.*® Another method was developed by Yennie
et al.® who considered the expansion of the function
(1 — cos 0)" f(0). This method works well except at
small angles where many partial waves are required.

Herman er al.2 have suggested that the singular part
of the scattering amplitude may be explicitly separated
and summed so that a reliable partial wave calculation
can be carried out at any scattering angle. Hethering-
ton’ attempted to do this for the Klein-Gordon
equation. He separated the nonrelativistic point
" 4J. H. Bartlett and R. E. Watson, Proc. Am. Acad. Arts Sci.
74, 53 (1940).

5 See, for example, R. L. Gluckstern and S. R. Lin, J. Math.
Phys. 5, 1954 (1964); W. A, McKinley and H. Feshbach, Phys.
Rev. 74, 1759 (1948).

¢ D. R. Yennie, D. G. Ravenhall, and R. M. Wilson, Phys. Rev.
95, 500 (1954).

7 J. H. Hetherington, Ph.D. thesis, University of lilinois (1960)
(unpublished); J. H. Hetherington, J. Math. Phys. 4, 357 (1963).
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iteration procedure. We have, in particular, applied
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closed form, although an accurate evaluation can be
made.*® Another method was developed by Yennie
et al.® who considered the expansion of the function
(1 — cos 0)" f(0). This method works well except at
small angles where many partial waves are required.

Herman er al.2 have suggested that the singular part
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7 J. H. Hetherington, Ph.D. thesis, University of lilinois (1960)
(unpublished); J. H. Hetherington, J. Math. Phys. 4, 357 (1963).



452

Coulomb amplitude and a term containing a factor
[sin $0]-2*-1, where A = Z,Z,o/f and « and B are the
fine structure constant and »/c. However, his series is
not absolutely convergent, since it still contains a
singular factor [sin $6]—%* due to his neglect of the
phase factor which increases logarithmically with / in
his O(1/!) term.

We have separated and summed in closed form all
the singular parts of the series for f(8) for high-energy
electron scattering in the limit of zero electron mass.
The series to be evaluated is then absolutely con-
vergent. It should be noted that the resulting form
f(6) = fsing(6) + absolutely convergent series contains
of course the same singularities as fi,,(0), the differ-
ence being in the nonsingular parts, i.e., fsing(0) is a
closed form while f.4,1(6) is not.*

II. CALCULATION

In the high-energy limit the Dirac scattering ampli-
tude is®

£60) = Ske
ik

*[Py(cos 0) + Pi_y(cos )], (1)

where 7, the phase shift, is the sum of a “nuclear”
part &, and the relativistic Coulomb phase shift y,
given by
ke2i1k — F(Pk + 1-— lOC) eir(k—pk).
Lpe + i)
Here « = Ze?/(fic) and p, = (k* — «2)}. The 6, fall
off rapidly with increasing & and only the Coulomb
phase shifts need be considered.
To expand the factor ke* 2+ in inverse powers of &,

we write
ot 1
o=},
e+ ()
and we also expand I'(p, + 1 — ix)/T(p, + i) in a

Taylor series about p = k. Employing the asymptotic
form for y(z) = I(z)/T'(z) we obtain

l7Td.

=1+2- -

ur(k—pk)

Plp +1 —ia) T(k+1— i)
C(p, + i) 'tk + i)
131 — 2ix) 1
X1 —-—=-———"=40(=}I.
o]
Combining the results we obtain
; Pk + 1 — io) .
kP = ———— — | | 1
A ia)l: + il + )
2 1 2.2
= (m —dm = - fg“—) + o(é)] @)

When Eq. (2) is substituted into Eq. (1), f(6) may be

C. R. FISCHER AND R. AKERIB

rewritten in analogy with the nonrelativistic case as
follows:

F(0) = f1(6) + f(0) + f3(0)
1 2ot Nk +1~iw)
* i ,Z"l{ke YT Tk T 1+ i)
2
I:k + il + {ma) + .
. 1 B
S G )]}
X [Py(cos 6) + P,_,(cos 0)], 3)
where
f1(6)=—1— E:kI‘(k + 1 —ia)

2ikg=1 'k + 1 + ia)
X [Py(cos 0) + P,_,(cos 6)],
26=_oc_ 'tk + 1 — ia)
MOy = 41 “)gll‘(k 14 i)
X [P (cos 0) + P,_;(cos 0)],
1 7T2oc2) < 1

o) =%
2(0) = ZK(za—-—woc—z— .

=1k — i

BACETEY
* Ttk + 1 ) 108 0 + Prslcos O)).

The series in Eq. (3) is absolutely convergent since its
terms are O(1/k?).

It is possible to separate the nonrelativistic point
Coulomb amplitude from the first term, but we do
not do this since all of the above sums may be
evaluated by the same method as follows. Labeling the
sums which appear in £,(0), £;(6), and f4(8), 3;, 3.,
and 3, respectively, we find by employing the
definition of the beta function

21: = W_) Ek[Pk(Z) + Pra(2))
X f () — el gy (4)

where z = cos 6. The integral may be made to converge
by adding e to the exponents. Using

® 1

P (2) = —
DA (1 — 2tz + )t
and

t 9 l:t > t"Pk(z)] = Y kt*P,_,(z)
ot #=o #=1
we find after some algebra
s = (1 + 4= [(1 — 0)*/4t)*t dt

T TQRia) Jo{[(1 — ¥4 + 301 — 2)}}dnt’
)
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Making the substitution u = (1 — ¢)?/4¢ and factoring  Again writing out the hypergeometric series to deter-

out appropriate powers of z, we obtain mine the nature of the singularity at 6 = 0°, we find
4 cos® 30T, . Y ra —i
- g)i=—2 f in—4(q -t 4 - — ( %) o 10vgia ; 2ia—1
g T Qi) [(sm% ) LY A +uw>du 22: TG T ) (sin $6)%* + (sin 36)
(< da1 [ ia -3 in2 1ay-3 —i
(sin 36) J; w*(1 4 u)*(1 + u sin® 46) du:l. x (2 cos® 30 rg l.oc)
© '@ + io
3—2iq H
Recognizing the first integral as a beta function and (CO.S 1) I — ’.“)) 4o (10
the second as a hypergeometric function which is (ix —3) D+ i)/

then written in terms of hypergeometric functions
with argument sin® (3)0 to obtain a form useful for
small 6, and using the duplication formula for the

We evaluate >, by the same method used for Y, and
Y., and we find

gamma functions, the result is T(— o) ) g
 cos? ; 2 = [—-1+(sin }6)™]. (1
_ e cos® $OT'(1 — iw) s D'l + i)
T (sin 30T + i) The scattering amplitude may now be calculated
| sin I + i) I'(G — i) for small 8§ by means of Eq. (3) which is exact, since
{ 4 T —-in)I'E + iw the term by term subtraction is compensated for by
. o (cos 30)-2 adding f£,(0), £2(0), f4(6) back into f(6).
x F, 1 + io, 3 + ia;sin® 30) + —————
Ziw — 1 ML KLEIN-GORDON CASE
x F(&,1 — ia, 3 — ia; sin® %g}}, ¢ Hetherington’s series for the Klein-Gordon case
may be made absolutely convergent by subtracting
where F (g, b, c; ) is the hypergeometric function. the series
The singular part may be explicitly exhibited by © 1 Tk+1+id
writing out the hypergeometric series to obtain S TS+ 1Tk + 1= id) Py(cos 6),

_ ixcos® 30 T'(1 — iw)

= - which is summed as follows:
T (sin 30)*2*T'(1 + io)

[1 G ) '3 — i) sin 30 S =flduflv“(1 _ v)‘l‘z“i(vuz)kPk(cos 6) dv
' — i) '3 + i) o Jo k=0
1—270 i %0 1 iy
+ (cos 30) fi + - ] ® = fo V(1 — vy HA (v, 6) dv, (12)

We see that Y, contains the singularity associated ...

with nonrelativistic point Coulomb scattering plus 1

lower-order singular terms in sin 6. I(v, 6) =f
The second sum >, may be evaluated in the same of

way provided an infinitesimal is added to the exponent  y¢ e et y = 1/x in I(v, 6) we get

in the denominator of the first integral in the expression

du
1 — 20u® cos 6 + viut)

analogous to Eq. (6). The result is I(v, 6) = (1/v})K(cos 46),
3= I —ig (sin $6)%* — 2i sinh m« where K(cos 30) is the complete elliptic integral of the
2 I + iw) ™ first kind. Substituting back into Eq. (12) yields
NG —io) . 2ia—1 , .
X 4T cos” $f(sin 46) S = G ;-(;z)_rg) i2) (cos 16).
x F(}, 1 + ix, } — ia; sin® §6)
T} — ix) ACKNOWLEDGMENT

0 1—ia o
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+ =
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In this paper we study some properties of irreducible representations of the unitary group in three
dimensions U, with positive and negative indices. These representations are useful for the group theo-
retical classification of particle-hole states in nuclear shell theory, as well as in elementary particle
physics. We show how the rules for reducing the direct product of two given representations should
be modified when we include positive and negative indices and we use these rules to obtain an algebraic
expression for the irreducible representations contained in the direct product.

1. INTRODUCTION

E consider in this paper the construction of
irreducible basis for the group Uj;, which are
expressed in terms of covariant and contravariant
vectors. The irreducible representations IR carried
by these polynomial basis are mixed, in the sense that
they include positive as well as negative indices. The
problem arises naturally when we consider the problem
of constructing and classifying particle-hole wave-
functions in nuclear shell theory! or elementary par-
ticle states containing both particles and anti-particles.
In Sec. 2 we consider the group U, as a subgroup
of a six-dimensional orthogonal group and we use
some results recently derived by Chacén® for this
group, to determine the highest-weight polynomial
for mixed representations. We then show that not all
Young diagrams with positive and negative compo-
nents correspond to IR of Uj.

In Sec. 3 the reduction of the direct product of two
given IR of U, is considered. We use the mixed
representations to derive an algebraic expression for
the irreducible components of the direct product.?
To accomplish this, we express Littlewood rulest in a
different form, which is convenient when we deal with
mixed representations. Finally, in the Appendix, the
equivalence of the modified with the usual Littlewood
rules is shown.

2. MIXED IRREDUCIBLE REPRESENTATIONS
FOR THE UNITARY GROUP U,

We consider in this section the construction of a
polynomial basis for irreducible representations of the

* This work was supported by the U.S. Atomic Energy
Commission.

T On leave of absence from Instituto de Fisica, Universidad de
México and Comision Nacional de Energia Nuclear, Mexico.

1 J. Flores and M. Moshinsky, Nucl. Phys. (to be published).

% E. Chacén, Ph.D. thesis, University of Mexico (1966).
a 3 N) Mukunda and L. Pandit, Progr. Theoret. Phys. (Kyoto) 34, 46

965).

' D. E. Littlewood, The Theory of Group Characters (Oxford
University Press, New York, 1940).

group U, which contain the components of two types
of three-dimensional vectors; one of them,
x; (j=1,2,3),

3 @1
transforms according to the three-dimensional unitary

matrices which form the group Uj; the other vector,

& (=123, (2:2)
transforms according to the contragradient repre-
sentation to x% of U,. In both (2.1) and (2.2) j is the
index affected by U, transformations and the index ¢
is used to differentiate among different vectors and
takes, for the most general representation of Us,,
three values also, say I, 2, and 3.

It proves convenient for our purposes to introduce
the vectors (2.1) and (2.2) using a different notation,
making the identification

(2.3)

whereby we define the vector y! , remembering that
a negative index m indicates the component of a
contravariant vector.

In terms of this new vector y! , we define the fol-
lowing operators:

X‘ti_)yﬁn, g:_’yt—m (m’ t= 1, 21 3);

3
Ay =3 (hLp — Y p™=Cr — G, (2.4)
t=1
where
p) = 0/dy,, and p;™=2d/yt,,. (2.5

By using well-known commutation relations (and
taking into account that yf, and y‘, , with m > 0,
are independent of each other) it is a simple matter
to show that the operators defined in Eq. (2.4) are
the elements of the Lie algebra corresponding to a
rotational group in six dimensions. From the same
commutation rules we can see that the set of operators
AT, with m and m’ > 0, define in turn a Lie algebra,
this time for a unitary group in three dimensions;
this latter is isomorphic to the group U, introduced
above.
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In order to construct irreducible polynomials, we
follow Moshinsky? and introduce the invariant
operators,

3 3
s __ s —m s 3 —m
Cs - z YmPs' > 1ﬂs’ - 2 Y_mDs">»
m=1 m=1

3 3
Dy =3 pi'ps™, D™ =3 yiy¥ .. (2.6)
m=1 m=1

Using the same procedure as with the operators
(2.4) one can show that the set given in Eq. (2.6)
define a unitary group in six dimensions, which we
call the complementary group to U;. With these
generators we can characterize, as shown below, the
irreducible basis for U;. The basis is given as a
polynomial function, expressed in terms of y! ful-
filling the following invariant conditions,?

CPy,) =0, T{P(y)=0 (s<5), (272

Dss'P(y:n) = 05 VS, S,a (2'7b)
C:P(yw) = hP(yp),  TiP(yy) = kP(y,)
(s=1,2,3). (2.7¢)

In this set of equations C¥, I'Y, with s <s’, and
D, , for all values of s and s, form the set of raising
generators® of the complementary group to U;. The
meaning of both sets of numbers (#,) and (k) becomes
clear below.

If, besides conditions (2.7), we impose on P(y! ) the
following restrictions:

AVP(L) =0 (0O<m<m) (2.82)

and
ARP(yt) = A,P(yh) (m=1,2,3), (2.8b)

the polynomial P(y¢ ) will be the highest-weight func-
tion for an IR of U;, with indices (4, 4; 43). One
should notice that P(y:) is a function of y!, and thus
of both covariant and contravariant vectors. In case
P depends only on y!,, m > 0, Eqgs. (2.7) reduce to
those previously used by Moshinsky.$

We now obtain a solution for Eqs. (2.7) and (2.8),
showing that it is unique. If we consider Eqgs. (2.7a)
and (2.7c) only, the polynomial

P = (A (AL AL HAL AL b

x (A1232 l)kaz(é}_n AR, AL, A}_%—m)
32—

1% A127 A1 7 A12
Al A12 A~a —3—2

P

- (E) XZ (m=1,23) 2.9)

is a solution for these equations.® In (2.9) we have

5 M. Moshinsky, J. Math. Phys. 4, 1128 (1963).
8 M. Moshinsky, Nucl. Phys. 31, 384 (1962).
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used the notation

AL =y, AL, =yl

By oy = (=P AN, - A, (210)
Pm

where P stands for a permutation over the indices
m, (—1)F= being the parity of the permutation. The
last relation in Eq. (2.9) defines (P/Z), i.e., the factor
of the function Z in P(y?). This function Z depends
on the variables explicitly indicated in (2.9) as its
arguments, and is only restricted by the condition
that when we multiply this function Z by the poly-
nomial (P/Z), a polynomial P(y!) in y! is obtained.
It is possible, therefore, that Z is not a polynomial
in y!, .

We now introduce conditions (2.8a). We apply the
raising generators of U,

3,A2, and AZ, (2.11)
to the polynomial defined in Eq. (2.9). When acting on
(P/Z), the generators (2.11) give a vanishing result.
We are therefore left only with the application of
operators (2.11) to the function Z. In order to do

this, we follow Chacdn? and introduce new variables,
defined as follows,

Il = ZA-l—mAllzm9
12 — zAl A12

m——3-m

I, =Y ALAL, (2.12)
which have the property of commuting with operators
(2.11). By using these defining relations, we can replace
some of the quotients appearing as arguments of Z
in Eq. (2.9), obtaining a new function Z’, which is
now a function of the ratios

AL AL AL, I, 1,

AVOALT AL ALART AIAR L AN
(2.13)

Equation
AP(y,) =0

then implies that Z’ is not a function of Al [Al,.
In a similar way, A3P = 0 and A3P = 0 tell us that
Z' is not a function of Al,/Al, and A}/Al, respec-
tively. As a consequence of this, Z’ is a function of
the last three ratios indicated in (2.13).

We can now expand Z' in a power series, obtaining
the following expression for P(y!):

P(yo) = 3 Apnpn{QDMTTTR(AR) T

ningng
X (ALY (ALt (Al gyt
X (A%, DPITIRRI, (2.14)
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where the dummy indices n; are restricted by the
condition that P(y?) is a polynomial function in y?, .
This leads, in particular, to the restriction that n, are
nonnegative integers.

Using the form (2.14) for P(y,), conditions (2.8b)
now yield the relations

Ay=h — ks —ny—ng,

Ay =hy —ky — 1 + 1y,

As=hy — ki + n + ng, (2.15)
and we are left with Eq. (2.7b) only, to determine
the coefficient 4, . .

As can be seen from its definition, D, is a second-
order operator, and it is difficult to apply. It is at
this point that our analysis is restricted to the three-
dimensional group U,, since we are forced to apply
D, directly to P(y¢). This is not simply done for
the general case of U,. In any case, Eq. (2.7b) deter-
mines uniquely the values of n,, giving after a lengthy
calculation the values

n; = 0. (2.16)
This shows that the highest weight polynomial P(y! )
is determined uniquely and given by

P(yp) = (AD" (AR " (ALg) (AL
X (AL (ALY, ). (2.17)
We can now see the meaning of both sets of
numbers (#,) and (k,). Let us assume, for the moment,
that P(y?) is a function of y! , with m > 0, only. In
this case k;, =0, i =1, 2, 3 and 4, = h;. If we now
assume P(y!) to be a function of the contravariant
vectors y!, , m < 0, only, we have #; = 0 and

M= —ks, = —ky, A= —k,. (2.18)
In this latter case, we have IR for the group Us, with

indices (4; 4; 43) which are negative numbers. We
could represent (2.18) by a Young diagram of the form

(2.19)

2 b

[«

and we could call the blocks forming this diagram,
negative blocks or antiblocks.

In the general case P is a function of y?, with both
negative and positive m. For example, we could have
an IR with A, and A, different from zero and A; = 0,
and k; = 0 except k, . In this case we have a diagram,
representing (4, A, 43), of the form

]

(2.20)

I

JORGE FLORES

We could ask ourselves, what is the meaning of a
Young diagram with negative as well as positive
blocks in the same row? In other words, what is the
meaning of a Young diagram of the following type,

l

] . (2.21)

We call these diagrams virtual diagrams, and show
presently that they do not correspond to IR of Us.
In order to do this, consider the second-order Casimir
operator of the group U,, defined as

® =3 A"A™,
=2 (AW + 2A5A% + 3 (A7 — AT), (2.22)

where, in the last equation we have expanded the
double summation and have used the commutation
rules satisfied by A™.7 If we use the definitions (2.4)
and (2.6), we can readily see that @ can also be ex-
pressed as

¢ = E C:Cs + 2 Ty + 22 DD,
By expandmg the rlght-hand side of this equation as
was done in Eq. (2.22), and equating the resulting
expression to (2.22), we obtain the operator identity,
S +2 3 ATAL + 3 (AR - AT)

_z(cs)2+zzcscs +2(Cs_cs)

8>3’ s<s’

+Z(Fs)2+2zrslﬂs +E(F3_Fs)

s>s' s<g’

+ 22 D™'D,..

Acting with this operator identity on the polynomial
given in Eq. (2.17), we get

hiks + hoky + gk, = 0. (2.25)
Since 4, and k; are nonnegative integers, we conclude
from Eq. (2.25) that

hks = hky = hsk, = 0, (2.26)
proving with this that diagrams as (2.21) do not
correspond to an irreducible representation of Uj.

We can understand the content of Eq. (2.26) in a

fairly simple way, if instead of dealing with the group
U, , we consider its unimodular subgroup SU;. As is
well known,® ‘there is a one-to-one correspondence
between the IR of U, and those of SU,. Furthermore,
it is also well known that complete columns (i.e.,
columns formed by three blocks) can be eliminated

(2.23)

(2.24)

? M. Moshinsky, in Physics of Many Particle Systems, E. Meron,
Ed. (Gordon and Breach Science Publishers, Inc., New York, 1965).
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when considering Young diagrams for SU,. This has
to do with the fact that the determinants

AL AR, (227
are invariant functions of y! , with respect to SU,
transformations. The reference line can then be dis-
placed at will, and the most general IR of SUj, is

characterized by two indices (4; 4,), the Young
diagram is of the form

and

(2.28)

Ao

From a diagram such as (2.28) we obtain another
one, looking like the diagram (2.20), by making a
displacement of the reference line to the right. And
vice versa, moving the vertical reference line in (2.20)
to the left k, positions, we get a two-row diagram
of the general form (2.28).

We can obtain the highest-weight polynomial
corresponding to a displaced diagram by muitiplica-
tion of the original highest-weight polynomial with
an invariant function of y}, with respect to SUj trans-
formations [i.e., determinants (2.27)]. The multipli-
cation process, therefore, does not change the SU,
IR carried by the polynomials.

We can now understand condition (2.26): If we
displace the reference line in a diagram whose indices
violate conditions (2.26), a non-allowed Young
diagram for the unimodular group is obtained.

Using the fact that we can displace the vertical
reference line, we discuss in the next section the
reduction of two given IR of SU,.

3. REDUCTION OF THE DIRECT PRODUCT
OF TWO IR OF SU,

We now use the negative indices representations
introduced in the previous section to find an algebraic
expression for the irreducible components of the
direct product of two given IR of SU;. The same
expression has been found by Mukunda and Pandit®
using an entirely different approach. Our procedure
is based directly upon Littlewood’s rules,* conveniently
modified to introduce mixed representations. The
procedure is generalizable to other unitary groups,
but the algebraic expressions obtained are much more
complicated, so as to cease to be useful from a
practical point of view. We therefore restrict ourselves
to the SU, group.

Suppose we want to find out which IR of SU; are
contained in the direct product (1; 1) X (4] 43).
Using the fact mentioned at the end of Sec. 1, we can
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make a translation of the vertical reference line by 4;
blocks to the right, in the Young diagram corre-
sponding to (4; 4;). We can then represent the direct
product, graphically, as

a3.n

o
}\i A

® x|

M

At the end of the process we turn back the reference
line to its original position, moving it the same 4]
positions to the left.

We now state the rules to reduce the direct product
indicated in (3.1). We show in the Appendix the
equivalence of this set of rules to the well-known
Littlewood rules. Although the argument is given
there for the group SU; only, we have shown the
same result to be true in general for SU,, with
arbitrary r.

In order to reduce the direct product (3.1), first of
all superpose both diagrams appearing in (3.1) to
obtain the (virtual) diagram

AL}
M

ot
)g'l )&2 A‘z‘

. 32

1
My

As has been shown before, this is not an allowed
Young diagram (except for the particular cases with
Ay =2, or 2; = 0). To obtain the indices of the IR
contained in the direct product, we make all possible
contractions (i.e., annihilation of one positive with
one negative block in the diagram) in diagram (3.2),
one at a time, in such a way that the following
conditions are satisfied:

(1) An allowed Young diagram is obtained [which
means, as a matter of fact, that a large enough number
of contractions has been made in (3.2), so as to obtain
a nonvirtual diagram from it].

(2) No two blocks in the same negative row (or
column) are to be contracted with two positive blocks
in the same positive column (or row).

(3) The order of the contractions of negative
(positive) blocks in the same row with some positive
(negative) blocks in any row or column is immaterial.

Applying these set of rules to the case indicated in
(3.2), we get a diagram of the type

7777777 777,
n n.
//JEI/ “11

7777747 777 '7 /// ff/’
Vradion] sl i)
[/

Vot

. (3.3
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where we have indicated by #,; the number of blocks
in negative row i (counting from bottom to top) con-
tracted with a corresponding number of blocks in the
positive row j (counting from top to bottom, in the
positive component of the diagram). The resulting dia-
gram has been left blank in (3.3). Proceeding in this
form we have taken rule (3) into account, since we have
made no distinction among contractions differing only
in the order in which they were made.
In diagram (2.3) we have made the further
assumption
=A< Jg, (34
which implies lack of generality. However, if the
opposite inequality to (3.4) holds, the analysis is
similar, and is not given here. Using (3.4) we have
completely annihilated the negative blocks in the
second row, in such a way to get a nonvirtual diagram,
as required by rule (1). In other words, we have
assumed that
Ray + Hae = Ay — 45, (3.5)
If rule (2) is to be satisfied, the following inequality
should hold:
0<n; <4, (3.6)
in order to avoid contractions of two blocks in the
same negative column with two blocks in the first
positive row. By applying the same rule, we get
another restriction on the nonnegative integer ny,,
i.e.,
<A =y (3.7
Using (3.7) together with (3.6) we conclude that
ny, is restricted by

niy < min (A3, 47 — 43). (3.8)
Considering now the second negative row, the
inequality
Ap — n1p <A1 — (111 + 1) (3.9
holds, since otherwise we would have contracted
two blocks in this negative row with two positive
blocks in the same column.
At this point we have two alternatives,
gy =np+r (r>0), (3.10a)
Ny < Nyp; (s < 0). (3.10b)
We consider case (a) first. By construction, we have

Ngy > Npg;

oy = Nyp — S

npy=np+r<A—4 <A, (3.11)
which is equivalent to
0<r<(l—4) —ny. (.12)

On the other hand, using inequality (3.10a) in the
relation (3.9), we get

ny+r< Al — 4.

FLORES

This latter, together with (3.12), implies the following

restriction on the integer 7,

0<r<min(if — A3 — nyy, AY — A3 — nyy). (3.13)
We see finally, from the diagram (3.3), that the

resulting mixed U; tableaux have components

(21 A, 75) given by

[ R— )

=N gy — Nyy»

T ~n

Ay = A3 — Ngp — Ny,

Ay = —(A — Ry —Nyp),

where 4, and 4, are positive numbers and 1, is a
negative integer. Returning the reference line to its
original position, i.e., moving it A; positions to the
left, we obtain the indices (4; 4,) for the irreducible
components of the direct product. These are given by

A=A+ A — 20y — 210y — 1,

Ao =1ty + A3 — ny — Ny + 1, (3.19)
with n,;, n,; and r restricted by the conditions given
in (3.8), (3.11), and (3.13), respectively. Once these
conditions are fulfilled, rules (1), (2), and (3) are
satisfied, and Eq. (3.14) gives the possible irreducible
indices in the decomposition of the direct product.

If we now consider case (3.10b) and follow exactly
the same steps, we arrive in this case, at the following
expressions for (4, 4,)

Ay = AL+ A — 2ny; — 21y — s,

Ay = Ay + A3 — ny; — nyy — 2s, (3.15)
where n; and n,, are restricted as in the previous case,

but now the possible values for the positive integer
s are such that the inequality

0<s<min(A; —ny, Ay —ny)  (3.16)
holds; this is the analogous relation to (3.13) for
case (b).

As a final remark, we notice that (3.14) and (3.15)
represent different IR of SU; contained in the
reduction of (4, 1)) X (4 43), as is clear from the
way they have been derived, cases (a) and (b) corre-
spond to a different set of contractions.
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APPENDIX

We show in this Appendix the equivalence between
the rules enunciated in Sec. 3 and the usual Littlewood
rules? for reducing the direct product of two IR of
SUs;. By exactly the same argument we have proved
this equivalence in the general case for the group SU,.
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We restrict the proof given here to those cases
which satisfy the inequality (3.4), although the proof
can be given in the other case in a similar way.

In order to show the equivalence between both sets
of rules, we notice that when the vertical reference line
is returned to its original position, any place in the
diagram where a negative block is present, does not
contain a block in the diagram obtained at the end
of the process and vice versa. Having this in mind,
we label the positive blocks in the first row of (3.3)
with the letter « and, at the same time, we use this
letter to label the negative blocks contracted with
these blocks [i.e., those blocks indicated in (3.3) by
ny, and ny,). In a similar way, we use the label § for
the positive and negative blocks, indicated in diagram
(3.3) by ny, and ny,.

Using this labeling, we obtain the following diagram
at the end of the process:

)\l' )\1"- (n11 + n21)
r - N/ S——
! “ae ves
n,, o
2

(AD)

i 12

One can see from (Al) that the number of blocks
labeled by « is equal to A and that the number of
blocks labeled by § is equal to 4;, as required by
Littlewood rules. Furthermore, the alphabetical order
from left to right and from top to bottom is obtained
automatically from our procedure, agreeing with
Littlewood.*

We now show that our second rule (Sec. 3) is
equivalent to the two following Littlewood rules:

If a diagram such as (Al) corresponds to an
irreducible component of the direct product of two
IR of SU,, then

(a) no two blocks labeled with the same letter are
to be placed in the same column;

(b) the number of blocks labeled by « should be
greater or equal to the number of blocks labeled by
# at any position in the diagrams when counting them
from right to left and from top to bottom.

As can be seen from diagram (Al) there exists the
possibility of placing blocks with the same label in a
given column [and, therefore, of violating rule (a)]
at two positions only [marked as 1 and 2 in (Al)].
We consider point 1 first, and we see that the condition
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imposed by rule (a) on n;; is
0<n,; < Zé’ (A2)

which is identical to inequality (3.6). Regarding point
2, the condition is

0 < nyy + mip < Ay + 1y,
which is equivalent to

Ao — Ay — nyy < A~ (nyy + nyy).

Inequalities (A2) and (A3) can be obtained from
diagram (3.3) by requiring that no two blocks in the
same negative column are contracted with blocks in
the first and second positive row, respectively.

We consider rule (b) now; we could violate this
rule only at points 1 and 2 in diagram (A1), as before.
We restrict our attention to these two points only,
obtaining the relation

(A3 = nyg) + nup < A — (nyy + 1) + 1oy, (A4)

which is identical to (3.7). Analogously, at point 2,
rule (b) imposes the following restriction over #;;,

Ay — nyy < A — (ny + ny), (AS)

which is identical to (3.9).

We then sec that rule (b) is equivalent to the condi-
tion that no two blocks in the same positive column
should be contracted with two blocks in the same
negative row. This proves the equivalence of Little-
wood’s rules (a) and (b) with our rule (2).

The set of rules we have used here, have the two
following nice features:

(1) From a practical point of view, they can be used
instead of the usual prescription, when one of the
diagrams in the direct product has a smaller number
of negative blocks (when the reference line is displaced
to the right in order to obtain a diagram with negative
indices only) than the number of positive blocks it
had with the reference line in its original position.

(2) From a theoretical point of view, they show
that Littlewood rules (a) and (b) have a very simple
meaning. This can be seen, if we consider the highest
weight tensor corresponding to each one of the
irreducible components of the direct product, each
of these tensors being formed by homogeneous linear
combinations of the vector components x! and (I,
introduced in Sec. 2, and classified by their symmetry
with respect to the exchange of the indices j and £.2 If
rule 2 is violated, the corresponding highest weight
tensor is identically zero, having to do with the fact
that the contraction of two symmetrical with two anti-
symmetrical indices leads to a vanishing function, and
showing that the corresponding diagrams are not con-
tained in the reduction of the direct product.

(A3)



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8, NUMBER 3 MARCH 1967

Density Fluctuations of a Fluid

GERALD L. JoNES AND ROBERT E. KENNEDY
Department of Physics and the Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana

(Received 29 April 1966)

A proof is given, in the canonical and the grand canonical formalism, to show that the density fluctu-
ations in a macroscopic region of a fluid are large in the two-phase states and small in the one-phase
states, The definition of large and small density fluctuations is one used previously by Dobrushin in con-
nection with the Ising model. The density fluctuations at the critical point are, using this definition,

small if the critical isotherm has no flat portion.

I. INTRODUCTION

HE authors wish to examine the probability of a

density fluctuation in a macroscopic region of a
fluid. If the fluid is in a one-phase state, the proba-
bility of such a fluctuation should be small since we
expect every macroscopic subvolume of the total
volume to have essentially the same density as the
over-all density of the fluid. If the fluid is in a two-
phase state, then a macroscopic subvolume may
contain varying amounts of the two phases, and one
would expect the probability of density fluctuations
to be large. The problem is to rigorously and con-
veniently characterize “large-” and “small-" density
fluctuations, and to prove within this characterization
the above-mentioned properties. In a recent paper
Dobrushin® has solved this problem for the lattice gas
(Ising model) in any number of dimensions, using the
canonical ensemble. He makes use of these results to
obtain some estimates of the boundaries of the phase
transition regions. In this paper we obtain results
identical to Dobrushin’s for the characterization of
the fluctuations, except that we take the case of a
fluid and either the canonical or grand canonical
ensembles. For the grand canonical ensemble, the
classical and the quantum fluid may be treated in the
same way. We treat only the classical fluid in the
canonical ensemble. We have not yet been able to use
these results to estimate the boundaries of the phase
transition region.

In the second section we review some known results
concerning the thermodynamic limit which we need
later. In the third section we consider the problem
using the grand canonical formalism. We take this
case first because the pertinent theorem is easier to
state and to prove than in the case of the canonical
ensemble. In the fourth section we consider the canon-
ical ensemble. Throughout we consider only a three-

! R. L. Dobrushin, Dokl. Acad. Nauk SSSR 160, 1046 (1965)
[English transl.: Soviet Phys.—Doklady 10, 111 (1965)).

dimensional gas but none of the arguments depend
on the dimensionality of the space.

II. THERMODYNAMIC LIMIT

We are interested only in systems for which a
proper thermodynamic limit exists. One takes this
limit by considering a sequence of systems, contained
in successively larger volumes, but with a fixed density
of particles. In order that a proper thermodynamic
limit exists and is independent of the shape of the
containing region, one must put some conditions on
the Hamiltonian of the system and on the sequence
of domains which one uses in taking the limit. This
problem is most recently and comprehensively treated
by Ruelle? and by Fisher.? We review those results
which are necessary for this problem. We use Fisher’s
notation as much as possible. There is apparently no
known set of necessary and sufficient conditions which
leads to the properties we want; however, Fisher
gives two sets of sufficient conditions of which we
pick one to simplify the presentation. The other could
also be used. The results listed here are valid for both
quantum and classical systems.

The Hamiltonian is of the form

N 2

Hy=>% 4 Uy, 1y, (1)
=1 2m

where p; and r, are real variables in the classical case

and the usual operators in the quantum case. The
classical partition function is given by

AN
[ ewpuan - dry,
N!Ja Ja
@
where A = (Bh%2nm)}, B = 1/kT, and Q is the region
in which the fiuid is contained. The quantum partition
function is given by
Z(ﬂ, N5 Q) = Trﬂ €xp ('—IBHN)'

2 D. Ruelle, Helv. Phys. Acta 36, 183 (1963).
3 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).

Z(B, N, Q) =

&)
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The trace is taken over a complete set of N-particle
wavefunctions (including internal degrees of freedom
which have not been indicated explicitly) which satisfy
appropriate boundary conditions and symmetry
requirements. We do not notationally distinguish
between the classical partition function and the
quantum-mechanical partition function for Fermi,
Bose, or Boltzmann statistics, because the results
quoted in this section are independent of this distinc-
tion. In the particular case of Boltzmann statistics,
the right-hand side of (3) should be multiplied by
1/N1. If the region Q has volume V(), then the free
energy per unit volume is defined by

8B, p, Q) = V() In Z(B, N, Q)

for particle densities p = N/V(£2), which are integer
multiples of V(Q)™!. For fixed €, the definition is
extended to all p by linear interpolation. If the poten-
tial Uy has a hard-core component so that two
particles can never get too close together, Z vanishes
for densities larger than some finite density p,,, which
is the maximum allowed density. If there is no hard
core, p, may be infinite. The thermodynamic limit
is taken by choosing a sequence of domains Q; with
V(Q;) — o and considering the sequence of functions
g(B, p, ;) with g and p fixed. We make the following
assumptions:

(a) The potential Up(r, - - -ry) is stable, that is,
there exists a fixed positive W such that

Up(r, - ry) > — NW

forall Nand allry« - ry.

(b) The potential is strongly tempered. This means
that the interaction between two groups of particles
becomes nonpositive if the groups are separated by a
large enough distance. There exists a distance R, such
that for all Ny, N,

q)Nl.Ng(rl e rNx’ rl’. .. rJ,Vg)

= Uppwof1 " Ty T 7 Iy)

— Up,(ry 7o 1y) — Upy(r - - -1y,) <0,
whenever |r, —r;/| > R, for all 1 <i<N;, 1 <
j £ N,. Both Fisher and Ruelle discuss examples of
potentials with properties (a) and (b). In particular,
a two-body hard-core interaction with a finite range
tail satisfies (a) and (b).

(c) The sequence of domains {€2;} allowed in
taking the thermodynamic limit has the following
properties. For all j, Q; is a bounded, simply
connected domain with volume V(€);) (which we
sometimes shorten to V). Let V(h, Q) be the volume
of the set of points within a distance 4 of the boundary
of Q and interior to Q for k& > 0, exterior to Q if

4
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h < 0. We require that V(h, Q)V(Q)—0 as
Jj— oo for any fixed 4. This is Fisher’s condition of
asymptotic regularity which restricts the rate at which
the surface of ; can grow compared to the volume.
Finally, we assume that if =, is the smallest parallele-
piped containing €2;, then there is a > 0 such that
(Q)VY(m;) > 6 for all j.

Under assumptions (a), (b), and (c), it is proven?
that

jlig g(B, p, Q,) = g(B, p)s (%

where g(8, p) is a continuous, convex upward function
of pin theinterval 0 < p < p,,, and the convergence is
uniform in any closed subinterval 0 < p < p; < p,, .
If we define '

a0

(B, z, ) =N§0(ASZ)NZ(5, N, Q), (6)
Tr(ﬂ’ z, Q) = V(Q)‘l In Q(ﬂs z, Q)a (7)

then the series (6) is absolutely convergent for any z
and

lim (B, z, Q,) = (B, )

i=w

®

for 0 < z < o0, where #(f, ) is a continuous convex
function of In z. Furthermore,

7(B,z) = max [pln (A%2) + g(B, p)], 0< p< P>

©)
provided the maximum does not occur at p = p,,.
Fisher points out that this cannot happen if the pres-
sure diverges to infinity as p— p,,. Equation (9)
implies the equivalence of the canonical and grand
canonical formalism. For each positive value of z,
there is at least one value of p determined by (9).
These are all the results we need. It should be pointed
out that one can somewhat relax the strong tempering
condition?® (b) if one is willing to put more restrictions
on the sequence {Q,}.

III. DENSITY FLUCTUATIONS IN THE
GRAND CANONICAL FORMALISM
In this formalism the probability of finding a
system with N particles in it is
Pﬂ(ﬂ, z, N) = (AZ)NZ(ﬁ’ N) Q)/Q(.B’ z, Q) (10)
Corresponding to a given value of z and g, there is at
least one density p(f, z) given by (9). Let P5(8, z) be

the probability that the system has a density differing
from p(f, z) by more than e. Then

P;l(ﬂ’ Z) = % Pﬂ(ﬂa z, N)a IN/V(Q) - PI > e (11)

If there is more than one value of p corresponding to
(B, z), we can consider the above expression for any
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of those p. For such (B, z) we should distinguish the
probabilities corresponding to different p, but the
results do not depend on such a distinction so we
do not explicitly indicate it. Let us look at the sequence
Q) In Pg (B, 2) = V1 In P(B,z). This is a se-
quence of negative numbers; therefore, if it has a
limit, the limit must be negative or zero. This lets us
characterize the fluctuation as being large if the limit
is zero and small if the limit is negative. Before we
state Dobrushin’s theorem for this case, we need to
characterize a one-phase and two-phase state. For
our purposes we say that (B, z) corresponds to a one-
phase state if there is a unique p(B, z) determined by
the maximization procedure in (9). If there is more
than one value of p corresponding to (8, z) the state
is called two phase. One can show, as we do in
Appendix A for completeness, that this definition of
a two-phase state is equivalent to the condition that
2(B, p) be a linear function of p in some interval, which
in turn implies the canonical pressure is constant.
The statement which gives the relationship between
the density fluctuations and the number of phases
follows.

If (B, z) is a one-phase state, then for every € > 0,
limV;'1In PY(B, z)
i o0
exists and is less than zero. If (8, z) is a two-phase
state then there exists € > 0 such that
lim V5 In PYB, z)
i~

exists and is zero.

Proof: Let us consider the two-phase state first.
Since V! In P§(B, z) is always less than zero, we must
show that, for large enough J, it is always larger than
any pre-assigned negative number. If (8, z) is a two-
phase state, there are at least two densities p, and p,
such that

0< P <Pms 0L p2< P> p1# Pas
7(B, 2) = pyIn A%z + g(B, py)
= p;In A’z + g(B, p,). (12)

Lete > 0, e < p;, € < % |p; — pol and let pg be such
that max [p;, ps] < p3 < p,, - Since p In A3z + g(B, p)
is continuous in the closed interval [0, p,], it is uni-
formly continuous there. Given any d > 0, we can
find y > Oand y < esuch that, whenever [p — p'| < y
and both p, p’ are in the interval [0, p,), we have

l[pIn A%z + g(8, p) — p'In A%z — g(B, p)| < 4.
(13)

G. L. JONES AND R. E. KENNEDY

From the convergence properties quoted in Sec. II,
there is an integer j, such that for all j > j, we have

18(B, p, ) — g(B, p)) < 30 (14)
forall 0 < p < p; and
l7(B, z, ;) — =(B, 2)] < 3. (15)

Now P¢(8, z) is greater than any single member of the
sum (11). From (10) and (11) we have for a fluctuation
from p,

P8, 2) > (N°2)VZ(B, N, Q)/Q(B, 2, Q;) (16)
for any N such that

INVZ = pol > e. (7

For each j choose N, such that (17) is satisfied and
so that
INVF = pol <. (18)
Set p; = N;V . Then from (13)-(16) we have, for
J>Jo
3_\N; )y—1
P;(ﬂ, Z) 2 (A Z) exp {Vﬁ[g(ﬂ’ p]) 36]}
exp {V;[=(8, z) + 3]}
=exp {V,[p;In A’z + g(B, p;) — n(B, z) — %3]}
> exp {VylpsIn A% + g(8, p) — (6, 2) — 81}
By (12) the first three terms in the exponent cancel,
so for all j > j,, V;'InPYp, z) > —4, which com-
pletes the proof for the two-phase state.

Now suppose (8, z) is a one-phase state of density
p1 - From the lower bound (4) on the potential energy,
one gets the upper bound

Z(B, N, Q) < A3YP(Q)Y exp (BNW)/N!,
and since N! > N¥e~¥ we have
Z(B, N, Q) < [A V(N exp (BW + DIV, (19)

This bound is for a classical system. There exists a
similar bound for quantum-mechanical systems,* and
the rest of the proof is the same in either case. Con-
sider first the case when p,, = 0. Choose, for fixed z,
p2 so large that p, > p, and

zpslexp(BW+ 1) < &, 20
From (19) and (20) we have
S AVZENYL S <L QY
N>pal () N>V ()

From (10), (11), and (21) we obtain

Py ) < [1 + 3 (WU, Q)]Q-l(ﬁ, 50,

where G<((2) is the set of all integers N such that
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N < p, V() and |[NV(£2)™* — p,| > €. There are less
than p, V(£2) terms in the sum so

[p2V(Q) + 1]
0B, z, Q) NG‘(Q

where we have also used the fact that

max {(A3z)NZ(/3 N, Q)} > Z(8,0, Q) = 1.

NeG@€(Q
It is clear that

Py(B, 2) > Q(B, z, V! Jax {(A3 YWZ(B, N, Q)}.

ax {(A*2)VZ(8, N, Q)},
(22)

Po(B, 2) <

(23)
From (22) we have
V(Q) In Po(B, 2) < V(D™ In [poV(Q) + 1]
+ max {NV(Q)'In A%z
NeG(Q)
+ g[ﬁ’ NV(Q)_I’ Q]} - 77(/9’ Z, Q)v (24)

and from (23)
V(€)™ In Po(B, 2)
> max {NV(Q)*'In A% + g[8, NV(), Q]}
NeGE ()
_77(5! z, Q) (25)

Now choose a sequence of regions 2, satisfying
the regularity conditions (c). Since g(p, p, ;) —
g(B, p), uniformly in the interval [0, p,] and V1 X
In[p.V; + 1]—0, 7(B,z Q)—n(p,z), we have
from (24)

V;lin P{(B,z) < max [NV;'In A%
NeGE(Q;)

+ g8, NVl — m(B, 2) + 6,
where ¢; — 0. Then

V' In P8, 2) < max [In pA%z + g(8, p)]
pEGE(p1)
_W(ﬂ Z) + 6:1’
where G¢(p,) is the set of p such that

(26)

0<p<p and [p—py| > e

From (25) we have

V;lln P{(B,z) > max [NV;'InA*
NeGEQ;)

+ g(ﬂ’ NV71)] - ”(ﬂa Z) - 61'

Since pIn A%z + g(B, p) is uniformly continuous in p
in the interval [0, p,], it must be true that

max [NV;'In(Az) + g(8, NV ;Y]
NeG<(@;)

— max [pln A%z + g(8, p)ll < 75>

pe@€(py)
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where y; — 0. Hence,

Vitin PY(B, z) > max [pln A’z + g(B, p)]

peG€(py)

= m(f,2) —y; — 9.

Combining (26) and (27) and passing to the limit we
find

@7

lim V3" In Pi(B, 2)
= max [pIn A%z + g(B, p)] — =(B, 2). (28)

peG(p1)
By (9) the maximum value of the right-hand side of
(28) is zero. By assumption of the one-phase state,
this maximum is attained only for p = p,. But p, is
not in G¢(p,); hence, the limit in (28) must be less than
zero.

In the case p,, # oo, we simply take p, = p,, in
the previous calculation. In this case, however, we
must assume that the maximum in (28) occurs at a
value of p less than p,,. This is necessary because we
can approximate g(f, p, £;) by g(8, p) uniformly in
p only in a closed subinterval 0 < p < p' < pp-

IV. DENSITY FLUCTUATIONS IN
THE CANONICAL FORMALISM

In this section we restrict ourselves to classical
systems. Later in this section we need some stronger
assumptions on the potentials, too. We want to con-
sider the probability that a macroscopic subvolume
of the total volume has a density different from
the over-all density. Let us choose a sequence of
domains {{,} and a sequence of subdomains {w,},
where w; is in ;. We indicate the set of points in
Q; but not in w; by Q; — ;. We assume the sequences
{Q;}, {w;}, and {Q; — w,} are chosen to satisfy the
condition (c) in Sec. II which is used in the thermo-
dynamic limit. In particular, we note that for all j,
the three domains must be simply connected (Fig. 1).
This condition is not necessary for the proof of the
thermodynamic limit, but it is used in Ref. 3, and we
retain it here. We want o to be a macroscopic sub-
volume of Q, so we require that V(w,)/V(£;) — «,

where 0 < o < 1.
V4
-

Fic.1.(AQ, w, Q—w
all simply connected; (B) B
2 — w not simply connected.
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Given Q and w, the probability of finding n par-
ticles in w if the total system has N particles is

Po(B, n, w, N) = [n! (N — n)! Z(B, N, QI

xff exp (—BUN)dr, - dry dbyyy- - dry,
® Q-
29)

where the first n integrations are over w and the rest
are over ) — w. Let P§(B, p, w, N) be the probability
that the domain o has a density differing from p by
more than e.

Po(B, p, 0, N) = Po(B, n, w, N).  (30)

|n—pV(a§>€V(w)
In this section (8, p) is a two-phase state if there is a
neighborhood of p, such that g(f, p) is linear in p in
that neighborhood. Otherwise, (8, p) is a one-phase
state. For notational convenience, we set P§(8, p) =
Pf),(ﬂ, p, w;, Ny).

The theorem can be stated as follows: Let
N, V(&)1 — p, then if (B, p) is a two-phase state,
there is an € > 0 such that

lim V{Q)™ In P§B, p) = 0. 3D
i o0
If (B, p) is a one-phase state, then for any ¢ > 0
fim V(Q,)™ In PY8, p) < 0. (32)

o0

Let us consider the two-phase state first. Since each
term in the sequence (31) is negative, we need only a
lower bound on V()7 In P{(f, p). We choose ¢ in
the following way. Since (f, p) is a two-phase state,
we can find y > 0 such that g(8, p’) is a linear function
of p’ for all |p" — p| < y. Let p, and p, be any den-
sities such that pjo + py(1 — o) = p. We want to
choose € so small that we can find p; such that

lpr—pl <y, lpe—pl <y, lpr—pl> e

This is possible if we choose
e < min {y, 7[(1 — o)/a]}.

Now let n; be a sequence of integers such that

(33)

V(@)™ — py.
Since V(w;)V(Q;)* — a and N, V(Q,)™* — p, we have
(N; — n)[V(;) — V(w)]* — p,. Then we can find
a jj so that for all j > j, we have
InV(w)™ — pl <,
I(N; — n)IV(E) — V(w)I™ — p| < p,

|n; V(@)™ — p| > €. (34)

G. L. JONES AND R. E. KENNEDY

From (30), P¢(B, p) is larger than any term in the sum;
therefore, we can put n = n; and write

¥B, p) = [n;! (N; — n)! Z(B, N, Q)T

xfwj- . .J‘n,-—w,-e—pUNj dry--odrdr,  dry,.

(33)

Now let ), be the set of all points interior to w, and

distance R, from the boundary of w;. If we allow the

first n; integrations in (35) to go only over w), we

decrease the value of the integral. But now the inter-

action between particles in w; and Q; — w, is negative

[see Sec. II, assumption (b)]. Therefore, if we replace

Uy, by Uy, + U, , we decrease the integrand and
the resulting integral factors into a product.

Pj(ﬂa P) 2 Z(ﬂ’ n;, w;)Z(ﬁ’ NJ' — h;, Qj - wj)
X Z(ﬂ9 Nj9 Qj)_l'
Hence, if the limits exist,

lim V(Q,)™ In PYB, p) > [V(0)V ()]

X V(@) InZ(f,ny, 0} + [V(Q,) — V(o)V(Q)™
X {[V(Q) = V(o) InZ(B, N, — n;, Q; — w,)}
—V(Q) ' InZ(B,N,, Q).

From assumption (b) in Sec. 1I, we have

Vo )V(w)™ — 1.

(36)

By the way we have chosen n;, we know n, /()™ —
p1s (N; — n)[V(Q)) — V(w)]* — py, and therefore,

lim V(Q,)™ In PY(8, p)

TS a8 ) + (L — (B po) — 8B p). (3T

But the right side of (37) is zero since g(f, p) is assumed
linear in the interval containing p, and p,. So if the
limit exists, it is greater than or equal to zero. But
each term in the original sequence is negative; there-
fore, the limit exists and is zero.
Now let (B, p) be a one-phase state. For any j and
€ > 0, we have from (30)
max

Py, p) < N;
|n—pV (w;)| >€V{w;)

We want to find an upper bound on P, (8, n, w;, N;).
To do this we see from (29) that we need a lower bound
on the interaction across the surface of w;.

To obtain this lower bound we define

Po(B,n, o, N)). (38)

O(w) = min LSSSACORRRS SYAPS SRS 5%0)
~ Upny(ry - ry) — Upy(ry - 1p))], (39)

where the minimum is taken over all configura-

tiOﬂS(rl"'er ,r;---rEVZ)SUChthat (]1\]14_1\[25'é + oo,
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(r, -+ ry)are allin o, (r; - ry,) are not in w, and
N; and N, vary from 0 to co. We must assume

D(w )V (w)™ — 0. (40)

In Appendix B we show that (40) holds for the case
where Uy is a sum of pair potentials of finite range
with hard cores. In fact, for such potentials

D(w) > KV(b, w), 41

where b is the range of the potential, K is a constant,
and V(b, w) is the volume of those points interior to w
and within b of the boundary of w. From (29) and (39)
we have the upper bound,

Po,(ﬂ, n, w;, N;) < Z(B, n, w)Z(B, Ny — n, Q; — ;)
X Z(B, N;, ;) exp [-D(w;)]. (42)

From (38) and (42) we have

V()™ In Pi(B, p)

<V(EQ) 1 In N, + max VQ)™!

|n—pV (w;)| > €V (w;)

x {mZP,n,0)+IZB,N,—n;,Q, — w,)}

—InZ(B, N;, w;) — BV(Q) ' O(w)). 43)
The first term in (43) converges to zero. By virtue of
(40) and the assumption ¥V(w;)V(,)™* — «, the last
term in (43) converges to zero. If we assume the maxi-
mum in (43) occurs for each j for nV(w;)™? < py < p>
we can approximate each In Z by the corresponding
g to obtain, for large j,
V(Q,)™ In Py(B, p)

< max  {aglB nV(0) 1+ (1 — )
| nP (0 I—p| >€

% g(B, [N; — n][V(Q) — V(o) ™)}

— g6, p) +96;, (44)
where ¢, — 0 as j — co. Because g(f, p) is uniformly
continuous, we can set

V(Q,) In PYB, p)
< Jmax {ag(B, p)) + (1 — )g(B, p") — &(B, p)}
p'—pl>€
+ 65 + ‘}’,',
where y;— 0 and p” isdefined by ap’ + (1 — a)p” = p.
Since g is a convex function of p, the combination

2g(8, p') + (1 — 0)g(B, p") — g(B, p) is less than or
equal to zero for all p’. If p is not in a linear portion

of g, then this expression is negative for all p’ # p.
Since p' is bounded away from p in the maximization,
the maximum is negative; hence,

lim V(Q,)" In P(8, p)
Find- ]

< | Tafie{ag(ﬂ’ p) + (1 — g, p") — (B, p)} <O.
(45)
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We have shown that if the limit on the left exists it is
bounded from above by a negative number. To show
that the limit exists, we should bound it from below
by the same number. We note from (30) that

Pi6.p) 2 Po,B, n, ;, N ).

Since we need a lower bound on P§ (B, n, w;, N)),
we can proceed as in the two-phase case. The calcula-
tion is straightforward so we omit it. The result is that
one obtains a lower bound of the same form as in
(45) and, hence, completes the theorem.

max
nPla) '—p|>e

(46)

V. CONCLUSIONS

We have applied Dobrushin’s idea for characterizing
large and small density fluctuations to the case of a
fluid described by either canonical or the grand canon-
ical formalism. We have proven the fluctuations are
large in the two-phase region and small in the one-
phase region. It is interesting to note that by this
criterion the density fluctuations at the critical point
are small if the critical isotherm has only a point of
inflection and not a flat portion.
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APPENDIX A

We want to show that there is a two-phase state, if
and only if g(B, p) is a linear function of p in some
interval. Suppose there are two densities p; < p,
which maximize p In A%z + g(8, p). Then

prIn A%z + g(B, py) = pln A’z + g(B, ps)

> pln A% + g(6, p)
for any p. (AD)
Let0 < a <1 andset p=(1 — a)p; + ap,. Then

pln A3z 4+ g(8,p < prIn A3z + g(B, pv)
= (1 — a)p, In A%z + (1 — w)g(B, py)
+ apyIn A%z + ag(f, pa)
=pln A%z 4+ (1 — a)g(ﬁs Py + “g(ﬂ’ P2)-

Hence,

8B, p) < (1 — w)g(B, p1) + g(B, pa)-  (A2)
But since g(8, p) is convex upward in p,

8B, p) 2 (1 — )g(B, p) + ag(B, p)-  (A3)
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Equations (A2) and (A3) imply
g, p=010— 0)g(B, p) + «g(B, pa),

which means g is linear in p for

PSP pe

Now consider the converse case. Let p, maximize
pln A3z + g(B, p) and suppose g(B, p) is linear in a
neighborhood of p,. If p, is close enough to p;,
then g(B, ps) = g(B, p1) + c(pe — p1), Where c¢ =
(dg/dp)(B, p1). Since p, is a point of maximum of
pln A3z + g(8, p), we must have InA3+4 c=0.
Hence,

8B, ps) = £(B, p1) — (p2 — p1) In A’z,

and this implies that p, is also a point of maximum.

If the point p, is the end point of a linear portion of
g(B, p) and if (dg/dp)(B, p,) does not exist there, then
this proof fails at p,. This cannot happen if the pres-
sure is a continuous function of p.

AND R. E. KENNEDY

APPENDIX B
Let

N
UN(rl - I'N) = .<zj_2¢(l'{ b r,),

and suppose
¢@) =400 if r<a, ¢E)=0 if r>b

We assume ¢(r) is bounded from below by —d, where
d > 0. From (38),
N; Ng

O(w) = min Y Y @, — 1)),
=1 j=1

where the r, are in  and the r, are not, and no two
particles are ever closer than a. Now each particle
can interact with at most (84%/a®) others without
violating the hard-core condition. The most negative
each interaction can be is —d. Only those particles
within b of the boundary of w can interact with those
particles not in w, and there are at most ¥V(b, w)[}ma®]™
such particles. Hence,

O(w) > —(dPa—*4m)V(b, w).
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strong coupling expansion is really an asymptotic
expansion, since quantities such as the Jost function
have an essential singularity at infinity. One inter-
esting theoretical result we find is a significantly
improved bound on the numbers of bound states in
a given potential. This result has also been recently
discovered by Calogero.® Bound J-wave states are
considered first in Sec. I. In Sec. II more specific
results are established for the bound S-wave state.
In Sec. III scattering states are considered. This
article restricts itself to spherically symmetric local
potentials which are L} and whose absolute square
root can be expressed as a Laplace transform in the
radial variable. Singular potentials and those which go
to zero at large distances faster than any negative
linear exponential will be dealt with in separate
articles.

The strong coupling limit is studied via function-
theoretic techniques. The scattering equation is
written as an integral equation and the Jost function
can be represented in terms of the familiar power
series (in the coupling constant g) for the Fredholm
determinant of this integral equation. Some standard
results in the theory of entire functions connect the
growth of the power series coefficients with the nature
of the essential singularity of the power series for large
coupling constant. These connections provide the
strong coupling behavior of the Jost function whose
zeros represent the eigenvalues g for which bound
states exist for fixed energy, and whose phase corre-
sponds to the scattering phase shift.

I. BOUND STATES: GENERAL / WAVES

We restrict our considerations to potentials V(r)
which are local, central, and are L3, i.e., which satisfy

f "ar VOt < 0

(all integrability conditions are to be understood in one
dimension). This condition is somewhat novel to
potential theory, but is in fact the significant one from
a number of points of view. We also demand that
|V(r)|? be expressible as a Laplace transform

Vel = j " duo(@)e™", (1)

which means that V(r)eX"™ — oo for sufficiently large
r for some K. Potentials which decrease at large
distances faster than any linear exponential will be
considered in a separate article.

We consider general /-wave states, and fix our
attention on a given / value. ¥(r) is assumed to be real

3 F. Calogero, Commun. Math. Phys. 1, 80 (1965).
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and for the moment everywhere nonnegative (i.e.,
generally attractive). The Schrédinger equation de-
scribing an /-wave bound state with energy E =
—h%u?[2m reads

2d _ ,

& I+ 1
|:er +

A
- ¥ gV )} —0,
%)

with u,(r)/r = y,(r) the wavefunction, and g is a coup-
ling constant which must be positive for bound states
to exist. We introduce the Fourier-Bessel transforms

defined by
(k) = ( ) f drr¥j(kr) 4D ‘(’)

w(r) _ (i)* f dkk? (k)i k),

r
with j,(kr) the familiar spherical Bessel function.
From Egs. (2), (3) one finds the integral equation
(the subscript / is dropped where the context allows)
[0, = (k2 + )]

3

2y g @ 1’ nA ’
k) = P J; dk'k'*V(k, k)a(k") @

with

Vi, k) = 2 fwdrer(r)jz(kr)jz(k'r) )

a real symmetric kernel. Setting

d(k) = ko diyk), Ufk, k") = kk'Vi(k, k')]w,wy

Eq. (4) becomes the Fredholm eigenvalue equation

8060 = g [dk'U e k)6 ®)
with the real symmetric kernel U,(k, k'). Uk, k') is
LY if | dr |V(r)| < oo. Equation (4) is an eigenvalue
equation whose eigenvalues g, are the zeros of the
Fredholm determinant,? alias the Jost function. The
correspondence between the Fredholm determinant
and the Jost function has been demonstrated for the
scattering problem, but is to be rederived as a basic
step in our reasoning, and to establish notation. The
Fredholm determinant for Eq. (6) is constructed as

Mg = 3=

n=0 1<{,5%n

f diey - j dk, det Uk, k)l, ()

where an evident notation for the determinant is used.

4 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951), Appendix.
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The determinant can be transformed (i labels rows,
j labels columns)

det |Uy(k,, k)|
_kik;
——— Vilk;, k)

Wy WOy,

k 2
(—"‘) det |Vi(k;, k)|
wkm

= det

o i

km 2 2 © 2 X .
(——) det | = d"ﬂ',- V(ri)]L(kjri)Jl(kiri)
1\, mJo
f dr,r}
0

n on 2 Mroo

(3 11 (= [ ot

w/ m=1 O)km 0

X V(ry) - V(r)ifkory) - - - jilk,r,) det | ji(k,r)l

=f drl M 'f dr,,er(r]) s
0 0

2k . .

- '_;.lz(kjr‘)h(ka‘ra‘) .
K wk’.

Performance of the k integrations of Eq. (7) inside the
determinant leads to

3
[

raV(r,)

x det )]

f dk, - - f dk, det |Uk;, k)|
0 0

=f dry - f dr, V(ry - V(r)det [S(r,, )|,
) 0

&)
where
8,r, ) f ke krh(kr)krjl(kr)‘ (10)

This quantity is in fact the Green’s function of the
differential operator

W = (@drt) — 2 — I + DJr?]
corresponding to solutions which vanish at r = 0 and
r = oo. We can therefore write

Sirr') = pr<r>j(iurOnP(iprs),  (11)
with rj,(iur), rh$(iur) zeros of the differential operator
D, , which respectively vanish at r = 0, r = 0. j,(p),
h$H)(p) are respectively the regular spherical Bessel and
the spherical Hankel function, and for large p
pip) ~sin (p — }im), ph{P(p) ~ exp [i(p — }im)].
The quantity

D r)= det B(r,r)  (12)
=%,I=n

is a symmetric function of all its arguments and is in
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fact nonnegative.’ In view of this and Eq. (9), we can
write
A =3 S [ [Can vy - v

n=0

X Dl(rl v n

S [,
X V() - VD] 1), 13)

wherein D (r, - - - r,) the conditionry{ > ro > rz- - >
r, must be obeyed. Using the representation Eq.
(11) one finds, with alittle juggling in the determinant

Dy (ry - -+ r,), the recursion relation
2 ur .
DI(ry -+ ) = B GBI oy ary)
hy " (ipr,)

— h{P(ury) jiur )l Dy (rg - - 1)

= Hl(r19 r2)Dl>(r2 et rn)’ (14)
which leads to
Dl>(rl Tt rn)
= /‘rijl(i/‘rn)h§+)(iﬂrn)HL("1 » Ta)
X Hl(r2’ ra) T Hl(rn—I: rn)
= Hl(r19 r2)Hl(r2’ r3) e Hl(rn--l, rn)
x Hyr,,0). (15)
One can show that for all , s
[H(r, )|l — s| < |Hy(r, )lflr —s| < 1. (16)

Then from Eq. (13)
A(g)l < Zolgl"
x f dr, f dry f T, |V(r) - VDI
0 1] 0

X (ry —1)(rg — rg) ** (rpy — r)r,- (17)
We make the variable changes
§i=r—ria(=1-n-1), & =r,.
Then
A1 < Slele[“ag [ a6 v
X V(pat+ &)V + &)
= golgl”Ln- (18)

We set
U = vt = f ® dac(o)e ™

5 See, e.g., discussion in W. M. Frank, Ann. Phys. (N.Y.) 29, 175
(1964), Sec. II1.
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[o() is known as the “Laplace weight™ of U(r)]. Then

=fmda1 te d“Zn
0
o(e) * * - o(atgn)

(“1 + ag)(otr + oy + 25 + 014)

(al + “2 *Olgy_1 + “2n)2
(19)
We use the inequality
(g + g+ + 0t oy + )
Sy + @ + oty y)
X (@ + op + 0ty + )] (20)
to find
Lo don [,
o 0
fo(ay) - - - o(2a,)l
ooy + o) (o F g0 “2n—1)
X (a'l + X + a2n)
= G J, et o)
X X lap(ap, +ap) (ap, +ap, +ap, )7,
F Q@1

where the integral in Eq. (21) has been replaced by a
symmetrized sum over all permutations P of the
Gy, O, Oz, * * *, ®g,. ThIiS quantity sums to a simple
expression resulting in

1 *, lo)l
L"S(Zn)'j ey a1

IO’(“g)l 'O'(‘x%z)l
fd fd“ . (2 )' @)
with the notatlon

Ul Ef da ——la(a)‘ .
0 o

We find therefore that
|A(g)] < cosh (U |gl}), (23)

which shows A(g) to be an entire function of expo-
nential order® at most §. That the exponential order of
A(g) is precisely 4 is demonstrated by providing a
lower bound to A(g) for negative real g {where A(g)
is positive], which also has exponential order 4. Such
a lower bound is readily found in the Fredholm
determinant AS(g) corresponding to a square-well
potential S(r) which satisfies V(r) > S(r). Clearly
since D(r, -+ - r,) is nonnegative

Alg) > A%(g) (249

¢ An entire function f(2) is said to be of exponential order & > 0
if o is the greatest lower bound of numbers  such that one can find
a K such that | f(2)] € exp K |z]. If f(2) is of exponential order o
its type 7 is defined by = = llmll sup |z|~7 |In F(2)|.
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for negative real g. That the exponential order of
AS(g) is } follows from the consideration that AS(g)
can be expressed in terms of its Weierstrass factoriza-

tion?
AS(g) (1 -~ i),
&m

where AS(g,,) = 0. The zeros g,, of AS(g) are just the
values of coupling constant which bind a particle in
the potential gS(r) with energy —h%u?/2m. If [6(x)
represents the step function, 0 for negative x, 1 for
positive x]

-1

m=1

(25)

S(r) = V,0(b — n),

the g, are solutions to

cot b(Vogm — p)t = —p(Vegm — 13t (26)
and clearly for large m
~ (m + 3)° 76V, @7)

so that the g,, have exponent of convergence §. This
establishes® the exponential order of AS(g) to be 1.
For general L} potential which is not restricted to be
positive, all the reasoning which leads to Eq. (23)
follows if ¥(r) is replaced by |V(r)| and U(r) = V(L.
If ¥(r) is purely repulsive, A(g) would correspond to
the Fredholm determinant for the attractive potential
with the reversed sign. If ¥(r) has a finite number of
nodes corresponding to alternating regions of attrac-
tion and repulsion, eventually becoming (say) positive,
a lower bound S(r) to V(r) can be found in the spirit
of the previous analysis in the form of a step function
with a finite number of steps. The zeros of the corre-
sponding AS(g) can be estimated in principle for large
g. This has not been done, but one expects the eigen-
value equation for large g to involve an almost-
periodic function of (g)#, so that the eigenvalues are
“relatively dense,”® leading to a set of zeros whose
exponent of convergence is again .

II. S-WAVE BOUND STATES

In the special case of S waves the kernel Gy(r, 5)
takes the especially simple form

Qo(r, S) = %:Eﬁwdkkz J‘—“—‘—'—O(kr)JO(kS)

wk

= 51; [e—-ulr~s| _ e—u(r+s)]

7 E. C. Titchmarsh, The Theory of Functions (Oxford University
Press, London, 1939), 2nd ed., Sec. 8.24.

8 E. C. Titchmarsh, Ref. 7, Secs. 8.25, 8.26.

9 See, e.g., A. S. Besicovitch, Almost Periodic Functions (Cam-
bridge Umversny Press, New York, 1932), p. 1. ““A set E of real
numbers is ‘relatively dense’ if there exists a number 1> 0 such that
any interval of length / contains at least one number of E.”

(28)
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and it is not difficult to obtain more accurate estimates
on the behavior of A(g). One can show that

(zl)n <det< 'e—uln—r,l _ e—/l(r;+r;)l
)" 1<4,5%n

X 0(ry — r0(ry —rg)- - 0(r,_1 —1,)

D>(r1“'r'n) =

1
= (e—2n(r1-—rz) — 1)(e—2u(rz-—ra)_ .-
(2u)
(e—Zu(r,...l——r,.) _ 1)(e—2m‘,. — 1)
X O(ry—ry) - 0(r,q — 1)

n—1

= ];[ G(r; — r; . 1)G(r,).

Then with the variable change applied in connection
with Eq. (17) one finds that

(29)

Alg) = éﬂ(— o

x f dg, - L “dE,G(ED) -+ GEIVED
X VEna+E) - V(E + - £)
= éﬂ(—g)"Ln(ﬂ)-

In terms of o(«), the Laplace weight of |V(r)|} one
finds as before

Lw) < (=) f ey f " dagy |o(@s) - -+ (gl

X Gloy + 02)Gloy + otp + o + 0g) -
Glay + o + + " ag,), (31

(30)

where
—G(a) = 1/a(x + 2u).

The estimates of Sec. I were based on the bound

1G(2)] < 1/a2,

(32

which corresponds to inequality |G(€)| < |4], equiv-
alent to Eq. (16). This leads as was seen in Sec. I to
the conclusion that A(g) is of exponential order } and
of type®

WS U Ej;wd“lzg?—)l. (33)

For ¢ (x) > 0, U, = (& dr |V(r)|t. For the case of
finite range ¥(r) > 0 with o(«) > 0 a lower bound on
the type can be obtained from the inequality

bf(ay + -+ + ag)og + -+ i + %ggey1)

< _G(oh +ag), (34)
where

b = min (1, §/2y) (35)
and 1/8 < oo is double the range of ¥(r); i.c., 8 is the
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greatest lower bound of the support g(«). Then from
Eq. (31)

L) 2 Quby [ “don [,
0 0

(ool _ (BUD
(0 + o) (o + o) (20!
(36)
This corresponds to the lower bound for the type
75 2 b4U; = min [1, (824U, (37

For 24 < f the type is exactly U;.

We now show that if ¥(r) > 0, U, is in fact exactly
the type for A(g) as a function of a possibly complex
u. A(g) = A(g, ) as a function of u is analytic in the
entire complex u plane except for a cut along the
negative real axis ending at 4 = —}p, for each value
of g. This can be recognized from Eqgs. (30)-(32). We
consider the quantity

m(p) = lim 7,(u) = lim g 3 In A(g, ).  (38)

g+ o0 g— oo

g may approach o along any path avoiding zeros of
A(g; p). In view of what has been proven, 7,(u) is
uniformly bounded for sufficiently large g if the zeros
of A(g; u) are avoided. Equation (38) defines an
analytic function of w. It has the constant value U,
along the segment 0 < 2u < # and hence has this
value everywhere in the cut ¢ plane. =(u) is just the
aforementioned type and is constant. This is borne out
by the WK B approximation.

The interest in the type stems from the fact that it is
related to the asymptotic distribution of the zeros of
A(g, 1). From the Hermiticity of the kernel Uy(k, &)
it follows that all the zeros of A(g) are real and in
fact nonnegative. (We ignore the complications of the
case where g = 0 is an eigenvalue.) A theorem!® tells
us that an entire function of exponential order 4 and
type 7 with real positive zeros has an asymptotic
distribution of zeros n(g) (the number of zeros of
modulus < [g]) given by

n(g) ~ (/mrglt.

By applying Jensen’s theorem!! we can find a bound
on the number of bound states, i.e., zeros of A(g, 0)
determined by the relation

(39)

g r 27
n(dg) In: < f gy ME) L f In |A(ge®, O)|
4" Jo g 27 Jo

< |gltr.

10 Reference 7, Sec. 8.64.
11 See, e.g., E. Hille, Analytic Function Theory (Ginn and Com-
pany, Boston, Massachusetts, 1962). Vol. II, Theorem 14.1.4, p. 189,



STRONG COUPLING LIMIT

Optimizing & with the value é = e2, we find the
inequality for all g

ng < te lglt f “ar v,

The quantity in Eq. (40) is a bound on the number of
zeros with modulus < |g| of A(g, 0) (at zero energy).
Since each bound state in a potential gV(r) passed
zero energy at a smaller value of the coupling constant,
the number of bound states is just this number of
zeros. [For potentials such as the Coulomb potential,
bound states exist for arbitrarily weak coupling.
However, potentials which are L} also satisfy the
Bargmann condition fdr|r¥(r)| < o and do not
bind at “zero energy.”’] The Bargmann inequality!?

(40)

ng < ZIl-gi ) Lwdrr (V)| (41)
or the L2 bound®

both fail to give the correct growth of the number of
bound states with g for large g, and greatly over-
estimate this quantity. The result Eq. (40) is “best
possible” as far as the g-dependent goes, and a crite-
rion of this type for the first bound state was found by
Calogero.? For high / values the inequality Eq. (41)
may give sharper bounds. The integral | dr |rV(r)|
converges ever so slightly better than [ dr |V(r)|t for
borderline potentials, such as those which behave
for large r like (r Inr)~2. Potentials which are not L}
will be discussed in a subsequent article.

Another interesting by-product of these results is
the existence of the ‘“square-root kernel” of the
integral equation (6). U,(k, k') as a real symmetric
kernel can be expressed in terms of the orthonormal
eigenfunctions ¢,(k) and the positive eigenvalues
g, of Eq. (6) in the form

Uk, k)= qi%i“(k) . 43)
One can define '
W(k, kl) = E¢s(k I)f s(k), (44)

8

which exists as a square integrable kernel since

Slco

s

12 V. Bargmann, Proc. Natl. Acad. Sci. U.S. 38, 961 (1952).
13 J, Schwinger, Proc. Natl. Acad. Sci. U.S. 47, 122 (1961); C. G.
Ghirardi and A. Rimini, J. Math. Phys. 6, 40 (1965).
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according to Eq. (39). Moreover, W(k, k') is the
square root of U(k, k') in the sense that

fdk"W(k, KYW'k", k") = U(k, k") (45)
as is evident from Eq. (44).
It was established that for g large and negative
A ) = 3 (—8)"Lo(l) ~ exp [r(~ ) + ofg")]
= exp [ ™g)* + o(g")). (46)

Since all the zeros of A(g) are real and positive, the
growth described in Eq. (46) for large |g] is valid®
for all 0 < argg < 2w. It is not difficult to deduce
from the asymptotic distribution of the (real positive)
zeros of A(g, u) as given by Eq. (39), that A(g, u) is
bounded for positive g, and as a real function of
exponential order 3, its behavior for large positive g
must be of the form

A(g, u) ~ p(g, ) sin [rg* + ¢(g, )],

Inp(g, p) = o(gh), ¢(g, u) = o(gh)

with = = { dr |V(r)| for V(r) nonnegative, and inde-
pendent of u. This agrees with the extrapolation from
Eq. (46)

47
where
(48)

II. SCATTERING STATES

The corresponding estimates can be carried out for
the scattering problem. The Fredholm determinant in
this case can be obtained by reasoning similar to that
in Sec. I. The expression for it is, however, well
known! in a form similar to Eq. (13):

A(g, k) =A(g) = % (-_—?)ﬁ
n=0 nN!
x f “dry - f “draV(r) - VD)D), (49)

where _
Dyry---ry) = det [S(r;, ;i k), (50)
1<4,j<n
Gr,r':k) = —ikr<rs j(kr DR U(Krs),  (51)

where jykr), h$(kr) are familiar spherical Bessel
functions whose significant boundary values are
J0) =0, ji(kr)—> sin [kr — I(km)][kr;

7=

hg“(kr) — e[—ikr—l(‘}v)]/kr'

r— o

From symmetry, following notations used earlier,

Ag) = 3 (~er j dry - JdrnV(rl) V()

X Dz (ryocorp); (52)
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also
Dl>(rl e rn)
= ﬁl(rl ’ 7'2)1?1("2’ rg e ﬁl(rn—l s rn)ﬁl(rns 0),
where

H(r, s) = —ikr*[h(kr)[h{P (ks)]

x |7 (ks)ji(kr) — hP(kn)jiks)l. - (53)
Once again

A (r, 9)|r — D < 1,

so that the very same estimate is obtained as in Eq.
(23).

|Ag, k)l < cosh (Igl? Uy). (54
The similarity of Eqs. (23) and (54) is more than
coincidental. It is of interest to note the relation
between A(g, k) of Eq. (49) and A(g, p) = A(g) of
Eq. (13). Comparison of G(r,r’: #) in Eq. (11) and
E,(r, r': k) of Eq. (50) shows that

Sr,r': k) = Syr, r': —ik). (55)
Then from Egs. (12), (13), (48), (49)
Ag, k) = Mg, —ik). (56)
From
#k) = lim g4 1n A(g, k) (57)
oo
follows by considerations presented earlier that
7(k) = 7(—ik) = , (58)

For g positive, it is presumed that Eq. (47) can be
analytically continued to imaginary x. Then one
would write

Ag, ik) ~ p(g, ik) sin [rg* + ¢z, k)] (59)
with Eq. (48) continuing to hold. The functions
(g, ik) ¢(g, ik) will generally be complex. The phase
shift d(k, g), which is merely the phase of the Jost
function f(k, g) = A(g, —k) = A(g, ik) is therefore
given by

o(k, g) = Im In A(g, ik). (60)
To order g, the leading behavior of d(g, k) can be
shown with the help of Egs. (60), (59), and (48) to be

o(k, g) ~ —rgt (61)

independently of k for k # 0. For strongly repulsive
potentials [if one analytically continues in Eq. (46)
from positive u to pure imaginary values as discussed],
one obtains no phase shift to order g¥ but rather an
enhancement factor'4 h(g, k) whose leading behavior is

h(g, k) ~ e, (62)
Equation (61) is related to Levinson’s theorem and is
also derivable from it.

14 M. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964), Sec. 6.5.

WILLIAM M. FRANK

IV. DISCUSSION

In this article only the leading asymptotic behavior
in g is discussed. Subject to the assumptions that
[V(r)|* is local, L}, and expressible as a Laplace
transform it was shown that the Jost function is of
exponential order 3 in g, which implies that the number
of bound states and the phase shift for an attractive
potential both grow as |g|t for large g. If V(r) is
singular in the sense of not being L%, then the ex-
ponential order of the Jost function is in fact not 4.
These cases will be dealt with separately.

Many of the results of this article can also be
obtained by WKB methods which also permit means
of calculating further terms in the asymptotic ex-
pansion of the Jost function for large g. Such a
treatment will appear separately. The WKB method,
however, does not of itself permit analytic continua-
tion in g, unless independent knowledge of analytic
properties is available. A criterion for the “largeness”
of g is set by the condition for validity of the WKB
method, namely the slow change of the potential over
the de Broglie wavelength in the region of interaction,

ie.,
toa
= —_—) v —— K 1.
or orL(k® + gV:l or (gV)‘lr «

The noncommutativity of the limits g — oo, k — o0
should be noted. The present results on exponential
order in g are valid for fixed £ (in an upper half-plane),
and are not affected by a consequent growth of k. If g is
fixed and & grows asymptotically large, G(«) — 1/aand
a function of exponential order unity in g is obtained.
It is clear from the criterion Eq. (63) that the large-
ness of g is determined relative to k, and the criterion
is not uniform in k. The potential, no matter how
strong, must eventually go to zero and yield to the
asymptotic behavior modulated by k2, and its large-
ness is therefore never uniform in space.

It is seen that, in the strong coupling limit of poten-
tial theory, one can effectively neglect the total energy
k? in comparison with the potential energy in the first
approximation. Such a consideration may not carry
over to field theories, where the particle acquires a
self mass which is large if the coupling is large. It
would seem to be a subtler problem to determine the
dominating terms in the interaction between re-
normalized particles.

oA _ @ [ 1 (63)
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An examination of two functionals, which are in common use for making variational estimates of
weighted averages, reveals that one may be preferred over the other in certain cases. In particular, for
a positive-definite self-adjoint operator, the normalization-independent functional always yieids the

better approximation to the stationary value.

ARIATIONAL principles are particularly con-
venient for approximating weighted averages. If
the solution to a system of equations is unknown, but
the quantity of interest is some weighted average of the
unknown solution, then rendering an appropriate
functional stationary enables one to calculate the
quantity of interest to a degree of accuracy which is
higher than that of the solution itself.
Two functionals which are currently in common use
in variational analyses are

Fl = (ST’ Wt) + (¢t’ S) - (¢ts H'/)t), (1)
Fy = (s, 9)(¢:, 9)($:, Hy,). (2)
H is some operator, s and sT are known (‘“‘source”)
functions, and v, and ¢, are unknown (‘“trial”)

functions. The scalar product notation is used to
denote integration over all the variables of interest.

U, = [ 108 . ®

Recently, these functionals have been generalized
in one sense or another.'® (For earlier work, the
reader is referred to the bibliography of Ref. 1 or 2.)
We concentrate on the simpler forms given by Egs.
(1) and (2), with the aim of pointing out that in certain
situations one functional may be preferred over the
other. Frequently, one or the other of the functionals
has been used as a matter of convenience, but it
appears that there may be a calculational advantage
in using one over the other, depending on the
particular situation.

Consider the functional F,. Assume that the exact
solutions y and ¢ to some system of equations are
known only to some accuracy dy and d¢, respectively.
Using the trial functions y, =y + dy and ¢, =
¢ + d¢ in Eq. (1), we obtain

Fy = (s, y) + (54, s — Hy)
+ (SJr - HTd” 61/’) - (6¢" H@‘lp), (4)
. Kostin and H. Brooks, J. Math. Phys. 5, 1691 (1964).

M.D
G. C. Pomraning, J. Soc. Indust. Appl. Math. 13, 511 (1965).
D. S. Selengut, Trans. Am. Nucl. Soc. 8, 485 (1965).

®w o =

where the adjoint operator H' is defined by the
relation,

(f, Hg) = (H'f, ), &)

for all functions f and g. Implicit in this definition are
appropriate boundary conditions.

If we require that the first variations of the func-
tional always vanish, then y and ¢ must be solutions
to

Hy =s, (6)

Hi¢ = st. @)

The functional F; is thus stationary about the solu-
tions to Eqs. (6) and (7). The boundary conditions
that are to be associated with Eq. (7) are to be adjoint
to the boundary conditions that are associated with
Eq. (6), in order for the equality (5) to hold.

The stationary value of the functional, which we call
I, is given by

I=(" ). ®

The weighting function in the quantity of interest, I,
is to be chosen, therefore, as the source in the adjoint
equation, (7). For example, if the quantity of interest
is a resonance integral, s' is taken as the resonance
cross section.

Applying Eqs. (6)-(8) to Eq. (4), the trial functional
F, may be written as

Fy = I{1 — [(5¢, HOY)/(¢, HY)]}- ®

Having required that the first variations of the func-
tional vanish, we see that the stationary value is
estimated to second order, though the solutions to
the equations of interest are assumed to be known
only to first order. The variational principle yields
an accurate estimate of J, however, only if the second-
order terms are small. In other words, we still have
to make fairly good guesses for the trial functions
(based on physical considerations, usually) in order
to have a good approximation to I.

Consider now the functional F,. This functional
is also stationary about the solutions to Egs. (6) and

473
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(7), and its stationary value is given by (8). An anal-
ysis, similar to that given for F,, gives for the trial
functional F,,

_ (8¢, Héy)
(¢, Hy)

(6, )(s, Sy)
(¢, (', v)

) + 0(%),

(10)
where the expression O(d°) represents terms of third
order (and higher) in dy and d¢, which we neglect in
the remaining discussion.

Clearly, the second-order terms in Egs. (9) and
(10) are, in general, different. It may be that, for a
given operator and for a particular class of trial
functions, the second-order terms of one functional
are smaller in magnitude than those of the other.
This would make one of the functionals preferred
over the other for this class of trial functions. It
appears, therefore, that a careful investigation of
these second-order terms may be important and useful
when one is calculating weighted averages.

These arguments are not limited entirely to weighted
averages. They may be extended to a class of eigen-
value problems by use of the following artifice?:
Suppose that we are interested in finding the eigen-
values to the equation

(L— M)y =0. (1)
Consider the auxiliary problems given by Eqs. (6)

and (7), but take H = L and choose the sources so
as to represent the operator M by taking

M = s(st, ). (12)
This is possible, for example, for integral operators
with separable kernels. The functional F, now becomes

Fy = (¢, My))/($s, Ly,), (13)
which is stationary about the inverse eigenvalue, 12,
to Eq. (11).

Qualitatively, it would appear that, if the two
second-order terms of Eq. (10) are of comparable
magnitude and the same sign, then, for the same trial
functions, F; gives a better estimate of I than does F; .
It is difficult to make quantitative statements about
completely general operators H, so we consider a
special case.

Consider the case when H is a positive-definite
self-adjoint operator; H' = H and (f, Hf) > 0. (The
arguments are equally valid for negative-definite
operators.) We choose the sources s’ = s, so that
from Egs. (6) and (7), we have that y = ¢. For this
case, (9) and (10) become

F» =1(1

Fy = I{1 — [(6y, Hoy)/(y, Hy)]}, (14)
0y, Hoy) | (s, o)

F,=1I{1— ) 15

( (», Hy) (s, w)"’) (13)

RUBIN GOLDSTEIN

Now, the signs of the second-order terms are definite.
Because of the definiteness of the operator (positive
or negative), the term involving H is positive, while
the last term in Eq. (15), being a perfect square
(everything is assumed real here), is also positive.
Thus we have the following inequalities:

F,<I and F, < F,. (16)

In other words, the functional F; gives us a maximum
principle bounded by I. But it is still not clear whether
F, is greater than or less than /. In either case, how-
ever, since the two second-order terms in (15) have
opposite signs in front of them, if they are of com-
parable magnitude, F, gives a better estimate of [
than F, .

It is possible to show directly that the last term in
Eq. (15) is always smaller than the other second-order
term, so that, in fact, F, also generates a maximum
principle. This means that F; < F, < 1.

We show this, however, in an indirect way. The
functional F, has the feature of being normalization
independent; that is to say, substituting Ay, as the
trial function does not affect the value of the func-
tional. On the other hand, the functional F, is affected
by this substitution. Since for all 4, Fy(A4) is bounded
from above by I, let us choose that A which maxi-
mizes F,. The solution to 0F(A)/04 =0, is A, =
(s, v,)/(y,, Hyp,), and the maximum value of F, turns
out to be F,; in other words, F, = F,(4,) < I, which
was to be proved. The fact that the functional F, can be
derived from F; is not new,! but the approach used
here reveals its importance in the calculation of
weighted averages.

As an illustrative example of this case, consider the
diffusion equation in a multiplying subcritical assem-
bly of a one-dimensional slab of width 2a.

(=DV*4+ X, — X))y =S, an

where D is the diffusion coefficient, %, the absorption
cross section, is greater than »X,, the multiplication,
and S is some external source. We choose the homo-
geneous boundary conditions

y(£a) = 0. (18)
Letting (2, — »2))/D = «* and S/(Z, — vZ)) = s,
where both «% and s are positive quantities, Eq. (17)
becomes [1 — (1/«®)V3y = s, or
where H=1—(1/«)VZ (19)
Note that this H is a positive-definite self-adjoint

operator. A reasonable trial function which satisfies
the boundary conditions for this problem is

Hy = s,

v, = cos (7/2a)x. (20)



VARIATIONAL PRINCIPLES AND WEIGHTED AVERAGES

If the source s is constant in space, then the
weighted average (s, ) is related to the volume aver-
aged flux, §. If the source is a point source, then
the weighted average is the flux at the source point.
For the case of constant s, the variational approximat-
ions to the average flux with the trial function (20) are
plotted in Fig. 1 together with the exact solution to
the problem. If one changes the amplitude of the
trial function, then F, remains unchanged, while the
curve for F; moves up or down but never becomes
greater than F,. The preferred functional is thus F,.

The above arguments fail for the more general
non-self-adjoint case, because the functionals are not
maximized. It is possible for F, or F, to be larger or
smaller than I, depending on the magnitude and sign
of the second-order terms. For this case, however, it
may be possible to show for a given operator and a
given class of trial functions that the second-order
terms of one functional are smaller than the other.
Therefore, an investigation of these second-order
terms would seem appropriate, for it may reveal a
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FiG. 1. Variational estimates Fy and ¥, and the exact solution J
for the average flux ¢ as a function of the slab half-width 4.

functional preference in a given class of problems.
Furthermore, it may be possible to alter the preference
between the functionals in the non-self-adjoint case
by altering the amplitudes of the trial functions.
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As has been recently suggested, many subjects in small angle x-ray scattering theory can be discussed
by using a function called the intersect distribution function G(M), which gives an average value of the
distribution of lines with length M which pass through a point in a particle and which also have both
ends lying on the boundary of the particle. Some properties of the intersect distribution function for a
plane lamina with a convex boundary are investigated. The calculation is found to require the use of a
weighting factor which is expressible in terms of the function generating the boundary of the lamina,
The relation between G(M) and the two-dimensional characteristic function is given. The exact intersect
distribution function is found for a circle, and an approximate calculation of G(M) is carried out for
small M for an arbitrary plane lamina with a convex boundary.

1. INTRODUCTION

T has recently been pointed out by Porod? that many
topics in small angle x-ray scattering theory can
conveniently be discussed in terms of a function called
the intersect distribution function, which up to this
time has been rarely used, even though an essentially

1 G. Porod, in Proceedings of the Smail Angle X-Ray Scattering
Conference (Gordon and Breach Science Publishers, Inc., New
York, 1967).

equivalent function,? the line distribution function,
was introduced a number of years ago.?
The name “intersect™ has been applied by Porod to

2 A. Guinier, G. Fournet, C. B. Walker, and K. L. Yudowitch,
Small Angle Scattering of X-Rays (John Wiley & Sons, Inc., New
York, 1955), pp. 12-13.

3 The intersect distribution function G(M) defined below is
essentially equivalent to Porod’s intersect distribution function.
The line distribution function g(M) of Ref. 2 can be obtained from
G(M) by the relation g(M) = (M|M)G(M). The normalizing con-
stant M is defined below in Eq. (4).
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2 A. Guinier, G. Fournet, C. B. Walker, and K. L. Yudowitch,
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The line distribution function g(M) of Ref. 2 can be obtained from
G(M) by the relation g(M) = (M|M)G(M). The normalizing con-
stant M is defined below in Eq. (4).
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any line passing through a body and with both ends
lying on the boundary of the body. The intersect
distribution function G(M) is an average distribution
of lines of length M passing through a point and with
both ends lying on the particle surface.

Because of the renmewed interest in the intersect
distribution function we have recently investigated
some properties of this function. In these studies,
approximate values of the function were calculated
for a plane lamina with a convex boundary. In the
calculation, a weighted average had to be computed.
Since the form of this weighting function was not
apparent from other discussions of intersect distri-
bution functions, and since the weighting function can
affect other calculations of the intersect distribution
function and its properties, the results for the plane
lamina are outlined below.

For simplicity, only the plane lamina is considered,
although analogous results would be expected for
convex three-dimensional bodies.

II. THE WEIGHTING FUNCTION P(p, 6)

For a plane lamina with a convex boundary and
uniform electron density, let 8y(r) be the two-dimen-
sional characteristic function, which is the analog
of the three-dimensional characteristic function?
yo(r). By analogy with the three-dimensional case,* for
a plane lamina

D 2 R(p.0)
A =f 2arBy(r) dr = A‘lf dAf d()f rdr,
[ A4 0 0
1)

where A is the area of the lamina; D, the maximum
diameter, is the length of the longest straight line that
can be contained in the lamina; and where p is a
vector from a fixed origin to the area element d4.
The surface integration extends over the area of the
lamina. The vector p defines a point which is called
point p and which is taken as the origin of a polar
coordinate system with coordinates r and 0. The
boundary of the lamina is given by the equation
r = R(p, 6). Equation (1) can be written as

A = (24)* L dA ﬁ “[R(p, O)]* db. @)

Passing through each point p there is a line with length
M, the ends of which lie on the lamina boundary and
which is oriented at an angle 6 with respect to the
reference axis of the polar coordinate system. This line
is called an intersect.

Equation (2) can be expressed as

A = QA f dA f "d0M*P (p, 6),
A 1]

4 Reference 2, pp. 10-19,

&)
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where
Py(p, 0) = M2{[M — R(p, O)]* + [R(p, 6)]*}.

When M replaces 6 as a variable of integration, (3)
can be put in the form

D
A = =/(35D) f AMM®G(M), 4)
where ° :
G(M) = 3H[eMA) S [ da\dsjam, PGp, M),
i=1JA4
©)

D
W = f AMMG(M).

The weighting factor P(p, M) is obtained by
expressing 6 in terms of p and M in Py(p, 6). In the
change of variables from 6 to M, the interval of
integration must be divided into j subintervals in each
of which 6 is a single-valued function of M. Therefore,
as (5) indicates, G(M) must be expressed as the sum of
Jj integrals with |d6/dM|; being the value of |d6/dM|
valid in interval i. In (5) the value of M determines the
part of the lamina area over which the area integration
extends.

One of the main purposes of this noteis to emphasize
the need for the use of weighting factor P(p, M) in
calculating the intersect distribution G(M) or the line
distribution function g (M) described by Guinier et
al.® An approximate expression for P(p, M) for small
M is given below for a plane lamina with a smooth
convex boundary.

III. THE RELATION BETWEEN G(M) AND §(r)
By two partial integrations, (4) can be written as

_ D
w/(35) L AMM?G(M)

= ZWM_IJ;Dr er;DdM(M — r)G(M).

Then by analogy with the three-dimensional case,®
the two-dimensional characteristic function fy(r) is
related to the intersect distribution function G(M) by
the equation

_ D
Bo(r) = M‘IJ' dM(M — r)G(M). (6)

Thus

Bu(r) = M'G(r). M
The characteristic function f4(r) and the line distri-
bution function G(M) therefore give very nearly equiv-
alent information. At times, however, one function
may be more convenient to use than the other.

6 Reference 2, p. 12, Footnote 1.
¢ Reference 2, p. 13.
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IV. THE INTERSECT DISTRIBUTION FUNCTION
FOR A CIRCLE

Equation (5) requires knowledge of the relation
between the angle 6 and the intersect which has a
length M and which passes through point p. Let the
boundary be represented by the circle

x*+ (R, — b —y) =R, ®)

where R, is the radius of the circle, and b is the distance
from the circle to point p. The intersect can be repre-
sented by the line

y = x tan 6.

This line intersects the circle at two points, the x
coordinates of which are given by the two roots x; and
x, of the quadratic equation
x2sec? 0 — 2x(R, — b) tan 6 + (R, — b)* — R = 0.
Since the two points of intersection must be separated
by a distance M,

Mcos 0 = x, — x,.
Therefore for 0 < 6 < i,

6 = cos™L [(RZ — IMDY/(R, — b)],
and forin < 0 < =,

6 = cos™ [—(R — IMDH(R, — b)) (10)
Since two expressions are necessary to specify 6 as a
function of M throughout the interval 0 < 6 < =, in
©)j=2
The quantity R(p, ) in (2) is the distance from point
p to the boundary. Therefore, in (8), y = R(p, 0) sin 6
and x = R(p, ) cos 8. By substitution of these values
of x and y into (8), a quadratic equation for R(p, 0) is
obtained with the solution

R(p, ) = (R, — b) sin 6 + [R% — (R, — b)?cos? 6]
From (9) and (10),
M = 2[R: — (R, — b)? cos? 612

®)

Thus
R@, 0) = M[2 + [(R, — b)* + (M[2)* — R},

P(p, M) =1 4+ 2M~*[(R, — b)* — R2]. (11)
Points on the boundary of the circle are specified by the
arc length ¢ from the point to a reference point. The
boundary point with arc length 7 is called “point 2.”
For the surface integration in (5), the variables b and
t are employed. Then

dA = (1 — b/R,) db dt.

The largest value b, of b is determined by the con-
dition that the values of cos 6 given by (9) and (10)
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must satisfy the condition that [cos 6] < 1. Therefore
buux = Ry — (RS — 1),

When the above results are substituted in (5), G(M)
can be expressed as

3M 2
G(M) = 27R
M) = A 2R
bhmax
xf db(1—£)P(p,M)’d—0 .
0 R, dM i
Thus

G(M) = MM|=RX4R: — M*}.

This result agrees with the intersect distribution for a
circle obtained from (7) using the expression for the
characteristic function for a circle.’

V. THE INTERSECT DISTRIBUTION FUNCTION
FOR SMALL M

The resuits for a circular boundary can be used to
find an approximation for G(M) for small M for a
smooth convex boundary with arbitrary shape since,
when the quantity R in (8)—(11) is replaced by the
radius of curvature R(f) at point ¢, these equations
hold approximately at a point ¢ on an arbitrary
smooth convex curve. Equation (5) then gives

G(M) = LMz ) (ROM +---, (12

where

R?= L“fL[R(t)]“2 dt
1]

and L is the total arc length of the boundary. The
quantity R~ thus is the average of [R(f)]"2 over the
boundary.

Since® B4(0) =1 and B (0) = —L[(wA4), from (6)
and (12)

Bo(r) = 1 — (L[mA)r + [L|Q4nD(RP)r* + - .

Kirste and Porod® obtained this same expression by
a direct calculation of Sy(r).
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The following results are proved for a system of Ising spins o; = 1 in zero magnetic field coupled
by a purely ferromagnetic interaction of the form —X,<; Ji;0.0; with J;; > 0, for arbitrary Frystal
lattice and range of interaction: (1) The binary correlation functions (g,a;) are always nonnegative ({ )
denotes a thermal average). (2) For arbitrary 4, j, k, and /, (6,0,0:0,) 2 (0,6,)(0:0;). Consequences of
these results, in particular the second, are: (i) {5;0:) never decreases if any J; is increased. (ii) If an Ising
model with ferromagnetic interactions exhibits a long-range order, this long-range order increases if
additional ferromagnetic interactions are added. This last fact may be used to prove the existence of
long-range order in a large class of two- and three-dimensional Ising lattices with purely ferromagnetic

interactions of bounded or unbounded range.

1. INTRODUCTION

ONSIDER a finite system of Ising spins o, = 31
with a Hamiltonian

N
=—3Jioo;— 1),

0]

i<j

where for every pair 7 # j
0L J;;=J; < oo, 2)

That is, all interactions are ferromagnetic, favoring
parallel alignment of spins. The thermal average of an
operator O is defined by

(0) = Tr [0 exp (—K))/Z, €)

)

is the partition function, and the inverse temperature
g = (kT)'is always positive. As all interactions favor
parallel alignment, the following result is mnot
surprising.

where
Z = Tr [exp (—p ¥)]

Theorem 1: For the system described by (1) and (2)
and any pair k, /,

(o300) 2 0. )
Also it seems intuitively plausible that increasing
the ferromagnetic interaction between any pair of

spins tends to enhance the tendency of other pairs to
line up parallel, a result embodied in Theorem 2.

Theorem 2: For the system described by (1) and (2),
and where k, [, m, n denote any four spins (not
necessarily all different), the following is true:

ﬂ~1 a<6kal>/ajmn = <O'k0'10'm0'”> - (akal><am6n> 2 0.
(6)

* Research supported in part by the National Science Foundation.

Further, the result (6) still holds when J,; or J,,,, (of
both) is negative (we suppose all other J;; are non-
negative).

Section II contains the straightforward proof of
Theorem 1 together with definitions and notation
useful in discussing Theorem 2. The latter is proved
in Sec. III with assistance from two lemmas in
Appendix A. An immediate consequence of Theorem
2, with proof in Sec. III, is found in Theorem 3.

Theorem 3: For the system described in (1) and (2),
and where &, /, and n denote any three spins, the
following relation holds:

(0%0n) 2 030,){(0,0,) 0]

and it is unnecessary to assume that J,;, and J,, are
nonnegative.

Some applications of Theorems 2 and 3 to the
problem of long-range order in various types of Ising
ferromagnets are found in Sec. IV. We hope to
present others in a future publication. The principal
utility of these theorems seems to lie in applications
where the results, just as the theorems themselves, are
intuitively very reasonable, but formally difficult to
prove. We feel the results merit publication because
at the present time the statistical theory of phase
transitions, in which the Ising model has played a
major role, is seriously restricted by a lack of exact
solutions for even relatively simple models. Various
approximation methods are of much value, at least in
regions removed from the critical point, but there is
increasing evidence that they are not adequate to
answer many questions of theoretical interest. In the
absence of exact solutions (and even if they were
available), precise mathematical results may be useful
for gaining insight into the behavior of various
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CORRELATIONS IN ISING FERROMAGNETS. I

Fig. 1. Complete diagram for a system
of 4 spins.

m n

models.! We hope our results may make some
contribution toward this end.

II. DEFINITIONS, NOTATION, AND THE
PROOF OF THEOREM 1

For conceptual purposes it is convenient to represent
Ising spins as small circles in a diagram connected with
lines or bonds, the bond between spins k and /
representing the term —Jy,(o,0;,— 1) in (1). An
example with 4 spins is shown in Fig. 1. With each
bond we associate a factor (Boltzmann factor)

X, = exp (=28 J) ®
representing the contribution of the bond to the
partition function when o0, = —1. In fact, the

partition function is simply a sum of terms which are
polynomials in the {X;}, with any given X, occurring
to the zeroth or first power. For J; satisfying (2) we
have

0< X; <L )]

If J,; vanishes, i.e., X;; = 1, we erase the corre-
sponding bond in the diagram. Another important
operation is that of taking the limit J;;— oo or
X, — 0, which we call “combining™ spins k and /.
The effect of this operation on the partition function
is easily verified: k and / may now be treated as a
single spin, say k’. Further, the factors X, are simply
given as products

Xy, = X, X, (10)
Em km“im

(that is, J,,,, = J,, +J,,,). Note that if both X,
and X, satisfy (9), so does X,,, . That is, the ferro-
magnetic nature of all bonds is preserved when two
spins are combined. An example is shown in Fig. 2.

We use the same diagram to represent both the
Hamiltonian (1) and the associated partition function
(4). In connection with the latter it is convenient to
introduce restricted partition functions in which
instead of summing over all configurations, as in (4),
one sums only over those in which certain spins have
specified values. For example, Z(k+), represented
in Fig. 3(a), is a restricted partition function in which

1 For example, the very powerful results of T. D. Lee and C. N.
Yang [Phys. Rev. 87, 410 (1952)] on the zeros of the Ising model
partition function have provided information of great importance
about the behavior of such models in a magnetic field, even though
an exact solution to the statistical problem (in two and three
dimensions) is still lacking.
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FiG. 2. Illustration of the
effect of combining spins k
and /by letting X, go to zero.
The resuilt before combina-
tion is shown in (a) and the
result after combinationin (b).
The factor X, is equal to
Xip Xipe

(b}

FiG. 3. Diagrams illustrating various

@ > m - restricted partition functions.

(¢)

only configurations with ¢, = +1 are included i the
sum (4). Figure 3(b) represents the restricted partition
function Z(k+ /—) which, because (1) is invariant
under time reversal (unaltered if each o, is replaced by
—o,) isidentical with Z(k— /4-) illustrated in Fig. 3(c).
In these figures all other spins plus connecting bonds
are, for brevity, represented by a cross-hatched region
or “blob.”

We add two terms to complete our notational and
diagrammatic machinery. A diagram (Hamiltonian or
partition function) is complete if every spin is joined
to every other spin by a bond; that is, J;; # 0 for any
pair i  j. A diagram is connected if one can get from
any spin to any other spin by passing along bonds
from spin to spin.

We now prove Theorem 1. In terms of restricted
partition functions it suffices to show that

1Z(0,0,) = HZ(k+ I+) + Z(k— 1—) — Z(k+ [-)
—Zk—I+)I=¢Q
= [Z(k+ I+) — Z(k— I+)] 2 O, an

where we have used time reversal symmetry [e.g.,
Z(k+ 14) = Z(k— 1-)] to simplify the expression
for Q.

For a system containing only two spins i and j, Q is
simply 1 — X; and (11) is obviously true. Now let us
proceed by induction. Suppose (11) holds for any
system of N spins described by (1) and (2). Let us add
one spin, k, to this system, initially connecting it by a
single bond to a spin m as shown in Fig. 4(a). Q is a
linear function of the factor X, , so it suffices to
check (11) at X,,, = 1 and X;,, = 0. In the former
case k is disconnected from the diagram containing /,
so Z(k+ I+) = Z(k— I+) and Q vanishes. In the

n
o L 2
of Theorem 1. m m

Fi1G. 4. Diagram illustrating proof

(a) (b)
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latter case, X;,, = 0 combines spins k& and m which
reduces our problem to N spins, for which Q is non-
negative by the induction hypothesis.

Suppose next that k is connected by two bonds to
spins m and » as shown in Fig. 4(b). Q is linear in X, ,
and for X, =1 the (kn) bond disappears and we
have the problem considered in the preceding
paragraph. But setting X;, = O reduces the system to
one of N spins, and thus the nonnegativity of Q is
assured.

Clearly the same technique works as more and more
bonds are added joining k to the original system of N
spins. There is no difficulty if a bond is added directly
connecting k and /. Thus the positivity of Q for all
systems containing N + 1 spins is ensured, given its
positivity for all systems of N spins, and our proof
is complete.

III. PROOF OF THEOREMS 2 AND 3

Initially we assume that k, /, m, and n all denote
different spins; the case where two or more are
identical is considered later. We rewrite the require-
ment (6) in terms of restricted partition functions as
follows

Z3[(04,010,0,) — {0,,0)(G,,0,)]/8
=}a+b+c+d—e—f—g—h)
X(@+b+c+dtet+f+g+h
—@+b+e+f—c—d—g—h)
X@+b+g+h—c—d—e—f)
—F=@+b+d—(+NE+h>0,
(12)

where
a=Z(k+ 14+ m+ n+),
¢c=Zk+ — m+ n—),
e =Z(k+ I+ m+ n—),
g =Z(k+ [— m+ n+),

b =Z(k+ I+ m— n-—),
d=Zk+ I— m— n+),
f=Zk+ I+ m— n+),
h=Zk+I— m—n-—),

(13)
and we have made free use of time-reversal invariance
to replace, for example, Z(k— I+ m— n—) by g.

In order to gain insight into the algebraic structure
of F, we consider first a simple example: the system
illustrated in Fig. 1, a saturated diagram with four
spins. Direct calculation yields
F= Xlemn[lele(l - sz)(l - Xlzn

+ kaXln(l - Xlzm)(l - Xlzm)], (14)

a quantity obviously nonnegative for all X;; between
0 and 1.

Note that F is the sum of terms with the structure

GRIFFITHS

gG where g, the “linear term,”? is a simple product of
X’s and linear in any particular X;;. G, on the other
hand; is a polynomial in which any X, if it occurs at
all, appears as X2 Such polynomials we call quadratic
terms. A more precise definition of a linear term is the
following: Let W be a set of distinct X’s (note that X,
and X, are considered equivalent) containing at least
one member. The linear term g associated with W is
simply the product of all X’s appearing in W. No
additional numerical factors are permitted. For
example, X;,X,; is by our definition a linear term, and
2X,,X;; is not. The latter is of the form gG, with
G = 2 the “quadratic term.”

Any restricted or unrestricted partition function is
the sum of linear terms plus a constant (which may
be zero). Thus F, the sum of products of pairs of
restricted partition functions, may be written as a
sum of terms each of which is either constant or the
product of X’s, some of which occur linearly and some
quadratically. After classifying different terms ac-
cording to the set W, of linear factors, we may add
up all terms with the same W, and write the sum as
£,G,, where g, is the (unique) linear term associated
with W,, and G, is a quadratic term. (Clearly it is
not possible for a particular X to appear both in g,
and G,.) Some quadratic terms occur without linear
factors and we denote their sum by G,. Thus F has the
form

(15)

where g, = g, for p # ¢. In general the G’s will not
have the simple form found in (14).

Provided the bonds k/ and mn are present, F is
always the product of X;,X,,, times a quantity not
containing these factors, just as in the example (14).
That this is true in general follows from (12) and the
observation [see the definition (13)] that ¢, d, e, and f
each contain X,,, to the first power while a, b, g, and
h do not contain it at all. Similarly X;; occurs to the
first power in ¢, d, g, and A, and is absent from
a, b, e, and f. The fact that X, and X,,, are simply
multiplicative factors in F is the reason we do not
need to require in Theorem 2 that Ji; and J,,,, be non-
negative.

Consider next the example shown in Fig. 5 con-
sisting of two disconnected diagrams A and B which,

F=gG, +zg1:G1n
p=1

F1G. 5. Special case investigated in connection
with Theorem 2.

3 o\\\\\\\. -
> .\\\\\\. ~

2 They could, more properly, be called multilinear.
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apart from the fact that one contains the spins k and
m and the other the spins / and n, are wholly arbitrary.
Let Z, and Zg denote the [restricted] partition func-
tions for these diagrams. Each term in (13) may be
expressed as a suitable product; for example,

f=Zy(k+ m=)Z(i+ n+). (16)

Inserting these in (12) and making free use of the time
reversal symmetry [Z,(k+ m+) = Z,(k— m—), etc.]
we have

F = [Zy(k+ m+)* — Zy(k+ m—)]

X [Zg(+ n+)* — Zg(l+ n—)"), (17)

which is nonnegative by Theorem 1 [see (11)]. We
later need the following resuit:

Lemma 1: If systems A and B in Fig. 5 are both
connected systems and the corresponding F given by
(17) is decomposed in the form (15), then G, is non-
negative.

Let F* and F® denote the first and second factors
on the right-hand side of (17). In analogy with (15)
let us decompose F* as

F* = G4 + 3 gbG

=1

(18)

and F® in similar fashion. Since none of the X’s
appearing in F* appear in F® and vice versa, G, is
simply the product GAG2. We need only prove that
G* is positive—the same proof suffices for GP—in
order to prove Lemma 1.

We may write (see Appendix A)

Zyk+ m4) =315 Zgkt+ m=) =31, (19)

where each r, is either 1 or a linear term and the same
is true of the ¢’s. By Lemma Al of Appendix A, for
p # p’, r, does not contain the same factors as 7,,, so
that r,r,, will always contain a linear term and can
make no contribution to G2. The same holds for the
r’s. We conclude that

Gr=23r— dtr= Zu(k4+ m+) — Zy(k+ m—),
(20)

where by Z, we mean the (restricted) partition
function for a system A obtained from A by multi-
plying by 2 every J;; which occurs in A. The result of
this process is to replace every X, by X2 Since A
contains only ferromagnetic bonds, Theorem 1
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applies and, by (11), the expression (20) must be
nonnegative. This completes the proof of Lemma 1.

We now prove Theorem 2 for a complete system
containing N spins, assuming that k, /, m, and n are
distinct spins. The decomposition (15) for F lacks the
term G,, since, as noted above, F contains the linear
factors X,;X,,,. Choose a particular p, say p =2,
and set all the factors in W, (the set of X’s in g,)
equal to 1 everywhere in the expression for F. The
result, F’, corresponds to a diagram in which every
bond corresponding to some X in W, has been erased.
This diagram, according to Lemma A2 of Appendix
A, consists of two disconnected pieces, A and B, each
of which is complete. Since X}, belongs to W, it is
evident that spins k and / cannot both belong to
system A or both to system B, for then one or the
other of these systems would be incomplete The
same holds for spins m and n. Several possibilities
remain; without loss of generality we may assume the
one shown in Fig. 5.

Of course, F’ may be decomposed in the form (15)
as

F'= G, + 2 £,G;. (21)
P

We now assert that G, and G, are identical. It is clear
that setting all the X’s in W, equal to one does not
alter G,, and thus G, is a quadratic term appearing
in F’ with no linear term as a factor. However, for
P # 2, g, (that is, the term obtained from g, by
setting all X’s in W, equal to one) contains at least
one of the X,;. This follows from part (ii} of Lemma
A2 in Appendix A. Thus, in fact, G, is the only
quadratic term appearing in F’ without a linear term
as a factor and must be identical with G,. But the
latter is nonnegative by Lemma 1 above.

A similar argument works for any G, in the
decomposition (15) of F for a complete system. But
if every G, is nonnegative, so is F, which completes
our proof. The same result holds for an incomplete
system, since we need only take the limit of setting
certain X’s equal to 1, and F is a continuous function
of the X’s.

We next consider the case where spins k, /, m, and n
are not all distinct. If k and / are the same, o0,
becomes 62 =1 and (6) simply vanishes. The case
where m and 7 are identical is similarly uninteresting.
The case where / = m can be considered by taking
the limit X,,, — O, that is, by combining the spins.
In this case (6) becomes

(030,) — (030,)(0,0,) 2 0

or, in other words, we have proved Theorem 3.

(22)
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IV. APPLICATION: LONG-RANGE ORDER
IN ISING FERROMAGNETS

The phase transition which occurs as the temper-
ature is lowered in zero magnetic field for an Ising
ferromagnet on a square lattice with nearest-neighbor
interactions results in (among other things) the
appearance of “long-range order”® which we define
(in general) as

L = lim inf (r,, — %) lim (N — c0){(0,0;)x, (23)

where the N-—> oo limit implies some ‘“sensible”
means of defining a correlation function as the number
of spins N tends to infinity.? In the limit inferior as
r,; — oo we allow the direction of the vector joining
the two spins to vary, though Schultz, Mattis, and
Lieb® have shown that the result is independent of
direction for the Ising ferromagnet mentioned above.

An obvious application of Theorem 2 is the follow-
ing: Given an Ising model A with purely ferro-
magnetic interactions, the long-range order L is
never less for a model B obtained from A by adding
ferromagnetic bonds. Further, the transition temper-
ature (Curie point) of B, which we define as the
highest temperature at which long-range order
appears, is not less than that of A.

Thus suppose, for example, that we have a two-
dimensional square Ising lattice with a ferromagnetic
nearest-neighbor interaction, and also ferromagnetic
interactions, of arbitrary magnitude, with second,
third, and fourth nearest neighbors. This model must
(to no one’s great surprise!) exhibit long-range order
at any temperature below the Curie temperature
obtained by Onsager.® Or, as another example,
consider the particular case of long-range interactions
(decreasing exponentially in one of the lattice
directions) for which Kac and Thompson® have
recently shown that a two-dimensional Ising model
exhibits long-range order at sufficiently low temper-
atures. Since the potential is obtained by adding
ferromagnetic terms to a case with ferromagnetic
interactions between nearest neighbors, the existence
of long-range order at low enough temperatures
follows at once from Theorem 2.

As another application, we note that the existence
of long-range order for the Ising ferromagnet in a

3T, D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys.
36, 856 (1964).

4 See R. B. Griffiths, J. Math. Phys. 8, 484 (1967) (following
paper) for an approach which works for an Ising ferromagnet, and
M. E. Fisher, J. Math. Phys. 6, 1643 (1965) for a more general
procedure.

5 L. Onsager, Phys. Rev. 65, 117 (1944).

8 M. Kac and C. J. Thompson, Proc. Natl. Acad. Sci. U.S. 55, 676
(1966). A recent note from these authors indicates that the proof as
published is not correct and will require modification.
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two-dimensional square lattice with nearest-neighbor
interactions at sufficiently low temperatures implies
the same for the corresponding three-dimensional
simple cubic lattice. Suppose that spin i is located at
(0,0, 0) and j at (n, m, p)—the three numbers giving
x, y, and z coordinates. Let spin k be located at
(n, g, 0). By Theorem 3,

(005) 2 (0,0)(0x0)- (24)
But at sufficiently low temperatures {c;0;) is bounded
from below? since both spins lie in a plane perpen-
dicular to the z axis, and similarly (o;0;), since both
spins lie in a plane perpendicular to the x axis. We
know that long-range order exists for such planar
lattices, and the fact that they form portions of three
dimensional lattices merely implies that the additional
ferromagnetic interactions present serve to enhance
(by Theorem 2) or, at the least, not decrease, the
correlation functions calculated for planar lattices
alone.

This iast result is, once again, not unexpected,
especially since the presence of spontaneous magnet-
ization in ‘the simple cubic lattice described can be
proved by using a simple argument given by Peierls,®a
rigorous version of which was developed by the
author® and independently by Dobrushin.® The
power of Theorem 2 is, we believe, illustrated in the
fact that one can proceed immediately from the two- to
the three-dimensional case with no need of invoking
any new combinatorial argument. And, of course,
the cubic lattice with ferromagnetic nearest-neighbor
and next-nearest-neighbor interactions, or interactions
decreasing as 1/r4, or a multitude of other cases, are
known immediately to display long-range order at
low enough temperatures.

APPENDIX. PARTITION FUNCTIONS
FOR COMPLETE SYSTEMS

The partition function Z associated with any
diagram [or Hamiltonian of the form (1)] is obtained
as follows. A configuration y denotes a division of
indices labeling different spins into two disjoint
complementary sets U(y) and D(y). For je U(y),
o; = +1(*“up”)and for k € D(y), 0;, = —1 (“down”).
Configurations y and y’ are distinct if and only if
D(y) # D(y") [or, the equivalent, U(y) # U(y")}. We
now define

z=Y72, (A1)
_ Y

7 In accordance with our definition (23) we must assume that
spins i and k are sufficiently far apart, and similarly k& and j. This
may be accomplished by a proper choice of g.

8 R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).

9 R. B. Griffiths, Phys. Rev. 136, A437 (1964).

10 R. L. Dobrushin, Teoriya Veroyatnostei Primeneniya 10, 209

(1965).
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where

z,=11 e];[mX” (A2)

eD(y) §

and, in an unsaturated diagram, X, is set equal to 1
for absent bonds. Each Z, is either 1 or a linear term
as defined in Sec. III.

Lemma Al: A restricted partition function Z’ (that
is, with the value of one or more of the o’s specified)
for a connected diagram has the form

Zr =Er gy
14

with g, (either 1 or a linear term) # g, for y # 7.
The prime denotes a summation over all configurations
satisfying the restriction.

(A3)

The proof is almost obvious. We know that at least
one ¢ has a specified value, say o,= +1. In a
configuration y we can determine the value (+1) of
any spin ¢, connected to o, by a bond by observing
whether X, is present or absent in g, . The values of
still other spins connected by bonds to these o; may
be determined by repeating this process, and even-
tually the configuration y is uniquely determined
from a knowledge of g, , since the diagram is connected.
[We remark that the lemma holds for the unrestricted
partition function for a connected diagram if a
factor of 2 is placed in front of the summation in
(A3).]

Lemma A2: Let Z® and Z® be two restricted or
unrestricted partition functions (they may be identical,
or there may be different restrictions in the two cases)
corresponding to the same complete diagram. Suppose
the product is decomposed in the form (15):

ZWz® = G, + zxg"Gp . (A4
Pp=

The sets W, corresponding to the linear terms g, (see
Sec. Il)are, of course, distinct: W, ¢ W, for p # p'.
(i) If all the X’s in a particular W are set equal to 1
and the corresponbing bonds in the diagram erased,
the resulting diagram consists of two disconnected
pieces, each of which is complete.
(ii) For p # p’, W, is not a subset of W, .

To prove part (i) we consider a particular term
ZZ,, [see the definition (A2)] in the product AS/ACH
where y and §’ are configurations permitted by the
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F1G. 6. Schematic diagram illus-

trating the division of all spin

indices (represented by the com- | yng’ °T° unU’
plete rectangle) into sets according L P

to two configurations y and 9’. The ars J
small circles connected by straight | DD | 5 Dn0U
lines indicate bonds whose factors

enter linearly in the product Z,Zy: .

restrictions (if any) for Z, and Z,, respectively. Now
if D(y) is identical with either D(y’) or U(y’), then
Z,=Z, and the product contains no linear term.
When D(y) is not identical with D(y") or with U(y’),
we have a situation illustrated schematically in Fig. 6,
where the horizontal line indicates the division of
indices into U(y) and D(y) [U and D for short] and
the vertical into U(y’) and D(y’) {U’ and D’ for
short]. We now ask, which X’s occur linearly in the
product Z,Z.? That is, which X’s occur in one
factor but not in the other ? There are four possibilities:
X,; occurs linearly if (a) ieD N D', jeUN D';
®ieUND,jeUNU';(©ieDNU,jeUNU’;
(d)ie D N D', je D N U'. These bonds, represented
schematically in Fig. 6, constitute the set W for the
term Z.Z,,.

If we erase all bonds corresponding to X’s in W,
it is evident from Fig. 6 that the set of spins splits up
into two disconnected sets,

A=DnNnDYuUnU)
and
B={DnNnU)wUnD)

That is, there are no bonds connecting the systems A
and B. On the other hand, none of the bonds con-
necting two spins within A has been erased, nor any
of the bonds connecting two spins within B. Therefore
both A and B are complete. It is easily verified that if
D is not identical to D’ or to U’, neither A nor Bis a
null set. This completes the proof of part (i).

To prove part (i), assume that W, is a proper
subset of W, (they cannot be identical for p # p’).
In the initially complete diagram, erase all bonds
corresponding to X’s in W,. The result, as we have
just shown, is two disconnected systems A and B,
each of which is complete. But if instead we were to
erase all bonds corresponding to X’s in the larger set
W, , we would erase not only all the bonds connecting
A and B, but additional bonds as well. That is, we
would erase some of the bonds within A or within B.
This would leave one or both systems incomplete in
contradiction with part (i) of the lemma.
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Results of a previous paper showing that (6;0) and [(0:6:0,,64) — (0:0:)(6,,0,.)] are always positive
for a system of Ising spins 6; = +1 coupled by a purely ferromagnetic interaction ({ ) denotes a thermal
average) are extended to the cases where (i) certain spins are constrained to have the value +1 or (ii)
the system is placed in an external (“parallel’’) magnetic field. H. The theorems thus obtained provide
a simple proof of the existence of ““bulk™ values for (0;0:) and for (o); the latter is identical with the
usual bulk magnetization per spin. The correlation functions (o,0,) are monotone nondecreasing in |H |
for fixed temperature 7. Both (oy0,) and (o}) (and thus the bulk magnetization) are monotone non-

increasing in T for fixed H > 0.

I. INTRODUCTION

N a previous paper! (hereafter referred to as CIF I)
we showed that for a system of N Ising spins
o, = 41 with Hamiltonian

= "ig.Ju(Gﬂi = 1), »
where for i # j, ’
0 S Jii = Jh’ < oo, (2)
the following statements are valid:
(A) For any & and /,
(ox00) 2 0. €)

(B) For any spins k, /, m, and n (not necessarily
distinct)

ﬂ—la<akal>/a‘,mn = <Uk0'10'm0'n> - <Gkal><0mgn> 2 0
@
and J;; or J,,,,, or both may be negative.
(C) For any spins k, /, and n

(0%0,) 2 (0x0,)(0,0,) 3

and J, or J,,, or both may be negative.
The angular brackets denote a thermal average:

(0) = Tr [0e7%)/Z, (6)

Z = Tr [e#%] 0]

is the partition function and Tr denotes the sum over
all configurations (a configuration is a specific
assignment of the value +1 or —1 to each ¢;). We
always assume § = (kT)~! is nonnegative.

We extend these results as follows:

where

Theorem 42: Statements A, B, and C are valid for a
system described by (1) and (2) but having the re-

* Research supported in part by the National Science Foundation.
! R. B. Griffiths, J. Math. Phys. 8, 478 (1967).
* Theorems are numbered consecutively with those in Ref. 1.

striction that certain spins belonging to a set U are all
positive:

for ielU, o,=+41. 8)

[Alternatively, one may require o, = —1 for all { in
U.] By the restriction we mean that only configurations
satisfying (8) appear in the traces (6) and (7).

Theorem 5: Statements A, B, and C are valid for a
system with Hamiltonian [J is defined in (1) and (2)]:

N
J, =¥ — Y Ho, ®

=1
and H; > O for every i [the theorem also holds if
H; < Ofor every i{] where J, replaces J in calculating
thermal averages, Eqs. (6) and (7). If H, = H for
every i, J, is the Hamiltonian of an Ising model in an
““external parallel magnetic field.”

Corollary 1: Under the conditions of either Theorem
4 or Theorem 5, for any k,

(o) 20 (102)

and for any pair &, m,

(0%0m) 2 (0%)(Tpm)- (10b)

[In the case where the o, in U are —1, or where
H; < 0 for all i, the inequality (10a) is reversed.]

A brief summary of notation from CIF I is found in
Sec. II followed by proofs of Theorems 4 and 5 in
Secs. III and IV, respectively. In Sec. V we apply
these results to prove the existence of binary corre-
lation functions for a fairly general Ising model in
the “bulk limit,” that is, for a suitable infinite system.
This existence proof is simple, rigorous, and quite
different in its approach from other arguments for
the existence of these functions of which we are
aware. The same argument provides a bulk limit for
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(op). Its equivalence with the ordinary “thermo-
dynamic” magnetization per spin in a uniform, non-
zero external magnetic field is shown in Sec. VI. In
Sec. VII the temperature and field dependence of
magnetization and binary correlation functions are
discussed with the aid of Theorem 5.

II. NOTATION

We summarize the diagrammatic and notational
conventions from CIF I. A diagram representing the
Hamiltonian (1) or its associated partition function
consists of small circles representing spins joined by
straight lines or “bonds,” one for every nonzero J,; in
(1). The partition function is a polynomial in the
factors

Xij = ¢ 2BJis

(1)
associated with the different bonds. In a restricted
partition function the sum (7) is limited to configu-
rations in which certain spins have specified values;
thus Z(p+ k—) includes only configurations with
¢, = +1 and g, = —1. This may be indicated on the
corresponding diagram by placing 4+ or — beside the
spins in question.

Provided no J;; is 0, i.e., all spins are connected by
bonds, the diagram is “complete.” It is connected if
one can move continuously from one spin to any
other by means of bonds connecting spins. By letting
Ji — © or X3, — 0 we “combine” the spins k and /.
That is, if a single spin k' in a new diagram replaces
the two spins k and / in the previous diagram, and
Xym = Xym Xy for all m, the new partition function
is precisely that obtained by setting X, = 0 every-
where in the previous partition function.

Additional notation in connection with the Hamil-
tonian (9) is introduced in Sec. IV.

II. PROOF OF THEOREM 4

First consider the case where U contains the single
spin h, and rewrite (3) as

Z(h+)(0,0) = [Z(h+ k+ I14) + Z(h+ k— 1)
—Zh+ k+1-) = Zh+ k= 1+)) = Q0 > 0. (12)

If h is the same as k, Q becomes Z(h+ I+) —
Z(h+ !—) which is nonnegative by Theorem 1 of
CIF 1.

When A, k, and / are distinct we argue by induciion.
Assume (12) is true for any system containing M
spins (it is easily verified for M = 3) and consider a
case of M + 1 spins with 4 connected by a single
bond to another spin m [Fig. 1(a)]. As Q is linear in
Xym, it suffices to check (12) at X, =0 and 1
[compare (2) and (11)]. But X, =0 *“combines”

485
K n k
FiG. 1. Diagram illus- h + h
trating the proof of m
statement A. 2 m<"2

(a) (b}

spins 4 and m, and (12) follows from the induction
hypothesis, as we have but M spins. When X,,, = 1,
h is disconnected from the remaining M spins and
does not affect (o,0,), which is nonnegative by
Theorem 1 of CIF 1.

Next suppose [Fig. 1(b)] that & is connected to two
spins m and n. Q is linear in X,,. But X,, =1
reduces to the case just considered (the bond An
vanishes), and X, = 0 to a system of M spins. In
analogous fashion we may add bonds from 4 to every
other spin. No difficulty arises in adding the bond Ak
(or hl), since setting X,, = O identifies 4 and k, a case
considered earlier.

The inequality (4) presents a more difficult problem.
We suppose £, k, I, m, and n are five distinct spins and
rewrite (4) as

1Z(h+) (020100 ,) — (0201)(0,0 )]
=F=(x+a)B+8)— @+ +5) (13)

where

« = Z(h+ k+ I+ m+ n+)
+ Z(h+ k+ I+ m— n—),
B = Z(h+ k+ I— m+ n—)
+ Z(h+ k+ I— m— n+),
y = Z(h+ k+ I+ m+ n—)
+ Z(h+ k+ I+ m— n+),
é = Z(h+ k+ I— m+ n+)
+ Z(h+ k+ I— m— n-),
(14)

and «" is obtained from « by changing k+ to k—,
I+ to I—, m+ to m~—, n+4 to n—, and vice versa, f’
is similarly obtained from f, and so forth.

As shown in Sec. IIT of CIF I, F may be decomposed
in the form

F =G, +?21gme (15)

where the linear terms g, are products of distinct X’s
in a set W,, and the quadratic terms G, are poly-
nomials in which wherever any X; occurs (if it occurs
at all) it appears as X2

Our strategy closely follows that of CIF I, Sec. III.
First consider the relatively simple case shown in
Fig. 2, where the diagram consists of two discon-
nected pieces A and B, each of which is assumed to
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0

0
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Q
n

FiG. 2. Special case considered in the proof
of statement B.

be complete, but is otherwise arbitrary. We show that
G, in (15) is nonnegative for this example.
The partition functions (14) factor; for example:

Z(h+ k+ 1— m— n+) = Z,(h+ k+ m—)Zg(l— n+)

(16)

with subscripts A and B referring to the separate

pieces in Fig. 2. This factorization plus time-reversal

invariance [for instance, Zgz(I— n+) = Zg(l+ n—)]
allows us to write

F = FAF®,

FA = {[Zo(h+ k+ m+) + Zu(h+ k— m—)]®
— [Za(h+ k+ m=) + Zy(h+ k— m+)P}, (18)

F? = [Zg(l+ n+H)F — [Zg(+ )P (19)

The term G, in (15) is the product GAGE, where
G2 is the quadratic term without a linear term as a
factor in the decomposition of F* in the form (15)
and G? the corresponding term for G®. Lemma 1 of
CIF I shows that G§ > 0; we show the same is true
of G*. We may write

Zu(ht k+ m+) + Zy(h+ k—m=) = 3 r,, (20)

an

where each r,, is either 1 or a linear term, and for
p#p, r,#r,, that is, the two contain different
factors. Such a decomposition is possible for either
one of the two terms on the left side of (20) accord-
ing to Lemma Al of CIF I, Appendix. But since
the factor X,, occurs in every linear term of
Z,(h+ k— m—) and in none of the linear terms of
Z,(h+ k+ m+), the two classes of linear terms are
disjoint. By a similar argument we may write

Zy(h+ k+ m—=) + Zy(h+ k— m+) = 31, (21)

with the #’s linear terms and ¢, # 7, for ¢ # ¢'.
Following the argument used in Lemma 1, CIF I
Sec. III, we see that

Gy = Zu(h+ k+ m+) + Zy(h+ k— m—)
— Zy(h+ k+ m=) — Zy(h+ k— m+), (22)

where Z, is the restricted partition function for a

system A obtained from A by doubling every J;
which appears in A. This does not affect the re-

ROBERT B. GRIFFITHS

striction (2), so we conclude from comparison with
(12) that GY is nonnegative. Thus G, also must be
nonnegative.

To establish (4) for a general case, we consider a
complete diagram containing N spins. From a com-
parison of (13) and (14) it is evident that F is equal
to X,,X,,, times something which does not contain
these factors at all; i.e., the term G, is absent in the
decomposition (15). We next set equal to one every-
where in F every X appearing in a particular g, say
g» (this leaves G, unaltered). The resulting F’, as
shown in Sec. III of CIF I, corresponds to a diagram
of the form shown in Fig. 2, except that, for example,
m and n could be interchanged, and / could appear in
either system A or system B. In any case, the quadratic
term in F’ which appears without any linear term as
a factor is simply G,, and by the argument given above
this is nonnegative.

We have thus established (4) for the case where U
contains the single spin 4, and 4, k, /, m, and n are
all denote distinct spins. The cases k =/ or m =n
are uninteresting [(4) vanishes]. The case / = m may
be obtained by letting X, — 0, and the result is the
inequality (5). In the case A = k, one finds that the
terms o', §’, ', and ¢’ in (13) all vanish, leaving an
expression identical with Eq. (12) of CIF I, which was
there shown to be nonnegative.

The case where U contains more than one spin may
be reduced to the case where U contains a single spin
by a very simple argument. Suppose there are two
spins & and j in U. Since o, = 0; = +1 and X,;
appears in a partition function only for configurations
in which 0,0, = —1, it is clear that none of the
restricted partition functions with which we deal in
establishing (3), (4), and (5) contains X; as a factor.
They are, therefore, unaltered if we set X;; = 0, that
is, if we combine spins 4 and j to form a new spin #’.
This brings us back to the case where U contains only
one spin. Clearly, the same argument works given
any number of spins in the set U, and this completes
our proof. Corollary 1 is proved by letting / and n
belong to the set U. Then (3) becomes (10a) and (4)
becomes (10b).

IV. PROOF OF THEOREM 5

Theorem 5 is readily seen as a corollary of Theorem
4 if we proceed as follows. Given a system of spins
0y, Gy, ***, Oy, we introduce in addition a “ghost
spin” ¢, which is restricted to have the value +1.

Forj=1,2,--+, N we set
Joy = H; > 0. (23)

The situation is illustrated in Fig. 3 for the case
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Fic. 3. Illustration of applying magnetic
fields with the aid of a “‘ghost spin” (o,)
restricted to the value +1.

N = 4. Counting all N + 1 spins as one system, we
have a Hamiltonian of the form (1):

N N N
e =—2 2 Jifo.0,— 1)~ T H(o0o— 1), (29
i=1j=i+1 i=1

which, because ¢, = +1, differs from (9) only by an
additive constant.® Thus statements A, B, and C
applied to the original N spins are merely applications
of Theorem 4. [In the event H,; < 0 for all i, we insert
a minus sign in front of H; in (23), require that o,
have the value —1 rather than 41, and proceed as
before.] Corollary 1 is proved, as in Sec. IV, by
identifying ¢, and o, with g,.

V. EXISTENCE OF BINARY CORRELATION
FUNCTIONS

Theorem 5 may be used to prove the existence of a
suitable “bulk limit” for binary correlation functions
as the size of an Ising ferromagnet becomes infinite.
The technique is best illustrated by a simple example:
Ising spins on a two-dimensional square lattice with
Hamiltonian

= —2Jy00;,— HY o, (25)
i<j i

where the J;; satisfy (2) and possess the translational

symmetry of the lattice; that is, they depend only on

the vector r;; joining spins 7 and j.

A finite system consists of a set {2 of spins which we
may (but need not) assume are those found inside a
simple closed curve, as illustrated in Fig. 4. The
Hamiltonian J¢ of this system is obtained by con-
fining the sums in (25) to cases where 7 and j both lie
in Q. The diameter D({)) is the maximum distance
between any pair of spins in Q.

Consider a particular pair of spins k and / and a
sequence of finite systems Qy, N=1, 2, - -+, with
the properties

(i) Each Qy contains both the spins k and /.

(ii) If d,,(Q) is the minimum distance from either
k or I to a spin outside Q, then d,(2y) — o as
N — oo,

(iii) Qy < Qpuyy; that is, all spins in Qy are also
in Qu., -

3 Which, needless to say, has no effect upon the correlation
functions.
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Let (o0,)5 be the correlation function defined in
the system . Theorem 5 and condition (jii) imply
that

(0% N41 2 (OxT)N s (26)

since Qy,, is obtained from Qy by adding ferro-
magnetic bonds to the latter (including bonds to the
“ghost spin” of Sec. IV when H # 0). Since the
(0x0,)y form a monotone increasing sequence in N
bounded from above by 1, they tend to a limit as
N— .

The same limit is obtained using any other sequence
of systems wy satisfying conditions (i) and (ii). For
if N is large enough, we can always choose K and L,
tending to infinity with N, such that

DQy) < d(wy) — 2a,
dQ,) > D(wy) + 2a, @7

where a is the lattice constant and Qg and Q  belong
to our standard sequence. We thus have

Qp € oy < Qy (28)
and (o,0,) for wy, bracketed between {(o,0,)x and
(0%0,)r, tends as N— oo to the limit previously
obtained.

For spins k' and I’ such that r,., =ry;, the bulk
limit {o}.0,) is the same as {g,0,). This is obvious
because we can translate the systems Q, obtaining
systems  in which k' and /' have the same relative
positions as k and / in Q.

The above existence proof is quite simple and
provides (at least for the systems considered) an
approach quite different from others of which we are
aware.* All that we require is a sequence of systems
such that both k and / are eventually infinitely far
from any walls. The sequence need not yield limiting
values for bulk thermodynamic functions, and in
particular there is no stability requirement for the
energy (that is, it need not be bounded from below by
—CN, where C is a constant and N the number of
spins).> On the other hand we are unable to show
that the same bulk limit would be obtained in, for
example, a system with periodic boundary conditions.

The above argument applied to {(oy0;) = {0y,

4 D. Ruelle, Ann. Phys. (N.Y.) 25, 109 (1963); M. E. Fisher, J.
Math. Phys. 6, 1643 (1965); O. Penrose, ibid. 4, 1312 (1963).

5 We would guess that the bulk limit {(¢;0,) is 1 at any tempera-
ture if the stability condition is violated.
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© 01000 ° Fig. 5. The solid line represents an
10 © C O O infinite wall; spins to the right are “inside”

O OjO O ® O O thesystem considered and those to the left
ole o 0 O outside, Spins k and / are marked by cross-

es; the correlation function {(0;0;) will in

ojo o000 general be different from the bulk value.

O CjC O CO

where ¢, is the “ghost spin” of Sec. IV, proves the
existence of a “bulk limit” for {(v}). In Sec. VI below
we show that this limit for H # 0 is identical with the
average magnetization per spin obtained from the
ordinary calculation of bulk thermodynamic quan-
tities, in situations where the latter procedure is
applicable. In particular, the limit as H — 0+ of the
bulk value of (g,) defines a spontaneous magnet-
ization equivalent to definition A in Ref. 6.

By the above techniques it is also possible to define
binary correlation functions {(oyo;) (and likewise
(o,)) near a “wall” while the system is allowed to
become infinite (illustrated in Fig. 5). We leave details
of the argument to the reader, as also the extension,
if not already obvious, of the above results to three
(and, if preferred, higher)-dimensional systems.

VL. “THERMODYNAMIC” MAGNETIZATION
AND (oy)

For a finite system Qy in the shape of a square?
containing ¥y = (2N)* spins, we define the total
magnetization operator

Mo=T3 g, (29)

€Qy

Provided suitable restrictions are placed on the J,;
appearing in (25),® one can show that for H > 0 the
infinite volume or ‘“‘thermodynamic” magnetization
per spin

m(H) = lim V33 M)y (30)

N-x

exists and is an analytic function for 0 < H < o0.?
By the arguments of Sec. V, any {o,)x cannot exceed
its bulk value, which we call o for short, and thus

€2))

We show that (31) is really an equality. Let oy (we
assume H is fixed and positive) be the value of (o,)y
for the spin % lying nearest the center of the square
Q. From Theorem 5 it follows that for M > N, oy_,

m(H) < o.

8 R. B. Griffiths, Phys. Rev. 152, 240 (1966).

7 Other shapes are possible and we consider a square only for
simplicity.

¢ R. B. Griffiths, J. Math. Phys. 5, 1215 (1964).

? C. N. Yang and T. D. Lee, Phys. Rev. 87, 404, 410 (1952),
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is a lower bound for (g,) for any spin i in Q,, lying
at least a distance Na (a is the lattice constant) from
the nearest boundary. For spins closer to the bound-
ary, (o) is certainly nonnegative.

Thus we have a2 bound

Vi) > VIHEM — 2NYoy .. (32)

The limit M — oo followed by the limit N — co yields
(31) with inequality sign reversed, and therefore

m(H) = o. (33)

Needless to say, similar arguments work for three (or
one)-dimensional Jattices.

VIL FIELD AND TEMPERATURE DEPENDENCE
OF CORRELATION FUNCTIONS AND
MAGNETIZATION

Consider the Hamiltonian (25) [satisfying con-
dition (2)]. If H is greater than zero, an increase of H
corresponds to increasing the ferromagnetic coupling
between the “‘ghost spin” and the other spins, thus
producing an increase, or at least not a decrease, in
the binary correlation functions in accordance with
(4). The same holds, of course, for their bulk limits.
Likewise (o,) and its bulk limit ¢ increase with
increasing field. The last result is not surprising,
inasmuch as the increase of thermodynamic magnet-
ization with increasing field reflects a general convexity
property of the free energy for a spin system in which
the Hamiltonian depends linearly on the magnetic
field® (it is also true, for example, in an Ising anti-
ferromagnet).

Next, suppose that H is fixed at some value > 0,
The X;; depend on the temperature through (11).
Increasing temperature or decreasing 8 has the effect
of simultaneously decreasing all the J;; which are
greater than zero. Thus by Theorem 5, an increase of
temperature at constant field leads to a decrease, or
at least not an increase, of the binary correlation
functions and the {g;) (for H > 0); the same holds
true, of course, for their bulk limits. That the magnet-
ization decreases with temperature in a fixed field is
a nontrivial, though not unexpected, result.

The limit (at constant temperature) as H — 0+ of
the bulk magnetization is the spontaneous magnet-
ization if one adopts definition A of Ref. 6. The above
remarks imply that the spontaneous magnetization
is a nonincreasing function of the temperature.
Theorem 5 implies that the addition of ferromagnetic
bonds to an Ising system with purely ferromagnetic
interaction always increases (does not decrease) the
spontaneous magnetization and therefore the Curie
temperature (the lowest temperature at which the



CORRELATIONS IN ISING FERROMAGNETS. II

spontaneous magnetization vanishes). Thus, for
example, since it is known that spontaneous magnet-
ization, in the above sense, occurs at sufficiently low
temperatures for a variety of two-dimensional Ising
ferromagnets, it follows immediately that the same is
true of three-dimensional ferromagnets obtained by
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joining two-dimensional layers with ferromagnetic
bonds.
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A criterion established by Dynkin is used to specify the embedding of a connected simple Lie group
S’ into a connected simple Lie group G, and to derive a standard procedure for evaluating branching
rules. It is shown that the weight systems of the irreducible parts contained in the representation of §”
induced by a given finite dimensional representation ¢ of § are obtained by projection of the weight
system of @. The projection mapping is determined directly from the specification of the embedding.
The general procedure is supplemented with two constraint equations on the dimensions and indices of

the irreducible representations.

I. INTRODUCTION

HE study of embeddings and branching rules for

two simple Lie groups and their representations is
motivated in elementary particle physics by the need
one often has to relate a symmetry scheme to another
possible symmetry scheme.»? This study is also of
interest in nuclear spectroscopy where nuclear states
may be classified by using group chains.® In a recent
paper, Whippman? summarized branching rules for
various choices of two classical simple Lie groups.
His choices are, however, particular from several
points of view; for instance, only classical groups of
certain ranks and types and which can be embedded
one into the other in at most two distinct ways are
considered.

Our purpose in this paper is to develop a standard
procedure for obtaining branching rules for any
choice of two connected simple Lie groups with no
restriction concerning their ranks and types and the
way they are embedded one into the other. Several
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2 M. L. Whippman, J. Math. Phys. 6, 1534 (1965), and references
therein.

8 M. Hamermesh, Group Theory (Addison-Wesley Publishing
Company Inc., London 1964), Chap. 11.

of our arguments, and especially a criterion of equiv-
alence of embeddings, follow the work of Dynkin.

The main tools we use to study the embeddings and
the branching rules for two simple connected Lie
groups §' and §, are a mapping f (embedding) between
the two corresponding Lie algebras G’ and G, and a
related projection mapping f* acting between the root
spaces R and R’ of these Lie algebras. We start, in
Sec. II, by reviewing some useful properties of the
root space and the weight system of a Lie algebra.
The notion of the index of a representation is also
recalled. In Sec. III the embedding f of a Lie algebra
G’ into a Lie algebra G is studied. When G is of the
type® 4,,, B,, C,, G,, Fy, or Eg, fcan be specified by
that representation of G', embedded into the lowest
dimensional representation of G. When G is of the
type D,,, E,, or Es, fis specified by two representations
of G’ embedded respectively into the lowest dimen-
sional and into some other representation of G. In
Sec. IV it is shown how one can introduce from the
embedding f, the mapping f* which maps the root
space of G onto the root space of G'. The most
valuable property of f* is that it maps the system of
weights of any irreducible representation of G onto

4 E. B. Dynkin, Matematiceskii Sbornik New Series 30, 349
(1952); also Am. Math. Soc., Transl., Ser. 2 6, 111 (1957).

5 In Cartan’s notation, we distinguish nine types of simple Lie

groups; four classical 4,, B,, C,, D,, and five exceptional G,,
Fy, Eq, Eq, Es.
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spontaneous magnetization vanishes). Thus, for
example, since it is known that spontaneous magnet-
ization, in the above sense, occurs at sufficiently low
temperatures for a variety of two-dimensional Ising
ferromagnets, it follows immediately that the same is
true of three-dimensional ferromagnets obtained by
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FiG. 1. Numbering of the simple roots.

the system of weights of the induced representation
of G'. This property together with two constraint
equations on the indices and dimensions of the
irreducible representations, are used to present in
Sec. V the standard procedure for obtaining the
branching rules. An example is considered in detail.
Tables I and II, contained in Sec. IV, give the mapping
S* for all types of simple Lie algebras G, once the
embedding f is fixed.

II. MATHEMATICAL PRELIMINARIES®
AND NOTATIONS

Because not all the ideas important for the present
work are common in the physical literature; we first
recall some of the definitions. Let us fix a system of
simple roots {a;}, i=1,2,--+,n, of a simple Lie
algebra G of rank n. Suppose the roots o, a,, - -, o,
are numbered as in Fig. 1, and normalized by the
condition

(max > Fmax) = 2, 0y
where «,,, is one of the longest roots of G, and (,)
denotes the scalar product in the root space R of G.
The system of simple roots {«,} forms a natural basis
of R. However, for our purposes it is more convenient
to introduce a conjugate basis {»,}, i = 1,2, -+, n, of
R by the condition

(25 "1) = (x;, «;) 6:’1 . 2
For an arbitrary vector
M= Z my;
of R, we then have =
mi = [2/(“:" ai)](M’ OCi)- (3)

The introduction of the basis {»,} is justified by

8 For more details, see, for instance, E. B. Dynkin, Am. Math,
Soc., Transl., Ser. 2 6, 245 (1957), Supplement; or N. Jacobson,
Lie Algebras (Interscience Publishers, Inc., New York, 1962).
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Cartan’s theorem, which states that a vector M of R
is the highest weight of an irreducible representation
@ of G if and only if the coordinates (3) are nonnega-
tive integers. In order to specify a particular repre-
sentation @ we adopt the notation ¢ = (m,, my, - - -,
m,), where the m; are coordinates (3) of the highest
weight M of g.

An arbitrary weight L of the weight system A(g) of
a representation ¢ of G can be written in the form

L=M~-3an,
i=1
where a' are nonnegative integers. We say that a
weight L belongs to the k layer of the system A(g), if

Sat =k
i=1
Orderings in the root space R may be defined as
usual.® Any ordering of R for which the fixed simple
roots remain positive is called a simple-root ordering.
If a weight M is the only weight in an m layer and
L is a weight from an / layer of a weight system
A(p) such that m < (m > 1), it follows from the
above definitions and Dynkin’s theorem® 0.15 that the
relations M > L (M < L) hold in any simple-root
ordering. The usefulness of this last remark is shown
in Sec. IV.
For a given linear representation ¢ of G, the scalar
product of the elements x and y of G being fixed by
Eq. (1), we have*?

Tr [p(x) - (] = L) - (%, ). 1C)

The multiplicative factor /g), called the index of the
representation ¢, does not depend on x and y and is
given by

Ke) = ld(@)/d( @] - (A, A + g). &)

d(p) and d(G) here denote the dimensions of the
representation ¢ and of the algebra G, respectively,
g is the sum of all the positive roots of G, and A is the
highest weight of ¢. From the definition, the following
property of the index can be established:

Upr + 924+ - + @)
= lp) + Ups) + - - + Up,). (6)

II. THE EMBEDDING

Let us fix two simple Lie algebras G’ and G corre-
sponding respectively to two simple connected Lie
groups §’ and S. An embedding f of G’ into G is an
isomorphic mapping of G’ into its image f(G") which
isa simple subalgebra of G. Clearly f may also be called

7 J. Patera, Nuovo Cimento (to be published).



SIMPLE LIE GROUPS

a representation of G’ in G. In general, there are
in G several subalgebras isomorphic with G’, and thus
there exist several possible embeddings of G’ into G.
We call two embeddings f, and f; equivalent, if for
any finite dimensional linear representation ¢ of G,
the representations ¢f; and ¢f; induced by ¢ in £,(G)
and fy(G'), respectively, are equivalent. Since by
definition two equivalent embeddings induce the
same branching rules, we characterize an embedding
only up to equivalence.

A convenient criterion of equivalence of embeddings
was established by Dynkin.*

Case I: Let w denote the linear representations:
1,0,---,0)for G=4,, B,, C,, and E,, (0, 1) for
G=G,, and (0,0,0,1) for G=F,. Then two
embeddings f; and f, of G’ into G are equivalent, if
and only if the representations wf; and wf, of G’ are
equivalent.

Case II: Let o = (1,0,0,---,0)and o = (0, - -,
0,1,0) for G = D, and Eg, w = (0,---,0, 1,0) and
@ =(1,0,---,0) for G = E,. Then two embeddings
/1 and f; of G' into G are equivalent, if and only if
ofy is equivalent to wf, and @f; is equivalent to @f; .2

We use this criterion to specify an embedding by
the highest weights of wfin Case I, and by the highest
weights of wf and @f in Case II. Another character-
istic of an embedding f, which we use in Sec. V, is
Dynkin’s index j,, defined in analogy with the index
of a representation [Eq. (4)] by

(&)L fO) =Jjr (%, 9); x, y € G @)

Here (x, y) and (f(x), f(»)) are scalar products in G’
and G, respectively, fixed by the normalization (1).
From Eqgs. (4) and (7) one obtains

Jr = Uef)y) @®
for an arbitrary representation ¢ of G, and in par-
ticular

Jr = lef)[l(w) = Kaf)[ ().
IV. THE MAPPING f*

Gantmacher® proved that for a given Cartan
subalgebra K’ of G/, it is always possible to choose a
Cartan subalgebra K of G such that

®

fK)<= K (10

Thus the restriction of the mapping f'to K’ determines
a dual mapping

fiR—>f(R) < R, (1)

8 One notes that for all G, w is the lowest dimensional representa-
tion and for G = D,,, @ is the spinor representation.
? F, R. Gantmacher, Mat. Sb. N.S. §, 101 (1939), Theorem II.
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where R’ and R are respectively the root spaces of
G’ and G. A mapping f* projecting canonically R onto
R’ may be defined by

D)=L, for LeR, 12
fHR) =0, for Ry=R—f(R). (13)

The construction of f* makes it to have theimportant
property of mapping the weight system A(g) of an
arbitrary representation ¢ of G onto the weight
system A(¢’) of the induced representation ¢’ = ¢f
of G'. For let the representation ¢ of G act in a vector
space ¥, and let v be a vector of V corresponding to
a weight A of A(g); i.e.,

@(K)v = Av. (14)

Then v remains a weight vector for the induced
representation ¢’ and from (10)-(14) one gets

#f (K = f*(A)p. (15)

It follows that any weight of the weight system A(gp")
must be of the form f*(A), A € A(w), and we can

write
A(¢") = f*(A(9)). (16)

Consider now the weight systems A(w) and A(wf)
of the representations w and wf defined in Sec. III.
(We limit ourselves for simplicity to algebras G
considered in Case I. In the Case II, one must take
into account also the representations & and @f, but
the arguments are identical.) The weights of an
irreducible weight system may be calculated by
subtracting from the highest weight a certain number
of times simple roots.® They can, at the same time, be
ordered using a simple root ordering and partitioned
in layers, as mentioned in Sec. II. Thus, we write

Aw)={,> Q22> Qunp (17)
AMof)={MyZ M, =+ Z My} (18)

where the weights of A(w) and A(wf) are ordered
respectively following convenient simple-root-order-
ings O and O’ of R and R’, and d(w) denotes the
common dimension of the representations w and wf.

Now, although one has globally A(wf) = f*(A(w)),
the relation

fXQ) = M, (19)
is verified only if one of the following two conditions
holds:

(A) The simple-root orderings in R’ and R are
consistent, that is, the relation f*(A;) > f*(A,) in
R’ implies the relation A; > A, in R.

(B) The weight Q, is contained in a simple-weight
layer of A(w); then ome has Q; < Q; (Q; > Q)) if
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TasLE 1. Classical Lie algebras. The basis vectors {»;} of R are
mapped by f* into linear combinations of at most n weights of
the representations of or @f of G7.

i o)
2 M,
=1

i
B, L2, ,m—1 Y M,
=1

A, Cy 1,2,200,n

n
n 1> M,
=1
£
D, 1,2,5,n=2 M,
=1
n—1 M,
n—3

n M+ M+ My g+ 2> My=—M,
=1

i > j(i <j) for any simple-root ordering of R, as
follows from the remark of Sec. II.

Similar remarks can be made about weight systems
A(p) and A(gf) corresponding to an arbitrary repre-
sentation ¢ of G. The reason why the representation

TaBLE I1. Exceptional Lie algebras. The basis vectors {»,} of R
are mapped by f* into linear combinations of at most n weights
of the representations wf or &f of G'.

i f*@)
G, 1 M+ M,
2 M,
F, 1 M;+ M,
2 M, + M, + M,
3 M, + M,
4 M,
E, 1 M,
2 M, + M,
3 M, + M; + M,
4 _Msv"Mn
5 —M,,
6 M+ M+ M+ M+ M, + M,
E, 1 M,
2 M, + M,
3 M1+M’+M3=M1+M3+M3+M4
4 M, + M, + M,
5 M, + M,
6 M,
7 M5+@=M1+M3+M3+M4+M5
—~M,— M,
Eg 1 M,
2 M+ M,
3 M, +M;+ M,
4 M, + M+ M+ M,
5 M, + M; + M; + M, + M,
=M + M, + M,
6 M+,
7 M,
8 M+ My=M,+ M, + M, + M, + M,
+ M, — M, - M,
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o (or w and ®) is particularized in Dynkin’s criterion
is that A(w) [A(w) and A(®)] contains n (n = rank G)
linearly independent weights which satisfy condition
(B). This can be verified readily by computing the
weight system A(w) [A(w) and A(@)] for each type
of G. Consequently one has n linearly independent
relations (19) connecting vectors of R and R'. In
principle, one could use also the condition (A)
for the specification of f*, but the choice of consistent
simple-root-orderings in R and R’ is much less
convenient to work with.

Tables I and II are intended to specify the mapping
f* on the basis vectors {»;} of R and {»;} of R’. The
quantities f*(»,), i = 1,2, - -, n, are given as linear
combination of at most n weights {M,} or {#;} of
A(wf) or A(@f). These weights are to be expressed in
terms of the basis vectors {»;} once the embedding
is fixed.

Y. BRANCHING RULES

It is relatively simple now to formulate a standard
procedure for obtaining branching rules. After a
particular embedding of G’ into G was specified, the
mapping f* is known explicitly and can be applied to
the weight system A(g) of any inducing representation
@ of G. The general procedure can be, in principle,
summarized in the following steps:

(1) Fix the embedding f, by expressing the weights
{M,} of wfin Table I or the weights {M,} of wf and
{M} of @&f in Table II, in {»,} notation.

(2) Obtain in {»,} notation the weight system

A(‘p) = {Al’ Az’ Ty Ad(q’)}

of the inducing representation ¢ of G.

(3) Apply the mapping f* to the weights of A(p)
and, using Table I or II, find in {»]} notation the
weight system

A(?”) = {Ll’ Ly,:--, Ld(:p)}

of the induced representation ¢’ of G'.

(4) Separate in A(g’) all weight systems A(gp),
A(prp), - -+ which correspond to irreducible com-
ponents.

These successive steps, in particular the last one,
imply elaborate calculations, part of which is often
superfluous. For instance, only the highest weights of
irreducible components of ¢’ are subjects of our
interest, but not the whole system A(g’). The general
procedure is shortened by two equations of con-
straint.” The first one,

dlp) =d(¢)=d(pp) + dlgw) + -, (22)
connects the dimensions of the unknown irreducible

(20)

@1
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TaLE III. Dimensions d and indices / of the representations of the algebras B, and A4; which occur in the example of Sec. V.

Bﬂ (0) 0) (Oa 1) (1’ 0) (0! 2) (2’ 0) Ai (l’ 0, 0) 03 0) (13 0, 0) 0: 1)
d 1 4 5 10 14 d 6 35
I 0 1 2 6 14 i 1 12

components in ¢’ to the known dimension of ¢. The
second equation,

Kg') =j; Kg) = Ugp + Upr) + -+, (23)
obtained from (6) and (8), relates the indices of the
unknown nontrivial irreducible components of ¢’ to
the known index of ¢,

Let us illustrate the whole method by an example.
We consider an embedding of the algebra B, into 4.
According to Sec. III, the embedding can be specified
as an isomorphism of B, into the representation
w=1(1,0,0,0,0) of 4;. Thus one finds two possi-
bilities,

B2 1') wf = (1: 0) + (0: 0) < (1: 0’ 0’ 0’ O)
and
B, L» wf; = (0,1) 4+ 2(0,0) < (1,0,0,0,0), (25)

where wf and wf) are representations of B, which are
matrix subalgebras of the representation w of A4j;.
We have written explicitly the trivial representations
(0, 0) necessary for the equality of dimensions of the
embedded representations wf, wf,, and w.

Let us consider, for example, the embedding (24).
The weight system A(wf) consists of

24)

M, =v; M,= —» + 2v;;

Mg = v{ — 2u;;

Ms = M4 = 0;
(26)

where », and v, form the basis of the root space of B,
defined by (2). As one can easily prove, the numbering
(26) of the weights of A(wf) and the inequalities (18)
imply a simple-root-ordering of the root space R’ of
B,. Hence the mapping f* is given explicitly by
Table I and formulas (26).

Suppose, for instance, that the inducing representa-
tion ¢ of A; is the adjoint representation ¢ =
1,0,0,0, 1). Its weight system A(gp) consists of

A=wv+v, Ag=—v+ v+, ",

where v,, i=1,2,---, 5, is the {¥}-basis of the root
space R of A;. Using Table I and formulas (26) we

’
Mﬁ = 71,

@7

apply the mapping f* to the highest weight A, of ¢:

FHAD =F*0) + f*(vs) = 5.

Here 2v, is a weight of the induced representation ¢’
of B,. Since the highest weight A, of ¢ is always the
only weight of the 0 layer of A(p), it follows that A,
is always mapped into a highest weight f*(A,) of ¢'.
Consequently, one of the irreducible components of
¢'is ¢ = (2, 0). Similarly, the weight A, is mapped as
follows

A = —=f*() + [*() + f¥(v5) = 203

One can check that the weight 2v, does not belong
to the weight system A(gp), hence it is the highest
weight of another irreducible component @p; = (0, 2)
of ¢'.

In principle, the rest of the weight system A(g’) can
be obtained by subsequent application of the mapping
f* to the rest of the system A(p). However, the pro-
cedure is shortened by using the constraint Eqs. (22)
and (23) as follows. From Eqgs. (8) and (9) one has

K¢') = [Uwf)i(w)]- Up) = 24,

where the values of indices and dimensions of the
representations for the present example are summa-
rized in Table III. The direct sum of the irreducible
components of ¢’, which were not yet found, has the
index U¢") — lpp — lpr) = 4 as it follows from
(6), and the dimension d(p) — d(pp — d(py) = 11.
By inspection of Table III one sees that only the
direct sum (1,0) 4 (1,0) 4+ (0,0) has such index
and dimension. Finally, the solution of our example
is¢'=(2,0)+(0,2) +2(1,0) + (6,0).
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Two-body scattering is analyzed using a time-dependent formalism and wave packets of arbitrary
shape as the initial wavefunctions. In particular, the case of single-channel resonant scattering is dis-
cussed in some detail. In addition to the usual amplitudes resulting from the potential term and the
resonant term, a third amplitude is found which interferes with the other two. Another interesting result
is that in this formalism the final state is not necessarily represented by spherical outgoing waves, but
can be interpreted instead as two separate outgoing wave packets whose shape is different from the
initial packets. The Wigner time delay is obtained as a natural consequence of the analysis, and the
resonant cross sections are expressed as density matrices constructed from the wave packets.

1. INTRODUCTION

HERE are two limiting cases of resonant scattering

which are of particular interest. One, which usually
applies in atomic physics or low-energy nuclear physics,
occurs when the width I' of the resonant state is very
small compared to the energy spread of the incident
packets. Here the incident wave packets have a spatial
spread much smaller than the resonant state, and
I is long compared to the interaction time. This
limit can be thought of as an impulse approximation in
the sense that a classical periodic system, set in motion
by a force whose time duration is short compared to a
period, will oscillate at the resonant frequency of the
system. Thus one expects, in the quantum mechanical
case, the final state wave packets to emerge from the
scattering region with an average energy and momen-
tum characteristic of the resonance.

The other limit, which applies primarily in high-
energy physics, occurs when the incident packets have
an energy spread much less than I'. Here I’ is not
much larger than the interaction time, and the spatial
extent of the incident packets is large compared to that
of the resonant state. Consequently, the classical
analog for this case is that of the driven periodic
system which decays at its characteristic frequency as
the driving force is removed. Therefore, one might
expect interference effects which are not normally
observed in low-energy phenomena.

In this paper the time-dependent formalism de-
veloped earlier? is used to investigate these two
limiting cases for the particular physical circumstance
when two initial wave packets interact in the center-of-
momentum system via a time-independent short-range
interaction V(x;, X,).

A third scattering amplitude, different from the

1 C. L. Hammer and T. A. Weber, J. Math. Phys. 6, 1591 (1965).
¢ C. L. Hammer and T. A. Weber, Nuovo Cimento 37, 88 (1965).

usual potential and resonant terms, is found which
interferes destructively with the other terms. For small
I this interference causes the familiar [1 — exp (—I'?)]
time dependence for the cross section of the scattered
particles. For large I' no interference occurs at large
distances and the usual single-level Breit-Wigner cross
section is obtained. However, in both cases, if a final
state interaction occurs, that is, if a second scattering
takes place in the neighborhood of the initial inter-
action, interference effects occur which tend to make
the interaction look peripheral. As a consequence of
the analysis, the Wigner “time delay” for the inter-
action is obtained and found to be in agreement with
the recent work of Ohmura.?

Previous authors have also investigated some of the
aspects of this problem. The excellent early work of
Blatt and Biedenharn,* formalized using a time-
independent phase-shift analysis, discussed the scat-
tering of low-energy neutrons from a single resonance
level of the compound nucleus. One of their results is
that the scattering amplitude contains two terms, one
due to potential (hard sphere) scattering and the other
due to the resonance, which interfere with each other.
Both of these terms are displayed in this paper in
addition to the third term which, in the large I case,
corresponds in the classical analog to the decay of the
periodic system after the driving force diminishes.

Heitler5 discusses the absorption and emission of
light quanta for both limiting cases described above,
but loses the transient effects by evaluating the transi-
tion probabilities only in the infinite time limit.

The work most closely resembling the presentation

3T. Ohmura, Progr. Theoret. Phys. (Kyoto) Suppl. 29, 108
4% Y M. Biatt and L. C. Biedenham, Rev. Mod. Phys. 24, 258
(1952); see also J. M. Blatt and V. F. Weisskopf, Theoretical
Nuclear Physics (John Wiley & Sons, Inc., New York, 1952),
Chap. 8, Sec. 8, p. 398.

5'W, Heitler, Quantum Theory of Radiation (Oxford University
Press, London, 1954), 3rd ed., Sec. 20, p. 196.
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here is the wave packet approach to scattering theory
described in Goldberger and Watson’s recent book.®
Again, the important difference is primarily that they
use an S-matrix formalism, which implies infinite
time limits, rather than the U-matrix formalism,
which implies large but finite times.

2. BASIC FORMALISM

Consider the elastic scattering of two particles of
masses m, and m, and let the potential which describes
the interaction be V(x,, X,) where x; and x, are the
coordinates of particles 1 and 2. It is assumed that the
wavefunction which describes the two particle system
satisfies the differential equation

[Hy + V(xy, x)lp(2) = i(@/0t)p(t); hi=c=1. (1)

If V(x,,X;) is a short-range potential, there is a
time #, before which the particles have not scattered.
Thus for z < t,, y(t) satisfies the equation

Hyy(t) = i(@/00p(1); t < 1. )]
A formal solution to Eq. (1) for t > 1, is
(1) = exp [—iHy(t — to)]y(ty)

i
— texp (~iH) [ dé exp GHHVH. (O
to
Since H is presumed to be independent of time,

y(t) = exp [—iH(t — 1x)ly(%),
so that Eq. (3) becomes

(1) = exp [—iHo(t — t0)]p(ts) — i exp (—iHqf)
%
x f d& |p', )0 4| exp (HEV

x exp [—iH(& — t)] |9(to)), ®)
where [p’, q') are the eigenstates of the free particle
Hamiltonian H,. Thus one has

HO ,P’, q,> = E, IPI, q,>9 (6)
E' =%+ m)t + (¢ + md}, ™

IP', @'y = (2m)"exp (ip’ - xy) exp (iq' * Xo)zy» (8)
where y, is a spinor which describes the spin state of
the two particles. It should be noted at this point that
the formalism to be developed can be extended to
include all reactions of the type 4 + B— C + Difit
is assumed that an equation of the form of Eq. (1)
applies and that the free-particle wavefunction for
any pairing of the four particles satisfies Eq. (6). In
this event, y,, would be a spinor which depends not

)

& M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964), p. 80. Time dependence is
considered in Chap. 8 but not using wave packets.
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only on the spin but also upon other quantum numbers
(isospin, strangeness, etc.) which are necessary to
describe the pairing. Then all summations of the type
P'sq')(p',q'| should imply a summation over all
pairings.

The time integration yields
p() = exp [-Ho(t — to)ly(to) + [P, XD, ¢l V

—iH(t — 1)] — Bt —
><exp[ iH(t t)gl—e;f)[ iE'(t tO)]l'P(to»-
®

For finite ¢ and 7y, the integrand is analytic in the
neighborhood of H = E’ so that H — E’ can be
replaced by H — E' — in and the limit taken as
1 — 0. Thus Eq. (9) can be written as

W) = exp [—iHy(t — t)]p(to)

+ h'n; p’,a'Xp,q'lV
"—)

H_E —i ()

~ lirr; 1P, )P, 4’| exp [—IE'(t — to)]V
"—D
X — o)) 10
e L O) (10)
In terms of the stationary states of H,
Ho,,= Ep,,, (am
where
E= (@ +m) + (¢ + mdh, (12)
(t) becomes
W) = f dp dQA(, P, exp (—iE).  (13)

Here the labels p and g correspond to the momenta of
the particles only in the asymptotic limit. Therefore,
the initial conditions imply that for 7 £ ¢,,

(o) = @) f dp dqA(p, @) exp (ip - x,)

x exp (iq * x,) exp (—iEt)y,. (14)
Substitution into the matrix elements of Eq. (10) for
y(t) and y(t,) from Eqs. (13) and (14) gives

(1) = f dp dqA(p, Qe(1), 15)

where

() = |p, q) exp (—iEf) + lirr; exp (—iE®) |p', 9")
"—b

1

e /’ ’ V_______

<P ql E_El__i,’ll¢p’a>
— 1in(1) exp (—iEty) |p’, ¢){p', q'|

”—)

1

X exp [«iE'(t — t)]lV —————— |p, 9).

pI=iEC = W = 1p0

(16)
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The last term in Eq. (16) can be put in the more
familiar 7-matrix form by using the operator identity

with
A=Hy,—E —in and B=H—E ~in

to express the function (H — E' — in) as

1 _ 1 1
H—FE —in Hy,—FE —in E-—H4+iy
1
XV ———\ (17
H,— FE —in an

Substitution into Eq. (16) for this quantity gives

(1) = |p, q) exp (=~iEf) + lin; exp (—iED) |p', 9")
qﬂ

1
X (P, q|V—"—
rqi E_"E,_MI%,J

+ I:g}) exp (—iEt) Ip', 4P, 4l
x P [—iE'(t — 1p)]
E' —E+in
where, following Goldberger and Watson’s? notation,
TEY=V+WVE —H+in) L V. (19)

An interesting point occurs here regarding the
infinitesimal parameter #. Here, in contrast to the
usual approach, the sign chosen for # is irrelevant
since the integrand of Eq. (9) is analytic. With the
positive choice of sign, as shown, the second term of
Eq. (18) vanishes exponentially in the asymptotic
limit of large |x, — X,|. The third term gives the
outgoing spherical waves for the poleat £ = E — i ||
and the singularities of the 7 matrix. If the negative
sign is chosen, as is normally done in the S-matrix
formalism,® the contribution to the scattering cross
section from the singularity at £’ = E + i || comes
from the second term of Eq. (18). The singularities of
the T matrix which appear in the third term give rise
to contributions which damp to zero only in the extreme
limit as t,— —o0 or t-» oo, This establishes the
connection between the S-matrix formalism and the
one presented here.

Before obtaining the asymptotic limit of (z), it is
convenient to change to variables which represent
the center of energy of the system and the relative
displacement of the particles. Consequently, consider

T(E) |p, 9), 18)

7 See Ref. 6, p. 215.
8 See Ref. 6, p. 81, Eq. (91).
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the transformation of variables

X= (%)xl + ("EE'g)xz» (20
r=X; — Xg, 21
q = Q'(%) - P, @2)
P= Q’(%) + P, (23
where
E, = [P*+ mi}, (24)
E, =[P+ mi}, (25)
E = El <+ Eg. (26)

The momentum P is later chosen to be either the
average momentum of the incident or scattered
particles or the momentum corresponding to the
center of a resonance, whichever is convenient for the
approximation under study. With these substitutions,
Eq. (18) becomes

@(8) = [p, q) exp (—iEt) + lim (27)™" exp (—iEt)
70

X Z f dP’' dQ’ exp [i(P' -r + Q' - D)y,

% (Q(EVE) + P', QESJE) — P V |9,
E—E —if
+ lim (27) 2 exp (—iEt,)

70

x3 f AP’ dQ exp [i(P -1 + Q' - D,

(Q(EJE) + P, Q(Ey[E) — P'|
X T(E) exp [—iE'(t — t)]Ip. 4)

X

E—E+iy
@7
where now
E = [(% + Q(E/EY + mif!
+ (P — QEJEP + mip,
= E| + Ej. (28)

It is also convenient to factor the conservation of
momentum delta functions from the matrix elements.
Thus, let the reduced matrix element (p’, ¢'| (O) |p, ¢)
of an operator O be defined by

P910Ip =60 +q —p — O, 91(0)|p, 9

(29)
With this substitution the Q’ integration in Eq. (27)
can be done. The net effect is to replace Q’ everywhere

by (p + 9.
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2% (praMEZE ) +1M,

FiG. 1, The path of
integration in the P’
plane.
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P’ PLANE

L= {p+q)(E,-E,)/E
2¢

“tstpranE-EN/E S

£+2

o e R e e B —

To obtain the asymptotic limit for large x|,
the usual procedure is simplified if, wherever
fEN|Q(EE) + P', Q(E,JE) — P’y appears, it is
replaced by f(H,) |Q'(E,/E) + P, Q'(EfE) —
Then if ¥V(x,, X,) falls off with sufficient rapidity so
that negligible error is made by integrating over some
finite region rather than over all of space, Eq. (27)
becomes

—2

7() = Ip, 4) exp (—iB) -+ 22

x exp {i[(p + @) - X — Ef]} lim E Ly — L),
n—-0 s
where (30)
I, =ij' dP’ exp (iP'r)
¥ X A(p + aXE,/E) + P (p+ ) E/E)—P' | (V) |9y q)

~ E+in

(31)

O
Igsv = exp [IE(t bt tg)]f P dP’
—a0

x exp [i(P'E — E')(t — toly,
{p+ )EJE) + P, (p + qUEa/E) — P
x (T(E") Ip, q>

X —E 4 iy
(32)
E=rl(t — 1), (33)
P’ = P'(xfr), 34

E = {P' + (p + QE/ET + mft
+ {[P' — (0 + QE/ETF + mi}. (35)

?-(p*q)(EzIE)-iMz

* ?-vkv e

L

3. CONTOUR INTEGRATIONS

The integral I,,, can be done by using a contour
which closes in the upper half of the P’ plane, whereas
the integral I, can be done by using a contour similar
to that described by the authors in Refs. 1 and 2. For
the purpose of clarity the procedure for obtaining this
contour is briefly repeated here.

Because of the E'(t — t,) term in the exponent of the
integrand of /1, , the contour cannot be closed in the
upper P’ plane alone for (¢ — #,) > 0. Examination of
the phases shows that it is possible to have an infinite
contour C; and C, in the 2nd and 4th quadrants as
shown in Fig. 1. The contour C,, also shown in Fig. 1,
which connects these two infinite contours, is uniquely
determined by the requirement that the integral along
this path be a Laplace transform so that it can be
directly evaluated asymptotically without further dis-
tortion of the contour. This follows from considering
the transformation suggested by the exponent in Eq.

32),

32 {=P¢—FE. (36)
The path in the { plane which corresponds to the path
of integration of I, along the real P’ axis is shown
as the heavy line in Fig. 2 along with the appropriate
phases. The branch points shown at +{, and +¢;
correspond to those values of P’ which satisfy the
equation (d{/dP’) = 0, that is, for

— P+ (E\/EX-(p+ @
{0+ (@ + OE/DF + mi
P~ (BJER-(p + 9)
{IP' — (p + OE/EF + mi}t

(37
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-%v: %
- ) t, t,

Fi1G. 2. The path of integration in the { plane.

In terms of the speeds of the two particles, it can be
shown from Eqs. (36) and (37) that

L= My(1 — &7 Y1 — &, + E)ESE)]
+ M1 — 71 — & + E)E/E), (38)

L= My(1 — £ — £,6 — EXEJE)]
— M1 — &Y + & — E)E/D] (39)
where
___ P+ EE-p+a
(P + @ + QE/EL + mip

P et (2 (B XY
(P — (p + QE/ET + mi}}

M} =mi+ (B/EP{(p + @ — [F-(p + DT},
M3 = m; + (B/EY{(p + 9 — [ (p + QI*}. (40)

It should be noted, since the interaction takes place
in the vicinity of the origin, that in the asymptotic
limit in the center-of-energy system,

1

“n

The path of integration in the { plane can be rotated
about — {, to the dotted line shown in Fig. 2, encircling
poles and indenting around branch points where
necessary, thereby changing the Fourier transform to
a Laplace transform. The contour C, in the P’ plane
corresponds to the dotted path of integration in the
{ plane shown in Fig. 2. The point — {, corresponds to
the point in the P’ plane where C, crosses the real axis.
This value of P’ shown as P, in Fig. 1 satisfies Eq.
(37). In the center-of-energy system this value of P’
would be the momentum of m, or m, if the speed of
separation of the particles after the collision is
r/(t — ).

The integration along C, can be evaluated asymp-
totically for large ¢ using Watson’s lemma described

C. L. HAMMER AND T. A. WEBER

previously.? The branch points at {, and at £{; can
be shown to be sufficiently far removed from —{, so
that at most only the singularities of the T matrix
shown symbolically at {; in Fig. 2 and the branch
point at — {, need be considered. In the following, the
singularities of the 7" matrix are assumed removed far

enough from — {, so that in evaluating Eq. (32) along

the contour C,, expansions can be made about —{,.
This restricts the discussion to a consideration of that
region of time where the resonant states decay with an
exponential type behavior as shown below. The con-
tribution to Eq. (32) from the path along C, is found in
a way parallel to Eq. (38) of Ref. 2. The result is to
lowest order in [t — 1|,

.

I2s' ~ |t — to (42)

Since |t — 2| is related to r through Eq. (33), (fs,)¢,
is of order r~* and does not therefore contribute to the
scattering cross section.

With this result, Eq. (30) can be reduced consider-
ably. Firstly, it should be noted that the integrand of
Eq. (30) as represented by the sum (f,,, — I,-) cannot
contain any singularities in the 2nd and 3rd quadrants
of the P’ plane. This follows because such singularities
lead to incoming spherical waves which are a violation
of the initial conditions. Thus, the simple pole which
is in the second quadrant of the P’ plane must cancel
between the two terms 7;,. and 1,, This cancellation
can be seen explicitly if the substitution

tra= (14 ;25 7) b0 @

is made in Eq. (31). Since the contour integration for
I, is in the upper-half P’ plane, all other contributions
from this term lead to functions which damp expo-
nentially with r. Thus, 7,,, does not contribute to the
scattering cross section.

The time-independent [apart from a factor of
exp (—iEt)] part of the cross section comes from
1, because of the pole at E’ — E + in which lies in
the 4th quadrant of the P’ plane. As is shown in Fig.
1, this pole is included within the contour only if
P, < P’ or, equivalently, only if (t — 1) > (t — 1),
where ¢’ is the time at which the particles elastically
scatter. It therefore follows that ¢’ > ¢, so that, as
expected, causality is automatically taken into
account.

The time-dependent parts of the scattering contri-
butions can be separated from the time-independent

? T. A. Weber, D. M. Fradkin, and C. L. Hammer, Ann. Phys.
(N.Y.) 27, 362 (1964); see also Ref. 2,
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parts by using the residue theorem to write Eq. (30) as
@()(large 1) = |p, q) exp (—iE?)

r— o

+ (27 *rtexp {ilPr — Et + (p + ¢) - X]} ZL A
— lim =)%Y exp {i[p + q) - X — Eto]}
fad ]
x3 | PdP exp [i(P'E — EXt — to)lts
s 2AE
(P' 4+ (p + QUEJE), (p + q(E/E) — P'|
x x (T(E") Ip, 9
E —E+iy ’
(44)
where the scattering amplitude is given by
2 El 2 ( lEﬁ E2El) -t
o= —ent B 112+ o BE=BED]
x (P + (p + qXE\/E),
x (p + q)(Ey/E) — P|(T(E)) |p, 9)» (45)
P = P, (46)
E={P+ @+ 0E/BLE +m}, @1
E = {P — (@ + Q&EBF +mi}t, @8

E=FE +E ="+ m)! + (¢* + mdY, (49)

and the subscript E’ # E means ignore the pole at
E' = E — in in doing the indicated contour integra-
tion,

It is easy to show the resonant nature of Eq. (44)
explicitly by writing T(E’) as

T(E)Y =V + VGV, (50)
where G is the exact Green’s function
= [E'— H+ in]™. (51)

Following Goldberger and Watson,'® G can be written
as the product of two operators

G = Fg, (52)

where g is diagonal in the representation |a). As a
particular example, the interaction ¥V considered
previously could be the sum of two terms

so that
H—H,=V, H— Hy=U. (54)
The states |a), which satisfy the equation
H, |a) = E, |a) (55)

could then be resonant states of the m;, m, system

10 See Ref. 6, p. 425.
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that decay in the presence of the interaction V. The
state |a) can be written as
lay = (2m)~% exp (iP, - R)u,(x), (56)

where P, represents the momentum of the center of
energy of the system and u,(r) describes the internal
degrees of freedom. The energy E, can be described by

= [P} + miLt, (57)

where m, is the mass of the resonant state. Since g is
diagonal in this representation,

(@] gla) = G8a0(B, — Py). (58)

Further, let these diagonal elements be the diagonal
elements of G so that

(@l (G) la) = G, @l (F)la)=1. (59)

Substitution for G from Eq. (52) into Eq. (51) then
gives G, and, after some manipulation, F as

and

=[E' — E, — (al(VF)|a) +in]"",  (60)

lay + [E" — Hy + in]*(1 — |a){al)PF la).
(61)

Fla) =

The matrix element of VGV can be written as

(P, 4| VGV |p, @)
= (p, q'| VG la){al V |p, @)
= G(p’, q'| VF |a)(al V |p, @)
_0p +da —p— gxp’, ¢I| (VF) |a)al (V) |p. @)
E'— E, — (a| (PF)la) + in ’
(62)
where, since the integral over P, has been done,

=p+9q E=I[p+o"+ml (63
The reduced matrix element of 7T(E’) is
P, 1 (TENIp, @) =< q'| (V) |p, @)
@, 1P @ D Ipa) 0

E'—E,— (a| (PF)|a) + in

The real and imaginary parts of (a| (VF)|a) can be
defined (for real E’) as

R(E") = (a| (VF) |a) = Dy(E) — 3L (E"). (65)

In general, the denominator in Eq. (64) is a very
complicated function of E’. However, for the purposes
of this paper, it is assumed that |R,| < E, so that to
lowest order

R(E") = Dy(E,) — }L'W(E,). (66)
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With these assumptions, Eq. (44) becomes

¢(t)(large t) = |p, 9) exp (—iEY)

+ exp {I[Pr — Etr+ (p + q) . i]}(27r)_32f.s'ls’
i LR (P + @) - X — Et]}

7-0 (277-)27‘
x> P’ dp'y, 2P HEE— 2 )(-t )

¢ JOr+z E—E+in

X (P'+(p+ QEYE),(p + 9)(E/E)— P'|(V)p, )
g i6x0 (D + @) - X — Engl}

n—0 (211')27'
X z Pr dP’xs' exp [l(P,E _ E )(t. - tO)]
s Jow#s [E' — E + in]

(P'+ (p + QEJE)(p + q)(E/E) — P
X (VF)la}al (M) |p, @)
[E’ - Ea - Da(Ea) + éiFa(Ea) + "]]

(67
However, the third term of Eq. (67) does not contrib-
ute to the scattering cross section since it contributes
only to the incident flux. This follows directly from a
consideration of the mafrix element,
M=
(P"+ (p + gEJE),(p + g)(E|E) — P'| (V)| p, ¢).

Changing variables of integration according to Egs.
(20) and (21) gives, since ¥ must be invariant to
displacements,

M= f drexp [—i(® — Py)-1lf@®,  (68)

where

P, = p(E,/E) — o(E,/E).

A general interaction 7 must also be invariant to
rotations. This determines that

f(r) =ZAZ,-”mrl' “rmgj(r)’

where Af ., are tensors which contain the spin
directions and, if ¥ contains differential operators, the
initial momenta. Thus,

1
X g'(IP" — Py)), (70)
so that any singularities of M must be at the points
[P" — Py|* + C* =0, (71)

where C? cannot be a negative real number since it is
assumed that the integrand is analytic in the neighbor-

(69)
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hood of the real P’ axis. The roots of Eq. (71) are
P =P, - £ i[C? + (P, x £)2]3. (72)

If this singularity, with either sign, is included within
the contour of Fig. 1, the result of the evaluation of the
third term in Eq. (67) is proportional to

r~lexp {—|ImE’| |t — t, — Re [C? + (P, x ©)2]}
X |Im E’ ||} exp [i(p - x; + q - X)),

an exponentially damping contribution to the incident
plane wave.

Similarly, since to lowest order in 7, F|a) =~ |a), it
follows that the singularities of the matrix element in
the last term of Eq. (67), in this approximation, also
contribute only to the incident plane wave. The residue
theorem can then be used to write Eq. (67) as

@(t)(large 1) = |p, q) exp (—iEt)

+ (2’:)— exp {i[Pr — Et + (p + @) - %]}

x 3 ot = Z2= exp (il + 0+ % — En)

X ZCXP {i[Prr — Eg(t — )1}

X exp [_%Fa(t’ - to)]x.s'ha’a’ (73)
where

P, = Pp + iP;,
{IP, + (@ + DE/ET + miP
+ {IP, — @ + DB/ BT + mi
= E, + D(E,) — $il'(E.), (74)
is the position of the pole in the P’ plane,
Ep=E,+ D,,

hs’,a = _(2”)2Pc[aEl(Pc)/aPcrl
(P, + (p + 9)(EL/E), (p + q(E,/E) — P
X (VF)la){al(V)Ip, )

X s
E—E, — D, + }iT,
(76)

t' =t + QP T)r. 77

The time ¢’ is the retarded time at which the resonant
state decays, since for small $I'; and P;, the Cauchy-
Riemann condition gives

(OEg[0PR) = [0(—4T)[0P;] =~ —T,/2P;,
so that

(75)

t' =t — [r/(0Eg/dPp)] (78)

or

t' =ty =[1 — §/(OER/OPR)N — ).  (79)
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If I'; > 0, then the pole is included within the contour
only for & < (0ER/0Pg). Equation (79) then shows
that (¢’ — 1) > 0 for (¢ — t,) > 0. This constitutes
a time delay and is therefore resonant scattering. If
I'; <0, then the pole is included within the contour
only for £ > (0Eg/0Pg). Equation (79) then shows that
(t' — 1) <0 for (z — ty) > 0. This is a time advance
and is therefore a case of antiresonance scattering.
In both cases, the last term of Eq. (73) is exponentially
damped at (r — 1,) - oo because for & # (0Eg/0Pg),
I';(t — ) > co. The remaining terms of Eq. (73) are
just the usual S-matrix result. However, the last term
can contribute to the scattering cross section since in
a particular experiment 3$I',(t" — #,) may not be large.
This would be particularly apparent if I, is very small
or if a second scattering takes place close to the initial
interaction region.

4. FINAL STATE WAVE PACKETS

Up to this point there has been no discussion of the
nature of the wave packets. Since the incident particles
are usually independently prepared; the wave packet
amplitude A(p, q) [see Eq. (14)] is assumed to be of
the form

A(p, @) = a(p — Po)b(q + Po); (80)
so that initially
Wty = @my® f dp daa(p — pob(a + po)
x exp li(p-x; + q-x; — En)]. (81)

Also, as is usually the case physically, assume that the
amplitudes a(p — p,) and b(q + p,) are sufficiently
narrow that terms of order [(p — po)*/(p2 + m2)¥] and
[(q + po)¥/(p2 + mg)‘}] can be ignored. In this approx-
imation Eq. (81) becomes, after changing variables of
integration according to

T=Pp—Ps S=4q+ P,
() = (2m) " exp [i(po - ¥ — Eof)
X fd’r daa(t)b(e) exp [it « (x; — vput)]

x exp [io « (x; — Voe?)], (82)
where
Eo = (2} + mdt + (0§ + md?
= Eqy + Egq,
Vor = Po/Eo1» Voa = —Po/Eo2- (83)

The two independent packets therefore move toward
one another with negligible change in shape, in a
frame of reference where each has an average momen-
tum p,. The centers of the packets can be made to lie
along a line perpendicular to p, at # = 0, their distance
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of separation depending upon the choice of the phase
of a(v)b(o). For wave packets with finite spatial extent
the time 7, can be chosen as the time that particular
parts of the wave packets begin to interact. Conse-
quently, #, would then be a function of the relative
coordinates of the packets. For example, if the inter-
action distance is much smaller than the size of either
wave packet, then for ¢ in the neighborhood of zero,

(%X, — Xp) - ¥y

[¥o1 — Voql

ty ¢ — (84)
Thus for ¢, = 0, the centers of the packets would begin
to interact whereas the initial interaction would have
taken place at £, = —0 |vo; — Voo|™%, where & is the
spatial extent of each packet. For ¢ > 0, ¢, can be
obtained from the definition & = r(t — ¢,)~t. Since
1o is bounded in the vicinity of zero and since, as is
shown below, r is bounded in the vicinity of (r), the
distance between the centers of the final state packets,
& approaches the constant value

EQD) (85)
in the asymptotic limit of large ¢. Therefore, for large ¢,
to =1 — (r[(5)),

where r varies over the dimensions of the final states
wave packets.

The wavefunction for the scattered particles as
obtained from Eq. (73) is

p(t)(large £) = 2m)°r(y; — vo),

r—>ow

(86a)

where
v =3 [dp daa@ ~ pobla + 20 Soe
x exp {i[Pr — Et + (p + @) - X]}, (86b)

v, =2 | dpdqa(® — po)b(d + Pohyaky

x exp [—4T(t' — to)]
x exp {i[Prr — Egr(t — t,) — Ety + (p + 9)-X]}.
(86¢)
To illustrate the procedure to be followed, consider
first y, alone. By again changing to the =, o variables

and retaining only terms linear in T and o, Eq. (86b)
becomes

v2 =3 exp (—iEof) f dt doa(Db(@)fy e

x exp {i[Pr + T (X — V1) + & - (X — vp2))1},
@87
where f, x, are now functions of © and o, and from
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Egs. (47)~(49)
{IP + (x + S}E/EF + mi}}
+{IP — (v + YE/E + mi}
= [(v + po* + milt + [(@ — po)* + mil". (88)
Because of the variation due to v and o, P will vary
about some average value (P). Therefore, if

P = (P) + AP, (89)
expansion of both sides of Eq. (88) gives the equation
which defines (P) as

(E) = (Ey) + (Ep
= (P + mdt + (P + m)} = Eqy + By

(90)
and

AP - ((P)/I[(P)]) = (Vor.* T + Voa * 0) [{¥y) — (V)|
— (v + 0) - [(v)(&/E)
+ (NEE)] [(vy) — ()7L, (91)

(v) = PY(E; (v = —(PY(Ey).
The wavefunction y, then becomes
v = S exp [i((P)r — (EyD)] f dr doa()be)f, 1y

x exp (it {X — [(v)(EJE)
+ (V)L BNt — 1) — Vorte})
x exp.(io - {X — [(v)(E/E)

where
(92)

+ (V(ESE)tz — i) — Voatw}), 93)
where z,, is the time of scattering defined by
ty=1—r|V) — ()| 94)

Just as for #y, ¢, varies as r varies over the dimensions
of the final state packets. From the definition of X
from Eq. (20), it is clear that ¥, is a function only of
[x; — ()(¢ — 2,)] and [x, — (vo)(¢ — ¢.)]. Therefore,
v, resembles two separate wave packets, one centered
about (x;) = (vy)(t — (¢,)) and the other centered
about (x,) = (v;)(¢ — (¢,)), where (¢, is the value of
t, when the centers of the packets are at the origin. If
the choice (P) = (P) is made, then from Eq. (90),
[Pl = [(P)| and the center of energy is stationary,
that is & = 0 before ¢ = 0 and after ¢ = (t)

The time (z,) can be obtained by using a method
originated by Wigner.?* This method in essence
compares the phases of the final wave packets evaluated
at their centers to the phases of the initial wave
packets evaluated at their centers. If

fs’ = |f;’l €Xp (i(X.),

1t B, P. Wigner, Phys. Rev. 98, 145 (1955).

95)
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then

«(E) =2 a(Eo) + [0a(E()/OEo)(% + Vo1 + © + Voa), (96)
and the final state wave packets at t = (f,)

(1) = Ol Eg)[OE, C0)
are at the same position as that of the initial wave
packets at 7= 0. This asymptotic time delay (or
advance) is in agreement with the recent work of
Ohmura.?

The expression for y, can be reduced in a manner
similar to that used for y,. The difference being that
instead of Eq. (88), the conservation of energy
equation as obtained from Eq. (74) is, in the o and
< variables,

{IP, + (o + DE/DT + mi}t
+ {IP, — (o + DG + mit
= [(6 + 7 + mI + D{[(o + ©)* + miT}}
— #L{l(e + " + mil}. (9®)

The zeroth- and first-order terms in o and « thus are

(Po? + milt + (P + miP
= m, + D(m,) — }ly(m,) (99)
and
AP, - (P /KB
= —(6 4+ (MNE/E) + () (Ef )]
X [(¥y) — (Ve (100)

P, = <Pc) + AP, (33
(Mo = (P[P + miTh,
(V) = —(BY/[PY* + mit.  (101)
The expression for y, is more coiaplicated than that
for y, since (v,,) and (v,) are complex quantities.
However, in the limit [I",(m,)/Ez] <« 1, which covers

most physical cases, products such as |o|(I',/Er) or
|7|(T's/Ex) can be neglected. Thus, Eq. (100) becomes

AP, - ((P,)/KP,))
= —(0 + )+ [(Vi) RE/E) + (Va0) R(E/E)]

X KV r — (VeI (102)
where use has been made of the expressions which are
correct to order (I',/ER),

Vo) = (Vo) + iVo)r,

Mok = (PR)(EiR)), (Va)r = —((Pr)/(Eag)),
(104)

where

(103)

Wieyr = ((Pp)/(Eyg)) + #To(m)/{ER)]
X ((PR)(E1p))({Esr)/{Eir)), (105)
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(Vﬂc>l = "((PI)/ (EZR» - %[Fa(ma)/ <ER>]
X ((PR)/[{E:p))((Err)/(Eagr)), (106)
Pr)Pp) = —3To(m)(EirXEap)/{ER), (107)
(Egr) = (E1r) + (Esr)
= (PR + milt + [(PR))* + mip}
=m, + D,(m,).
With these assumptions g, becomes
Yo = Z exp {i[(Pr)r — (Er)(t — t;) — Eytol}
x exp [—3 L (m )t — t0)]
X fd'r daa(t)b()h, 1y
x exp (i + {& — [(vi) r(E1/E)
+ (Vadr(E/E)t — ') — Vorlo})
x exp (io « {X — [(M)r(E/E)

(108)

+ (Ve )R(EA/E)Nt — 1) — Voato}), (109)
where from Eq. (78) in this approximation
t'=1—r|Vp — Verl™- (110)

From the definition of X from Eq. (20), it is clear from
the exponents of Eq. (109) that y, is a function only
of [x, — (v)g(t — )] and [x, — (V)p(r — 1))
Therefore, y, represents a state which decays at

)y =t— g — Mdel™ (11D

into two separate wave packets, one centered about
(Xg) == (¥5,)p(t — (¢'}) and the other centered about
(Xy) = {(v;)p(t — (). Again at f= (¢) the final
state wave packets are at the same positions as those
of the initial wave packets at ¢ = 0.

Just as for (1)), the time (#,),

{tg) =t — (N[5, (112)
can be obtained from
hs'a = Ihs'al €Xp (iﬁ)a (113)

ﬁ(E’ Ea) = ﬂ(E()a ma) + [aﬂ(Eo ’ ma)/aEO]

X (Vo1 + T+ ¥y 0). (114)
This gives () as

(to) = OB(Ey, m,)|OE, . (115)
It is clear from Eq. (84) that this expression for (f,) is
valid only if

0B[9E, K 26/|¥or — Voal- (116)

The expressions for y; and y, can be further simpli-
fied if the spatial extent of the initial wave packets is
much larger than the interaction region. Consequently,
to lowest order in t and o, the matrix elements in
fy and h,, can be factored from under the integral
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sign, giving
1 = 2 exp [i(per — Eo))fynity

&

x f dv dea(x)b(a) exp [it - ( — Vortl)]

X exp [ie - (X — vyti)]
+ SZ exp [i(Por - Eo‘)]M s’a(<§>! ﬁo)xs'

X exp [io « (X — vgatin)]
E —m, — DE) + %lra(E)

dv dea(t)b(a) exp [it - (X — vyl
X s
(117a)

Yo = g exp {il(Pryr — (ER)(t — t,) — Egty]}
x exp [—3a(m)(t' — t,)]
x Myo((B), Do [ dea(x)b(o)
x exp (it « {X — [(V1)r(Enr/Eo) + (Vao)r
X (Ega/ EQI(t — t)) — Vpito})
exp (io « {X — [(Vi)r(En/Eo)

+ (Vo) r(Eoa/ EQ)Nt — ') — Voato})
E - m, — Da(ma) + %ir‘a(ma)

X

b4

(117b)

where Eq. (19) has been used to write f,. as two terms
with

S = —QmHEnEn/Ey) < (P), = (P) (V) |pos —po >

(118)
as the Born approximation term, and with

2 (Ep(Ey)

M s'a(<P>: p()) = —(277) ( E>

<(P), =(P)| (VF)|a)(a| (V) Ipo, —po >; (119)

as the matrix elements of the resonant terms. Also the
choice |P| = |p,] = [{P)] has been made. For initial
energies near the resonance, the rate of change of the
phases « and f is primarily due to the resonant
denominators. Therefore, ignoring the change of
phase due to the matrix elements M, and considering
only the change of phase from the resonant denomi-
nators, Eqgs. (97) and (115) become

IT(Ep)1 — 8D,(Eo)/0E,]
— [Eq — my — Do(Eg)[OT(Eo)/20E,]

e = Ty — mo — DUEDT + BTET
(120)
and
(to) = ATum){[Ey — ma — D(m)P + BTu(mF} .
(121)
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If, as is usually assumed in similar calculations but
which may be unwarranted,

I (Ey) = T'y(m,) = const,
D (Ey) = D,(m,) = const,

then () = (t,) and (z,) is the Wigner time delay.®
This is analogous to the result obtained from the
differential equation with constant coefficients for a
damped driven resonant cavity. Here y, represents a
pulse corresponding to the driving frequency which
leaves the resonance region at (¢, ), and y, represents
the subsequent decay (since (z,) = (t,)) of the reso-
nance following the departure of the driving force.

If T, is very small, (0«/0E,) and (08/0E,) become
very large. Consequently, the approximate expansions
for the phases « and § become invalid and (z) and
(t,) are no longer sharply defined. Ohmura® has
shown that for such a case (t;) is of the order I',! so
that in contrast to the near equality of Eqs. (120) and
(121

(te)/(t)) ~ (0) K 1. (122)

5. CROSS SECTIONS AND LIMITING CASES

The probability that one of the outgoing wave
packets is in a particular counter volume V, very large
compared to the volume of the wave packets, is [see
Eq. (86a)]

P(t) = 2m)® fydxl f dxyr= Tr py(xe; %)), (123)

where the trace refers to the spinor components and
pAx;; X,) are the diagonal elements of the density
matrix for the outgoing particle

PA(Xy; Xa: X15 X3)
=2 L AEW(EN o — va)vs — v, (124)

The density matrix for the initial particle in the spin
state s is then

pus = f EWENw)v(),  (125)

where

Pi(X1; Xp? X153 X3) = 3 py; (126)

If 9(z,) is chosen to be an orthonormal set of spin
states, then Eq. (125) implies

[ [ama Te ps x = 3 [ "ammen = 1.
' (127)
In general, in the calculation of P(¢) there is inter-
ference between the f term and the other terms of Eq.
(117), as pointed out in Blatt and Weisskopf,* unless
Jfp is small in comparison to the other terms. For
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simplicity this assumption is made along with the
assumption that there is only one state |a). The result
is, after changing to the r and X variables,

P() = 3 dQ2n) f dv f do f v do'a’(x)a(r)
x b'(a")b(6)d(t + 6 — 7 — &")[(T — 7)) « ¥p,]
2 IMa’a(<P>: ﬁo)lz
x| B o e

exp [—T,(t') — (to))] IM((B.), o)l
X O(Pp — P; + Py

(E — (ER))* + 3T, (m)7
) - 2ReZdQ(27r‘2fd-cdc

+
&

[Yor — Voql
x f v do'al(%)a()b'()b(6)d(x + ¢ — ' — o)

“2 dE,W(E,) exp [—31((') — (to))]
XJ X M:’a«Pc)’ ﬁo)Ms'a«P)s ﬁo)
w1 [E(T,’ cl) - m, - Da(ma) e %ira(ma)]
X [E(%, 6) — m, — D(E) + }iT(E)I™
X O(Pg — P; + P)O(P — Pp + ((Eg) — EX&)™*
+ (v — %)« (Vor — Voa)(§) ™) exp {il(P — Pg)r)
+ ((ER> — E)(t — (tp)) + (7 — ") * (Vor — Vo2 )( to>]},
(128)

where
E=Ey+ T vy 4+ 0V

and dQ is the solid angle of the detector in the center-
of-energy system. The step function O(Pp — P, + Py)
is necessary because the terms involving v, are zero
unless the contour shown in Fig. 1 includes the
resonance singularity. The singularity is excluded
when P, exceeds the value where the singularity lies
on the contour C,. For small (I';/ER) the pole is near
the real P’ axis where the contour is essentially a 45°
straight line. Thus for the singularity to be included
within the contour,

P, < Pp+ Pr=Pr— 3T, [(Vidr — (eedrl™. (129)

In terms of the density matrix, the number of
collisions/cm? per incident particle N is given by the
overlap integral of p,(xyz; xyz,) over a plane per-
pendicular to ¥y, for all z = z¥y, and z; = z,¥;, . That
is, N is given by

N = g fdzlfdx Tr pu(xyz; xyz,)
= (27) 2 f dv f dcfd‘t’ do’a'(t)a(x)b' (")

X b(a)o(t + 6 — v — &')0[(v — ) - ¥44l,
(130)
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where, for simplicity, it has been assumed that a(t)
and b(o) are independent of s. The cross section is
then obtained from Eq. (128) as

do = P()N-1. (131)

The usual S-matrix result is obtained from Eq. (128)
by allowing ¢— co. This gives the Breit-Wigner
single-level formula

WI(EO) lM:’a(<p>s ﬁo)lz

[E —m, — l)a(E)]2 + [%Fa(E)]2
(132)

do Wy
— = dE
dQ Z w

as expected.

For small I',((t") — (t,)) there are several limiting
cases depending upon the momentum spread of the
wave packets and the energy spread of W,(E,) relative
to I',. If T, & (1/6), then from Eq. (122) it follows
that P, < p, so that the elastic pole is included within
the original contour when the resonance pole is
included. Therefore for this case, the step function in
Eq. (128) can be taken as one. For energies near the
resonance

P — Py + ((Ep) — EX&™

~T,, I, & (1/3); (1338)
2 2
~ THE L m ms ,
« [(P2 +mdt (P + m%)*il

I, > (1/8). (133b)

In the limit of small I, this term can be ignored when
compared to (T — T') + (Vo — Vo2){§)71. Also, W(E)
and the matrix elements in Eq. (128) can be considered
as slowly varying in the vicinity of the resonance. For
w; and w, bracketing the resonance energy, the
remaining integrals are to lowest order

ZWF;_I(md),
(134)
fw- g P [(P — Pg)r) + ((Eg) — E)t — (t,))]
0

w (E - (ER»2 + ['L'Fa('na)]2
o 275 (m,) exp [—3T.(m)(t) — (1)) (135)

Subsitution for these integrals into Eq. (128) gives the
familiar form for the cross section

99 _ 5 W E))2nT7(my) M Pr), O

dQ 88’
X {1 — €xp [—Fa(ma)<tl>]}’ (136)
where to the lowest order in I';,

<§> ~ Kvlc>R - <v2¢:>RI ~ |V01 - Vozl,

and where (t') is the retarded time or time at which

f wndEo ‘31 2 =
w o (E—(Eg)*+ [}T(m,)]
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the resonant state decays and (¢,) has been neglected
since

Y > O[(Vie)r — (Vao)rl)-

Another limiting case occurs when I, > (1/6).
Equations (120) and (121) now apply and in the
asymptotic limit P, — p,. Therefore from Eq. (129),

Po S PR - %Fa |<vlc>R - <v20>RI—1’ (137)

or equivalently
Ey < Ep — #1, (138)

so that the terms of Eq. (128) that arise from vy, are
zero when p, exceeds the value where the resonance
singularity lies on the contour C,. Also in this limit
Eq. (133b) applies, but (v — ')« (voy — Vea)(&)7 is
now neglected when compared to [P — Py +
((Eg) — E)&)™]. The interference term therefore
vanishes and

do

W
== dEW,(E.
10 Z " os(Eo)

{lMs’a«P),pO)lz + |Ms’a(<Pc>ap0)|2
X O(Pr — po + Pp) exp [—T,({t') — {t))]} )
(E - <ER>)2 + [%]'-‘a(rna)]2

(139)
For large ¢ Eq. (111) can be expressed as
[{ve) — (va)l (r
Yy —(tpy == |1— .
W=t [ (V1e)r — <v2c>R|:||<vl> — (vl
(140)

Since from Eq. (137) it is apparent that [(v;) — (V)] <
[ (V100 — (Vae)ml, it is clear that ¢, or the last term of
Eq. (139) can contribute only over a limited range of
(r). This range can be estimated using the fact that the
smallest value for {(¢') — (z,) occurs when both the
singularity at E' = E and E' = E, + D, — i1, lie
on the contour C,. Equation (137) then can be used
to show that

[(Vievr = (Ve) gl — [{¥0) — (v}l
3L, mf msy
- . (141)
kv — <vz>|[(p:‘; +mdt " (f + ma)*]
Consequently, ,((¢") — (#,)) can be expressed as
Da(m.)(r)
2 (v — (v)l?

L () = (1) =

2
my Mg

x + ] (142)

[(p% +mdt o)+ mpt

In order that Eq. (117) be consistent with the fact
that various (1/(r)) contributions have been neglected
in deriving the scattering solution, the exponential
terms must be of order one where these contributions
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TasLe I. Values for {r) in units of mz* such that
Loty —t) = 1.
Mass {r T,
Resonance MeV Decay mode  m; MeV
N 1236 o, P 13 120
Y* 1405 m X 41 35
p 765 m T 17 124
¢ 1019 K, K 68 33
f 1253 m 1092 118

are negligible. It is clear from Eq. (142) that this
condition is always satisfied in the high-energy limit
Po—> 9, po < (Pg).

In Table I, the values of (r) corresponding to
L'y — (t)) = 1 are given for various high-energy
resonances. Whereas retaining the exponential terms
as compared to the (1/{r)) terms for the Baryon
resonances may be of borderline validity, for the =
meson resonances it plays a dominant role if a second
interaction takes place well outside the original
interaction region but inside of the range
N =2w — (v)l® T2¥(my,)

x e} + md) ¥ + mip} + m)i (143)
The expressions y; — ¥, given in Eqs. (114) and (115)
therefore represent a better approximation to the
exact solution of the scattering problem than is
obtained with the standard approach and may prove
of value when taking into account final state inter-
actions. It is interesting to note that any final state
interaction that involves the resonant parts of ¢, — ¥,
is peripheral because from Eq. (117)

Y= ya~ 1 — de™,

which tends to zero for small r.

6. DISCUSSION

In the interest of simplicity it was assumed above
that there was only a single state |a). For a relativistic
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theory there would in general be at least the other
state, say |a_), the negative energy state of |a,). The
propagator for this state becomes

la{ail
Ez:E — E, — D,, + 4T,
_ z(1'7o + E + D,, + i) [a,)(a;|
v (E + il — (E,, + D,,)?

since iD, and I'; are presumably invariant to charge
conjugation. Near the resonance this can be written as

5 lay)(a,)
7 E — E, — D,, + i(T,/2)

~ 2m, la)(a,l

T (E + ¥ — (E,, + D))"

where, as before, terms of order (I',/Ey) are neglected.
Consequently, the cross sections have a Lorentz shape
rather than the shape of a Breit~Wigner resonance.

The formalism developed in this paper is easily
extended to include closely coupled unstable states as
well as isolated resonances by adopting the projection
operator techniques developed by Feshbach!? and
recently extended by Mower.!® The generalization is
made simply by using the appropriate diagonal
elements of the Green’s function rather than those
defined by Eq. (60).
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A new and simple derivation of the cluster expansion for the free energy of an Ising model with
arbitrary range of interaction is presented. The proof explicitly isolates the dependence of the free
energy on the strength of individual interaction bonds. Several points of principle are discussed. An

illustrative appendix gives simple applications.

I. INTRODUCTION

HE term “cluster expansion” has several meanings
in the literature. Roughly speaking, let us distin-
guish between (a) perturbation expansions in powers
of the interaction strength, the terms of which may
be represented graphically as linked clusters, and
(b) nonperturbative expressions giving the physical
properties of an ensemble in terms of those of its
constituent subensembles. There are, of course, con-
nections between these two types of expansions, the
latter being in some sense partial summations of the
former (see below). It is with cluster expansions of
the type (b) that this paper is primarily concerned.
Past derivations of the cluster expansion for the
Ising model have followed two separate lines. The
first approach, due independently to Rushbrooke and
Morgan?! and to Elliott and Heap,? was motivated by
the desire to treat the “randomly dilute” Ising model,
in which a proportion, p < 1, of lattice sites are
magnetically active and the remainder are inert.
It is postulated that the active sites are distributed
randomly, with no reference to energetic considera-
tions. At sufficiently low concentrations p, the prob-
able distribution of active sites looks like a collection
of small magnetic clusters of various sizes and
configurations, each isolated from its neighbors by
nonmagnetic sites. Under these circumstances it is
reasonable to expand the thermodynamics as a sum
of contributions from isolated magnetic clusters, each
multiplied by an “occurrence factor,” involving p and
the geometry of the perfect lattice. In this approach the
occurrence factor for a given cluster is a cumbersome
function of p, since one must require not only that all
the cluster sites are active but also that all the neigh-

* Research supported by National Science Foundation Grant
No. NSF GP 4937.

1 National Aeronautics and Space Administration Fellow.

1 G. S. Rushbrooke and D. J. Morgan, Mol. Phys. 4, 1 (1961);
see also D. J. Morgan and G. S. Rushbrooke, ibid. 4, 291 (1961).

2 R. J. Elliott and B. R. Heap, Proc. Roy. Soc. (London) A265,
264 (1962); also, B. R, Heap, ibid. 82, 252 (1963).

boring sites, with which the cluster might interact,
are inert. After some labor the expansion can be
exhibited as a power series in p. The meaning of this
expansion for large p, particularly in the limit p = 1,
is not clear from the derivation. For large p the
occurrence of isolated finite clusters becomes most
improbable. In particular, for p = 1 the occurrence
factor for every cluster other than the perfect lattice
itself is rigorously zero.®

To clarify this situation, Brout and Klein*% and
later Rushbrooke® took an entirely different approach.
High-temperature expansions™®in powersof § = 1/kT
times the interaction potential had been in existence
for some time. It proved possible to associate a
concentration dependence with each of the terms in
this expansion and then to sum all terms of given
concentration dependence, thus rederiving the power
series in p. This second derivation, while free of the
conceptual difficulties of the first, is combinatorically
quite complicated in a way that tends to obscure the
appearance of the thermodynamic functions of the
magnetic clusters,

The present derivation works for p = 1 but uses a
magnetic field and an interaction strength varying from
site to site and from bond to bond, respectively. The
free energy is thus exhibited in its functional depend-
ence on each site and bond. The derivation holds for
arbitrary range of interaction. The result emerges
directly in terms of the cluster free energies. It is easy
to introduce powers of p appropriate to the random
dilution problem into the p =1 form of the free
energy.

Section II presents the meat of the derivation. The
result is discussed in Sec. III. Calculations of previous

3 Each inert neighbor carries a factor (1 — p), which vanishes at
p = 1. Only the perfect lattice lacks inert sites.

4 M. W. Klein and R. Brout, Phys. Rev. 132, 2412 (1963).

8 R. Brout, Phys. Rev. 115, 824 (1959), provides background for
Ref. 4.

8 G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964).

7 For a list of these references see G. F. Newell and E. W.
Montroll, Rev. Mod. Phys. 25, 353 (1953).

8 G, Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961).
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authors are resketched from our point of view in an
Appendix.

We wish to emphasize that our result, Eq. (21), the
cluster expansion in powers of p, is identical to that
derived by previous authors.!24=¢ Only the proof is
different. Methods very similar to those we use have
been employed in other contexts by Kubo, Strieb,
Callen, and Horwitz.?

II. THE DERIVATION

Use numerical arguments 1,2, - - - to refer to the
N sites of the Ising lattice. It is not necessary at this
stage to specify the lattice geometry. Write the Ising
Hamiltonian H as

—pH = g b(Du(1) +<§>v(12),u(1)#(2), M

where b(1) is the dimensionless external magnetic
field at the site 1, ¢(12) is the dimensionless interaction
strength between sites I and 2, and

is to be read as the sum over all interacting pairs 1, 2.
The dynamical variable u at each site is restricted to
the values u(1) = 1. We emphasize that (1) and
v(12) are functions over sites and pairs of sites,
respectively. In the particular case of uniform magnetic
field and nearest-neighbor interactions

v for 1 and 2 nearest
b(1) = b, v(12) = neighbors, )
0 otherwise.
The free energy F of the model is
—pF = W = In Tr exp (—H), 3)
where the trace is over the two values of each operator
u. Now, any operator 4 satisfying A*> = 1 as a mini-
mum equation obeys
exp (z4) = cosh a(1 + A4 tanh «) Q)
for any number « for which the operator exponential
is well defined. Use (4) to rewrite W:
W=W,+ W &)
with
W, = > In 2 cosh b(1) + Esln cosh v(12)  (6)
1 12

and

Wils, f] = In [2-N Te [T + u(D)s(1))

1

xII0+ .u(2)/t(3)t(23))], %)

where
s(1) = tanh b(1), #(23) = tanh v(23), 8)
? R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962); B. Strieb,

H. B. Callen, and G. Horwitz, Phys. Rev. 130, 1798 (1963). We are
grateful to the referee for bringing these references to our attention.
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and the functional dependence of W, on the set of
variables s(1), #(23) has been indicated. Observe that
expansion of the muiltiple product in (7) produces a
power series in the operators . The trace of any term
which contains an odd power of one or more of the
operators u(1) is zero. The relation

Wils, 0] = 0 )
is a direct consequence of this important property.

What, now, is the structure of W[s, ]?
Wils, t] may be regarded as the result of the opera-

tion,
é
Wils, ] = exp | 31002) s [ Wil Ao (10
This is just a formal way of writing the Taylor
expansion!® of W, in the ¢ variables. It is convenient
to regard (10) as a multidimensional translation
operation:

Wils, t] = [T T(12)Wy[s, 1], 1y
where aw
7(12) = exp [#(12) 3/6(12)] (12)

and it is left implicit that the barred variables are to
be set to zero after differentiation. All the operators
T(12) commute. Note that every term in the expansion
of [T(12) — 1]W[s, f] contains one or more powers
of #(12). Thus, the separation,

T(12) = 1 + [T(12) — 1]

isolates those terms which do not depend on »(12)
from those which do.

We now assert that the development of W, in
AT = (T — 1) is the cluster expansion:

Wils, t] = <1;[> [1 + ATA2)W[s, 7],  (13)
AT(12) = T(12) — 1. (14)

The general term in the expansion of (13) is just a
product of AT factors for a certain set, G, of inter-
acting pairs:

TTAT().

Ped
A simple graphical representation is achieved by
drawing onto the labeled lattice of sites those bonds
« contained in G. Every such graph appears once and
only once in (13). See Fig. 1 for examples. Many of
the terms in (13) correspond to graphs having two
or more disconnected parts. We now prove the follow-
ing proposition: The contribution to (13) of every

10 Equations giving Ising thermodynamic functions as power
series in £ = tanh v have been given, for example, by T. Oguchi, J.
Phys. Soc. Japan 6, 31 (1951), and S. Katsura, Progr. Theoret. Phys.
(Kyoto) 20, 192 (1958). Such expansions are in a sense rearrange-
ments of those given in Refs. 7 and 8. Equation (10) can be used
as a basis for their derivation.
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¢, , \ 2 F1G. 1. Graphs in the ex-
1e—e2 41 —s . pansion of Eq. (13). Graphs
AT(12)  ATU2)AT(34)  AT(12)AT(23) @ and (c) are connected.

Graph (b) is disconnected
and does not contribute to

a) the free energy.

b )
disconnected graph is zero.!* Consider a disconnected
term,

T1 AT(@) IT ATBWLs, 7],

aeGy PeGa
where no bond in G, shares a site with a bond in G,.
To make this more explicit, let F; and F, be the set of
end points of the bonds in G, and G,, respectively.
F, and F, are disjoint. Notice that the 7 variables
associated with neither G, nor G, may be set to zero
immediately. Now evaluate W,[s, {] by (7). The trace
factors. The logarithms of the factors add. The u’s
associated with sites in neither F, nor F, cannot be
paired. So, by a logic parallel to that leading to (9),

Wils, f]lo = Wils, f; G, + Wils, £ Gol,  (15)
where the bar on the left indicates that £ = 0 for bonds

in neither G; nor G,. The quantities on the right are
defined by

Wyls, f; G] = In [2—" TrE (1 + p(Ds())

x IT (1 + /4(2)/4(3)t(23))]- (16)

23)e@
The trace in (16) is restricted to the » sites contained in
F. Ws, t; G] is just the nontrivial part of the free
energy of an Ising model containing only the sites in
F and the bonds in G. Equation (15) expresses the
additivity of the free energy of noninteracting sub-
systems. Since

AT(x € Gy)Wi[s, f; Gyl = AT(B € G))Wils, ; G,] = 0,
(17)

the proposition is proved. Thus,

Wils, 1= 3> TIAT@QWls, ], (18)

connected ¢ aeG

which shows the basic cluster property of the free
energy. The term, C[G], associated with each graph
G contains the total contribution of the group of
bonds in G acting together; i.e., the term is present for
any dilute Ising model containing all the bonds in G
but vanishes as soon as any one of the bonds in G is
removed.

Equations (1), (5), and (18) constitute the cluster
expansion for the undiluted Ising model with arbitrary
strength and range of interaction. We now complete
the circle!? by pointing out that the contribution to
mroposition ensures that for an interaction of finite range
the ratio F/N is finite as N — o0, i.e., that the free energy is

extensive.
12 See Sec. 111 (i).
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W, of each graph G is expressible as a sum of free
energies of “mutilated” Ising models, in which the
only bonds are in subsets of G. Notice that

Wils, t; G] = g T()Wi[s, 7] (19)

is a special case of (11). Thus, each term in (18) can be
written as

C[G] = l_g AT()Wls, f] = gzc; (—=1)"Wils, t; ¥],

(20)
where the sum has one term for each subset, y, of G
and n, is the number of bonds in G but not in y. For
small clusters W, [s, ¢; y] is easy to evaluate via (16) or
other available methods. Then (20) expresses con-
veniently the contribution to the free energy of the
graph G.

The extension to the randomly dilute system is now
straightforward. We follow other authors!:24¢ in
arguing that for large N it is possible to realize the
“randomly dilute” system described in Sec. I by
assigning to each site independently a probability p of
being active and correspondingly a probability (1 — p)
of being inert. Any cluster of n labeled points then
has a chance p* of surviving intact a dilution of the
lattice from p =1 to some concentration p < 1.
Thus the contribution of each graph G, having n
sites as bond endpoints must be decreased by a factor
p™ The cluster expansion then reads

—BF = W = p > In 2 cosh b(1)
1
+ p* > In cosh v(12)
12>

L9
+2 2
n=2 Ga
connected
which gives the free energy of the randomly dilute
Ising model in an arbitrary external field and with
arbitrary interaction range and strength.*® The
restriction to uniform magnetic field and, for example,
nearest-neighbor interactions is direct. Some simple
applications are presented in the Appendix.

III. DISCUSSION

(i) The skeptical reader will have observed a certain
circularity in the argument for p = 1. Equation (13)

TTIAT@Wils, £], (21)

a€Gn

13 There is a hidden assumption here. Equation (21) is actually
a rigorous evaluation of the average of W over an ensemble of
dilute Ising models characterized by a site occupation probability p.
The identification of (21) as the free energy of a typical Ising model
of concentration p rests on two assertions: (i) that the peaking of the
concentration distribution is such that (21) gives the mean free
energy of Ising models with concentration p, and (ii) that the fluctua-
tions of free energy among Ising models of concentration p are
sufficiently small so that a typical one will have a free energy near
the mean with high probability. We do not attempt to justify these
assertions.
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expresses T in terms of (T — 1), while (20) gives
(T — 1) in terms of T. In effect, the substitution of
(20) into (13) expresses Wi[s, t] as Wi[s, ¢] plus a set
of terms summing to zero, involving the free energy
of Ising models with one or more missing interaction
bonds.* What is the significance of an ‘“expansion”
which is simply a rearrangement of a large number of
extraneous terms adding to zero? We have indicated
after (18) that the cluster expansion in our form does
have the significance of isolating the contribution
of each site and bond to the free energy. Suppose a
given interaction bond v(12) is deleted from the
Hamiltonian (1). What is the decrease in free energy ?
In principle the answer is obtained by adding to the
trivial term, In cosh v(12), the sum of the contributions
to (18) of all graphs in which the bond #(12) occurs.
Of course, this computation is not easy in practice.
The free energy associated with a given site can be
calculated affalogously. Part (i) of the Appendix
should clarify these points.

(ii) A more subtle question concerns the convergence
of (21), particularly at p = 1. When the number of
sites, N, is finite, there is no difficulty. It is the present
authors’ belief that no one has been able to discuss
the N — co limit of the cluster expansion with any
degree of mathematical rigor.®

(iii) Another mathematical question concerns the
convergence of the translation operator 7(12). When
t = tanh v approaches +1, one may well worry that
the radius of convergence of such forms as In (1 + ?)
is being approached. Again, there is no trouble
for finite N: one may always work for very weak inter-
action, for which the Taylor expansion is certainly
valid, and then invoke the analyticity of W in inter-
action strengths to extend the result. The N — oo
limit remains obscure.

(iv) An interesting conceptual point emerges in the
comparison of our result with that of Ref. 1. Our
analysis isolates individual bond contributions, while
Rushbrooke’s analysis is based on the contributions of
isolated point clusters of magnetic sites. Let us restrict
ourselves to a square plane lattice with nearest-
neighbor interactions and develop an apparent para-
dox. Refer to Fig. 2. Both 2(a) and 2(b) appear as
admissible graphs in our formulation. Only 2(b) is an

4 Ttis just thisfeature which we noted in Rushbrooke’sterminology
in Sec. I and Ref. 3.

15 R. J. Elliott, B. R. Heap, D. J. Morgan, and G. S. Rushbrooke
{Phys. Rev. Letters 5, 366 (1960)] presented an argument showing
that the critical concentration p, bejow which long-range order is
impossible no matter how low the temperature, is the same for the
Heisenberg and Ising models, depending only on lattice structure.
This proof was based on the susceptibility expansion, i.e., the
second derivative of (21) with respect to the external field. In
a critique of this proof Rushbrooke and Morgan [Mol. Phys. 6, 477
(1963)] suggest that the susceptibility expansion for the special case
b = 0, T = 0-is not uniformly convergent.
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.l AN
. 3 . 3

{a) {b)

F1G. 2. Two p* graphs. Only (b) is a
point cluster in the analysis of Ref. 1.

admissible point cluster for Rushbrooke. Since sites
1 and 4 are nearest neighbors, they must interact in
Rushbrooke’s formulation. The paradox is that
Wils, t; 2(a)] for the graph 2(a) seems to appear in
our expansion but not in Rushbrooke’s. The resolution
is that both graphs contribute to order p* of our
cluster expansion. When contributions are calculated
according to (20), there is a cancellation between them
in which Wj[s, ¢; 2(a)] disappears. The identity of our
result with previous ones guarantees that this cancel-
lation is a general feature. In our formulation there
will be cancellations between different graphs G,, for
the same value of n. This dead wood is the price we
pay for the conceptual clarity of being able to exhibit
explicitly individual bond contributions. Part (i) of the
Appendix should make these remarks more concrete.
(v) At b = 0 there is a simplification of the cluster
expansion. Graphs with one or more free ends!® do
not contribute. This is easy to see: let the free site be
1 and its single connecting bond be #(12). Then, since
s(1) = 0, the (1) in u(1)u(2)#(12) can never be paired

and
(1(12) — DYWis, i} =0 22

regardless of what other bonds the graph contains.

(vi) Calculations. Once the interaction »(12) is
made translationally invariant, all graphs of similar’
geometry contribute identically. The contribution of a
given graph type is, of course, the product of a single
graph contribution and an occurrence factor. See
Appendix (ii) and (iii) for some examples. In actual
computation our form, (21), of the cluster expansion is
not significantly less cumbersome than others.’® We
do feel that the derivation is both simple and trans-
parent.

(vii) Note finally that Eq. (18) allows treatment of
what we may call the “bond dilution” problem, in
which bonds instead of sites are removed on a random
basis. For a concentration p of bonds (all sites
remaining present),

Wo = > In 2 cosh b(1) + p 3 In cosh v(12). (23)
1 ag

W, is given by the same graphical sum as in (21), only
with n reinterpreted as the number of bonds in the
graph G,,.

16 A free end is a site which serves as endpoint for one bond only.

171t is only neighbor relationships which count here, not bond
angles. See Appendix, part (ii).

18 By comparison with Ref. 1, for example, we have (T — 1)
factors instead of (1 — p) factors.
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APPENDIX. SAMPLE CALCULATIONS

(i) The Triangle Problem: Consider an Ising model
consisting of three sites, 1, 2, and 3, and three bonds,
o, &g, and az. See Fig. 3(a). Since N = 3 is small here,
the W given by Eq. (21) can only be interpreted as the
ensemble average described in footnote 13. The calcu-
lation of W, involves seven graphs, Fig. 3(a) itself,
three graphs with bond pairs, and three with single
bonds. Label the graphs by bonds contained and use
(20). Typical contributions are

C[123] = W4[123] — W4[12] — W,[13] — W,[23]

+ Wil1] + Wi2] + W[3),

Cl12] = w,[12] — wy[1] — W [2),

G111 = wmil], (A1)
where s and ¢ dependences have been suppressed.
From (16),

Wi[123] = In [1 + s5485t5 + 512555 + 115555
+ 125152 + LalsSeSs + hilaSiSs + fitals],
Wi[12] = In [1 + 532,55 + 115255 + 13255:55],

Willl = In[1 + #;5.55],

where

(A2)

s, = tanh (i), (A3)

If for simplicity we allow bond strengths and fields to
become equal, Eq. (21) reads
W = 3pln2cosh b + 3p?In cosh v 4+ 3p*W;[1]
+ pA([123] — 3Wy[1]). (A4)

Note that the non-point-cluster contribution, W,[12],
has disappeared'® from (A4), as discussed in Sec.
ITI(iv).

Suppose now that bond «, were absent. See Fig.
3(b). The graphs, [123], [13], [23], and [3], would give
zero. Instead of (A4),

W = 3plIn2cosh b + 2p*In cosh v + 2p*W;[1]
+ pA(Wi[12] — 2W4[1]).  (A5)

Note that W,[12] does appear here. The difference,
(A4)~(A5), is that part of the free energy due ex-
clusively to the presence of bond a,.

(ii) The Free Energy for Low Concentration: Let
us calculate the cluster expansion (21) for plane
square and simple cubic nearest neighbor Ising models
through terms in p3. Contributing graphs are shown in
Fig. 4. Graphs 4(b) and 4(c) contribute identically.

t, = tanh ov(a,).

19 This cancellation holds even when bond strengths are unequal.
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Fi1c. 3. An Ising model consisting of
three points and (2) three bonds or (b) two

bonds.
{a) (b)
FiG. 4. Free energy graphs
of orders p? [graph (a)] and p?
"_I [graphs (b) and (c)] for plane
* square and simple cubic

nearest-neighbor  lattices.
Graphs (b) and (c) contrib-
ute identically.

C4(D)] = W,[4(b)] — 2W,[4(a)],

(o) (b) {e)

Cl4(a)] = W, [4(a)]. (A6)
Wil4(b)] = In (1 + 252 + £259),
Wil4(a)] = In (1 + #52). (AD

Occurrence factors for 4(a) and 4(b) are }zN and
4z(z — 1)N, respectively, where z is the number of
nearest neighbors. Thus, through order p®
WIN =pln2coshb 4 }p%z
x In(cosh v + tanh® b - sinh v) + 4 p®2(z — 1)
% [In(1 4+ 2tanh® - tanh v 4 tanh? b - tanh? v)
— 2In(1 4+ tanh® 5 - tanh v)]. (A8)
This result agrees® with Ref. 1.
(iii) Ring Graphs: Consider an Ising model with
b = 0 and arbitrary range of interaction. As shown in
Sec. III(v), graphs with free ends do not contribute.
Ring graphs are defined as those graphs consisting of
a single closed loop of bonds, i.e., at each vertex of a
ring graph two and only two bonds meet. Without
discussing the relevance of this set of graphs,® we
show, as a demonstration of technique, that it is
possible to go some way towards evaluating its
contribution to the free energy. Consider the set of
ring graphs with n bonds and (thus) » vertices. Only
the leading term of (20) fails to vanish. A typical
graph, labeled now by its vertices taken in serial order
around the perimeter, gives

Cull---n]=1n(1 +#(12)1(23) - tn — 1,m)). (A9)
The total n-bond ring contribution to the free energy

W, ring is obtained by summing (A9). The sum on
graphs is converted to a sum over vertex sites:

W,.nng=§—m;' CIl---n], (A10)

where each of the arguments is summed over all
lattice sites. The prime on the summation restricts the
vertices, 1,---,n, to distinct sites. The symmetry
factor 1/2n compensates for multiple counting. The
result (A10) has been derived elsewhere.?2
T80 Actually, it is the susceptibility ¥ which is calculated in Ref. 1.
The following equivalences facilitate comparison:
2

‘LTV:' = HTy  RefD),

v = K (Ref. 1) = J/2kT (Ref. 1),

b = gfH|2kT (Ref. 1).

31 This is discussed in a particular context in Ref. 4.

22 Reference 4, Eq. (10). The restriction on the summation is
omitted there as part of the approximation scheme being used.
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The Padé approximant is applied to the partial-wave integral equation and is shown to yield approxi-
mate solutions which satisfy exact two-body unitarity and which converge to the N/D solution.

I. INTRODUCTION

HE Padé approximant! can be used to make

approximate analytic continuations of the power
series expansion of a function. For rational functions
or functions whose power series expansion is a series
of Stieltjes' the Padé approximant can be shown to
“converge” to the function as the degree of the Padé
numerator and denominator tend to infinity.* Fortu-
nately, some functions of physical interest can be
represented as series of Stieltjes, for example, the
forward scattering amplitude! and partial-wave scat-
tering amplitude for potential scattering® as a function
of the potential strength. Here we demonstrate the
convergence of the Padé for a relativistic model. We
consider the s-wave amplitude for the scattering of
two spinless particles as a function of the strength of
the left-hand discontinuity. We show that it is related
to a series of Stieltjes and hence the Padé can be used
as an alternative to the N/D method® for solving the
partial-wave integral equation. A natural approximate
solution to the problem is thus given by the (N, N)
Padé, which satisfies two-body unitarity and which
would yield the exact amplitude if the left-hand cut
consisted of N poles.

* Supported in part by the National Research Council of
Canada.

1 G. A. Baker, Jr., in Advances in Theoretical Physics, K. A.
Brueckner, Ed. (Academic Press Inc., New York, 1965), Vol. 1, p. 1.

2 H. S. Wall, Analytic Theory of Continued Fractions (D. Van
Nostrand Company, Inc., Princeton, New Jersey, 1948), Chaps.
XVII and XX.

® A function f(z) is a series of Stieltjes (Ref. 1) if f(z) =
L” [d(#)]/(1 — uz)] has a power series expansion f(z) = X f,z",
where ¢(«) is a bounded nondecreasing function taking on infinitely
many values in the interval 0 < u < co.

4 The precise statements of convergence which we use are: (1)
If f(2) is a ratio of polynomials of degree m in the numerator and »
in the denominator then the (N, M) Padé is equal to f(z) if N > n
and M > m. (2) If f(z) is a series of Stieltjes and has a finite radius
of convergence, Baker (Ref. 1) proves that lim (N, N + j) Padé

N—wo

converges to f(z) when z is not a singular point and j > —1. By
considering f(z) = f(0)/[1 — zg(z)], one can show that g(z) is a
series of Stieltjes and thus extend the theorem to arbitrary ;.

5 8. Tani, Phys. Rev. 139, B1011 (1965).

® G, F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

II. THE PADE APPROXIMANT

For the elastic scattering of two spinless particles,
the s-wave amplitude

T = ¢ sin &(s)/p(s) 6))

is a real analytic function of s (the square of the total
center-of-mass energy) in the complex plane cut along
the real axis, where p is a kinematical factor. We
assume that for sufficiently small values of 4, T
satisfies the dispersion relation

T(4, 5) = AB(s) + 3 Im—w—s—) as', ()
T Jsg S -39S
where
Bo == [* X, o)
M-8 — 8§

the left-hand cut contribution to T is given. In the
two-body unitarity approximation, along the right-
hand cut

Im T(2, 5) = p(5) | T(2, 8)I°. @

Equation (2) can then be considered as a singular
nonlinear integral equation for T(4, 5). We propose to
solve Eq. (2) by first iterating to get

T(, ) = 3 LOF ©)

and then forming the (V, M) Padé approximant to the
power series (5)

[TWD]w,2r = Pr,u(D/Qn, (D), (6)

where Py, 3; and Qy, »r are polynomials in A of degree
M and N, respectively, with coefficients which are
functions of s and determined from the condition that
(6) have the same power series expansion as (5) up to
and including the term A¥+¥+1,

ITI. PROOF OF UNITARITY AND
CONVERGENCE

We now prove the following:
(1) [T(A)]y, » satisfies exact two-body unitarity for
N> M,

512
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(2) In the limit as N and M become infinite
[T(M]y, 31 is equal to T(4).

To prove (1) we need only know that the (N, M)
Pad¢ is unique.? Along the right-hand cut unitarity
tells us that Im [1/T(4)] = — p. The uniqueness of the
Padé tells us that A/[T(D]y.»r = [A/T(A)]pr_1. v, and
for M LN, ImAT(A) =1Im [A/T(A)]z-1.5. Com-
bining these three statements we have, for N > M,

Im [T(D)]x, 5 = p(8) [[TA)]w, el M

To prove (2) we use a modified version of the N/D
method of solution due to Ball” which reduces the
solution of Eq. (2) to the solution of a Fredholm
integral equation of the Hilbert—Schmidt type.

We write T = N/D with

N(s) = AB(s) + 2 fu ds'K(s, s', sy)N(s')  (B)
T J—oo

and
_ 4 _ (s —59) [*_N(s)p(s) ds’
D(S) =1 - o (S, _ S)(SI _ sO) ’ (9)
where
K(s, s, so) = B(s')(s" — sol) — (s — s0)B(s) 'p(s’)
§ =5 (5" — s0)
(10)

and s, is an arbitrary point less than sp.

Since the kernel for the integral Eq. (8) is of the
polar type,® it can be transformed into one with a
symmetric kernel,

, Vi
ks, 5’3 50) = K(s, 8'> 50) (ﬂ(s—) (s——s“—)) (11)
p(s’) (s — 50)

and if sufficiently well behaved has a denumerable set
of real eigenvalues 4,(s,) which we assume to be non-
degenerate. N and D can then be expanded in terms
of the eigenfunctions and eigenvalues of the kernel.”*
One gets

_ 2~ Bi(sa) Ui(s, S/
N = 4B + # LT, (1)
where
B = [Caw BBV
g S — 5

s, ) = 440 | KGs QU ) d'. - (14)
3r
If one now considers s = s,, then one has finally
TG, 5) = AB(s) + (4, s),

7 J. S. Ball, Phys, Rev. 137, B1573 (1965).

8 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Pt. I,
Chap. 8.

% W. V. Lovitt, Linear Integral Equations (Dover Publications Inc.,
New York, 1950).

(15)
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where

BYs)
As) =Y —— e 16
S0 =340 (16)
and B,(s) and A,(s) are both real for s; < s < s5p.
There are three cases that one can consider.

(A) The A, are finite in number: A necessary and
sufficient condition for this to occur is for the left-hand
cut to consist of a finite number of » poles, in which
case [T(A, $)lx.ar = T(4, 5) for N and M > n.

(B) The A; are all of the same sign: If > BX(s)A(s) is
uniformly convergent,® then B(s) = > B¥(s)A(s), and
Eq. (15) becomes

B3(5)A,(s)

T, s) = Ay ————+= 17

(=130 an

so that for s; < s <sg, T(4,$)/A is a series of
Stieltjes® in 4 and therefore*

Alfim (T4, $)Iy,n+i = T(4, 5). (18)
A necessary and sufficient condition for Case (B) to
hold is for the kernel k (s, s”; s,) to be definite.® That is

fwk(s, §'; 80 f($)f(s)dsds # 0

for arbitrary real f(s). From Egs. (3), (10), and (11)
one has the equivalent condition

f dsa(s) fA(s)(s — s5) # . (19)

Hence if sy > sz, the kernel is definite if and only if
o(s) is positive or negative semidefinite in the interval
(—o0,sz). This is indeed the situation in many
bootstrap models.”

(C) The A, differ in sign: In this case one is dealing
with the moment problem over the interval (— oo, c0).
From the form of f(4, s) in Eq. (16), one can prove'-?
that for j = 41, 43, -, and s;; < 5 < 53,

I\IIi_{r:o Lf s ly,wes = f(4 ). (20)

Also, one can write T(4, s) = AB(s)[1 — Ag(4, s))%,
where g(4, s) is of the same form as f(4, s), and hence
the statement of convergence (20) applies also to
g (4, 5). Combining the statements of convergence for
f(4,s) and g(4, s) with the uniqueness of the Padé,
one obtains Eq. (18) forj = +1, £3,---.

IV. DISCUSSION

We have shown that the Padé approximant can,
with complete rigor, replace the N/D method of
solution of the partial-wave integral equation. It
provides also a natural method of obtaining approxi-
mate solutions which satisfy exact unitarity. These
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solutions are roughly speaking equivalent to approxi-
mating the kernel by a finite sum of separable kernels,
which in this case means replacing the left-hand cut by
a finite number of poles. They have the advantage,
however, that they are independent of the approxi-
mation. That is, the solution does not depend on the
choice of these poles. For example, the (1, 1) Padé
approximant is

o R —1
(7. 9ha = 181 = 2870 [ EEE D g

@D
which would be exact if B(s) consisted of one pole. It
is interesting that the approximate solution (21) has
already appeared in the literature and was considered

D. MASSON

as satisfactory for weak and moderately strong
couplings.!® The approximate solutions have the
additional feature that they also supply bounds on the
exact solution.!

The techniques illustrated here should be capable
of generalization to include many channels and spin,
and hopefully extended beyond two-body unitarity.*!
The Padé method may of course be applied to any
integral equation. The proof of its convergence is at
present, however, limited to solutions which are
essentially series of Stieltjes.

10 G, L. Shaw, Phys. Rev. Letters 12, 345 (1964); J. Reinfelds and
J. Smith, Phys. Rev. 146, 1091 (1966).

11J, L. Gammel and F. A. McDonald, Phys. Rev. 142, 1245
(1966).
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Reciprocal variational principles are used to formulate upper and lower bounds on the low-pressure
(Knudsen) flow rate of a gas through a channel of arbitrary geometry. The upper bound is equivalent
to one obtained earlier by DeMarcus, but we believe the lower bound to be new. Explicit calculations
are given for a short parallel-plate channel. The variational principles discussed here may be applied to
a wide range of problems involving linear inhomogeneous integral equations.

1. INTRODUCTION

IN the so-called Knudsen regime, a gas flowing
through a channel is at sufficiently low pressures
for molecule-molecule collisions to be negligible, and
only molecule-wall collisions need be taken into
account. In addition, one usually assumes that a
molecule equilibrates with the wall at each collision,
so that its paths before and after the collision are
totally uncorrelated.

Now, suppose that we have a gas at equilibrium in
front of the entrance of the channel (Fig. 1), at a
density of # molecules per cc, that the exit of the chan-
nel opens into a vacuum, and that these conditions
are maintained until a steady state has been reached.
If the mean molecular speed at the prevailing tem-
perature is 4, then I, = {ndA is the number of mole-
cules entering the channel per unit time, 4 being the
area of the entrance cross section. Of these, a number

* Present address: University of Notre Dame, South Bend,
Indiana,

Qfsec will leave through the exit, never to return,
while the remainder come back out through the
entrance.

For all but the simplest channel geometries, the
calculation of @ is an exceedingly difficult problem,*
and must be treated by approximate methods. One
of the most promising has been the variational pro-
cedure introduced by DeMarcus,? which leads to

das

Fic. 1. Channel with
sample molecular path.

n molsé c vac.

ds’

1E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book
Company, Inc., New York, 1938).

2 W. C. DeMarcus, in Advances in Applied Mechanics Suppl. 1,
Rarefied Gas Dynamics (Academic Press Inc., New York, 1961), p.
161.
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rigorous upper bounds on the transmission prob-
ability Q/I,. In this paper, we develop a companion
procedure to bound @/I, from below as well.3

2. MATHEMATICAL FORMULATION

Steady-state Knudsen flow through a channel of
arbitrarily complex geometry is characterized by the
number of molecules (S) colliding with unit area
of the channel wall per unit time at each point S on
the wall. The function satisfies the Clausing-DeMarcus
integral equation,?

¥(S) = L,§(S) + fK(S’, Sp(sHds’, @)

where ¢(S)dS is the probability that a molecule
entering the channel will make its first wall collision
with the surface element dS located at S (Fig. 1),
K(S’, S) dS is the probability that a molecule leaving
the wall at S’ will make its next collision in dS at S,
and the integral extends over the entire wall. Under
the assumption that the molecule “forgets” its past
history upon each collision, K and ¢ will depend only
on the geometry of the system. Equation (1) is just
a mass balance condition, and states that a molecule
colliding with any portion of the channel wall must
have come either from the entrance or from some
other element of the wall. We find it more convenient
in what follows to rewrite Eq. (1) in the form

L4 — WM ~ [K(S, 9

X [¢(S) — ¢(S)]aS" =0, (2)
where

M) =1 -fK(s', S)ds'.

Once %(S) is known, the ratio QfJ, is readily
obtained from the relation?
Qly=1—A f w(S)$(S) dS/I,. 3)
The integral in Eq. (3) represents the rate at which
molecules leave the channel through the entrance.

3. UPPER BOUND ON @/,

In this section we rederive the variation principle of
Davison* and DeMarcus® by a somewhat different
route, so as to make clear its relationship to the
reciprocal principle discussed in the next section. We
show that solving Eq. (2) is equivalent to minimizing

3 For a general discussion of reciprocal variational principles see
J. L. Synge, The Hypercircle in Mathematical Physics (Cambridge
University Press, London, 1957).

4 B. Davison, Phys. Rev. 71, 694 (1947).
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the functional
Q(G, v} = % ﬂx(s, S)GX(S, §) dS dS’

+ [romeas @

with respect to G and vy, subject to the subsidiary
conditions that

Z Efgv(S)qS(S) das (%)
has a specified value and that
G(S, 8') = ¢(8) — ¥(S) ©)

for all S and S’. That a minimum value of Q exists is
evident from the fact that the coefficients of G? and y?
are never negative, i.e.,
K(S,8) >0, M(S)2=0;

the latter inequality follows from the interpretation
of fK(S,S’)dS’ as the probability that a molecule
leaving the wall at S does not pass directly out of the
channel.

The conditions (5) and (6) may be introduced
through Lagrangian multipliers o, and w(S, S');
instead of Q, we then minimize the functional

Q(G, v} = 06, 9} + iz + [[ 5, )

x [G(S,S) — »(S) + v(S)]. (D)
For the desired extremum the variation of Q' must
vanish,

f f 8G(S, SHIK(S, S)G(S, sd + 0y(S, $)] dS dS’
+ f 61p(S)|:21p(S)(1 - J K, ) dS') + 0;4(S)

—f(wa(S, S) - w,(S;, S)) dS’] dS =0. (8)

Setting the coefficients of 8G and dy independensly
equal to zero, we have the Euler—Lagrange equations

K(S,S)G(S,S') + 0y(S,8) =0 )]
and

2p(S)M(S) + w,4(S)
—f[wz(S, S') — wy(S',8)]1dS =0, (10)

from which w, and G can be eliminated by using the
subsidiary condition (6). Because of the symmetry of
the kernel K(S, S) with respect to the interchange of
S and S’, the result can be written as

0, 4(S) + 29(S)M(S) + 2f1<(s', S)
X [9(8) — ¢(S)1d8" = 0. (11)
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Equation (11) is identical with (2), provided we make

the identification

12)
The minimum value of the functional Q has a

simple meaning, as can be seen by multiplying (2) on

both sides by %(S) and integrating over the wall

surface. After some reduction one obtains

Q =1, f W(S)HS) dS = I,Z. (13)

Of course, this relation is only valid if ¥(S) actually
satisfies (2): if instead we calculate Q from trial func-
tions y* =y and G* = p*(S) — p*S’) # G, the
result will necessarily be larger:
Q* = Q{G*, y*} > I,Z. (14)
It should be borne in mind that, in order for (14)
to hold, y* must satisfy condition (5). In other words,
(14) is true only for trial functions which lead to the
required value of Z. On the other hand, different
choices for yp* lead to different values of the La-
grangian multiplier w, = ~2I,. Thus (14) gives an
upper bound on ], for a fixed value of Z. Recalling
that, according to Eq. (3),

Z = (I, ~ 9)/4, (15)
we can equally well say that we have an upper bound
on Q/Z for a given Z:

wy, = —2I,.

Q/Z = AQ|ll, — Q] < (Q*/Z2%) — A, (16)
or, after rearrangement,
o/, < 1 — AZ?Q*, a7

This is the bound used by DeMarcus in his treatment
of Knudsen flow.

4. LOWER BOUND ON Q/I,

To obtain a lower bound on the ratio Q/I,, we
reformulate the principle of the preceding section in
terms of the net flux J(S, S’) between two points S
and S’ on the wall, and the rate T(S) at which mole-
cules leave the unit area of the wall surface at S to
pass directly out through the channel entrance or
exit without further collisions. We thus seek to mini-
mize the functional

A{, T} = % f f [J%S, S)/K(S, S)] dS dS'

+ f [TXS)/M(S)]dS (18)

with respect to all J and T which are consistent with
a given entrance rate I,, i.e., which satisfy the mass
balance condition

Li(S) = T(S) +fJ(S, S’) ds’ 19)

W. STRIEDER AND S. PRAGER

at every S. In addition to (19), we require
JES,8)+ JS,S) =0
for all S and S’.
To take these subsidiary conditions into account,
we introduce Lagrangian multipliers 4,(S) and 1,(S, S)
and minimize

A{J, T} = AU, T} + f 1x(S)

(20)

x [T(S) + J JS, S) dS’] ds

+ﬂ/12(s, SHJI(S, 8) + J(S', S)1dSdS’. (21)
Setting the variation of A’,

A’ =f 8J(S, SHIJ(S, 8)/K(S, §) + 4u(S)
+ (S, 8) + 4(S’, 5)] dS dS’

+[sroRTEM® + HONaS, @)

equal to zero for arbitrary variations 6J and 67, we
are led to the Euler—Lagrange equations

J(S, 8") + K(S, 8)[4(S) + 24(S, §) + 4(S',8)] =0,

(23)

2T(S) + A,(S)M(S) = 0. 24

When introduced into (16), the requirement (20) that

J be antisymmetric with respect to the interchange of
S and S’ gives

24(S, 8') + 24(S', S) = —A(S) + L,(SH]; (29
with the identification
A4(S) = —2y(S) (26)
Eqs. (23) and (24) then become
J(S, S) = K(S, S")[%(S) — w(S")], 27
T(S) = M(S)y(S). (28)

Together with (19), these equations are equivalent
to the original Clausing-DeMarcus equation (2).

The minimum value of A{J, T} is the same as the
minimum of Q{G, v}, namely, [,Z, and is obtained if
and only if T and J satisfy (19), (27), and (28). This
time, however, the minimization has been carried
out at fixed /; [Eq. (19)], rather than at fixed Z. There-
fore, if in place of the minimizing J and T we use
trial functions J* and T* satisfying the conditions
(19) and (20), we obtain, for any given value of I, an
upper bound on the product /,Z:

AMI* T > LZ = Il — Q)/4.  (29)
This inequality may be rewritten in the form of a
lower bound on Q/I, to give the final result

Q/I,> 1 — AAYIE. (30)
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5. SHORT CHANNELS BETWEEN
PARALLEL PLATES

To illustrate the variational bounds (17) and (30),
we consider the flow through a two-dimensional
channel between two parallel lines separated by a
distance 4.5 The channel has a length L in the direc-
tion of flow, which we take to be the x direction. The
functions ¢ and K now depend only upon the x co-
ordinates of the points S and S’: assuming that
the gas molecules enter the channel and leave the wall
with a two-dimensional cosine law distribution, simple
geometrical considerations lead to®

$x) = (12)[1 — x/(x* + 4D,
M(x) = 34[$(x) + $(L — x)], @30
K(x — x'l) = 447042 + (x — xPI2. (32)
For a lower bound on Q/I,, we take J* identically
equal to zero and calculate T* from (19). It is clear
that, in using these trial functions, we are in effect
counting only those paths which involve no more

than a single collision with the wall surface. The
lower bound (30) thus becomes

L
o> 1 -2} {$*D/[$(x) + HL— x)]} dx. (33)

For short channels, we may expand (33) in powers of
p = L|A to obtain

O, >1— pl2+ p2f4 — p3j24 — pY12 + - --. (34)

A [fcf»(S)zp*(S) dS] ’
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An upper bound on QfI, for this system was
derived by Berman’ using a linear trial function
¥ = ax + b; in expanded form, Berman’s result is

Olly <1 = p[2+ p*4 — p*[24 — p*/16 + - -+, (35)

which is identical with (34) through the term in p3,

For very large values of p, however, the lower
bound (33) goes to zero as p~!, whereas Berman’s
upper bound for long channels is p~! in p. While the
one-collision trial function is thus quite- effective
for a short channel, improved trial functions are
necessary for larger values of L. For example, one
might choose

J*(x, x") = aK(]x — x')(x — x),
corresponding to the choice y*(x) = ax + b.

6. SUMMARY AND CONCLUSION

To exhibit the bounds on the transmission prob-
ability in a more explicit manner, we can use the
subsidiary conditions (5) and (6) to eliminate Z and
G* in (17), and the condition (19) to eliminate T* in
(30). In making the latter substitution, we may also
write

J*S,S") = wi(S, S
and, for any choice of the trial function j(S, S’) which
is antisymmetric with respect to interchange of S and
S’, maximize the lower bound on Q/I, given by (30)
with respect to the parameter u. The resulting in-
equalities are

1~
1
2

[[xs. 530 — v as a5 + [MprHs) as

20/, >21— quS’(S)M‘l(S) ds

A(J] J(S, SHHSM(S) dS dS’)2

+

Extension of these inequalities to diffuse-elastic
scattering from the walls merely involves a modifica-
tion of the kernel K, and DeMarcus has determined an
upper bound on Q/I, for flow through cylinders under
these conditions. Surface diffusion can also be included
if the wall surface is sufficiently irregular for the effect
to be appreciable.

Equations of the same form as (1) describe a wide
range of phenomena, such as radiation transfer, neu-

$ This is equivalent to three-dimensional flow between infinitely
wide parallel plates.

8 W. C. DeMarcus, United States Atomic Energy Commission
Report K-1302 (1957).

% f f 7S, SHKX(S, §) dS dS’ +m i(S, 8)i(S, SIYM(S) dS dS’ dS”

[i(8,8) = —j(§,8)]. (36)

tron diffusion, etc. The reciprocal variation principles
discussed in this paper apply in those cases where
the kernel K is symmetric, and where both K and
[l — fK(S, S") dS'] are everywhere positive or zero.
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Electrodynamics problems with mixed boundary values promise to assume increasing practical impor-
tance in fields such as plasma physics. A new method of attacking such problems in three dimensions

is presented and discussed.

1. STATEMENT OF THE PROBLEM

HE emergence of plasma physics as an important

scientific discipline has disclosed many imper-
fections in the traditional approaches to certain
aspects of mathematical physics, One of these is
the mixed boundary-value problem in electrodynamics
originating when a moderately conducting domain is
incompletely bounded by perfect conductors. While
it is evident that this problem can be solved in all
two-dimensional symmetries, the simplest examples
of complete three-dimensional character present great
difficulties.

The classical example of such a problem is Nobili’s*
colored rings first considered by Riemann.? This is
the problem of an infinite slab of conducting material
on whose plane sides two circular metallic disks held
at opposite potential are placed. The conductivity of
the slab is finite, that of the disks infinite. The formu-
lation of the problem is as follows:

A solution of Laplace’s equation ¢(p, z) is to be
found such that forz = +a,

#(p, £a) = Lo, p < c,
(0492) ., =0,  p>c

Here p is the two-dimensional distance (x% + y?i,
the thickness of the slab is 2a, the radius of each
electrode disk is ¢. A presumed solution of this
cylindrically symmetric, mixed boundary-value prob-
lem was given by Weber,?® but it was actually only an
approximation for the case where the disk size is small
compared with the slab thickness.

The method presented in the following pages
reduces the problem to a standard integral equation of
the Fredholm type (integral equation of the “second
kind”). In another paper? the construction of solutions

1 L. Nobili, Poggendorf Ann. 9, 183 (1827); 10, 393, 410 (1827).
2 B. Riemann, Poggendorf Ann. 95, 130 (1855).

2 H. Weber, Z. Angew. Math. 75, 75 (1873).

¢ 0. Laporte and R. G. Fowler, Phys, Rev. 148, 170 (1966).

of this equation is presented in detail together with
numerical results. Recently, the same problem was
attacked by Tranter® using the method of integral
transforms and an approximate solution was con-
structed. However, since the method given here is quite
different and capable of considerable generalization
(see Sec. 6 below), we think it merits a detailed
presentation.

2. THE SINGLE CIRCULAR DISK

As a preparation, let the well-known solution for the
metallic disk be rederived. We start with

#(p, 2) M
where A(2) is to be determined so that ¢(p, 0) is equal
to the constant potential ¢, for p < c. Rather than
trying to find A(4) directly, we make the following
Ansatz:

- f “aM(ph)e A A(R),
mJo

A() = L "dE cos AEf(E) @)
and attempt to find f(&) from
737 f " AT (p7) f "dE cos Af(E) = ¢,.  (3)

Replacing p by 7 momentarlly, we now operate on this
with (d/dp) fon dnf(e* — n*)}:

24d 7 dy
dAJ(nA) 1 d A 0
mdp Jo (5* —n’)*f Tt decos 816 = ":4)

After drawing the A integration to the left, the 7§
integral can be performed:

?  ndy sin Ap
AN g nd) =
fo (p* — )t ==

5 C. J. Tranter, Quart. J. Math. 2, 60 (1951).
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and (3) becomes

2 © s ¢
_.il_f da Mf dé cos A5f (&) = ¢,
wdp Jo A Jo

Again exchanging the order of integration gives

28 [arw | Peinipoosie =40
wdp Jo o 4

in which the 1 integral is recognizable as the “Dirichlet
Discontinuous Factor.”” Therefore, we have

f (P) = ¢0 s
and A(4) of (2) can now be substituted into (1).

3. THE SLAB PROBLEM

Exactly the same method is now employed for the
slab, with the modification that the vanishing of the
normal derivative at the plates is brought about by
assuming infinitely many equidistant image plates
held at alternate potentials. (See Fig. 1.) Let a potential
of the following form be assumed:

= 2 fwd}s( co e—|z+ﬂall_ e—|z+a|}~
mJo

- elelt — el (DA (6)
with A4(4) given by (2). This can be summed to be

$=2 f A SBRAZ ;DA —a <z < +a. (62)
wJo coshAa

With solutions of this form we now seek to satisfy the
boundary conditions on each of the plates. Let

¢ = +¢, for z=(4m + 1)q,
b= —¢, for z=(@4m— l)a.

Substituting these conditions into (6) leads to results
such as the following: For

z = —3a: +¢o=3f (41—t
wJO
4 etiat _ g%t oy 0A d),
zZ = —a. -—¢0=2J‘ (-..+e—20}.__1
7 JO
+ et — et )4 dd,
z= +a: +¢0=2J. ("'+e““—e—2ﬂ
T JO

+1— e )4 dA
These and all other boundary conditions are seen to be
identical, and give after summing

% f:duo(ap) tanh al fo "4 cos AEF(E) = 4. (7)
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FiG. 1. Geometry of the image system for the two-disk problem.

This equation, which should be compared with (3) of
the previous section is now subjected to the same
transformations, which in the previous section led
from (3) to (5). The result is

4 j "dEf(®) f A nhadsin Ap cos AE = do. (8)
dp Jo o A

In order to perform the differentiation with respect to

p with complete safety, let the hyperbolic tangent be
split by writing

tanh ad = 1 — 2/(e** + 1).

This results in the integral equation

2 [te
1© -2 [CankE e = 4 G
with the symmetric kernel
_[*,,cos Af cos 4§,
K(&¢y) —J; da Ty (8b)

The range of integration with respect to £ was extended
to —c by assuming f(£) to be even.

4. EXPANSION IN LEGENDRE POLYNOMIALS

We introduce dimensionless variables into the inte-
gral equation by writing

& =cx;, A=pl2a, f(&$y=F(x) (9)
and later also into the equation for ¢ itself as

ple=90, zla={
Equations (8a, b) are now

& = cx,
(10

2 [+
F(x) — —ef dx,F(x))K(x,x,) =1, (l1a)
with

K(x, %)) =J‘ du COS €f4X COS €fiXy (11b)
1]

e+ 1
The constant

€=cf2a

is the important ratio of the problem. For infinite
plate distance (11a) reduces to F(x) =1, and the
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potential ¢(z, p) becomes the original Weber expres-
sion

2 ® ., sinh z4 sinh Aa

Kz p) = 2 o "an SIREL SRR 1
w Jo coshail A
Because of the range of the variables x and x, , it

was found most convenient to expand the unknown
function F(x) into a series of even Legendre polyno-
mials

f(x) = Zo AgmPam(X)- (12)
The integral equation (11a) now becomes an infinite
system of linear equations for the expansion coeffi-
cients A,

(4n’ + 1)—1A2n - (G/”) Z AzmMZm,Zn = 60,21:’

with the matrix elements

+1 +1
Munan = [ d5 [ dssPunoPu(K ().

In the paper referred to in Ref. 4, we have reported
the calculations necessary to obtain actual solutions
and have shown that not only the matrix M decreases
satisfactorily with increasing m and », thereby making
early truncation possible, but also the 4,, decrease
rapidly.

5. THE FIELD FOR p > ¢ AS A RAPIDLY
CONVERGING FOURIER SERIES

The expression for the complete potential ¢(p, z)
is using (6a), (2), (9), and (12)

1
i - (f;) 3 (=D"am
® du sinh $ul

Jo(oe) g 3(€te).
. ,uicosh}ﬂ o(0€t)J 2pm 1 (<t

The appearance of the half integer Bessel functions is
explained below. The occurrence of the hyperbolic
cosine in the denominator shows that in the complex
u plane there is a string of first-order poles along
the imaginary axis located at

u = (2n 4+ i

This, therefore, invites one to decompose J, into two
Hankel functions H{" and H{*» and draw the integral
containing the former into the upper, and the one
containing the latter into the lower half-plane. (The
integrals along the two large quarter circles in the
first and fourth quadrants do not contribute, as can be
shown readily.) Each integral of the m series thus
becomes the sum of an integral from zero to i
containing H{V and a second one from zero to —ico

O. LAPORTE AND R. G. FOWLER
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{a) (b) (c)

Fi1G. 2. Decomposition of the path of complex
integration for the potential.

with H{®. Due to the circulation relation

H{®(iz) = —HP(—iz),
we cancel these integrals, as soon as the paths become
symmetrical with respect to the origin. As the “pictorial
equation” Fig. 2 shows this can be achieved while, at
the same time, the residues at the poles along the

positive imaginary axis have to be taken into account.
The result,

1 @
% = (2—) 43 (— )" Ay, 3. (— 1) HO[ice(2n + 1)]

. Jamsblic(2n + D]
li2n + Dt

although a double series, should be very useful for the
numerical calculation in the space outside the cylinder
formed by the two plates o > 1, where it converges
rapidly. The appearance of the imaginary unit is only
apparent. No corresponding expression for ¢ < 1,
i.e., p < a seems to exist.

sin $(2n + )=

6. THE NORMAL DERIVATIVE FOR :z =a

A more detailed calculation of the normal derivative
nets us the surface charge on the plates and also serves
as a check on the fulfillment of the boundary condition
for p > ¢. We have, from (2) and (6a) and using (9)
and (10).

(%gci"));:f fr L " dud eow)

1
X f dx cos €ux Y AgpPym(X)-
0

The x integration can be performed and leads to
spherical Bessel functions, so that we have

( 8<la>/£¢o )c=1= (2;)* 2 Aan

X J; ,“1‘lr dpard o(0ps1) g 4 (142);

where, for the sake of simplicity, 4, = eu is introduced
as variable of integration. The integrals which appear
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here belong to the family of the Sonine-Schafheitlin
discontinuous integrals.® They all represent different
hypergeometric functions of ¢, according as this
variable is less or greater than one. What is of interest
to us here is that for ¢ > 1 they all vanish, so that we
have the result

[9(4/$0)/0L};1 =0, p > c.

It is therefore seen that our form of solution does
indeed satisfy the boundary condition outside the
disks.

On the disks, i.e., for ¢ < 1 the reduction of these
integrals to hypergeometric series would not constitute
a particular advantage, were it not for the fact that
these series can all be summed and reduced to Jacobi
polynomials.” The result for the normal derivative is
therefore, for ¢ < 1,

(5

22m (m 1)
@em—11 "

x (;i‘i_r)'"[f"(l — o, (13)

where » = ¢ For m = 0, unity should be substituted
for the quotient of the two factorials. The ratio of
Eq. (13) to Eq. (14) is plotted in Fig,. 3.

To calculate the total charge, or for the current
problem, the reciprocal resistance, the normal
derivative has to be integrated over the disk surface.
Because of the appearance of the m fold derivative
with respect to 7 = ¢?, it is immediately seen that the
contributions of all series terms with m > 0 vanish.
The result is

Jooaot e

7. THE PROBLEM OF IMPERFECT INFINITE
ELECTRODES

Case 1: A Single Plate

The family of inverse problems to those just solved
presents interesting aspects. We consider first the case
of a single infinite plate with a circular hole in it in a
partially conducting medium, the hole being closed by
a nonconductor. Here, the boundary conditions are

¢=0’ p>c Z=0,
04/0z2=0, p<c, z=0.

(14)

8 N. Nielsen, Handbuch der Theorie der Cylinderfunktionen (B. G.
Teubner, Leipzig, 1905), formulas (4) and (11) of Sec. 74, p. 191
et seq. See also G. N. Watson, Theory of Bessel Functions (Cambridge
University Press, Cambridge, England, 1958), Sec. 13.4, Eq. (2),

401.

P 7 See R. Courant and D. Hilbert, Methoden der Mathematischen
Physik (Julius Springer, Leipzig, 1924), Vol. I, p. 74,
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Fic. 3. The surface density of charge on either disk of
the two-disk problem.

We introduce
¢=—kz+ o.

Then the new function w fulfills the boundary con-
ditions
w =0, p>c, z=0,
(0w[02) = +k, p<ec, z=0.
This time, we propose to find the function dw/0z, and
to make it satisfy the condition outside automatically.
We assume that

a__w _2 f dAe™*T(pA) A(R)

with the new Ansatz that

A() = A L “sin AEf(E) dE.

Once again we rename p as 7, and now operate on
both sides with a new choice of operator, namely:

dnlo? — 7.
d nn(p 7°)

Then
kp——d—fndw — oyt

x J'o % dAJ () L 'sin A&f(£) dE.

The integral over % can be performed by use of the
discontinuous integrals of Weber and Schafheitlin. It
yields

by 24

@ '& ¢
mEE Ty(pR) ) | sin &£ (E) dt.
mornd IELU (Gl £ [Jsinereerae
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The A integral, after interchanging with £ integration,
can be reduced to

il b
& [ aancensen,
£ Jo

and this is one of the generalized Dirichlet factors
whose value is 1 or 0 according as £ < por & > p.
Therefore, the equation reduces to

ke = 2L "5y a,
pdp Jo

the solution of which is f(&) = k&, When this is
returned to the equation for A(4), the £ integration can
be performed, yielding

dw/oz = Gtk f e~ 1 (pA)T3(Ac)At da.
Hence ’
di
a’
and it can be shown that this integral does indeed have
the desired property that it is zero for p > ¢, z= 0.

w = -—({m)*cgkfwe""Jo(pl)J,g(lc)
0

Case II. Two Plates

The second case is that of two electrodes with
opposite holes closed with a nonconductor. Here, the
generalization employed in moving from the one-disk
problem to the two-disk problem can be carried out
again. We again imagine an infinite set of image plates
so charged that our problem repeats between each
pair of plates. As in the previous case, we note the
need for a uniform field in the case of infinite plates,
and let

¢=—kz+ .

Then the boundary conditions are

z=a, p<ec, (04/02) =0, (fw[dz)=k,
(15a)
z=—a, p<c, (04/02)=0, (do/0z)=k,
(15b)
z=a, p>c, P=dy o = ¢y + ka,
(15¢)
z=—a, p>¢ ¢=—¢,, w = —¢, — ka.
(15d)

If now we choose ¢y = —k/a, thenw = Qatz = +a.
An examination of the possibilities shows that the
solution of the Laplace equation which fits the need

O. LAPORTE AND R. G. FOWLER

to have the function be antisymmetrical, and zero at
z = £a, while its derivative is symmetrical over the
region —a<z< ais

(16)

dw 2 [*,,coshiz

— ==\ dA Jo(pA)A(A
0z wL sinh Aa o(pAA(4)
and

2 (®dAsinh Az

7 Jo A sinhAa
Following the method of the single plate case, we

search for an equation for 4(4) which will satisfy
(15a) and (15b). This leads to the integral equation

Jo(pA)A(R).

w =

4 a
10+ 2 [aer@Kson) =~k
where
® . sin Ap sin A
Ku(pf) = f 4z .2 sin 14
0 et —1
is again a symmetric kernel with properties analogous
to those of the two-disk kernel.

Once more, with the introduction of the dimension-
less variables used before, the integral equation can be
solved in terms of Legendre polynomials, this time of
odd order. Letting

F(x) = %D:Bzmﬂp am+1(%);

one finally obtains the formal solution

olp, 7) = (%—f)*k :z;o(—l)'"Bamﬂ

J‘ ® dAsinh Az
o A sinh Aa

When z = +a, the integral over A is a discontinuous
function for all m, which has a zero value for p > ¢,
so that the boundary conditions (15c) and (15d) are
fulfilled identically.

8. CONCLUSION

The application of this method to hydrodynamical
problems of interest such as counterflowing liquids
that might be present in heat exchangers or reaction
cells is evident. Our method has certain points in
common with a paper by Sommerfeld® in which he
employs a series of discontinuous integrals as the
starting point for the solution of the problem of an
oscillating disk.

Jo(Ap)J. Bmﬂ(lc)'

8 A. Sommerfeld, Ann. Physik 42, 389 (1943).
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The problem of small oscillations about a state of steady motion of a Lagrangian system is considered.
Upper and lower bounds for the growth rates of unstable systems are obtained; sufficient conditions for
instability are given for finite dimensional systems; an existence theorem for stable modes for systems
with an infinite number of degrees of freedom is presented (valid when the operators are completely
continuous in Hilbert space); and finally the orthogonality and completeness properties of the modes of

stable finite dimensional systems are discussed.

I. INTRODUCTION

AGRANGIAN formulations of the equations of
motion have been given for a wide class of
hydrodynamic and plasma systems,~3 as well as for
classical mechanical systems with a finite number of
degrees of freedom.*~? The problem of the stability
of stationary states of such systems often leads to an
equation of the form*-10

Hyij + 24,7 + Hym = 0.

Assuming a time dependence exp (iwt), one obtains
the following eigenvalue problem*-0:

M

where H, and H, arc linecar Hermitian operators
(usually real) defined on some complex linear vector
space E, A4, is a linear anti-Hermitian operator (usually
real or pure imaginary) on E, H, is positive definite,
and the eigenvector % corresponding to the eigenvalue
w is a nonzero member of E.

The most comprehensive discussions of the solutions
of Eq. (1) (for nontrivial 4,) appear to be due to
Routh®-® and Whittaker.” Both authors were con-
cerned only with finite dimensional systems and
relied heavily on the theory of determinants; Routh
derived a number of eigenvalue properties for positive

wiHyn — 2wid,n — Hyy = 0,

* The work presented here was supported by the U.S. Atomic
Energy Commission under Contract AT(30-1)1480.

! F. E. Low, Proc. Roy. Soc. (London) A248, 283 (1958).

2 P. A. Sturrock, Ann. Phys. (N.Y.) 4, 306 (1958).

3 A. H. Taub, Proc. Symp. Appl. Math. 1, 148 (1949).

4 E. T. Routh, The Advanced Part of a Treatise on the Dynamics
of a System of Rigid Bodies (The Macmillan Company, New York,
1905), 6th ed., Chaps. 3, 6, 7.

5 E. T. Routh, Essay on the Stability of Motion (1877).

8J. W. Strutt (Lord Rayleigh), The Theory of Sound (Dover
Publications, Inc., New York, 1945), Chap. 5, 2nd ed.

7 E. T. Whittaker, 4 Treatise on the Analytical Dynamics of
Particles and Rigid Bodies (Cambridge University Press, New York,
1937), 4th ed., Chap. 7.

8 F. E. Low, Phys. Fluids 4, 842 (1961).

® G. Laval, R. Pellat, M. Cotsaftis, and M. Trocheris, Nucl.
Fusion 4, 25 (1964).

10 E, M. Barston, Phys. Rev. 139, A394 (1965).

or negative definite operators (in particular, both he
and Whittaker demonstrated stability for H, and H,
positive definite), and gave a necessary and sufficient
condition for stability (the Routh-Hurwitz criterion)
valid for real H,, 4,, and H,; Whittaker obtained
the general solution for H; and H, positive definite
by directly integrating the equations of motion in
Hamiltonian form. The problem seems to have
received little further attention, outside of discussions
of marginal stability®® and forced oscillations.!* In
this paper we present a number of new results, many
of which are valid when E is a Hilbert space, and
extend some of Routh’s results for finite dimensional
space to Hilbert space. In particular, in Sec. II we
obtain upper and lower bounds for complex eigen-
values; sufficient conditions for instability are given
in Sec. III, valid for finite dimensional systems; Sec.
IV consists of an existence theorem for real eigen-
values and corresponding eigenfunctions for com-
pletely continuous operators in Hilbert space; and
Sec. V concerns itself with orthogonality relations
and completeness properties of the eigenvectors for
H, positive definite.

II. BOUNDS FOR COMPLEX EIGENVALUES

In this section we derive upper and lower bounds
for the real and imaginary parts of an eigenvalue o,
assuming that Im w 7 0. It proves to be convenient
to assume that H; = I. Indeed, if H, is a bounded
positive definite linear Hermitian operator with a
bounded inverse H?, then Eq. (1) can be cast into the

form
(0¥l — 2ind — H)E = 0, )]

where 4 = SA,S, H= SH,S, £ =Sy, and S =
(HYHY, S = (H)*. The operator S is Hermitian, so
that i4 and H are Hermitian if i4, and H, are

11 R. E. D. Bishop, G. M. L. Gladwell, and S. Michaelson, The

Matrix Analysis of Vibration (Cambridge University Press, New
York, 1965), Chap. 5.
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Hermitian. We restrict our attention to Eq. (2), and
assume throughout that H and /A4 are linear Hermitian
operators defined on a linear vector space E with a
complex inner product (f, g) defined for all f and g
in E. Further assumptions are introduced as required.

A sufficient (but not necessary) condition for all
the eigenvalues w of Eq. (2) to be real is that H be
nonnegative definite.**® Indeed, suppose that Eq.
(2) holds. Forming the inner product of (2) with &
and solving for @ we obtain

. . 2 P
(N3] & 8 (%)

The operators are Hermitian, so that the inner prod-

ucts are real. Defining w, = Re 0, w, = Im w, Eq.

(3) and @, 7 0 then imply

o, = (§, 148/, 8), C)

o] = wi + wi = —(& HE/(, ). (%
Therefore, for w, # 0

ol < — 4o, o = inf &) ©)

e (LD

The complex eigenvalues of Eq. (2) all lie in a circle
of radius [4,|} centered at the origin of the complex
o plane. Assuming that A, is an eigenvalue of Eq. (2)
for A = 0 (this will be the case, for example, if E is
a Hilbert space and H is completely continuous), we
see that the introduction of a nonzero A4 into Eq. (2)
does not increase the maximum growth rate of the
system. In fact, we show that w, tends to zero as

e (A 4D
x G0

approaches infinity. Suppose that Eq. (2) holds, so
that H, & = 0, where H, = w*l — 2wid — H, Then

{H2 + 220id + HIH,}¢ =0 0]

or
{0l + 40°4® — 20[HiA + iAH] — H*}t = 0. (8)
Taking the inner product with &, and equating the

real and imaginary parts of the resulting expression
equal to zero, we obtain

{[wf — 03] — 40fws}E, &) + 4] — w)(E, A%)
— 20,(8, [HiA + iAH)) — (6, H*H) =0, (9)
0xf20, (w0} — WB)(E, §) + day(E, 4%)
— (& [Hid + i4H1®)} = 0. (10)
Assuming w, # 0, and eliminating (¢, [Hi4d + iAH]E)
from Eq. (9) by means of (10), we find
lof*{w; — 3] + 4(AE, A8)/(E, &)}
— (& HYDIE H=0. (11)

Equation (11) is quadratic in w2, and the only non-
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negative root of (11) gives

ol =[P+ EHDIE O~y — 0!, (12)

where

y = 2{(A&, 49)/(E, &) — wi}. (13)
Equation (4) and the Cauchy-Schwarz inequality
imply that y > 0. The following results can now be
easily established:

Theorem I: Assume that Eq. (2) holds and that
w, # 0. Then the following inequalities hold:
w; < 11417, 14
[4)1A)* + .uH]'l' — 24 < |o* < |H|Muy, (15
— Aty — 4141 S o} < [ + [HIE - x, (16)
where

_ . _ . (45,40
x=2pg + ), pa= lgf <0’
g = igf(HC, HY)

&9

Proof: Equation (14) is obtained by applying the
Cauchy-Schwarz inequality to Eq. (4). Equation (12)
gives
o] = [* + (& HO/E OF -y 2 [1* + pglt - y.

an

For py fixed, the last term of (17) is a monotone
decreasing function of y; therefore since y < 2 |42
by Eq. (13), we obtain the left-hand side of Eq. (15).
Equation (4) and the Cauchy-Schwarz inequality
imply o} < (4§, 48)/(&, &). Equation (11) then gives
4y lo|® < |H|?, which is the right-hand side of
Eq. (15).

From Egs. (11) and (6) we obtain
oy = [(&, H*9/(E, O] o™ + 30] — 4[(4&, 49)/(8, O]

—1 2

Equation (12) leads to 2 ~Ang — 4141 (8

i < I + IHIPE - . (19)
The right-hand side is a monotone decreasing function
of y, so that, since Eq. (6) and (13) imply x < y, we
obtain

of <+ [H] - x.
This completes the proof of Theorem I.

(20)

Corollary: Suppose that

J = inf (& —Ho) >0,
(D
i.e., H is negative definite. Then if du, > ||H|?, all
the eigenvalues w are real.

Proof: Let duy > |H|®, and suppose that there
exists an eigenvalue w = w; + iw, with w, % 0,
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Equation (5) implies |w|* > 4, and Eq. (15) then
yields | H||® > du 4, which is a contradiction.

Equation (16) can be used to infer the existence of
a complex eigenvalue w(w, # 0) if 49 <0, 4, is an
eigenvalue of H, and if w depends continuously on the
operator A, for fixed H. Indeed, if we replace 4 by
€A in Eq. (2), and suppose that w(e) is a continuous
curve in the complex w plane for 0 < € < 1 (this
certainly is the case if E is a finite dimensional
Euclidean space), then it follows at once from Egq.
(16) that if |42 < —ug/4ly, we have w,# 0,
0 < € < 1. Under these circumstances, a somewhat
sharper condition can be given. Suppose that w(e) =
wy(€) + imy(€) became real for some € in [0, 1], and
let ¢ be the smallest such e. Then w3(0) = —4,,
€ > 0, w(eg) = wy(€p), wy(€y) = 0, and wy(e€) 7 0 for
0 < € < €. Due to the assumed continuity of w(e),
Eq. (11) must hold with A replaced by 4 = €4,
w; = wy(€p), and w, = 0, so that

2046, 4p) {[2(;1'5, ZE):r _ & st)}*.
3G9 3G, &) )

2
w; =

@y
A real solution for wj is possible only if
[& 1P > $um -
Hence
14l < ug (22)

implies w, 5% 0.

III. SUFFICIENT CONDITIONS FOR INSTABILITY
FOR FINITE DIMENSIONAL SYSTEMS
We restrict our attention in this section to the case
where E is an n-dimensional unitary space. We begin
with the following result:

Theorem II: Let P, iA, and H be n X n Hermitian
matrices. Then the coefficients of the polynomial

P, (x) = det (x*P — 2xid — H) (23)
are all real and the eigenvalues w of the system
(P — 2wid — H)E =0 (24)

occur in complex conjugate pairs.

Proof: o is an eigenvalue of Eq. (24) if and only if
o is a root of the 2nth-degree polynomial P,,(x)
defined by Eq. (23). Using a bar to denote complex
conjugation, and a superscript T to denote the
transpose, we have

Py (x) = det (#*P + 2x%id — H)
= det (F*PT + 2x%i4dT — HT)
= det (X*P — 2%id — H) = P, (%) (25)
since P, i4, and H are all Hermitian. Thus P, (w) = 0
implies Py, (@) = 0.
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Theorem III: Let iA and H be n X n Hermitian
matrices, and suppose that 4, < 0 and [|4]* < }3u5.
Then the system described by Eq. (2) is unstable.

Proof: Theorem II implies that the eigenvalues w
of Eq. (2) occur in complex conjugate pairs, and must
be roots of the polynomial

Py (x) = det (x2] — 2xiA — H).

But the roots of P,,(x) are continuous functions of
the elements of A4; the theorem then follows at once
from the last paragraph of Sec. 1.

It proves to be convenient for the following theorem
to assume that the matrix H is diagonal. This may be
done without loss of generality; indeed, referring to
Eq. (1), it is well known that for H, and H, Hermitian
and H, positive definite, there exists a nonsingular
transformation § such that S*H,S = I and S*H,S =
H, where H is diagonal (S* is the adjoint of S).
Furthermore, S'is real if H, and H, are real. Equation
(1) can then be cast into the form of Eq. (2), where
A = S*A,S, H= S*H,S, and § = SY). Clearly i4,
Hermitian implies that i4 is also Hermitian.

Theorem IV: Let A be a real antisymmetric n X n
matrix and H be diagonal with (real) eigenvalues
Ay Ag o, A,. Suppose that T]z, 4, <0 (e, H
has an odd number of negative eigenvalues, and no
eigenvalue is zero). Then the system described by
Eq. (2) is unstable, possessing (at least) the complex
eigenvalues + iw, where w, satisfies the inequality

[+ IHIPE = x > 0} > @4 14]* + pg)t — 20413
(26)
where all quantities are as defined in Theorem I.

Proof: The polynomial P,,(w) defined by Eq. (23)
takes the following form, for » = I and H diagonal:

P 2n(w)
[ — 4 —2iway; —2iway, —2iway, |
2iwa, P~ 1l —2iwag —2iway,
=| 2iwa;y 2iwap 0=l —2iway, |,
| 2iwa,, 2iwa,, w?— A, |
@7
where the a;; are the elements of the real antisym-
metric matrix 4, a;; = —a;;,and 4 (k= 1,2, -+, n)

are the eigenvalues of H. Clearly Py, (w) = Py, (—w),
since the value of the determinant is unchanged if rows
and columns are interchanged, so that P,,(w) is a



526

polynomial of degree n in w?®. Therefore

Py (w) = H (‘1’2 — Q),
and since
P2n(0) = ;_!:[1 (_Ak s
we have
H Q, = H A, <0. (28)
k=1

Let C denote the set of all integers k such that
ImQ,# 0 (1 <k <n). From Eq. (25), Py (w) =
P,,(®), so that C can be decomposed into disjoint sets
of pairs of integers {p,q} such that Q, = Q, and
C = U {p, q}. Therefore [ I;nc & > 0, if C is non-
empty. Equation (28) then implies the existence of a
real Q, < 0. Therefore P,,(w) has roots +i(—Q;)%.
Equation (26) follows immediately from Egs. (15)
and (16).

This result shows that if we confine our attention to
real operators, there exist systems unstable for 4 = 0
which cannot be stabilized by the introduction of a
nonzero A, no matter how large. However, by Theorem
I, the growth rate may be made arbitrarily small by
taking u, sufficiently large. Note that there is no
conflict between Theorem IV and the Corollary to
Theorem I, as u, =0 for a real antisymmetric
n X n matrix for odd ».

IV. AN EXISTENCE THEOREM

We now turn our attention to the case where i4
and H are completely continuous Hermitian operators
defined on a Hilbert space E, and present an existence
theorem for stable solutions to Eq. (2), valid whenever
H admits of one or more positive eigenvalues.

We have seen in Sec. II that Eq. (2) can possess an
unstable mode (Im w < 0) only if the system de-
scribed by Eq. (2) with 4 =0 is itself unstable;
furthermore, the maximum growth rate of unstable
modes of Eq. (2) for A # 0 never exceeds that for the
system with 4 = 0, and can be made arbitrarily small
(or zero) provided A is sufficiently “large” [i.e.,

of 45 40
E NN
is sufficiently large]. The operator 4 can therefore be
thought of as a stabilizing influence. We now demon-
strate that A also preserves stable modes with real
eigenfrequencies. [For E finite dimensional, we can
state that Eq. (2) with 4 3 0 has at least the same
number of stable modes as does Eq. (2) with 4 = 0.]
For every positive eigenvalue A of H, the system
(0l — H){ = 0 admits of two modes, with eigen-
frequencies +A¥; for each such positive 4 (counted
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as often as its degeneracy) we can guarantee the exist-
ence of two stable modes of Eq. (2) for 4 ¢ 0—one
with w > 0, the other with w < 0.

Theorem V: Let H and i4 be completely continuous
Hermitian operators on the Hilbert space E. Let H
have N positive eigenvalues

W22 2iy>0
with associated eigenvectors #; (j= 1,2, -, N),
(15> M) = O4. Then Eq. (2) admits of N real positive
eigenvalues w} (j= 1,2, -+, N) (with corresponding
eigenvectors £7) and N real negative eigenvalues w;
(with corresponding eigenvectors £;).12 If o = wf
for j # k, then (¢, &) = 0.

Proof: Since i4 and H are completely continuous
Hermitian operators, K, = H + 2wiA is a completely
continuous Hermitian operator on E for each  on the
real line. For each such w, w # 0, we define

(¢, Kob)
Fyw) = = Sup = 29
! &0
Then we have
H A
@I < = 1K) < 151 4, ”| '” 30)
so that Fy(w) — 0 as w — +- 0.
NOW Hnl = }»17]1 ) Al > 0, SO that
1> Koy, 1) = Ay + 20(n,, iAn)[(n1, 1)
> M — ol 2|4]. (31)

Thus
Fy(w) > (1/o®(32) for |o| < 4,/(4(14]). (32)

We now show that Fi(w) is continuous on (— o0, 0)
and (0, o). For future reference we define

(&, Kob) mC)
g\ g G

—o<w<w n=1273--- (33
and we have |G, (w)| < |K,|. In particular, Fy(w) =
w2G,(w). Since K, 2 = K, + 2AiA, Eq. (33) yields

Gyl £ )
. (L Kol) , o G iAD
= f
“’ { v ]J
¢ le)} + 211 141

G, (w) =

< inf

$scE { (C ¢u)—0
3=1,2," n—1\j=

so that

g e | (G0
, GO

Gu(o £ B) < Gy(@) + 2|A} | 4]. (34)

12 Routh has proved a similar theorem (using determinants) for
E finite dimensional. See Ref. 4.
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Replacing w by @ F A in Eq. (34), there results

G(w) < Gulw F B) + 214] [I4]. 35)
Equations (34) and (35) imply
|Gp(w + A) — Gu(w)] < 21A] || 4] (36)

so that G,(w) is a continuous function of w on
(— 00, o) for all n. Therefore F,(w) is continuous on
(— 0, 0) and (0, <), so that by Egs. (30) and (32),
there exist ¢; > 0 and b, < 0 such that Fy(a,) =
Fi(by) = 1, and Fy(w) > } for

©0, a) U (8, 0).

Since K, is completely continuous and Hermitian,
there exists &,(w) € E such that || §(w)|| = 1 and

w*Fy(@)é (@) = K.1(w) (37)

for all w € S;. By Eq. (32), there exists o} (0, ;)
and wj € (b, 0) such that Fy(w;) = 1. Hence

weSs =

(@)l — 2w7id — HIE =0, (38)
where £ = &(wf).
Let
1 & KD
Fyw) = - (nglll)[i v @D weS;. (39
Clearly
Fy(w) < Fi(w), weS, 40)
and in particular,
Fy(w?) < Fy(}) = 1. (41)

Now Hn; = Am;, j=1,2; 4y 2 4, > 0; (n;, M) =
0. Then for any vector x, ||x|| > O, in the linear

manifold M, spanned by 7, and %,, we have
(x, Hx)[(x, x) 2 23 > 0.

Given &;(w) w € S;, there exists x,(w) € M, such that
x| = 1 and (x,, &) = 0. Therefore

(15 Koxy) 2 4 — 2 o] 4] 2 4,/2> 0 (42)
for |w| < A,/4 || 4|, so that

Fy(w) > 2,/20® for Ay

w < —— 43
|eo] A4l 43)
We shortly show that w?Fy(w) = Gy(w) on S;, so
that F,(w) is continuous on §;. Thus there exist real
numbers g, and b, such that0 < a, < a,,0 > b, > b,,
Fyay) = Fy(by) = 4, Fy(w) 2 $forw € .S, = (b,, 0) U
(0, a;). Note that S, < S,. For every w €.S,, since
K, is a completely continuous Hermitian operator,
there exists £x(w) € E, [|&,]| = 1, satisfying

wFy(w)é; = K6z, (62,8) =0. 44

By the continuity of Fy(w) on S,, and Eqs. (40) and
(43), there exists wf €(0,a,) and wj € (b,, 0) such
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that of > o} > 0, 0] < w; <0, and Fyw}) =1,
so that
[(0)* — 2w5id — H)eE =0, 45)
where &F = £(wgf). Note that by construction,
of = wi implies that (§f, £F) = 0.
Suppose now that we have constructed 2p (p < N)
eigenvalues wl > i > 2> o} >0, 0] < w; <

+ < w; < 0 and eigenvectors §F, k= 1,2,---,p,
so that we have forn = 1,2, -+, p:
Fn(w) = iz ££5_1<L§), weE Sn—ls (46)
@' a0 (9]
w*F,(w),(w) = K §,, weS,, “n
$,=0,a,)V(,,0;0<q,<a,;,<" " <a; <
Gy=00; —0=5bh<b<L"<b,,<bh,<0;

Fo(a,) = F(b,) = }; Fp(w) 2 forw € S,; F (w) <
F, ((w)on S, 4;
lim F,(w) = o;

w—0
F,(w) continuous on §,_;; (§;, £,) = 0,,,; F(wd) =
1; and éF = £, (w?). Then we define
R =, s GF) wes,. @y
k=1,2,"+",p
Therefore
Fry(w) L F(w), weS,. (49)

Let M, be the linear manifold spanned by {»,,
Ngs " " s Npsa}- Then for any x € M, [ix| > 0, we
have (x, Hx)/(x, x) 2 A,;; > 0. Given the p ortho-
normal vectors &(w), &xw), « -+, &,(w), there exists
x,(w) € M,,, such that |x,| =1 and (x,, &) =0,
k=1,2,---,p. Therefore

Fp(w) 2 (He®){(x,, Hx,) — 2 |o| 4]}

2 Ap120* >0 (50)
for |w| < 4,,1/4 |A|l. Assume for the moment that
w?F, (w) = G (w) on §,, so that F, ,(w) is con-
tinuous on S,. Then there exist real numbers a,,,
and b,,; such that 0<a,,;<a,, b,<b,,,<0,

Fpi(@p) = Fppa(bpn) = 4, and Fp () >} for
we S,,Jr1 bp41,0) VU (0, a,,,). For each we S,,,,
K, is a completely continuous Hermitian operator,
so that there exists £,,,(w) € E, ||&,,4] = 1, satisfying
W Fp (@) = Kofpirs (Epiay £,) =0,

m=12--,p (51

Continuity of F,,,(w) on S,, and Egs. (49) and (50)

imply that there exist w},, €(0,a,,,) and wj,, €

(bp41,0) such that o} > o}, >0, 0, < w;,, <0,
and F,4(0Z,) = 1, so that

(@5)*] — 205,14 — H]& =0,

where §%, = &, (0

(52)
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It remains to show that wF,(w) = G,(w)on §,_,.
Clearly Eqs. (33) and (46) imply that G, () < w*F,(w)
on S, ;, so that it suffices to show that G, (w) >
w?F,(w) for w€ S, ;. Now for any n — 1 vectors

¢1’ ¢2, ) ¢n—1 in E,
(C9 Kml) (C, K C) = SF
e, €0 % il o~
weS, ;. (53)

Indeed, let { € E such that ||| =1 and ({, &) = 0,
k=1,2,--+,n— 1. By construction, the & (k=
1,2, -+, n — 1) are orthonormal eigenvectors of K,
(for each fixed w) and ({, K,,{) < (&, Kobp), k=
1, 2, ---,n—1,since ({,&) =0, k=1, 2, ---,
n — 1. The linear manifold spanned by the n ortho-
normal vectors &, = {, &, -, &, isn dimensional,

so that there exist constants o, (k =0,1,-:+,n— 1)
such that y = 371 o &, satisfies ||p[|2 = D22 o2 =
land (), ) =0,k =1,2,---,n— 1. Then

n-1

0, Kyy) = z “k“z('fk, K,é) = 2(51.:, K& |°‘k|2

2 (& KwC)Z lal® = (£, KoD)-
k=0

Hence Eq. (53) holds, and G, (w) > w?F(w), we
Sp-1, follows at once. This completes the proof of
the theorem.

V. ORTHOGONALITY AND COMPLETENESS
RELATIONS FOR STABLE FINITE-
DIMENSIONAL SYSTEMS

We now consider the orthogonality and complete-
ness properties of the eigenvectors of Eq. (2), re-
stricting our attention primarily to the case where H
is positive definite and E is a finite-dimensional
unitary space.

The time-dependent counterpart of Eq. (2) is

i + 24 4+ Hn = 0. (54)
This second-order differential equation allows the
initial dlsplacement 79 and velocity ), to be arbitrarily
prescribed vectors in E. Thus, if the set of eigenvectors
{&,} of Eq. (2) is sufficiently large, the most general
solution of Eq. (54) would be given by (assuming
that 4% = 0 and Hy = 0 implies = 0)

1) = 3 ke (55)

with "
No = g anE'n ’ (56)
—ip = z % @pp (57

where the «,, are constants, determined by 7, and 7,.
Equations (56) and (57) lead us to the following
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definition: We say that a set of eigenvectors {£,} of
Eq. (2) is complete if for any two vectors 7, and —iz,
in E, there exist constants «, such that Eqs. (56) and
(57) hold. In the circumstance that H is positive
definite and E is an N-dimensional unitary space Ey,
we show that

(1) there exists a complete set of 2N eigenvectors

{fn}n_p
(2) the coefficients «,, are given by

&, = wn(zfru _”70) + (E'n’ H"?o)’ (58)
0n(€ns &n) + (£0, HE,)

(3) (%05 %0) + (1o, Hryg)
= g lotal ® {0n(€n, £2) + (s HEDY; (59)
(4) {En n=1 — {ﬁ}ﬁ:l v {5}'1‘\;1,

where £} is an eigenvector with positive eigenvalue
w}, &, is an eigenvector with negative eigenvalue o,
and each of the sets {£§X}Y | spans Ey;

(5) for each of the sets {&X}Y,, there exists a
linear operator @+ and an inner product ( , )* de-
fined on Ey with the following properties: QF is a
positive-definite Hermitian operatof with respect to
(,)*; O is a negative definite Hermitian operator
with respect to (, )—; Q&L = w}él, 07§, = wy &,
(n=1,2,--+,N);and (&, &) = 0 = (&7, &) for
ms L

In establishing the results to follow, we assume
throughout that H and i4 are linecar Hermitian
operators defined on a linear vector space E with a
complex inner product (f, g) defined for all f and g
in E.

Lemma I: Let w, and w, be eigenvalues of Eq. (2)

with corresponding eigenvectors &, and &;,. Then
@, # w; implies
D&, &) + (&, HE) =0, (60)
(@ + 0)(&, &) — 26, i4E) = 0. (61)
Proof: We have
@), &) — 20(&,, i4E) — (&, HE) =0, (62)

o€, &) — 20(&y, i4) — (£, HE) = 0. (63)

Subtracting the complex conjugate of Eq. (63) from
Eq. (62), and using the fact that H and id are
Hermitian, we obtain

(0, — @)[(@p + @ )&, &) — 2(6, i4E)] = 0. (64)

@, # o, therefore implies Eq. (61). Equation (60)
now follows by substituting (£, , i4§,) = ¥(&, + o;) X
(&x, &) into the complex conjugate of Eq. (63).
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When H > 0, the eigenvalues of Eq. (2) are all
real, so that Eqs. (60) and (61) hold (with @&, = w,)
whenever w;, # ,. If we are given any set of eigen-
vectors {£,}, Eq. (60) holds for & # / provided w;,
¥ w,;. If the {£} contains a subset of p linearly in-
dependent eigenvectors all having eigenvalue w,,
one can always take linear combinations of these so
as to form a new set of p linearly independent eigen-
vectors (with eigenvalue w,) which themselves satisfy
Eq. (60) for k 7 I (see Lemma II). Thus for H > 0,
given any set of eigenvectors {£,}, we can construct
from them (if necessary) a new set of eigenvectors
{&:} such that Eq. (60) holds for k ¢ / and which
possesses for each w; the same number of linearly
independent eigenvectors.

Lemma II: Let E be a Hilbert space and M(w) be
the linear subspace spanned by p linearly independent
eigenvectors of Eq. (2) having the eigenvalue w. Then
there exists p orthonormal vectors &, (k = 1,2, *, p)
in M(w) such that

(w|? (&, &,) + (&, HE,) =0, I#£m. (65

Each &, is an eigenvector of Eq. (2) with eigenvalue w.

Proof: By hypothesis, M(w) is a p-dimensional

unitary space, and every nonzero vector in M(w) is

an eigenvector of Eq. (2) with eigenvalue w. Let P

be the projection onto M(w), i.e., P£ is the projection

of & onto M(w) for all & in E. Then A = PHP is

Hermitian (since P is Hermitian) and maps M(w)

into itself. Therefore there exist p vectors &, (k = 1,

2,- -+, p) in M(w) satisfying

HE = A, k=12---,p, (66)

(él’ Em) = alm’ (67)

where 2, is a real constant and §,,, is the Kronecker
delta. Therefore I % m implies

lez (El! Em) + (Eli Hsm) = (PEI’ HPEm) = (619 Hfm)

= A(15 Em) = 0. (68)

Suppose that H is positive definite on E, so that all

the eigenvalues w; of Eq. (2) are real and nonzero.
We then make the following definitions.

Ilm=12---,p,

Definition 1: A set of eigenvectors {&,}7_, of Eq. (2)
is said to be canonical if, forallk,/=1,2,-:-,n

w0 (&, &) + (6, HE) = 0y, (69)
where
ekEw:(fk’ Ek)+(§k’H§k)>09 k=1’2,”.’n'
(70

Definition 2: Let {£,}2_, be a canonical set of eigen-
vectors of Eq. (2), and let x and x be any two vectors
in E. The generalized Fourier coefficient a,[X, x] is
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defined by
a‘k[’h x] = {wk(ék9 5‘) + (Ek’ Hx)}ezl' (71)
The next theorem shows that our generalized
Fourier coefficients play much the same role in the
representation of the two vectors x and X by sums
of canonical eigenvectors of the form of Egs. (56)
and (57) as do the ordinary Fourier coefficients in the
approximation of a vector by a sum of orthonormal
vectors.

Theorem VI: Let H be positive definite on E,
{&:}7_, be a canonical set of eigenvectors of Eq. (2),
and X and x be any two vectors in E. Let {f;}2_, be
any n complex numbers. Then

x— g Brewogés

=l — 2ouméb| +

x = Eﬂkék
2 1 Hn

x = 2 by
1 H

2
+

n 2

Z (o — Bwnbe|| +

1

n 2

z(“k — Bk .

1

+’ 2

> 1% — 2 s +
1

2

X — Z::ocké'k
= (%, %) + (x, Hx) — z o e, 72)

where the o, are defined by Eq. (71) and |x|} =
(x, Hx).

Proof: Let
f =x— g“kwksk’ f=x— 21:%5;“

g= ?(“k — Bwiby, g = %(“k — Boéx,
then

J."‘zl:ﬁkwkfk'—"f'*'g', x_zl:ﬁkfk=f+g,
so that
n 2 n 2
X — Z ﬂkwkék + j[x = 2 ﬂkgk
1 1 H

=)+ L H) + (8 9
+ (g, Hg) + 2Re {(, &) + (f, Hg)}.

H

But
Go+GHD
= ()'c —_ ; 0,6 5 21: (o, — ﬂl)wlfl)

+ (x - Ez:“kfk, H[zj: (o, — ﬂz)fz])
= 21: (o, — ﬁl){wl(jc’ &)+ (x, H'El)}

= 3 o= Aol &) + o, HED)
(a0 — B)e, — 2::&1(“1 —~ BJe, =0,

i
=2
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where we have used Egs. (69)-(71). Now
- gaka’kgk ’ +|[x - 2::«,,5;, )
= (% %) + (v HX) — ia,,{wk(x, £ + (x, HE)

i&' {wu&e, X) + (&, HX)}

+ X EGa{ow(Ee, &) + (&, HEDY

k.l=

= (%, %) + (x, Hx) — 2 Y ol + 3 ol
1 1

= (%, X) + (x, Hx) — > |o,/* ..
1
This completes the proof of Theorem VL.

Note that the last line of Eq. (72) gives a Bessel
inequality for the o, viz.,

(%, %) + (x, Hx) > Ek: Jof? .

Furthermore, we see that a denumerable canonical
set of eigenvectors {£,} is complete if and only if the
equality sign holds in Eq. (73) for arbitrary x and X
in the Hilbert space E, for H bounded and positive
definite, with a bounded inverse H1.

(73)

Lemma III: Let o, (I =1,2,:-+,n) be n eigen-
values of Eq. (2) with corresponding eigenvectors
& (1=1,2,--+,n), where the n vectors §; are
linearly independent. Suppose that Q is an eigenvalue
of Eq. (2) with eigenvector , where { = X7 ¢,§, # 0.
Then Q and w, (/ = 1,2, - - -, n) are all roots of the
real polynomial P,,(x) of degree 2n defined by

P, (x) = det F(x), 79
where F(x) is the n X n matrix given by
F(x) = x*G — 2xiA' — H' (75)

with Gy, = (&, &), A;:; = (&, 4§), and H,, =
(&, HE). The matrices G, id’, and H’' are all
Hermitian, and G is positive definite. Furthermore,
if H is positive definite, then P,,(x) has precisely n
positive and n negative roots.

Proof: The matrices G, iA’, and H' are clearly
Hermitian since i4 and H are Hermitian. For any
column vector § with components b; (i = 1,2,- -+, n)
we have (n,7) = (B,GB), where n=3", bkfk
and (o, f) =37, (i,,b,, (the usual inner product in

E,). The & (k = 1,2, - - -, n) are linearly independent,
so that = 0 if and only if 8 = 0. Thus G is positive
definite. The polynomial P,,(x) is clearly of degree
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2n in x, and is real by Theorem II. Now

F(w) = (&, {wfl — 2w;id — H}Ez) =0,
k=12---,n, (76)
so that
Pp(w)=0, I=1,2,---,n an

Suppose that Q is an eigenvalue of Eq. (2) with
eigenvector { = >" af,# 0. Then the column
vector « with components g, (k=1,2,--,n) is
nonzero (the &, are linearly independent) and

(& {Q°T — 2Qid — H})

==z a{Q%E,, &) — 2008, iAE) — (&, HE)} =0
(79)

for k=1,2,--+,n, ie., F()a =0, Thus a#0
implies P, (Q) = 0
Finally, suppose H > 0, so that H’ > 0. We define

PBn(E; x) = det Fe(x)’ 0 S € S 1, (79)

where
F(x) = x*G — 2exid' — H', 80
so that P,(1;x) = P,,(x) and Fi(x) = F(x). Now

each root of P,,(¢; x) is an eigenvalue of the system
Fyn=0 (81)

with a nonzero eigenvector 7. Therefore H' > 0 and
Eqgs. (3)-(6) imply that all the roots of P,,(e; x) are
real and nonzero for all real e. Since the roots of
P,,(¢; x) are continuous functions of ¢, 0 < e < 1,
the number of positive and negative roots of Py, (¢; x)
must be independent of ¢, 0 < € < 1. But P, (0; x)
has precisely # positive and n negative roots, and the
proof is complete.

Lemma IV: Suppose H is positive definite. Then
any set of eigenvectors {§}¢ , of Eq. (2) with dis-
tinct positive (negative) eigenvalues w;, (i.e., w, # o,
for I # k) is linearly independent.

Proof: We begin by demonstrating that if the
{&:}}-, are g linearly independent eigenvectors of Eq.
(2) having distinct positive (negative) eigenvalues w;,
then the set {£,}41] is also linearly independent, where
E1isan elgenvector of Eq. (2) with positive (negatlve)
eigenvalue w,,,, and w, .y # w;, k=1,2,---,q.
Indeed, if the set {£,}i] were linearly dependent, we
would have P,(w,.1) = 0 [see Eq. (74)] by Lemma
II1, so that P,,(x) would have at least ¢ + 1 distinct
positive (negative) roots. But this is impossible, as H
is positive definite (see Lemma III). Thus {&}{_,
linearly independent implies that {£,}4%1 is also line-
arly independent. Since one eigenvector constitutes a
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linearly independent set, Lemma IV follows by
induction.

Theorem VII: Let H be positive definite, and
{&x}k=1 be a canonical set of eigenvectors of Eq. (2)
with positive (negative) eigenvalues. Then the set
{&}p_, is linearly independent.

Proof: We denote the distinct elements of the set of
eigenvalues corresponding to the eigenvectors £,
k=1,2,-+-,n) by 0, ®,," -, wy, where L<n
(0, # w, for k #1). Let S(w,) be the subset of
{£};-1 containing precisely those eigenvectors pos-
sessing the eigenvalue w;. We relabel the &, as &P
where &P € (Sw))and j = 1,2, -, m, < n. We have
{&i-1 = UL, S(w,), Lemma IV implies S(w;) N
S(w) = ¢ fork 7 I, and n = 3, m,. Now suppose
{&:}%=1 is linearly dependent, so that

L m

3 Sal =0

1=1j=1
for some a # 0. Let ¢, = 3™, aPe®, =1, 2,
*++, L, so that ¢, is an eigenvector of Eq. (2) with
eigenvalue w,; if ¢, # 0. Since the set {£)2_, is
canonical, a?’ # 0 implies ¢, # 0. [Note that Eq.
(69) states that if &, and &, both have the eigenvalue
o, then (&, [w?] + H]&) = 0 for k # I.] Equation
(82), which takes the form

L
Z‘l’z:o

contradicts Lemma IV. Thus {§}f_; is linearly
independent.

(82)

Theorem VIII: Let H be positive definite and E =
Ey (an N-dimensional unitary space). Then there
exists a canonical set C of 2N eigenvectors of Eq.
(2); C={&}_, U {&;}0-,, where & is an eigen-
vector with positive eigenvalue, £ has a negative
eigenvalue, and each of the sets {{f})_, spans Ej.

Proof: The existence of C is an immediate conse-
quence of Theorem V and Lemma II. Theorem VII
implies that the sets {££}f_, are each linearly inde-
pendent and therefore span Ey .

Theorem IX: Let H be positive definite on E = Ey,
and {47}, and {£;}}_, be the sets of eigenvectors
of Eq. (2) (with corresponding eigenvalues w;", w;)
introduced in Theorem VIII. Then there exist linear
operators O and Q~ defined on Ey and inner prod-
ucts (, )* and (, )~ with the following properties:

(1) @t is Hermitian positive definite with respect
to the inner product ( , )*; @~ is Hermitian negative
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definite with respect to ( , ).
(2 Q& = st k= 1,2,---, N.
G EE =0=(&,&) k# 1.

Proof: Since {£if}{_, is linearly independent and
spans Ey, the following expressions uniquely define
the linear operators O+ and Q- on E N:

N N
Q*{Z akglt} = z aywi &7,
1 1
N N
{2 ak) =3 oot
In particular, we have Q+£F = wiéi . We define, for
all C: ne EN’
(& )t = (Q*L, Otn) + (L, Hy),
&) =(Q7L 0 + (L, Hy), (84

and it is clear that (, )* possesses all the requirements
of an inner product. Now
(&, 6 = (Q*E, Q%ED) + (&5, HED)

= wpoi(& &) + 6 HED) = €60,,  (85)

[e is defined by Eq. (70)] since the sets {§}Y_, are
canonical. Finally, for any two vectors

N N
E=2acks, =3 by

=

for

(83)

in Ey, we have
@ @0 = 3 afbtat(eh, 6 =3 abture

= 3 ofEHEE B = QL (86)

(4,040 = S kot lail,

which proves statement (1).

@87

Theorem X: Let H be positive definite on E = E,,,
and let C be the canonical set of eigenvectors of Eq. (2)
introduced in Theorem VIII. Then C is complete, and
we have

N
* =2 (e + Gop ),

N
x = {0l + it}
k=1 k=1

. (88)
(*, %) + (%, Hx) = 3 {lg1" & + [ &}, (89)
for all x, x in Ey, where '
o = {0 (&, %) + (68 HO)}eT,
& = [0 (&, &) + (& HE). (90)

Proof: We begin by noting that Eqgs. (88) and the
fact that C is canonical imply that the «f are neces-
sarily given by Egs. (90), i.e., the i are uniquely
determined. Indeed, if we insert Eqs. (88) into the
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quantity (wFéF, %) + (£%, Hx), Eqgs. (69) and (70)
lead immediately to Eqs. (90). It therefore suffices
(by Theorem IX) to demonstrate the existence of the
vectors yH(= DV ot &) and y(= DV oz &) satis-
fying the simultaneous equations
yh+y =x, Qyr+ 0y =x

Equations (91) possess the unique solution

yr=K i - Qx], y =KQx—x] (92)
provided K1 exists, where K = g+ — Q~. We com-
plete the proof by showing that Ky = 0 implies y = 0.
Suppose Ky = 0. There exist 2N constants yi such
that y = DY yi&F = =37 yp & by Theorem VIII,
so that Ky = 0 leads to

on

N
0= ; {Viod& + vpwg &)

N
0= ; {vadi + 7ebc ) (93)

E. M. BARSTON

Equations (93) are of the form of Egs. (88) with
% =0,x =0, af = pZ, so that the yF are uniquely
given by Egs. (90), i.e., yi = 0 for allk, and y = 0.

Note added in proof: The extension of many of the
results obtained in this section to positive completely
continuous Hermitian operators H in Hilbert space
has been obtained by reducing Eq. (2) to a linear
eigenvalue problem in the Hilbert space E x E. This
analysis will be presented in a forthcoming paper.
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The lowest-order vertex correction, the exchange counterpart of the polarization correction, is evalu-
ated for all values of the energy and momentum transfer variables and for an arbitrary rotationally
invariant two-body interaction. The method employs a dispersion theory technique and an angular
expansion of the interaction in spherical harmonics. For any partial wave, the result is expressed as a
one-dimensional integral over a closed interval that can easily be evaluated numerically once the form
of the interaction is specified. Explicit expressions can be obtained for the long wavelength limit, and
for an expansion in powers of the momentum transfer variable. In this case the result depends on the
value of the interaction and its momentum derivatives when one of the momentum variables lies on the

Fermi surface.

1. INTRODUCTION

HE vertex function plays an important role in the

investigation of many-fermion systems. It deter-
mines, for example, the weak response of the system
to an external agent.! Furthermore, the Landau
theory of the normal system can be re-expressed in
terms of the vertex function.?

The complete vertex function, T', can be factored
into the inverse dielectric constant, 7%, and the proper
vertex function, I". The former takes account of the
polarization screening of the interaction. The latter
incorporates exchange effects.

Although the perturbation value of T' is not ade-

1 A. Layzer, Ann. Phys. (N.Y.) 35, 67 (1965).
2 P. Nozieres, Proprietes generales des gaz de fermions (Dunod Cie.,
Paris, 1963).

quate for realistic calculations, it does provide a very
rough estimate of the result. Moreover, it gives a clue
to the mathematical properties of more accurate
nonperturbative approximations.

The perturbation expression for €2, in other words
the evaluation of the familiar “bubble” diagram is
well known and has been given in explicit form.34
Somewhat surprisingly, the perturbation expression
for T', corresponding to the triangle diagram of Fig.
1, has not been evaluated to the same degree of
completeness, although partial evaluations have been
given.

This has been partly the result of a lack of interest

% J. Lindhard, Kgl. Danske Videnskab. Selskab. Mat-Fys. Medd.
28, 8 (1954).
4 D. V. Dubois, Ann. Phys. (N.Y.) 7, 174 (1959); 8, 24 (1959).
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CORRECTION TO MANY-FERMION VERTEX FUNCTION

Fic. 1. Triangle diagram for lowest-
order vertex correction. The cross de-
notes an external potential or inter-

action.

arising from the common but overly optimistic belief
that exchange corrections are not really important.
Partly, it is due to the somewhat increased mathe-
matical complexity of the evaluation. In particular,
unlike the bubble diagram, the integration now
depends explicitly on the particular form of the
interaction. The increased complexity, however,
turns out to be fairly minor when one makes use of
dispersion relation techniques and a partial wave
analysis of the interaction.

In the work below, with the aid of these techniques,
the evaluation of the triangle diagram of Fig: 1 is
carried through to the point of one-dimensional
integrations over a closed domain of integration, for
all momentum and energy transfers.

To increase the region of validity of the result
somewhat beyond that of ordinary perturbation
theory, we have allowed the two-body interaction v
to be an arbitrary nonlocal, but still instantaneous,
potential. As in the perturbation case, we assume that
v is real and symmetric in momentum space, though
the symmetry property is not actually used.

In the static long wavelength limit, the results for
the vertex correction agree with those obtained
earlier from the use of a Ward’s identity.3

2. EVALUATION OF T' IN LOWEST ORDER

The diagram for the lowest-order vertex correction,
y, is shown in Fig. 1. According to the Feynman
rules, we can write ¥ in the form

Yo ) =T —1=ci j Gk )Gk )o@, B, (1)
c=Qm)™,

ks=k + %q
and G, is the free propagator,
Gy = [ko — K?/(2m) + ie sgn (k| — kp)I ™. (3)
The invariance of y under time reversal is expressed
by the symmetry property, evident from (1)
7> —9) = y(p, +9). @
Provided only that v is instantaneous y is inde-

pendent of E = p,. For rotationally invariant v, y
then depends on only four variables which we take to

where

@

5 A. Layzer, Phys. Letters 13, 121 (1964). See also Ref. 1.
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be the quantities |q, |pl, x,, = cos (p, @), and w =g,.
Instead of w it is more convenient to deal with the
ratio u = wiq| since the vertex function is not uniquely
defined in the q — 0, w—> 0 limit unless the ratio u
is also specified.

In the following, we obtain explicit results, with no
remaining nontrivial integrations, for several cases:
the ¢ = 0 limit for all » and for arbitrary interaction
v; corrections to this of order g% and, for the special
case of the delta function interaction, results for all
g and u. In the case of the general interaction away
from ¢ = 0, the reduction is carried to the point of
one-dimensional integrals over a closed interval.
These integrals can easily be evaluated numerically
once the form of the interaction is specified.

It turns out that the calculation is simplified by
employing a formal dispersion relation technique
with respect to the emergy-transfer variable w or u,
considered as a complex variable. Thus, we first
evaluate the simpler quantity Im y(u) and then express
Re y(u) in terms of this result by a Cauchy principal-
value integral. As might be expected we need to
know Imy only “on the energy shell,” when w is
equal to the enmergy of intermediate particle-hole
pairs with the momenta (k_, k).

Our reduction also utilizes a “partial wave”
expansion of v(p, k) in Legendre polynomials in the
variable x,; = cos(p, k). In the static g— 0 limit
only the s-wave term contributes to the result.

We begin the evaluation of (1) by performing the
k, integration, closing the contour of integration in
the upper half of the complex k, plane. We then
obtain two terms, a time-reversed pair, one pro-
portional to O(ky — k_)0(k, — ky) due to a pole
at (k_), = T(k_) + ie, the other proportional to
O(ky — k,)0(k_ — ky) due to a pole at (k)=
T(k,) + ie. Here T(k) = k*/2m. The result is

y=v"+7, (52)
(9 = v, —9) 5b)
where explicitly
' 61 — k)0(k, — 1)
+ = 2mite | d° k 6
v 2‘"’1 cfd kv(p’ ) w_q.k+2i€ ( )
with the units

The imaginary part of this expression is somewhat
easier to evaluate than the real part. We wish to take
advantage of this situation by using a Kramers—
Kronig type of dispersion relation to express the real
part in terms of the imaginary part. Let us observe,
however, that y+ and y~ have different analytic
properties as a function of w or u regarded as a
complex variable: the former is analytic in the upper
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half-plane, the latter in the lower half-plane. Thus,
we must treat ¥+ and y— separately as far as the
dispersion relations are concerned.

From the preceding discussion, we can write for
real u

Im y*(u) = fH(u)b(Lu), ®)
Re y"(u) = + — f du f+(u ) (9a)

Equation (8) expresses the fact that y* and y— are
also the positive and negative frequency parts of ¥.
In the integrals in (9), principal values are understood.

From (6), Im y* has the value

Im y* = 2% f deo(p, (1L — k_)

X 0k, — Do(w — q-k). (10)
Note that, in agreement with (8), thisis nonvanishing
only for
w=q-k=Tk,)— Tk >0. an
In order to facilitate the evaluation of y, it is
convenient to expand it in Legendre polynominals of
the cosine of the angle between p and q,

0
Y= lzo YiPi(%X5o),
and similarly for f.
For this purpose we introduce the corresponding
expansion coefficients v, according to

o(p, k) = éﬂv,(p, K)P,(x50). 13

As far as the angular k integration is concerned we
can now make the replacement

Py(x ) = Pix,0) Pix ). (14)

This yields the desired expansion (12). The angular
k-integration is now trivial due to the delta function in
(10). We obtain for f; the expression

1 1+w—-g®/4
st =2 [T a6 PR — ),
q 1~w—q®/4
. @1s)
and from (5b), for negative u
fi(g, w) = (=1)f{(q, —w), (16)
where now q = |q|.

This last relation allows us to express y, in terms of
S alone through the dispersion relations (9). These
take different forms according to whether / is even or
odd,
for even I:

Im y,(u) = £ (lul),
Re y,(u) = —jf I

(12)

(17a)

u du (18a)

.
2 b4

LAYZER

for odd I:
Im y,(u) = £ (lul)e(u),
Re y,(u) = 2—“f°f;*(u') '
mJo u — U

where (1) = 0(u) — 6(—u). The slash through the
integral sign indicates that the principal value must be
taken.

(17b)

(18b)

3. THE LIMIT q —0

It is useful at this point to consider special cases in
which exact final results can be obtained analytically
without too much effort. One of these is the important
limiting case ¢ — O with u held finite, the long wave-
length or semi-classical limit.

In connection with the q — 0 limit, we first note
that f;7, given in (15), is finite in this limit: as ¢ — 0,
the upper and lower integration limits coincide (since
w = qu) preventing a divergence due to the factor
g~'. To show this more explicitly it is convenient to
eliminate the k integration in favor of a parametric
z integration through the substitution

k=14 quz — 4%
We then obtain, from (15)

f#=2nu f " dzo(p, )P (ulOE — u?). (20)

(19)

In the limit ¢ — 0, the function k may be replaced by
unity:
Lim f (@, ) = f{(0,v)
‘ = 4x°cuv(p, DP,(w)b(1 — u®). (21)

We see that Im y vanishes in the static limit, u — 0,
and also if the absolute value of u is greater than unity.

From (21) we can obtain Re y via the dispersion
relations (18). The #' integration is trivial for any
fixed value of /. Let us concentrate attention on the
[ =0 term.

We obtain then in the q — 0 limit

Re po(0, u; p) = dndcvp, 1)I(u), (22)
where
__2_1'2du’_2 _ 14u
1) ﬁu uz_"[ juln l + :| @3)

Let us note that 7 has an integrable, logarithmic
singularity at u = 1.

We see that Re y vanishes for u — oo as it should
but not in the static limit, u — 0. In the static limit,
(22) yields

(0,0, p) = == vo(p, 1. 29
One easily verifies that, due to the orthogonality

properties of the Legendre polynomials, only the / = 0
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term contributes to Rey in the ¢, — 0 limit.
Equation (24) agrees with the value of (0, 0;p)
obtained earlier on the basis of gauge invariance.?

4. DELTA-FUNCTION INTERACTION

There is at least one form of interaction v simple
enough to allow us to evaluate the vertex correction
y exactly for all ¢ and u. This is the case of a delta-
function interaction with strength a.

(p,k)=a
v(x, X') = ad¥(x — x'). (26)

Clearly o(p, k) has only an / = 0 component, v = v,.
When we substitute (25) for v into (20) we obtain

(25)
or

1
Imy; = 27r3cauf_1dzﬂ(1 + quz — 3q* — u®, (27)

where y, is the value of y for the delta-function inter-
action (25).
The z integration is trivial and yields the result

@myaul, ul+3ig<1, (28a)
&m)a i [(1 — (lu] — 34)?],

[lul — 3g] <1 < lul + 4q, (28D)
0, [lul — 3q| > 1. (28¢)
To calculate Re y we employ the dispersion relation

(18a). After carrying out the elementary »’ integration
we obtain

Rey; = (4w2)-‘a{1 + 51;1 [l — (u + 39

Im y; =

1+4q+u) 1.
xlnl_%q_u +2q[1 - 3197
1+3g—u
xlnl_%q_l_u}. (29)

The result (28) and (29) for y, has a familiar
mathematical appearance. Aside from a numerical
factor, it agrees precisely in form with the well-known
value of the polarization loop. This is hardly sur-
prising since for a delta-function interaction the dotted
line of the vertex diagram is effectively collapsed to a
point (in position space). Thus, it is clear that for a
delta-function interaction the lowest-order polariza-
tion correction, aw, should have the same value as
the proper vertex correction except for a factor of
—2 arising from the exchange nature of the vertex
correction:

am = —2y,;, 30)

which is indeed true.

5. GENERAL FORM OF INTERACTION
Equation (18) cannot be explicitly evaluated for all
q and u for the general interaction, v. One can,
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however, further reduce the expression for Re y by
eliminating one of the two remaining integrations.

According to (18) and (20) we can write Re y in the
form

Reyl=21r2cj; du’[ 1 + (1) 1 :l
0 u —u uw 4+ u

X f+1u’ dz{v,(p, O)P,(w'[k)O(K* — u'®)}, (31)

where

kB=1+quiz—}¢>0. 32)
We make the substitution of variables z — y, where
y=uz—4. 33

Then, we have
B=1+qy+ 1% (34)
where & is now independent of the variable «'. Inter-
changing the order of integration in (31) we obtain

+1
Rey,= 2 [ o(p DFOMy, (39
where
£ ’ ’ 1 14 1
R =,f du'Py(u /k)[,— +(=1)'— ]
|zt u —u u 4+ u
(36)
From (34) we see that
Ky = +1) = 1 + 1] 37)
and therefore
F(£1) =0. (38)

The integration for F,(y) is trivial for any value of /.
Therefore only one nontrivial integration remains, as
in the case of Im y.

For I = 0, F, has the value

B —u
O+ 40 —u*|’
We can easily verify that the previous results for the
q — 0 limit and the delta-function interaction follow
from (35) and (39). In the static limit, one finds for the
coefficient of the g% term the following result, which
agrees with (29) for the case of the delta-function
interaction

¥6(2, 0, p) — (0,0, p) = Zi aP)g® + 0(>4), (40)

™
2a(p) = —vo(p, 1) — 20§7(p, 1) + A05(p, 1), (41)
where

Fo(y) =2In (39)

v""(p, 1) = Lim (d*/dk")u(p, k). (42)
k-1

In general, the expansion of y in powers of ¢

involves higher-order derivatives of the various

vip, k) at the Fermi surface, k = 1. In the static

limit, # = 0, one sees from (18), (19), and (20) that

only even powers of g and even values of / can occur.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8, NUMBER 3 MARCH 1967

Relationship of the Internal and External Multiplicity
Structure of Compact Simple Lie Groups*

A. J. MACFARLANE, L. O’RAIFEARTAIGH,} AND P. S. Rao
Department of I_’hysics, Syracuse University, Syracuse, New York

(Received 11 April 1966)

As a preliminary step in a program aimed at developing the Racah algebra of an arbitrary compact
simple Lie group L, this paper gives a unified review with various extensions of the work of Biedenharn,
Speiser, and others on the relationship between the internal and external multiplicity structures of L,
the former being that of the weights of the representations of L, the latter being that of the terms of the

Clebsch—-Gordan series of L.

1. INTRODUCTION

N view of the present preoccupation of particle and
other physicists with symmetry groups of various
types, it is undoubtedly desirable that the Racah
algebra of such groups be developed as extensively as
is the Racah algebra of SU,, i.e., the familiar quantum
theory of angular momentum. If L denotes a compact
simple Lie group, then, as stressed by Wigner, Racah
and Biedenharn,® a variety of problems have to be
solved before the Racah algebra of L can be systemat-
ically investigated. The first problem, which is closely
related to the labeling of the irreducible representa-
tions (IR’s) of L, is the construction of the invariants
or Casimir operators of L. This problem has already
been solved.2 The second problem concerns the
determination of operators whose eigenvalues yield
a complete characterization of the states of the IR’s
of L. A given IR of L is specified by its eigenvalues of
the invariants of L, or else equivalently and more
usually, by the components of its highest weight.
From this highest weight all the weights of the IR can
be directly deduced.® However, the weights other than
the highest are not in general simple but rather of
multiplicity greater than one. In this context, we
speak of the internal multiplicity structure (of the
"% Research supported in part by U.S. Atomic Energy Commission.
% On leave of absence from Dublin Institute for Advanced Studies.

! See L. C. Biedenharn, J. Math. Phys. 4, 436 (1963).

2 G. Racah, Rend. Lincei 8, 108 (1950); G. Racah, Lecture Notes
on Group Theory and Spectroscopy (Institute for Advanced Study,
Princeton, New Jersey, 1951), reprinted as CERN report 61-8,
CERN, Geneva (1961), and published in Ergebnisse der Exakten
Naturwissenschaften (Springer-Verlag, Berlin, 1965) Vol. 37; L. C.
Biedenharn, Ref. 1; B. Gruber and L. S. O’Raifeartaigh, J. Math.
Phys. 5, 1796 (1964); M. Umezawa, Nucl. Phys. 48, 111 (1963);
53, 54 (1964); 57, 65 (1964); Strasbourg Preprint; T. S. Santhanam,
ICTP reprint 65-86, Trieste (1965).

® G. Racah, in Lectures on Lie Groups in Group Theoretical Concepts
and Methods in Elementary Particle Physics, F. Gursey, Ed. (Gordon
and Breach Science Publishers, Inc.,, New York, 1964); A. Salam,
Formalism of Lie Groups in Proceedings of the 1962 Trieste
Seminar in Theoretical Physics (IAEA, Vienna, 1963); J. P. Antoine
and D. R. Speiser, J. Math. Phys. 5, 1226, 1560 (1964); D. R.

Speiser, Helv. Phys. Acta 38, 73 (1965); R. E. Behrends, J. Dreitlein,
C. Fronsdal, and B. W. Lee, Rev. Mod. Phys. 34, 1 (1962).

IR’s) of L. The various states belonging to the multiple
weights are to be distinguished by the operators
mentioned above and we refer to the problem of
determining these operators as the internal labeling
problem. The third problem is that of the Clebsch-
Gordan series and coefficients of L. Its solution
involves the explicit reduction of direct products of
IR’s of L. Most of the difficulties here stem from the
fact that such products are not in general simply
reducible; i.e., the repeated occurrence of IR’s in a
direct product is possible. We refer to the multiplicity
structure of the reductions of direct products of IR’s of
L as the external multiplicity structure of L. Asso-
ciated with it there is an external labeling problem,
that of determining operators whose eigenvalues can
distinguish the multiple occurrences of IR’s of L in
reductions of direct products.

At present the internal multiplicity structure of any
compact simple Lie group is either known* or at
least accessible from Kostant’s formula,® but the
internal labeling problem has been solved only for
unitary groups® and orthogonal groups.? An implicit
determination of the external multiplicity structure is
contained in the formulas of Steinberg and Strau-
mann,® while more explicit knowledge can be obtained
by a rather wide variety of methods, for example,
by using tensorial methods® or by using Speiser’s

4 See the papers cited in Ref. 3, especially that of Racah.

® See N. Jacobson, Lie Algebras (Interscience Publishers, Inc.,
New York, 1962), p. 261. In connection with Kostant’s formula,
see J. Tarski, J. Math. Phys. 4, 569 (1963).

¢ G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1499 (1963).
See also H. Weyl, Theory of Groups and Quantum Mechanics
(Methuen and Company, Ltd., London, 1931). S. Gasiorowicz,
Argonne National Laboratory Report No. 6729 (1963) (unpub-
lished).

7 G. Racah has obtained but not published a solution of internal
labeling problem for orthogonal groups (private communication).

8 Steinberg’s formula is discussed in Jacobson, Ref. 5, p. 262. N.
Straumann [Helv. Phys. Acta 38, 56 (1965)] has discussed its use in
practical situations and obtained an alternative formula, CERN
preprints 65 320 5 Th. 527, (1965).

? See R. E. Brehends ef al. or N. Mukunda and L. K. Pandit,
Progr. Theoret. Phys. (Kyoto) 34, 46 (1965).
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method,!® or else, in the case of unitary groups, by
using Young diagrams. So far no published work of a
general nature on the external labeling problem is
available, although it has been solved in the case of
SU, by Moshinsky.!? Finally, as far as Clebsch-Gordan
coefficients are concerned, progress of a general nature
hasbeen made by Derome and Sharpe,'*whorecognize
the existence of the external multiplicity problem but
perform their investigation without considering any
special solution of it. Explicit work on coefficients for
situations in which the external multiplicity question
enters nontrivially has already been performed in
special cases, especially the case of SU; .14

The present paper is designed to serve as an intro-
duction to a program aimed at solving both the
internal and external labeling problems for arbitrary
compact simple Lie groups. The idea of this approach
is first to solve the external labeling problem explicitly
and then to proceed to a solution of the internal
labeling problem by exploiting the intimate relation-
ship between the internal and external multiplicity
structures. We have constructed the operators—
polarized Casimir operators—which solve the external
multiplicity problem for the classical groups.’® The
present paper is a unified review which contains, how-
ever, some new results and new proofs and which
places emphasis suitably for later parts of our pro-
gram on the work of Biedenharn, Speiser, and others
(whose contributions are cited below) on the relation-

10 D, R. Speiser, in Lectures on Theory of Compact Lie Groups in
Group Theoretical Concepts and Methods in Elementary Particle
Physics, F. Gursey, Ed. (Gordon and Breach Science Publishers, Inc.,
New York, 1964), and Speiser, Ref. 3.

1 D, E. Littlewood, Theory of Group Characters (Oxford Uni-
versity Press, New York, 1950), p. 94. See also A. R. Edmonds,
Proc. Roy. Soc. (London) A268, 567 (1962); and C. Itzykson and
M. Nauenberg, Rev. Mod. Phys. 38, 95 (1966).

12 (a) M. Moshinsky, J. Math. Phys. 4, 1128 (1963) and (b)
private communication to A. J. Macfarlane.

13 J. R. Derome and W. T. Sharpe, J. Math. Phys. 6, 1584 (1965);
see also A. J. Macfarlane, N. Mukunda, and E. C. G. Sudarshan,
J. Math. Phys. 5, 576 (1964).

14 K. T. Hecht, Nucl. Phys. 62, 1 (1965); J. G. Kuriyan, D. Lurie,
and A. J. Macfarlane, J. Math. Phys. 6, 722 (1965); T. A. Brody,
M. Moshinsky, and I. Renero, J. Math. Phys. 6, 1540 (1965);
G. E. Baird and L. C. Biedenharn, Duke University preprint (1965);
M. Resnikoff, Ph.D. thesis, Michigan (1965), and J. Math. Phys.
8, 63, 79 (1967); L. Banyai, N. Marinesen, 1. Raszillier, and V.
Rittenberg, Phys. Letters 14, 156 (1965), and Bucharest preprint
(1965); Hou Tei-yu, Sci. Sinica 14, 367 (1965); G. Ponzano, Torino
preprint (1965). See also M. Moshinsky, Rev. Mod. Phys. 34, 813
(1962), and Ref. 12(a); J. J. deSwart, Rev. Mod. Phys. 35,916 (1963);
Refs. 14-18 of the paper by J. G. Kuriyan efal. noted above;
I. S. Gerstein and K. T. Mahanthappa, Nuovo Cimento 32,
239 (1964); L. K. Pandit and N. Mukunda, J. Math. Phys. 6, 1574
(1965). For C-G coefficients of groups other than SU, and SUy,
see J. C. Carter, J. J. Coyne, and S. Meshkov, Phys. Rev. Letters
14, 523, 1850(E) (1965); C. L. Cook and G. Murtaza, Nuovo
Cimento 39, 532 (1965) for SU,, and K. T. Hecht, Nucl. Phys. 63,
177 (1965), and J. N. Ginocchio, Rochester preprint UR875-75
(1965) for Ry.

18 A, J. Macfarlane, L. O’Raifeartaigh, and P. S. Rao (to be
published). Preliminary accounts of this work have been given by
L. O’Raifeartaigh, Bull. Am. Phys. Soc. 10, 483 (1965).
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ship of the internal and external multiplicity structures
of an arbitrary compact simple Lie group L. In Sec. 2,
we state and prove the following lemma which we
call Biedenharn’s lemma. The lemma was first given
by Kostant!® and was later rediscovered by Bieden-
harn,'* who was the first to realize its value for
physical applications.

Lemma: Let R and R’ be two IR’s of a compact
simple Lie group L with highest weights A and A’,
respectively. Let m with multiplicity y,, denote the
weights of R. If A’ is so much higher than A that
A’ + m is a dominant weight of L for each meR,
then in the reduction of R x R’ the IR of L of highest
weight A’ 4 m .occurs exactly y,, times for each
meE R.

Despite the restriction of the type of direct product
R X R’ to which this lemma applies, this is the
fundamental result for our purposes, as is explained
below. We have proved it very simply using only
general properties of an arbitrary compact simple
Lie group. In Sec. 3, we obtain necessary and sufficient
conditions on A’ for fixed A, for each compact simple
Lie group, which ensure that A’ + m is dominant for
each me R. The content of Secs. 2 and 3 has
been discussed in detail by Mukunda and Pandit,®
and by Preziosi, Simone, and Vitale'? in the case
of SU;. These discussions given by these authors
use specific details of SU; representation theory and
these results are obtained much less directly than ours
are here. Later Vitale'® extended the discussion of
Preziosi, Simone, and Vitale to the other rank two Lie
groups. Also, Nussinov!® has obtained results agree-
ing with those of Sec. 3 for SU,, and very recently
Zaccaria® has done likewise for the classical groups.
Our results were obtained independently of those of
Zaccaria; since our approach is purely algebraic and
in the spirit of the rest of our paper, whereas Zaccaria
has used intuitive geometrical notions, we feel justified
in presenting our method in detail. In Sec. 4 we state
and prove the generalization of Biedenharn’s lemma
to the case of a general direct product R X R'. In

16 B, Kostant, Tians. Am. Math. Soc. 93, 53 (1959); L. C.
Biedenharn, Phys. Letters 3, 254 (1963); G. E. Baird and L. C.
Biedenharn, J. Math. Phys. 5, 1730 (1964). For the classical groups
the content of the lemma is implicitly contained in H. Weyl,
Classical Groups (Princeton University Press, Princeton, New
Jersey, 1946), p. 231, Theorem (7.10A). We are indebted to Pro-
fessor A. J. Coleman for informing us that the general idea of the
lemma had already occurred to him in 1957 and apparently was
known to R. Brauer and H. Weyl as early as 1930.

17 B, Preziosi, A. Simone, and B. Vitale, Nuovo Cimento 34,
1101 (1964). Sce also A. Simone and B. Vitale, ibid. 38, 1199 (1964).

18 B, Vitale, University of Wisconsin preprint (1965).

1% S, Nussinov, University of Washington preprint (1965).

#0 A. Zaccaria, Napoli preprint (1965).
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view of the facts (a) that the form of our result has
been given already by Racah,? and (b) that it is essen-
tially an algebraic statement of the result underlying
Speiser’s geometrical method'®® for reducing direct
products, we refer to the generalization of Bieden-
harn’s lemma as the Racah-Speiser lemma. The first
available discussions of Speiser’s method to be found
in the literature were those of Antoine?! and de-
Swart* both of which deal with the case of SU,. Some
details regarding the application of Speiser’s geo-
metrical method to other cases are given by Speiser
himself. In view of the difficulty of applying geometri-
cal techniques in spaces of more than two (even three!)
dimensions, the desirability of the algebraic statement
should be apparent. Finally, it should be mentioned
that the work of Sec. IV-D of the paper by Behrends,
Dreitlein, Fronsdal, and Lee®2 is essentially equivalent
to Speiser’s method.

Sections 2—4 contain the basic results of the relation-
ship between the external and internal multiplicity
structures of an arbitrary compact simple Lie group.
We conclude this Introduction by explaining our view
that it is Biedenharn’s lemma rather than the Racah-
Speiser lemma which has the more fundamental
significance. The view stems from the fact that we
hope to proceed to the development of the Racah
algebra of an arbitrary compact simple Lie group L
and in particular to define a complete set of Clebsch-
Gordan coefficients of L as matrix elements of a
complete set of irreducible tensor operators. We thus
regard such operators as fundamental entities in the
Racah algebra of L and explain how Biedenharn’s
lemma rather than the Racah-Speiser lemma is
exploited in classifying them. The basic irreduc-
ible tensor operators of L possess, in addition
to the representation labels and internal labels which
specify their transformation properties under L,
external labels which specify the changes they induce
on the representation labels of states of IR’s of L.
Let’ |R'i’m’) be a state of the irreducible representa-
tion R’ of L with highest weight A’, with weights m’
and eigenvalues i’ of the operators which solve the in-
ternal multiplicity problem for L. Let T be an irre-
ducible tensor operator which transforms like |R j ¢)
under L. If A’ is high enough with respect to A then
Tﬁ can, according to Biedenharn’s lemma, induce on
|R"i"m’) any or all of the changes

R >R =R + m,
where m is a weight of R, on the representation labels

21], P. Antoine, Ann, Soc. Sci. Bruxelles 77, 150 (1963).

22 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee, Rev.
Mod. Phys. 34, 1 (1962). See also C. Fronsdal, 1962 Brandeis
Lectures (W. A. Benjamin, New York, 1963), Vol. I.
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R’ of the state |[R’i’ m'). Let us then define for each
weight m of R, tensor operators T% , which induce
only the change R’ — R” + m, i.e., such that the re-
duced matrix elements
RN TRIR)

vanish unless R” = R’ + m. By the lemma again there
are y, independent such operators for each me R
since R" 4+ m occurs y,, times in R ® R’, so that in all
there are dim R independent components T% for
fixed R, j, g. Thus Biedenharn’s lemma—giving us the
m label—is of vital significance in the classification of
tensor operators of L. Of course, our discussion has
related only to A’ “high enough” with respect to A;
i.e., it applies only when TE , acts on states [A" i’ m')
of high enough A’. If A’ is not high enough, the
situation of Sec. 4 obtains and for any given allowed
set of values R',i’,m’, R, j,q,i" there are less than
dim R nonvanishing matrix elements,

(R'+m i m=m+q|TE, IR i'm')
Information as to how many and which ones these are
is contained implicitly and somewhat awkwardly in
the Racah-Speiser lemma. This, however, does not
concern us here. The point is that it is not that any of
the dim R independent tensor components T% , with
fixed R, j, q are identically zero, but simply that some
of them annihilate certain states |R’i’m’) whose
highest weights are not high enough.? In other words,
Biedenharn’s lemma features significantly in the
classification of the dim R independent tensor
operators TR . with fixed R, j, g, and the Racah-
Speiser lemma simply describes edge effects of minor
importance regarding the vanishing of certain matrix
elements of such operators. It is for this reason that
we have not only stated and proved Biedenharn’s
lemma, which is after all no more than a special case
of the Racah-Speiser lemma, but also stressed it over
and above the general discussion. The simplicity and
vital significance of the lemma could easily be lost
within the complication of the general treatment. It
should also be mentioned that the philosophy ex-
pounded here is in obvious agreement with that of
Biedenharn. Further, it might be convenient to
illustrate the argument by means of the case of SU,.
In familiar notation, if j > j, then the tensor operator
t! has nonvanishing matrix elements

G ' m) g, 1m)
for j" ="+ A, A= —j, —j+1,:-+,j, since the
Clebsch—Gordan series of SU, can be written as
DY x D! = Dt + D+l 4 ... 4 DI
— i Df+A’
_ A=j
8 This point should be clarified by the example discussed below,
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which is an explicit statement of Biedenharn’s lemma.
Accordingly, we may define, for fixed jm, dim D’ =
(2j + 1) tensor components ¢}, such that

(J'm' 4 m| i, |j'm’)
vanishes unless j” = j’ 4+ A. The set t{,, j=0, 3,
1---, -j<A,m<j, is a complete set of tensor
operators, whose matrix elements yield all Clebsch—
Gordan coefficients of SU,. If j' < j, ie, if j' =
j=—p,0<p<j then
D!’ X Di = D:I+1' R D:i—J"

—_ J D1'+A

. A=—j42p ’
with
and

('m’ + m| 4, |j'm)

vanishes for j” =j' 4+ A with —j <A< —j+ 2p.
Clearly this does not imply the identical vanishing of
any component t},, and does not carry any relevance
to the tensor operator classification question. Tensors
of the type ti, occur in Schwinger’s theory of
angular momentum? and will be discussed in a
forthcoming paper by one of the authors.?

2. BIEDENHARN’S LEMMA FOR AN ARBITRARY
COMPACT SIMPLE LIE GROUP

In this section we establish Biedenharn’s lemma for
an arbitrary compact simple Lie group L and discuss
its geometrical interpretation.

We precede a statement of Biedenharn’s lemma with
a convenient definition. Let R and R’ be the IR’s of L
with highest weights A and A’. We say that R’
dominates R if (A’ + m) is a dominant weight of L
for each weight m of L.

Biedenharn’s lemma: Let R and R’ denote two IR’s
of a compact simple Lie group L. Let A and A’ be the
highest weights of R and R’, and let m of multiplicity
.. denote the various weights of R. If R’ dominates
R, then in the reduction of the direct product repre-
sentation R X R’ of L:

(a) only those IR’s of L with highest weight A" + m
occur,

(b) the IR of highest weight A" + m occurs y,,
times.

Proof: We have two distinct but equivalent formu-
las for the character y%(¢) of any IR of L. One of

these is
x%(@) = 3 v exp [i(m, $)],

34 J Schwinger, “On Angular Momentum,” NYO-3071 (1951).
35 A, J. Macfarlane (to be published).
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which follows directly from the definition of the
character.
The other is the Weyl character formula?®

1E($) = £ DIxA($),
NP = g 85 exp {i[S(A + 0), 4]}

Here the superscript zero refers to the identity IR of
L whose highest (and only) weight is zero. Also S
denotes an element of the Weyl group of L, and
dg = 1 according to whether an even or odd number
of Weyl reflections are needed to obtain S, and ¢ is
half the sum of the positive roots of L. The crucial
point of our proof of Biedenharn’s lemma is to use
(2.1) for R and (2.2) for R’ in forming the character
of the direct product R X R’. More precisely, from
the general theory of characters, we have

2ZE () = xF(PrF ()
= % Y X [i(m, $)]

X gés exp {i[S(A’ + 8), $1}/x%()
= % 68 z Vm
x exp {i[S(A’ + &) + m, ¢]}/x%().

(2.3)

But, since the weight diagram, including multiplicities,
of any IR of L is invariant under any element S of the
Weyl group of L and since the sum Y, runs over all
distinct weights m of R, we have

S vmexp [i(S(A’ + 8) + m, ¢)]
=Y ymexp {i[SA’ + 8) + Sm, ¢]} (2.4)

for each S separately. Inserting this into (2.3) and
using

(2.2)

Sa + Sb = S(a + b) (2.5)

we obtain

1FE ()
=2 g g ¥m €Xp {i[S(A’ + 0 + m), $1}/x%()

=3 ya{Z 85 exp {{[SQA’ + 0 + m), $1}/x"($)}.
m 8
(2.6)
It is at this point that the condition that R’ dominates

R enters. When the condition is satisfied, we can
immediately write

> dgexp {i[S(A’ + 8 + m), $1}/x($) = xFA ™ (4),
s Q2.7

% H, Weyl. Z. Math. 24, 328 (1924), reprinted in H. Weyl,
Selecta (Birkhauser, Basel, 1956). See also G. Racah, Lecture notes
(1951)%; B. R. Judd, Operator Techniques in Atomic Spectroscopy
(McGraw-Hill Book Company, Inc., New York, 1963), p. 131.
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where R(A’ + m) is the IR of L with the highest
weight A’ + m, for all m. Then (2.6) and (2.7) yield

1TE(P) = % Yl EAT(S). (2.8(

Hence by the general theory of characters, the reduc-
tion of R X R’ contains only those IR’s of L with
characters yB®+m and these with multiplicities y,, .
This establishes the lemma. Note that the condition
that R’ dominates R is a necessary as well as sufficient
condition for the validity of the lemma, since, if
A’ + m is not a dominant weight of L, it cannot be
the highest weight of any IR of L and yR®+m s g
meaningless expression.

The geometrical interpretation of Biedenharn’s
lemma in weight space is fairly obvious. Let the point
of weight space which corresponds to the highest
weight of any irreducible representation R of L be
called the site of R. To find which IR’s of L are con-
tained in R x R’ and with what multiplicity, we begin
by drawing the weight diagram of R, i.e., we plot the
weights of R together with an indication of their
multiplicities in weight space. We refer to the origin
of weight space which may or may not correspond to a
weight of R as the center of the weight diagram of R.
Now, if we translate the weight diagram of R rigidly
and without rotation until its center lies at the site of
some representation R’ which dominates R, then the
weights of the translated weight diagram lie at the
sites of the IR’s of L contained in R X R’, each IR oc-
curring a number of times equal to the multiplicity of
the weight of L which it has at its site after translation.
It is to be stressed that this geometrical picture is not
identical to that obtained by direct specialization to
the case when R’ dominates R of the geometrical
method of Speiser for reducing R X R’. In fact the
picture just described is simpler. It defines the site of
any IR of L in weight space to be the point which
corresponds to its highest weight, whereas in Speiser’s
method the site of R is defined to be the point A + §
in weight space. Apart from this simplification, which
clearly does not affect the result, our picture agrees
with that obtained from Speiser’s method. Of course,
Speiser’s definition must be adopted in the general
case of R X R’ and our simplification applies only
when R’ dominates R. However, it is in keeping with
our general philosophy (which regards the case in
which R’ dominates R as being of paramount im-
portance) to find it worthwhile to use the simplified
definition of site in this case. Further use of the general
definition of site would be one aspect, somewhat
innocent, of how the complicated detail of the general
case can obscure the simplicity of the important case
in which R’ dominates R. All this should in no way
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be construed as criticism of the excellent work of
Speiser. It rather reflects our different motivation:
Speiser’s being to reduce general direct products, ours
to proceed toward the Racah algebra of L.

We conclude this section with some simple illustra-
tions. For SU,, if we refer to IR’s by means of their
J value, so that the IR j has weights m = —j, —j + 1,
-++,Jj, then Biedenharn’s lemma applies to j X j’
with j* > j, in which case the Clebsch~Gordan series

JRP =G DG =D+ (=D
can be written as
H

ixi=32 0+,
explicitly illustrating the lemma. For SUj;, reduction
of the general product? (4, u) x (4, ') has been
studied by many authors.”® The conditions that
(4, ¢') dominate (4, ) are satisfied if and only if
A, u > A+ p®® Since the highest weight of any
(2, ) is [3(a + B), 3(« — P)], the product (4, ) X
(X, gy with X', g’ > A + u can be seen from Bieden-
harn’s lemma to contain (4", u”) with

A=+ (M+EY),

p'=p +(M-3Y), 29)
a number of times equal to the multiplicity of the
weight (M, Y) of (4, u) for each weight of (4, ).
Mukunda and Pandit have obtained this result by
applying tensor methods to the direct product in
question, while Preziosi et al. have obtained an
equivalent one by Young diagram manipulation.
While no very convenient formula exists for the
multiplicity of (M, Y) in (4, &), in any special case
this can be readily inferred as follows. The IR (4, &)
contains those pairs of (I, Y) eigenvalues given by®

I=¥f~2)
Y=F+g—#4+2p,

for f, g integers withranges A + u > f>u>2g20,
and each pair of eigenvalues (Z, Y) is associated with
(2I + 1) states |[AuIM Y), with —f < M < Y. For
example, the quark IR (1,0) contains the simple
weights (3, 4), (~4%, 3), and (0, —%), and (2.9) tells us
that, as long as 4, # > 1, we have (1,0) x (4, ») =
A+Lw+@Ape—1)+@A—1,u+ 1), awell-known

27 Notation (4, u) for SU; IR’s is explained, for example, by R. E.
Behrends ef al. in Ref. 22.

%8 See H. Goldberg, Nuovo Cimento 27, 532 (1963); V. B.
Mandelsveig, Zh. Eksperim. i Teor. Fiz. 47, 1836 (1964) [English
transl. Soviet Phys.—JETP 20, 1237 (1965)]; S. Coleman, J. Math.
Phys. §, 1343 (1964), as well as the papers of Refs. 9, 17, and 18.

#® This result has been given by Mukunda and Pandit, Ref. 9,
as well as by the authors of the papers cited in Refs. 17-20. See
also Sec. 3 of this paper.

A simple proof of this result is given by C. R. Hagen and A. J.
Macfariane, J. Math. Phys. 5, 1335 (1964).
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result.® In the case of the octet (1,1) the simple
weights are (4, 1), (4, —1),and (&1, 0), and there is
one double weight (0, 0). From this (2.9) tells us that,
as long as 4, u > 2, we have?®?
LDXALw=A+2,p—-D+@A+1L,p—-2)
+00-Lu+2)+@A—-2,p+1)
+A+Lpu+D+A-1Lpu—1
+ 2(4, p).
Kuriyan et al.1* have not only used this result in their
tabulation of SU; Clebsch-Gordan coefficients for
(4, @) x (1, 1), but also have actually sharpened it by
placing the two orthogonal sets of coefficients con-
necting (4, x) x (1, 1) to (4, &) in 1:1 correspondence
with the I = 1 and 7 = O states of weight (0, 0) in the
IR (1, 1). While the actual correspondence is made in a
somewhat ad hoc manner, such a correspondence is
expected to emerge as a general feature in the study of
CG coeflicients of SU, or indeed mutatis mutandis of
any other group.

3. EXPLICIT CONDITIONS FOR THE
VALIDITY OF BIEDENHARN'S LEMMA

In the preceding section we derived Biedenharn’s
lemma which relates to a direct product representation
R X R’ of a compact simple Lie group L in which
R’ dominates R. More precisely, the necessary and
sufficient condition for Biedenharn’s lemma to be
valid is that A’ 4+ m must be a dominant weight of L
for all weights m of R, where A’ is the highest weight of
R'. 1t is clearly of interest to express this condition in
more explicit form.

We first recall®® that if L is rank /, any IR of L can
be denoted by

{11’ Tt Al}

and realized as the leading® IR in the reduction of the
direct product
D1X DIX "'D1X Dgx DzX"'sz tee
|« 4, factors —| | < 4, factors —|
D,x D, X - D,
|« 4, factors—]
where D, (k = 1,2 - - - ]) are the fundamental IR’s of

L. Thustheirreducible representation R = {4, *, 4;}
of L has highest weight

AEA(AI"“’}'I)
1
— (x)
gllkA ,

31 H, A. Jahn and H. Van Wieringer, Proc. Roy. Soc. (London)
A209, 502 (1951).

32 D, Lurie and A. J. Macfarlane, J. Math. Phys. 5, 565 (1964).

38 See G. Racah’s lecture notes, Ref, 2, and R. E. Behrends et al.,
Ref. 22.

3¢ The one which has the highest weight.
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where A® is the highest weight of D, , and the highest
weight A’ of R' = {4, ,4}}

[4
A= ZAIIcA(k)'

k=1
It is our purpose in this section to express the con-
dition that A" + m be a dominant weight of L for
each weight m of R as an explicit statement in terms
of 4, A, (k = 1,- -+, I) for all of the classical groups
and G,. Our results are collected into the accom-
panying table.
As a preliminary we state and prove Lemma A.

Lemma A: Any weight m of the IR of L with highest
weight A can be written in the form

m=A—73 cr(), 3.1)

where the r(«) are the positive roots of L and the c,
are nonnegative integers.

Proof: In any IR, the highest weight state |A) is the
only state such that

E,|A) =0, for all positive «.

Hence given any state |m), either m = A or else there
is at least one E, with positive « such that

lm + r(«)) = E, [m).

Similarly either m + r(f) = A, or else there is at
least one E; with positive § such that

[m 4+ r(e) + r(B)) = E, |m + r(x)) = EzE, |m).

If we proceed in this way, the fact that all IR’s are of
finite dimension implies that we eventually reach

Im+r(@) +r(B) + - r()) = E, - EE, |m)
such that
Eslm+r@+r)+ - +r@) =0
for all E; with positive 8. In this case, we have
A=m+r@+r@)+---+r) G2

and since any given r(r) can occur on the right c,
times, ¢, =0,1,2,---, we see that (3.2) is equiv-
alent to the statement (3.1) of the lemma.

We now study the four families of classical groups
one at a time.%

SU, (n =1 + 1): For this group, the positive roots
are the n-component vectors r(ij), n > i > j > 1, with
ath components

ra(ij) = 6ia - 6:ia (33)

35 Notation E, etc., explained in G, Racah’s lecture notes, Ref. 2.
In this proof, kets denote unnormalized states with the indicated
weight.

3 See G. Racah’s lecture notes Ref. 2 for most of the back-
ground information regarding the roots and weights of compact
simple Lie groups used in this section.




542

and similarly r(jj) with » > j > i > 1 gives the nega-
tive roots (i.e., pairs of number i,j,n>i>j>1
play the role of the single label « of Lemma A). The
Weyl group of SU,, consists of all permutations of the
components W, of any n-component vector W.

From the definition of the Weyl group, it follows
that A" + m, for any given me R, is a dominant
weight of SU,, if and only if

A +my2A +mep > 2N +m),
or, equivalently, if and only if

A=Ay > my—my,

A=A 2m, —m, . G4

Hence the conditions that A" 4 m be a dominant
weight for all me R are that A] — A} exceed the
maximum value of m; — m, as m ranges throughout
R, and that A; — Aj exceed - - - etc. But the fact that
the Weyl group permutes the components m; of m
implies that max (m; — m;), i > j, is independent of
i and j, so that (3.4) may be replaced by
A=Ay A — Ay 2 max (my — my). (3.5)
But now the definition (3.3) of the positive roots yields

r(i) = 0 > r,(i),
ie.,

1) — ra(i) 2 0
and Lemma A yields

Al - An =m —m, + Z cz[rl(a) - rn(a‘)]

=m —m,
so that the maximum value of m; — m,, is attained for
m = A. Hence (3.5) can be given as
Al—Ag A — A2 A=A, (36)
These are the required conditions in terms of the
highest weights A and A’ of R and R'. To write them

in terms of the numbers 4, A,'c k=1,---,], we use
the familiar relations®”
A1'—A2=}*1’ Az—As=j-2,"'s An—1 —An =}~z

and the results displayed in the table emerge directly
from (3.6).

Oy,,1: For this group, the positive roots are the
l-component vectors r(i), 1 < i </, and (i), r'(ip),
I 2> i>j2> 1, with ath components given by

ra(i) = (Sai:
ra(ij) = 6:11' + 6a:i,
r.ij) = 8,; — 8,5, 3.7

37 In this and the corresponding equation below our notation is
essentially that of the paper by Dynkin [Am. Math. Soc. Transl. 17,
(1950), Table 24]. See also Eq. (94) of Racah’s lecture notes, Ref. 2.
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and the Weyl groups consists of all permutations of
and changes of sign of the components W, of any
{~component vector W. It now follows that A’ 4+ m,
for any given m € R, is a dominant weight of Oy, if
and only if
AN +my >N +my2>-2(A +m) 20
or, equivalently, if and only if
A=A 2 mg~—my,

A — AN 2mp—myy,
Ay —m,. (38)
Validity of (3.8) for all m € R implies its validity
when the quantities on the right sides of these in-
equalities attain their maximum values in R. From
the definition of the Weyl group, it is clear that
max (m; — m,) = max (m, — ms)
= -max(m, — m;,_,)
= max (m; + m,) = max (m; + m,)
and
max (—m,) = max m;, = max m, .
Hence, the conditions for validity of (3.8) for all
m € R become
Al —Ag, - Ay — A} > max (my + my),
A} > max m,. (3.9
Now the definition (3.7) of positive roots r(«) yields
r{e) >0 and r(e) + ry(e) 2> 0
so that, from Lemma A, we get
A=m+3cn@>m,

A+ Ay = my+ my+ 3 calr(@) + )]

> my + m,.
Hence (3.9) becomes
Al —Ag, AL =AM 2 A+ A, A2 A,
(3.10)
To rewrite (3.10) in terms of 4,, 4, (k =1, -+, ) we
use the standard relation®”%8
A—Ay=124, -, A=A =Aa, A =14
(3.11)
The results then appear as in the table. The factor
in the last part of (3.11) reflects the fact that /th
fundamental IR of Oy, is a spinor representation
with highest weight (3,3 - - - 3).
38 This is essentially Eq. (96) of Racah’s lecture notes, Ref. 2.
We have taken the spinor IR as D, instead of Racah’s D,.
See also H. Boerner, Representations of Groups (North-Holland

Publishing Company, Amsterdam, 1963), Chap, VII, Sec. 14, and
Chap. VIII, 3-5.
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Sps;: In this case the positive roots are the same as
for O, except that n,(i) = 2d,,. Furthermore the
Weyl group of Sp,, is the same as for Oy, . It there-
fore follows exactly as for O, that (3.10) also gives
the condition that A" + m is a dominant weight of
Sp,, for all m e R. However, the standard relations?3?

AI_A2=2‘19"'3 Az—l—Az=}*z—1, Az=}*z
(3.12)

for Sp,, differ from (3.11) in the absence of the factor
% in the last equality, so that the final results for Sp,,,
as displayed in the table, differ from those for Oy, .
The reason for the difference between (3.11) and
(3.12), of course, stems from the different nature of
the /th fundamental IR’s in the two cases, that for
Sp,, being a tensor representation of highest weight
(1,1---1)

0,,: For this group, the positive roots are the
I-component vectors

W@, ra, 12i>jx1,

with ath components

ra(ij) = 6ia + 6.1'a’

r(if) = 0,5 — 4. (3.13)
The Weyl group consists of all permutations and all
changes of sign in pairs of the components W; of an
I-<component vector W. It follows that A" + m, for
any given m € R, is a dominant weight of O,, if and
only if

A+ m) > (A + m),

> (N myy 2 A+ m),

or, equivalently, if and only if

A=Ay >my—my,

= A 2>m—my,
A2 —m—m . (3.14)
The departure from pattern in the last inequality
is to be noted. As before, from the properties of the
Weyl group we deduce that, for (3.14) to hold for all
m € R, we must have
Al —Ag, o Ay — AL 2> max (my + my),
Al + A} > max (my + my). (3.15)

Again as before, we can use (3.13) and Lemma A
to show that max (m, + m,) is attained for m = M.

39 1. O’Raifeartaigh, “Lectures on Local Lie Groups and Their
Representations,” Matscience Report 25 (1964).
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TasLE 1. Conditions for compact simple Lie groups L of rank
I that the IR (4;, 43, - - -, 4;) dominate the IR (4;, 45, -, 4).

L Conditions
SU(n) Y O ¢ A )
(n=14+1)
0(21 + 1) )‘19 l;’ }*;-1 2 }*1 + 2(15 + -4+ ll—l) + Zl’
1222(}'1+"'+Al—1)+}*l
Sp2h) Mods, a2 M+ 20 + -+ 4+ A),
A2hth+-+h
o) Mydg, 4
SAh+20, 4+ A+ Aha+ A4
G, A > 24, + 34,

Ar > A+ 244

Hence (3.15) reads as
Ai_Aés ;—I—AlLZAl"'Aza
AN+ NS>A+H A, (3.16)
These inequalities are translated into terms of 4,
A, (k =1,-+-,]) by means of3"4
AM—Ap=h, N g — Ay =2y,

AN, —AN=4, A+ A=4,, GBI7
the final results being given in Table 1. The inverted
order of 1,_, and 4, in the second line of (3.17) stems
from the fact that the fundamental IR’s D! and
D' of O, are spinor representations, respectively,

with highest weights (3,4---4)and (},%-- -}, —9).
G,: G, is a rank two group with positive roots*

B (£ed @B ()

23 4 T4 43 T4 2
(3.18)

The Weyl group is conveniently specified by saying

that, if W = (W,, W,) is any two component vector,
the vectors equivalent to it are

(:I: Wl ’ :|: Wz),

[£3(W; + V3, £330, — W),

[£30%, — V3, £3(3W: + W)l (3.19)
where all possible combinations of sign are to be
taken. The vector (W;, W,) can be seen from (3.19)
to be dominant if and only if

Wy > V3W, >0
so that (A’ 4+ m), for fixed me R, is a dominant
weight of G, if and only if
A —3A>V3my—my, Aj> —my. (3.20)

40 See H. Boerner, Ref. 38.
41 For information regarding G3, see R. E. Behrends et al., Ref. 22,
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As before, we find that, as m ranges through R

max (\/ §m2 — my) = max m,,
max (—m,) = max %(\/ 3m, + my), (3.21)
and use (3.18) and Lemma A to prove the maxima on
the right are attained for m = A. Hence (3.20)
becomes

A —V3A> A,
A2 HV3A+ A (322)
This translates into the results displayed in the table
when one uses

Ay = (12V3)0 + #4y),

A, = 12,, (3.23)
which follow from the fact the seven-dimensional
fundamental IR D, of G, has highest weight
(1/2\/ 5)(1, 0), while the fourteen-dimensional funda-
mental IR D, has highest weight }(3, 1).

4. THE RACAH-SPEISER LEMMA

In Sec. 2 we stated and proved Biedenharn’s lemma
relating to a direct product representation R X R’
of a compact simple Lie group L when R’ dominates
R. In this section we turn to the case of the general
product R x R’, and prove that this case can be
described by the following lemma, which, for reasons
given in the Introduction, we call the Racah~Speiser
lemma,

Racah—-Speiser lemma: Let L,R, R', A, A’, mand y,,
be defined as in our statement of Biedenharn’s lemma.
Let A" 4+ m,denote those weights of the set of weights
A’ + m which are dominant weights of L. In the
reduction of the general product representation
Rx R of L

(a) only those IR’s of L of highest weight A" + m,
can occur, and

(b) each of these occurs with multiplicity

F(md) = 2 y'm(_l)nm’ (41)
where the summation > extends over all those
weights m (including m, itself) for which a succession
of Weylreflectionsof A’ + m + dyields A" + mg; + 6,
and where n,, is the number of reflexions required.
I'(m,;) may turn out to be zero, but is never negative.

We precede the proof with two lemmas, which we
call Lemmas B and C.

Lemma B: Let m be a weight of R and m’ a weight
of R'. Let S, be the Weyl reflection in the hyperplane
perpendicular to the root r(a) of L. If .S, is such that

Sam' < m',

S,m +m>m +m, 4.2)
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then there exists in R a weight m(«) such that
m(x) > m,
S,(m" + m) =m' + r(a) + m(a). 4.3)
Proof of Lemma B: From (4.2), there exists in R’
and R, respectively, the strings of weights??
m,m —r(), - -m —qr(a) = S;m,
m,m+ r(e), * - - m + pr(a) = S,m, 4.4)
with
p>q20. (4.5)
Hence, we have
S,(m' 4+ m)=8Sm + S;m
=m +r@+m+(p+q— Dr(o),
and from (4.5) it follows that m(e) given by
m@) =m+(p — g — Dr(x)
is a weight of R which satisfies (4.3).

In Lemma C, we need to introduce the primitive
roots®3 of L. If L is of rank /, its primitive roots are a
set of I positive roots r(k) (k = 1,2, -+, ) such that
each positive root r(«) can be written in the form

4.6)

r(a) =’§lck(a)r(k), 4.7

where the ¢,(«) are nonnegative integers. We refer to
the Weyl reflection S, in the hyperplane orthogonal
to 7, as a primitive Weyl reflection. We now state and
prove Lemma C.

Lemma C: If any weight vector W of L satisfies
SWS W 4.8)

forallk =1,2-- -/ then Wis a dominant weight of
L.

Proof of Lemma C: We have
2W - r(k)
r(k) - r(k)
whence, using (4.8) and the positive nature of the r(k),
we get

SkW = W -— r(k), k = 15 29 Y l’ (4'9)

Wer(k) >0, k=12--,1

But then from (4.7) it follows that W - r(«) > 0 for
all o, so that S, W < Wfor all «; i.e., Wis a dominant
weight,

Proof of the Racah-Speiser lemma: We recall that in
proving Biedenharn’s lemma we reached (2.6) without
using the assumption that R’ dominates R. Hence
Eq. (2.6) is valid even when the assumption is dropped ;
it is used as a starting point in the present discussion.

42 See G. Racah’s lecture notes, Ref. 2, Lecture 2, Sec. 2, and Lec-

tures 3 and 4, Sec. 1.
43 For properties of primitive roots used here, see B. Gruber and

L. O’Raifeartaigh, Ref. 2.
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Suppose that for some me R, A"+ m is not a
dominant weight. Then by Lemma C, there exists at
least one primitive Weyl reflection S, such that

SN+ m) > (A + m). (4.10)
On the other hand, A’ is a dominant weight so that

SA < A. (4.11)

However, (4.10) and (4.11) are just the conditions for
the validity of Lemma B, and it follows there exists in
R a weight m(k) such that

m(k) > m; SN + m) = A’ + m(k) + r(k). (4.12)

We now use the fact that S; is a primitive reflection
to write®
S0 =6 — r(k),

where d as before is half the sum of the positive roots
of L.

Now (4.12) and (4.13) may be combined to give for
the quantity (A’ 4+ m + 6) occurring in (2.6) the
result

SN +m+8) =N +mk)+6>A +m+0.
(4.14)

In other words S, reflects A" 4+ m + § into a vector
of the form A’ + m’ + 6 at least as positive as
A +m+6

Let us rename k as k,. If A’ 4+ m(k,) is neither
equal to A" + m nor dominant, we can repeat the
process and reflect A’ + m(k;) + 6 onto A’ +
m(k,) + 6, where m(k,) > m(k,). It is easy to see that
by repeating the process a sufficient number of times,
we eventually reach a situation wherein one of two
possibilities obtains

(@) S (A + m(k, 1) + 6) = A" + mlk, ;) + 9,
(b) A" + m(k,) is a dominant weight of A.

(4.13)

We examine cases (a) and (b) separately.

Case (a): In this case A" + m(k,_,) + 6 lies in the
Weyl hyperplane orthogonal to r(k,). On the other
hand, it is obtained from A’ + m(k, _,) + 6 by means
of the Weyl reflection in the hyperplane orthogonal to
r(k,_,). Hence A + m(k,_,) + 9 lies in the hyperplane
obtained from the Weyl hyperplane orthogonal to
r(k,) by reflection in the Weyl hyperplane orthogonal
to r(k,_,). But the Weyl reflection of a Weyl hyper-
plane is itself a Weyl hyperplane. Hence A’ +
m(k, ) + 0 lies in a Weyl hyperplane, and we prove
by repeating the argument that the original A’ +
m + 6 does also.

Suppose A’ 4 m + 6 belongs to the Weyl hyper-
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plane orthogonal to r(j), say. Then, using the group
property of Weyl reflections we get

%(55 exp {i[S(A" + m + 9), 4]}
= %6531 exp {i[SS; (A’ + m + 9), ]}

= g(—és) exp {i[S(A’ + m + ), ¢]}

=0.
Hence any term m € R such that A" + m + 4 lies in
a Weyl hyperplane makes zero contribution to, and

can hence be omitted from the summation over m
in (2.6).

Case (b): In this case, we have
gds exp {i[S(A’ + m + 0), ¢1}
= g Oss4, - 5x, €XP {i[SSx, - Sy,
X (A 4+ m +9), ¢}
= (—)”% dg exp {i[S(A” + m(k,) + 6), 4]}
(4.15)
Now, since A’ + m(k,) is a dominant weight, we can,

by (2.2) write the contribution to ¥®*% from the
weight m of R from which we set out as

(=) A g), (4.16)
Substitution of (4.16) into (2.6) gives rise now to the
Racah—Speiser lemma. Note, however, that each
m(k,) is to be identified with some one of the m, of
the above statement of the lemma.

Also the numbers of primitive Weyl reflections is
equal modulo two to the number of Weyl reflections
of any kind.

Some comments regarding the nature and applica-
tion of the Racah-Speiser lemma are now given. First,
we should emphasize that while IR’s that can occur
in R X R’ are determined by the dominance or non-
dominance of the A’ 4+ m, the multiplicity of their
occurrence, which can be zero, is determined by the
Weyl reflection properties A" + m + 4. Second, we
note that in forming the sequence of weights
AN+m+6, AN+mk)+96, i=1---p,itis not
necessary to check at each step whether A’ + m(k,)
is dominant, but only whether A’ + m(k;) + & is
dominant. This follows because, after the m’s of case
(a) have been dropped, dominance of A’ + m(k,)
implies and is implied by dominance of A" + m(k;) +
8. This observation affords considerable simplification
of practical calculation of I'(m;). Finally, we turn to
the question of geometrical significance.

The Racah-Speiser lemma in fact affords an ex-
plicit proof of the geometrical rules given by



546

Speiser®1? for the reduction of R x R’. A very clear
statement of these rules can be obtained by paral-
leling the discussion given by deSwart* of the
application of Speiser’s method to SU;. For SU,
deSwart starts with a suitable preparation of the
weight space of SU,; for the performance of the
geometrical operations associated with Speiser’s
method. We describe this preparation as follows.

The highest weight points of the IR’s of the rank two
group SUj,lie on the boundaries of or within that region
of SU; weight space, which is bounded by the two lines
(Weyl hyperplanes) perpendicular to the primitive
roots of SU,; and which contains the vector § which
is half the sum of the positive roots of SU,. Call
this region the fundamental domain D, of SU, weight
space. Define the site* of the irreducible representation
R of SUj; of highest weight A to be the point A + 4
of weight space. The sites of all IR’s of SU, lie strictly
inside D,. We prepare D, by attaching to the site of
each R the label +R. Any other domain D of SU,
weight space is bounded by lines (Weyl hyperplanes)
perpendicular to some pair of positive roots of SUj;.
Its points are equivalent under some number & of
Weyl reflections to the points of D,. We prepare
the interior of D by attaching the label (—)*R to the
points of D equivalent to the site of R in D, . Prep-
aration of weight space is completed by attaching
the label 0 to any allowed weight point of SUj, lying
on a Weyl reflection axis. Now to reduce R x R’, we

(a) construct the weight diagram of R’, which
involves not only specification of the m but also the
Y » and

(b) translate it rigidly without rotation so that its
center moves from the origin of weight space to the
site of R' in D,. Then, if m is a weight of R of multi-
plicity y,,, m now lies at a point of weight space
labeled by (—)*R” or 0, and corresponding to this m
there is a contribution (—)*y,,R" or 0 to the reduction

4 Note this is not the same definition of the site of an IR of L,
which we use in Sec. 2.
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of R x R'. Adding the contribution from each m
of R leads to the reduction of R x R'. This statement
has been written so that its generalization to arbitrary
compact simple L of rank /is immediate and, this being
done, it is surely clear that it corresponds exactly to
the Racah-Speiser lemma. We refrain from exhibiting
examples due to their availability in the papers of
deSwart! and Speiser.?1° Finally, we are indebted to
Dr. C. Anderson for pointing out that an equivalent,
but in practice somewhat simpler, method of carrying
out the construction of this paragraph is to identify
the site R with A (instead of A + §) and then to
carry out the reflections in a set of Weyl planes
intersecting at —¢ (instead of 0).

We conclude with a final reminder of our idea of
the relative importance of the Racah-Speiser lemma
and Biedenharn’s lemma. We regard the former not
so much as a proof of Speiser’s rules, but rather as a
means of making these rules understandable as edge
effects when the simple picture provided by the latter
breaks down. Indeed, one hardly needs to know the
rules explicitly for the development of the Racah
algebra of L. One needs Biedenharn’s lemma as a
vital structural ingredient of the Racah algebra and
one uses it as one computes the CG coefficients of
L for R x R with R’ tacitly assumed to dominate
R. All that happens if R’ does not dominate R is that
certain sets of the CG coefficients so constructed
automatically drop out—one does not need to get rid
of them in advance. Thus, the role of the Racah~
Speiser lemma is that it gives a simple explanation of
why these sets of CG coefficients drop out in the
actual calculation.
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The Chapman-~Enskog-Hilbert expansion is a method for describing a gas in the “hydrodynamical
stage,” beginning from the Boltzmann equation. The present paper is devoted to the analog of this
expansion for the problem 9p/0t + e8p/0x = p(—e) — p(+e), where ¢ = +1 and x € R'. Though the
situation is vastly simpler than in the Boltzmann case, new and amusing mathematical phenomena are
encountered. One studies solutions of dp/dt + edp/dx = ¢ *[p(—e) — p(+e)] which are (formal) power
series in  (Hilbert solutions): such a solution solves 9p/0t = e *[(1 + €23%/9x®)} — 1]p (hydrodynamical
equation) and is completely determined by the initial value of p(—e) 4 p(+-e¢) (Hilbert paradox). Also,
every solution of the original problem comes very rapidly close to a Hilbert solution which is actually

convergent (hydrodynamical stage).

1. INTRODUCTION

ONSIDER a dilute gas of molecules of mass 1,
filling the whole of 3-dimensional space R3,
subject to an external field f. The corresponding
molecular distribution function p = p(t, x,v) [t > 0,
x € R3, ve R% is a solution of Boltzmann’s problem:

op , Op ;9P _

ot o T = B
in which B stands for special quadratic functional of
p as a function of v € R® only.!

Chapman-Enskog-Hilbert’s development of p de-

scribes the so-called hydrodynamical stage. Hilbert’s
recipe? is, first, to expand p as a formal power series
Po + €py + €%p, + -+ -, which is required to solve

(L.1)

op ap
it + v —
ot ox
and, second, to put € = 1, hoping for convergence to

an actual solution of (1.1). This is clearly a very
radical thing to do. Equation (1.2) means that

+ f%ﬁ ~lepen 2
v €

0 0 0
l:at v ax f av} pn—l s (3 ® pi]

n>0, p,=0, (13a)

especially, for n = 0, B[p, ® p,] = 0, and this turns
out to be the same as to say that p, is a (local)
Maxwellian function [¢, exp (—c; |v — u|?)] depending
upon 5 unknown functions of (¢, x) € [0, ©) X R®: the

1 G. Ford and G. E. Uhlenbeck, Lectures on Statistical Mechanics
(American Mathematical Society, Providence, Rhode Island, 1963),
p-71.

2 D, Hilbert, Grundziige einer allgemeinen Theorie der linearen
Integralgleichungen (B. G. Teubner, Leipzig, 1912), p. 270. See also
Ref. 1, p. 108.

5 hydrodynamical moments

fv”po dv (n=0,1,2).

At the stage n > 1, it is required to solve

l<zz<nB[pi ® pn—-{] = C[pn]
- (1.3b)

for p, with C[f]= BLf® p,] + B[p, ® f]. C turns
out to be a nice integral operator with null space
comprising the 5 functions v" (n =0, 1,2), and to
continue the recipe, it is necessary to meet the terms
of the Fredholm alternative by making the left side of
(1.3b) perpendicular to this null space. Doing this for
n =1 gives the Eulerian hydrodynamical equations
for the 5 hydrodynamical moments of p,; for n = 2,
it gives the Navier—Stokes equations for the hydro-
dynamical moments of py + p,; etc. The curious thing
about this expansion is that the formal power series
for p is completely determined by the initial values of its
5 hydrodynamical moments [v'pdv (n=0,1,2).3
Ford and Uhlenbeck! call this the Hilbert paradox.
This seemingly accidental feature of the recipe is
highly satisfactory, as it substantiates, in part, the
following possibly over-optimistic diagram (Fig. 1)
of what is going on. For any solution p of Boltzmann’s
problem with initial data f, there is (or should be) a
Hilbert solution p° with initial data f° which is closest
to p, ie., for which p — p® becomes small most
rapidly. f° should be a projection of f, and this
projection should commute with the Boltzmann
streaming so that p® is the same projection of p.

0 2 °
[at te ox + fav:lp"_l B

3 D. Hilbert, Ref. 2, p. 280.
4 Reference 1, p. 110.
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Hilbert’s paradox implies the existence of a (very
complicated) functional expressing f° by means of its
5 hydrodynamical moments [Chapman-Enskog de-
velopment]. This functional should also commute with
the Boltzmann streaming so that p® stands in the same
relationship to its hydrodynamical moments. Hilbert’s
paradox also implies the existence of a self-contained
parabolic problem governing the hydrodynamical
state § v"p° (n < 2).

Except for the existence of formal power series
solutions of (1.2) exhibiting the Hilbert paradox and
the (formal) computation of the Chapman-Enskog
development, we think it is fair to say that all this is
up in the air and very difficult to verify.

The purpose of this paper is to verify this picture in
a very simple case, replacing (1.1) by

gf’ + ¢ = DIp) = p(~e) ~ p(+0), (L4a)
Ox -

limp = f, (1.4b)

ti0

with £ > 0, x€ R, e = 1, and nice data f; this is
the same as the telegraph equation

0% 8 9°
P Y252 =5ar (1.32)
with initial data (1.4b) and
hma— = f = —ef + D[f]. (1.5b)
t1 Ot

Kag® found a nice probabilistic model for (1.4): if #
is a Poisson process with rate 1 and jumps +1 and if
z(0) = [x, e] is distributed according to f = f(x, e)

with
2 f=1

R'e=t1

& M. Kag, Some Stochastic Problems in Physics and Mathematics
(Magnolia Petroleum Company, Dallas, Texas, 1956).

20,
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then z(f) = [x + e [t (—1)* ds, e(—1)*] is distributed
according to p, especially, p > 0if f > O [see 2.2)
in Sec. 2].

Hilbert’s recipe for (1.4) would be to find a formal

power series solution p = p, + ep; + €’py + « - - of
1
% -+ e§£ ==~ D[p], (1.6a)
ot ox €
lim p = a formal power series f, (1.6b)
tio
ie.,
[+ eZ]p=Dlpa n20, pa=o0 @70
ot ox

limp,=f,, n>0. (1.7b)
£40

For n = 0, (1.7a) states that D[p,] = 0. This means
that p, is an even function of ¢, and the Fredholm
condition for solving p; + ep, = D[p;] is that the left
side should be an odd function of e. Thus, p, =0
[Eulerian equation}, and p, = f;. ep, = Dip,] is now
solved for the odd part of p;[(p1)oaa = —3ef ], and the
Fredholm condition for solving p; + ep; = D[psl,
i.e., p; + ep; odd, permits us to compute the even
part of pi[(PDeven = (feven + 31f lg‘)]a etc.

The actual facts can be expressed much more
compactly and elegantly: a formal power series
[ =3 fue" with coefficients from® C*(R* x Z) gives
rise to a formal power series solution p of (1.6) if and
only if

2 'ﬁ“__l
efygg = L€Y" —

Ea feven

=5 (i) (D™ Yoren, (1.8)

in which case®

op = (1 + Ezaz)§ —1p= i (%)szqazmp
3 m=1\M,
(1.9a)
and
2and
—ep()dd — (I_H__.._i)__l. t Z 0, (1-9b}

€ a p even

especially, the odd and even parts of p propagate
separately, and p is completely specified by the data
Joven (Hilbert paradox). Equation (1.9a) plays the role
of the hydrodynamical equations and (1.9b) the role
of the Chapman-Enskog development.

Now, suppose fyen = fo.® Then the formal power
series —ef,qq = (1.8) converges in C*(R* x Z) for
lel <1 if and only if f, is an integral function of

¢ Z stands for the 2-point space e = +1.

? foaa [ feven) always denotes the odd [even] part of f as a function of
e. ¢ stands for 8/9x.

8 By Eq. (1.8), f; is automatically even.
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exponential type <1, in which case p converges to an
integral function of the same type for any t > 0. Under
the additional condition || f,,enll, < 0, p is continuous
Jor |e| < 1 and is a bona fide solution of (1.4) at ¢ = 1.
Any solution p of (1.4) with data® fe C7(R' X Z)
rapidly comes close to a Hilbert solution p®. The correct
recipe for the data of p° is

o 14 D — iye
0 — e 11 _— d 1.10
5 f_l" 2[ ST ]fy (1.10a)
with

+c0
f= 1 f e~ f dx. (1.10b)
27

This map is a projection onto the class of functions
satisfying (1.8) for e =1, and the corresponding
Hilbert solution

?° =J+lexp (iyx) exp t[(1 — }'2)'k —1]f%dy (1.11)
-1

differs from p by terms of magnitude e~*, roughly.
Unfortunately, the projection f— f° does not preserve
positivity, though nonnegative summable Hilbert
solutions do exist.
Carleman!® proposed a less artificial caricature of
(L1
op , ,0p
o o
A nice description of its formal power series solutions
would bring us quite close to a satisfactory picture of
the Chapman-Enskog-Hilbert development for the
actual Boltzmann problem, but we were unable to
form any simple picture of them.
Grad'? studied the Chapman-Enskog-Hilbert de-
velopment for the linearized Boltzmann problem:
op , 9  :9p _
a0t 1o~
and also for a problem isomorphic to (1.4), verifying
the presence of a Hilbert paradox. Grad’s statement is
not very explicit, especially the analog of (1.9) is not
proved, but he did find that actual solutions must be
functions of exponential type.

= D[p]. (1.12)

(1.13)

2. CLASSICAL SOLUTIONS

Because the solution of p* + ep’ = ¢ 2D[p] (¢ > 0)
coincides with the solution of p' + ep’ = D[p] at

» CT (R X Z) is the class of rapidly decreasing functions from
C®(R' X Z).

10T, Carleman, Problémes mathematiques dans la théorie cinetique
des gaz (Almqvist Wiksells, Uppsala, Sweden, 1957).

117, I. Kolodner has proved that Eq. (1.12) is well-posed. See L. I.
Kolodner, Ann. Mat. 73, 11 (1963).

13 H. Grad, Phys. Fluids 6, 147 (1963).
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(t/e, x/e, €), it suffices to discuss the case € = 1:
p+D +p(+) =p(=1) —p(+1), (2la)
(=1 —p'(=1) =p(+1) — p(—=1). (2.1b)

This problem has just 1 solution pe C*([0, o) X
R! x Z) with data feCYR' x Z) for any 1K
n < 00.13 Kag? noticed that if # is a standard Poisson
process with rate 1, jumps +1, and expectation E,
then

(%, ) = E{ f[x —e ﬁ (—1y#o-# g, e(—l)#“’]},

2.2)
especially, p > 0 if f > 0. The fact that (2.2) solves
(2.1) is easily proved by an explicit computation of
dp/0t. A more concrete formula for p can be obtained
from the transform?4:

+o0 o3 N,
I = _1 f Sln_hg.l____)%t. cos X d'y
i (1 7")
I t2 — 32
- 1" =t 1>, @3
0 t < |x|.
Define f* = —ef’ + D[f] as before. Then's

S LR VR Ry VTR

3. FORMAL POWER SERIES SOLUTIONS

Consider a formal power series f= ) f,e" with
coefficients from C*(R! x Z) and let us ask if there
exists a formal power series p = > p,e" with coeffi-
cients from C*([0, c0) x R! X Z) that solves

dap op 1

o, 9% _1pm 3.

PRI Mt (3.12)
lim p = f, (3.1b)

ti0
or, what is the same,

Pratep,,=Dlp) n>0, p,=0, (32a)

limp,=f,, n>0. (3.2b)
0

Define an operator Q on such formal power series
S by the rule:

o=t +amt-n=3 (%) am-igem

m=1\M
and let us verify the following facts. f gives rise to a

18 The standard proof is given by I. G. Petrovskii, Lectures on
Partial Differential Equations (Interscience Publishers Inc., New
York, 1954).

14 I, below is the usual modified Bessel function; see H. Bateman,
Tables of Integral Transforms, A. Erdélyi, Ed. (McGraw-Hill Book
Company, Inc., New York, 1954), Vol. 1.

15 The sign + below is the customary convolution on R,
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formal power series solution p of (3.1) = (3.2) if and
only if

S=—ef +ID1=0QUL (3

or, what is the same,
—efodd = Q0 feven = zl (j}) (€0 Yeven. (3.3b)

In this case, the coefficients of p are polynomials in t
with coefficients from C*(R' x Z), and

gf = Q[pl, —epoaa = Q0 'peven (3.4a,b)

Jor any t > 0, especially, p is completely specified by the
knowledge of fo,.n (Hilbert paradox; see Sec. 1 for
comment).

A number of simple examples are tabulated below;
the proofs occupy the rest of this section.

TasLE I. A brief list of special solutions of (3.1).

feven —efodd P
1 0 1
x €f2 X — eef2
x? €x x + et
haat 1224

Given a formal power series solution p, it follows
from (3.1) and the rules

D'=—2D, eD+ De=—2 (3.5,b)
that
# 28 o
9,29 9, 3.6
[a:% LY axﬁ]p (3.62)

which can be re-expressed as

{0/0t + €'[1 + (1 + 29}
x {0/0t + 1[I — (1 + 2?)¥}p =0 (3.6b)

with (1 + €29%)? expanded according to the binomial
series as before. Drop the first operator. What is left
is the formal power series p* — Q[p], so

@ot+ L +V1+e&Phg=0  (37)

has the formal power series solution g = p- — Q[p].
Equation (3.4a) follows from the fact that the only
formal power series solution of (3.7) isg = 0.

Proof: A formal power series solution ¢ of (3.7)
satisfies 0 = —g; = 2¢,, so g/e is likewise a formal
power series solution of (3.7), g, = 0 by the same
argument, etc.

Comparison of (3.1) and (3.4a) at ¢t = 0 gives (3.3a),
and (3.4b) follows as soon as it is proved that (3.3b)
is the same as (3.33). The proof is as follows: To

H. P. McKEAN, JR.

derive (3.3b) from (3.3a), take even and odd parts in
(3.3a) to obtain

—‘efﬁdd = Qfeven, "'ef%ven — %fodd = Qfadd,
(3.8a,b)

and then substitute f,;; from (3.8a) into Qf,4, in
(3.8b) to obtain (3.3b):

—eéfoda = 9_25 [ef even + Qfoadl

= %E [ef even — eQza_ 1feven]

§ {foven — €7[1 + €%0°
— 21 + 6232)‘} + I]a_lfeven}
= Qa~ 1feven-

Now begin with (3.3b). Equation (3.8a) is immediate,
so to prove (3.3a), it suffices to derive (3.8b) as follows:

Qfoad = —eQ% Yoven
= ZE 1+ €9 — 21 + N+ 117 Yoven
€

= —efeven + %eQa— Yfeven

2
= —eféven - —fodd-
€

The problem is now to prove that any formal power
series [ subject to (3.3) gives rise to just 1 formal power
series solution p of (3.1). The coefficients of p should be
polynomials in t with coefficients from C®(R' X Z).
Put n =01in (3.2a). p_; = 0, so D[p,] =0, i.e, p, is
even. Now put n = 1, take even parts, and conclude
that p, =0, ie., p; =fy. Beginning with p, = f;,
compute the rest of p from (3.4a), expressed in the
form

Py = (‘})az'"p,, n>1. (3.9)
2m—1+f=n \M
m=1
0sf<n

This gives a formal power series solution of (3.4a)
which turns out to be a solution of (3.1) also. The
fact that this is the only possible formal power series
solution with data f is trivial. Also, it is clear from
(3.9) that p, is a polynomial in ¢ (of degree n) with
coefficients from C*(R' x Z).

To prove that p solves (3.1), consider the expression
g = —ep’ + € D[p] — Q[p]. Because p, is even, this
is a formal power series. Also, it solves (3.4a), it
vanishes at ¢ = 0 since f satisfies (3.3a), and since
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from (3.9):

pi = pof2,
and from (3.3b):

ie., j21 =f1 + thOI/Z)

X —e(f1)oaa = fo/2,
it develops that

o= —ep, + Dlpi] = —ef; + DIfi]
= —¢fy = 2Afoas = 0.
But now (3.9) implies that ¢ = 0, so 9p/0t = Q[p] =
—ep’ + €1D[p], as stated.
4. REGULAR SOLUTIONS

Consider a formal power series solution p of (3.1)
with data

f even = f 0>
—efodd = Qa_]feven = i (%)(fa)zm—lfeven . (41b)
m=1\m

(4.1a)

and let us verify that £, converges in'® C*(R* x Z)
forlel < Vifand onlyiff, .. = fyis an integral function
of exponential type <1, in which case p also converges
in C*([0, o) x R* X Z) for |e] <1 to an integral
Sfunction of the same exponential type.

The formal power series (4.1b) converges in
C*(R! x Z) for |e¢| < 1if and only if

Ii%n sup m g |0"f,ll, <0

on compact figures of R! X Z, so the first statement is
plain. The statement about p is easily proved by
expressing the integral function f,., in Polya’s
fashion'’:

Seven = § | e“feven dz, R>1, (4.2a)
|2|=R

with feven regular outside [z| = 1. Then

20
foda = § —exp (1+€__.___z_)_._.__1 ewf?even dz,
€Z
Rle] <1, (4.2b)

and putting f = (1 — (e/e2)[(1 + €222} — 1))f, .., the
statement about p can be read off from the formula
p= §exp (te (1 + 2 — 1]} e Fdz, Riel < L.
(4.2c)

5. APPROXIMATION BY HILBERT SOLUTIONS

Now add
| fevenlls < o0 (5.1)

to the conditions (4.1). Then the Polya integrals in

18 £ is convergent in C®(R! X Z) if each of the formal power
series 0™f (m > 0) converges uniformly on compact figures of
R' % Z.

17 R. Boas, Entire Functions (Academic Press Inc., New York,
1954).
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(4.2) can be replaced by Fourier integrals for J¢] < 1:

+1
Seven = em‘vfeven dy, (5.2a)
-1
+1 1— e 1 .
ded =f —€ (‘__L.y—)_-—‘_l‘ ezr:ffeven d'y, (S.Zb)
-1 iey

P =f_+ exp {t'[(1 — D — 1]} e Fdy, (5.20)
with
F=1{1 = eliey) (1 — ) = 1} feven, (5.3)

+o
f even = 51— f € T ¥feven dx. (5.3b)
T J—o

Because f,,on € C[—1, 411, p is not only convergent
on the open disk |e| < 1, but is also continuous on the
closed disk |e] < 1, and p at ¢ =1 is a bona fide
solution of

P+ ep’ = D[pl. G4

Now, consider any solution p of (5.4) with data

e CT(R! x Z). By (2.3) and (2.4),

[T iyesinh (1 — 'yz)it .
_ ye N & 7 ' d
P ¢ J;w ¢ (1 — yz)i [f f) 4

+00
+ e"f ¢ cosh (1 — yz)*t fdy (5.5

with f* = —ef’+ D[f]. Define
o_ 1 14+ D —iye
A e o R
=0,

Then, for |y < 1,

2(1 — 72)1}/?gven =[(1 - )’2)1} + 1]j?even - i'}’efodd 8
(5.7a)

21 — ¥} 3aa = [(1 = ¥ = 1foas — iyefeven,
(5.7b)
and the map f— f° is a projection onto the class of
functions satisfying (3.3a) = (3.3b) for e =1, as a

little algebra will verify. The corresponding Hilbert
solution

+1
S I TR WAL )
-1
differs from p = (5.5) by

_ oo sinh (1 — y9% o
p tJ‘ gire SI0 +7]
Iyi>1 (1 — ot 7 +7
+ e“f ¢ cosh (1 — yH)ttf
>
Y LS 1 14+ D — iye
e‘j % (1 — 2%—[1——————] )
+ o (1—99) 5 - 72)’} f
(5.9)

yl > 1. (5.6)
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and all this is of magnitude e, roughly. This is the
best fit that could be expected. Because a positive-
definite function has to be continuous, it is obvious
from (5.6) that the projection f— f° does not preserve
positivity.

6. POSITIVE HILBERT SOLUTIONS

An example will settle the existence of nonnegative
summable Hilbert solutions.

Example 1: Define
o =M1~ + 111 =% YL,
=0, Iyl > 1.

Then fy., = (5.2a) is an integral function of expo-
nential type <1, and, with f;, defined by (5.2b),
f 2 0 (see proof below), p > 0 by (2.2), and since

— o)}
P =exp {tl1 — )t ~ 11}[1 =) Vy 3 1]

x [(1— it + 110 = IyD,
is finiteat y = 0, [ p < o0,
Proof that f > 0:

3
7=1- e(—lly—_——z)“][(l — ) + 111 = )
1y

== 1 +eylt — I W<,
is split into 2 pieces: 4 = (1 — y)¥(1 — |y|)* and
B = (1 + eiy)(1 — |y})% 4 is positive-definite since
” 1 -7 * —1
w= (e +er—a+p 0<r <y,
14y
so that

+1 ) 1
f ¢4 =2 f cos yxA
-1 0

1
= 2x7* J; [1 — cos yx]4” > 0.

B is also positive-definite, but the proof is not so

H. P. McKEAN, JR.

cheap.

+1
f "B = (1 + ey)x }(x — sin x)
-1

= x¥[(1 — 3e/x)(x — sin x) + e(1 — cos x)],
and by a trivial manipulation, it is enough to verify
(I F3/x)(x—sinx) (1 —cosx) >0, x>0.

Butfor0 < x <3,

(1 —g’-)(x—sinx)+ 1 —cosx

X
(x? x2 X
12X X _x
2( x)6+2 4!
—’f(l—’—‘)>—"—3(1—%)>o
6 4/ — 6

and

(1 +§)(x—sinx)—1+cosx
X

3 /xd X x?

1 —_ o —— -——

2( +x)(6 5!) 2
> X — #%) >0,

while the same bounds are obvious for x > 3. This
completes the proof.

Example 2: A simpler example is available if R! is
replaced by the circle 0 < x < 2. Now, f,., is both
periodic and of exponential type <1, so it has to be
of the form a + b cos x + ¢ sin x, and

F=Al—el(l + ) — 110"} foren
=a+ (b+ ec)cos x + (¢ — eb) sin x
is nonnegative if and only if a > [2(b% + 9]t
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The methods of the functional calculus are applied to the Klimontovich equation and to the Vlasov
equations. The equation for the generating functional is derived for both cases. By taking moments of
these equations, the BBGKY hierarchy is obtained for the case of the Klimontovich equation, and a
similar hierarchy is obtained for the case of the Vlasov equation. The two hierarchies are identical,
except for some terms involving individual particle interactions. Methods of solving the Vlasov hierarchy
are discussed and it is shown how quasi-linear theory can be obtained,

I. INTRODUCTION

OR studies of nonequilibrium systems a basic

starting point has been the Liouville equation.
Because of its mathematical complexity and because
of one’s interest in functions of only a few dynamical
variables, the main problem in nonequilibrium statis-
tical mechanics is that of finding equations for reduced
distribution functions. In recent years much progress
has been made in this field. A diagrammatic expansion
method originated by Prigogine and his school® has
been successfully employed in deriving equations for
the reduced distribution functions. However, this
method has the disadvantages that it is complex, it is
difficult to prove that all the important diagrams have
been included, and it is difficult to verify the conver-
gency of the series involved.

A second approach has been to employ the so-
called BBGKY hierarchy? for the reduced distribution
functions. This hierarchy is open and must be trun-
cated by making some assumptions and approxima-
tions. One such truncation scheme is to assume
that three-particle correlations are negligibly small.
This approach has been successful in deriving the
Boltzmann equation for low-density gases of neutral
particles® and for the derivation of the Fokker—Planck
equation for plasmas.!

* Permanent address: Plasma Physics Laboratory, Princeton
University, Princeton, New Jersey.

! For example, see 1. Prigogine, Non-Equilibrium Statistical
Mechanics (Interscience Publishers, Inc., New York, 1963); R.
Balescu, Statistical Mechanics of Charged Particles (Interscience
Publishers, Inc., New York, 1963).

* Among many works, see, for example, N. N. Bogoliubov, in
Studies in Statistical Mechanics, translated by E. K. Gora, J. de
Boer and G. E. Uhlenbeck, Eds. (North-Holland Publishing
Company, Amsterdam, 1962).

3 J. G. Kirkwood, J. Chem. Phys. 15, 72 (1947).

4 N. Rostoker and M. Rosenbluth, Phys. Fluids 3, 1 (1960);
N. Rostoker, ibid. 3, 922 (1960); A. Lenard, Ann. Phys. (N.Y.) 10,
390 (1960).

In 1957, Klimontovich® proposed to study the N-
body problem through the use of an equation which
is identical in form with the Vlasov® equation, but in
which he took the distribution function to be that
due to a discrete set of particles (therefore, a set of
delta functions whose arguments are specified by the
classical laws of mechanics). Starting from the
Klimontovich equation, one can derive the BBGKY
hierarchy by averaging the solutions over a distribu-
tion of initial positions and velocities.” This method
has been successfully applied to a number of problems.

Another area of nonequilibrium phenomenon which
has been receiving considerable attention recently is
the field of turbulence. This is particularly true in the
field of plasma physics. Here, also, it appears that a
statistical approach is called for and some success has
been achieved in developing such theories.®®

It is the purpose of the present paper to first show
how the functional calculus can be used to derive the
BBGKY hierarchy of statistical mechanics and second
to derive a similar hierarchy®'** which is applicable to
turbulences of a Vlasov fluid (a plasma, for example).

Our starting points for the derivation of these hier-
archies are the Klimontovich equation and Vlasov

5 Tu. L. Klimontovich, Zh. Eksperim. i Teor. Fiz. 33, 982 (1957)
[English transl.: Soviet Phys.—JETP 6, 753 (1958)].

S A. A. Vlasov, Many-Particle Theory and Its Application to
Plasma (Gordon and Breach Science Publishers, Inc., New York,
1961).

7 E. P. Gross, J. Nucl. Energy C2, 173 (1961). Also, see reports
by W. E. Brittin ez al., University of Colorado; the most complete
self-contained work with many references is found in W. R.
Chappel, Ph.D. thesis, University of Colorado (1965).

& W. Drummond and D. Pines, Ann. Phys. (N. Y.) 28,478 (1964);
A. A. Vedenov, J. Nucl. Energy CS5, 169 (1963).

% B. Kadomtsev, Plasma Turbulence, translated by L. C. Ramson,
M. G. Rusbridge, trans, Ed. (Academic Press Inc., New York, 1965).

10 The authors have recently learned, from private communication,
that Von P. Graff of the Institute fiir Plasmaphysik, Kernfor-
schungsanlage Julich, has also obtained this hierarchy (unpublished
work).

11 C. Oberman, Bull. Am. Phys. Soc. 6, 185 (1961).
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equations. Because these equations are formally
identical, the same techniques work for both. The
derivation of the BBGKY hierarchy simply gives
another method of obtaining this hierarchy. However,
the observation that a similar hierarchy applies to the
Vlasov equation gives us another method for attacking
problems of plasma turbulence. In fact, by making
suitable approximations one can obtain the *“‘quasi-
linear theory” of plasma turbulence. By making dif-
ferent approximations, one could obtain different
theories of plasma turbulence. Finally, we might point
out that this approach may shed some light on the
question which has often been raised, “is it sufficient
to consider only the Vlasov equation when dealing
with unstable plasmas or do we need to take into
account particle correlations through the BBGKY
hierarchy.” It has been argued that since particle
correlations become very large in such plasmas, we
should include their effects. However, since a very
similar hierarchy holds for the Vlasov equation, we
may argue that the correlations due to instabilities are
to a large degree already contained in the Vlasov
equation and that it is sufficient to consider only this
equation (perhaps including some appropriate initial
disturbances).

II. FUNCTIONALS AND
FUNCTIONAL EQUATIONS

A. Review of the Functional Calculus

Our approach in many ways follows the treatment
by Hopf'? of hydrodynamic turbulence. The details
of the formalism can be found in his work. However,
we include a brief account of the derivation of the
functional equation for the sake of clarity and
completeness.

Consider a function of x and ¢, f(x,t), which
satisfies a deterministic equation,

of (x, t)/0t = L(f). (¢))

Here L is a polynomial function of f only and is
assumed not to depend explicitly on time ¢. This equa-
tion may describe the time development of some
system, as for example, it might be the Vlasov equa-
tion for a plasma. In place of (1) we may define a
time-development operator 77 such that 7* acting on

f(x, 0) gives f(x, 1),
T (x,0) = f(x,1). )

This is simply another way of writing (1).
Now denote the space spanned by the solutions of

12 E, Hopf, J. Ratl. Mech. Analysis 1, 87 (1952); E. Hopf and
E. W. Titt, ibid. 2, 587 (1953).
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Eq. (1) by Q and introduce the probability P(A) of
finding f in the region A, A < Q.
Since P is a probability we must have

P(A) >0, PQ)=1. 3)

If the probability is conserved following the motion
(no systems are added to or removed from those under
consideration), then

PYA) = PATA), Q)

where P! denotes the probability at time ¢, and T—'A
denotes the region in which f must be at ¢ = 0 to be
in A at time ¢.

Define an average of any function of f, F(f), by

(v = fn F(H)PYS). 5)

By making use of Eq. (4) we have

(Flay = f FUPYY) = f FIT'f(x, OIP'[df (x, O)]
©

With this preparation we now introduce the follow-
ing generating functional:

00,0 =|_exp it 1))
= o i Y, ODPI 0L ()

where f satisfies Eq. (1) and we have made use of Eq.
(6). Here, y(x) is an arbitrary continuous function of
x and does not depend on time; the bracket quantity
(»,f) stands for the scalar product of y and f,

(0 f) = f JEF) dx.

Differentiating both sides of (7) with respect to 7 and
making use of Eq. (1) gives

921y, 1) =fi[fdxy(X) %:’;f(x, 0)}

ot
exp {ily, T'f(x, 0)I}P°[df (x, 0)]

- { Jasseorises, t)ﬂ

exp {ily, f(x, )]} P°[df (x, 0)]
. d
= zf y(x)L(E) @Oy, 1) dx. ®)

Here the notation d/idy denotes functional differ-
entiation with respect to y(x) and is adopted from
Bogoliubov. A rigorous proof of Eq. (8) is given by
Hopf.22



HIERARCHIES FOR N-PARTICLE SYSTEMS

B. Application of the Functional Calculus
to the Klimontovich and Vlasov Equations

An exact equation for the dynamics of a single
system of N identical particles is given by the
Klimontovich equation.’® This description sometimes
leads to a better understanding of the physics of many-
body problems.® 713

Klimontovich considers the distribution function
for a single system of N identical particles,

N
fx, )= gl ofx — x,(1)]. ®

Here x stands for a set of coordinates and associated
canonical momenta of a particle (q, p) and the delta
function is a six-dimensional one. The x,(¢)’s are the
classical orbits of the particles and are determined
by solving Hamilton’s equations of motion. The
Hamiltonian for the system under consideration is

H =f2£;. fx, ) dx + Jffdx dx'¢(lq — q'])

x [f&x, Df (', 1) — d(x — x")f(x, 1)), (10)
where ¢ is the two-body potential (the only one
assumed present). The term d(x — x')f(x, ¢) is sub-
tracted in (10) because it is assumed that a particle
does not interact with itself.

The equation which f satisfies is the Klimontovich
equation,

>x,n_ _ P

ot m

6f(x 1) f 6¢(lq - q X))
ap
X [f(x ) — 6(x —x)]dx'. (11)
This is most simply verified by direct substitution.
Under some circumstances (particularly when
dealing with plasmas), we may treat the system as a
continuous Vlasov fluid rather than a set of discrete
particles. In this case we treat f as a continuous func-
tion and we drop the d(x — x') terms from Egs. (10)
and (11). Thus in this case the Hamiltonian is given by

H = jix, i ax -+ [ ax ax' g - @

, . X f&xaf(, D, (12)
while the Vlasov equation is
A _ _p o0
ot m odq
(e —aD A& .,
74 o S, dx'. (13)

We now identify the fappearing in the Klimontovich
and Vlasov equations with the f appearing in Eq. (1)
and the right-hand sides of Eq. (11) or (13), depending

13 J, M. Dawson and T. Nakayama, Phys. Fluids 9, 252 (1966).
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on which system is under consideration, with L(f)
appearing in Eq. (1).

1. Application to the Klimontovich Equations

For the case of the Klimontovich equation, we
must, however, note that the space € is not the whole
space spanned by the solutions of Eq. (11), but is the
subspace spanned only by f’s of the form of Eq. (9).
Because of the special nature of this Q space, we
first consider a few examples to obtain a better under-
standing of the following sections.

The average of f(x,) is simply

Fx)) = = smyemtio, D)

= Nfi(xy, 1. (14)
In the above and hereafter the subscript on findicates
the reduced function in the usual sense (the one-
particle distribution function in the above). The last
step in the above equation follows by considering the
meaning of P(df). This is the differential increment of
the probability due to changing the function f. In this
case the change is a change in the delta functions due
to changes in initial positions and momenta. The
average in Eq. (14), thus, is nothing, but an average
over initial values of the coordinates and momenta
of the particles. Thus it is equivalent to the average
Klimontovich and others take.
In a similar manner, one can compute the second
moment of f by operating on ® with the second-order
functional derivatives with respect to y(x,) and y(x,),

- re
xS (X))av = idy(x,)8y(xz)

- [ redse ew o oP@m| - a3

The average (f(x,) f(X2:))av, however, differs from the
usual two-particle distribution function by the amount
0(x; — X,)f(x;) since we do not wish to correlate a
particle with itself. Thus for fu(x,, x,, ), we write
N(N - l)fé(xls X, t)
= (fx)f(Xo))ay — NO(X1 — X9 fi(x1, 2).  (16)

In general, to extract the correct s-particle distri-
bution function from the generating functional, we
operate with

1 d

(N — s + 1) idy(xy)
— 0(x; — Xl)) :

6)’ (x1)

y=0

y=0

N(N—1)--

X (iéytzxz)

— 2 8(x, —

i<s

8 (nsy(x,) i))s (17

and then set all y’s equal to zero.
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The equation for the characteristic functional for
the case of the Klimontovich equation is obtained
as shown in Subsection A and is given by Eq. (8)
making use of the identification of L from Eq. (11).
This equation is

3¢>(y, ) _

~ify0 2. 2 2 oS00 ) dx
+ iffy(X) a(ﬁ(lqaq_ ! l)(iéyix’) —x - x’))

X (0/op)[6/idy(x)1D(y, 1) dx dx’. (18)

It should be noted that the functional equation derived
here is somewhat different from that derived by
Bogoliubov? since the functional (7) contains an extra
functional,

O )=1+3 " @ f fN(N

Xg5 DY(Xy(Xg) * -
dx, + 6(y, t)
= £(Nig, t) + 0(y, t) (in the limit of N — o),
(19)
Here £ is the one used by Bogoliubov? and 6(y, ¢) is
00 =3[ [ [T 7000 - w

8=2 § !

“(N—s+1)

xf:s(xl’xﬂy Y
X y(x,) dx; dxy -« -

X £, %0 0| PN TT ) dse. 20)

2. Application to the Viasov Equation
In like manner, we obtain the equation for the
characteristic functional for the case of the Vlasov
equation by identifying L as the right-hand side of
Eq. (13). The functional equation in this case is

oo - _ p 0 40
(y,t) lfy()m 2q 6()(,t)dx

. od(la — q') 6
* 'ﬂ YO )

o o0
o 009

II. DERIVATION OF THE HIERARCHIES

@1

A. BBGKY Hierarchy

Since Eq. (18) is different from Bogoliubov’s, the
derivation of the hierarchy in this formalism is given
here. To obtain the first member, we operate on Eq.
(18) with the functional derivative with respect to
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iy(x,) and set all y’s equal to zero. The left-hand side
then becomes

8 g =2 (2 ey
l(sy(xl) at 1I=0— léy(xl) exp [1(}", f)]P (df) o
_ %S (x))av

ot

The first term on the right-hand side of Eq. (18)
becomes
id f
—- Y(X) = = ——
idy(xy) m aq idy(x)
= -2 i e o)

- ify(}l:)g-i_L_—(s D dx

P Kf (x1)>a.v

m 0q,

p o )

O(y, 1) dx

y=0

=0

In a similar way, the second term on the right-hand
side of (18) becomes

16y(x1) ffy( )|:a¢(|qaq = (zéy(zx) o = x))}

-a— s x dx’
op idy(x) =0
a 1 ’
= =D 700y — x — x)

x % £ exp [0y, IPYES) dx’

od(lq—q') _ 9
+ff yx) dq idy(x,)

X (iéy(zx’) —ox - ’)) P

ap i0y(x)
ol — q') 0
oq P

X ([f(x") = 8(x — x)If (Xy))av dX’,

where the following relation has been used:

v=0

dx dx’

=0

fZ g, 9)0(x" — x) 5% d(x — x,) dx’
= f 2 w9, ¢)(x' — xi) g 6(x — x') dx’

86(x

—fZ (g, ) ——F x‘) &(x — x') dx’

=fw(q, q)i(x — x') a_ > (x — x,) dx.
P
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Thus we obtain the first member of the hierarchy,
which can be found in many texts,

hx)  Pp_ O
~2 s + 2 X
o Tm e fi(x1)
— N a¢(lq1 | |) . af2(xlsx ) dx/ = 0. (22)
oq op,
In a similar way, one can obtain the sth member of
the hierarchy by operation of the functional derivative

(17),

% B
at+§'m

9, sode—ab 9
a‘Iifs '%5 dq; op;
jcs
— sz 04(19; — qs11)) . s dx,,, (23)
‘ op; op;

t

where the third term on the left-hand side as well as

the terms on the right-hand side arise from the delta-
function term in Eq. (18).

B. Hierarchy for the Vlasov Equation

We may employ exactly the same procedure to the
Vlasov equation using Eq. (21) for the characteristic
functional in place of Eq. (18). Everything goes
through in exactly the same manner except that the
terms resulting from the delta functions are now
absent. We thus obtain a hierarchy very similar to the
BBGKY hierarchy. The first member of this hierarchy
is obtained by operating on Eq. (21) with d/idy(x,)
and is given by

0(f (X1, 1))av + P 0(f (X1, ))av

ot m 0q,
x (220 — @) BTG, Vv y 24
dq, op,

The sth member is given by operating on Eq. (21)
with the functional derivative,

(N—s)!_6 o6 .  _8
Nl idy(x) idy(xe)  idp(x,)’

and is
BU0) ey | &b AR F(XDnv
ot + igl m o0q;
_ f z a‘ﬁ(lqia— Q1)) . o(f(xy) - g (X)f (Xg11))av dx,,, .
i q; P

2%

Here, (f(x,) * * * f(X,))av is equivalent to the s-particle
correlation function in the BBGKY hierarchy. It is,
in fact, the correlation function for f at the s phase
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points, X, , X,, * - *, X,, which amounts to correlations
of s particles with positions and momenta given by the
x’s. The difference between f, and (f(x;) - - * f(X,)av
arises only from the interpretation of f, that is, only
from interpreting f as either the singular functions
associated with systems of discrete particles or as the
continuous functions associated with a Vlasov fluid.
The interpretation of f [hence of Eq. (13) as the
Klimontovich equation or the Vlasov equation] speci-
fies the functional space Q spanned by f.

Equations (25) should apply when collective or
many-particle interactions dominate. It can, in fact,
be obtained from the BBGKY hierarchy by neglecting
the interactions between the individual particles
belonging to the group s. This result can be obtained
by subdividing the particle into smaller and smaller
units.4

It thus appears that for unstable plasma where
collective effects certainly play a large role, the s-
particle correlations should be obtainable from Eq.
(25) when some suitable initial conditions are em-
ployed. Since Eq. (25) has as its base the Vlasov
equation, this equation should be sufficient for study-
ing unstable situations even though particle correla-
tions become large. The only thing missing is the
excitation of disturbances by the particles. However,
once the instabilities get going, further excitation of
them should make little difference. Also, if turbulence
develops and is self-maintaining, this weak tickling
should not play much of a role. There will, of course,
be some unstable situations where individual particle
interactions are important, for example, situations
where collisions play an important role in the growth
of an instability.

IV. METHODS FOR SOLVING
THE VLASOV HIERARCHY

A. Exact Solution

We may first note that the hierarchy allows a
product solution* of the form

&) fXav = Hf (*:),
where f(x;) satisfies the nonlinear Vlasov equation,

of (x) 4P of(x)

ot m dq
_ f of(le — q') I X F(x)dx' =0. (27)
oq op

Direct substitution of Eq. (26) into Eq. (25) verifies
this. This form is a natural consequence of the form

(26)

14 N. Rostoker and M. Rosenbluth, Phys. Fluids 3, 1 (1960).



558

of Eq. (25). Physically we see that such a solution
should result if P(df) is a delta function, i.e., zero
everywhere except at (f(x))av, and the integral of
P(df) over a small volume of function space con-
taining (f(x)),, is 1.

While (26) is a solution, it is not the most general
one. However, the general solution can be built up
from (26). This must be so since all the averages can
be found in terms of the general solution to the Vlasov
equation. To show this, consider the average value of

f) 5,
1wy = [ seopan
= | 11 6, P,

i=1

(28)

The integral is, in fact, simply a sum of product solu-
tions of the form of (26) with appropriate weighting
for their occurrence. Now compute the time derivative

of <Ef(x,-)>av ,

UT D ACTTUR S ,
s, =[O TT 176 ran,

(29)

Substituting for the time derivative of f(x;,?) from
the Vlasov equation gives

Uty =[- 3. - 11 7 x, 0P

+ j f s a¢(|qja;qs+ll) . 53_1

X TT T(x;, 0) dx,es )
Y TN VE T
T z; m ) 6q,.<zl;I1f(xi)) av

od(lq; — (')

+ i 03 b - Ua w174

;f 9q,

a s4+1
k1), s

Equation (30) is just Eq. (25), and this, in fact, gives
another derivation of the hierarchy.

Although all solutions can be built up from those
of the form of (26), to proceed in this way would gain
us nothing. We should have to solve the full nonlinear
Vlasov equation, and if we could do that we should
know everything there is to know about the problem.
The advantage to be gained from a statistical ap-
proach—that it gives us only the information we are

(30)
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interested in and ignores the great mass of details
which are present—would then be lost. Our primary
aim, thus, is to find approximate solutions to (25).
There are many approximations which one can make,
and to a large extent one’s success depends on the
accuracy and simplicity of the approximation. The
most obvious things to try are the approximations
which have been made in treating the BBGKY
hierarchy.
B. No Correlations

The simplest thing one could do is to neglect all cor-
relations and assume that all disturbances are small.
One then simply obtains the linearized Vlasov equation
for f.

C. Weak Correlations Quasi-Linear Theory

The next simplest thing to do is to include two-
point correlations but assume they are small and
neglect three-point correlations. We thus write for

f (xl)f (x2))av and f (Xl)f (x2) f (X3))av as,
fEDf(X))av = (f(X))av(f(Xa))av + G(X1, X), (31)

(f(x0) f(X2) f(X3))av
= (f(xpf (xz)f (Xa))av + G(x4, X2)( f(X3))av
+ G(xz, X3){f(X))av + G(Xq, Xa)(f(X))av. (32)

Substituting these expressions into Eq. (25) gives the
following equation for (f) and G:

O f(xX1))av + j 41 0(f(X1))av
ot m dq

_ 04(lq, — q,) . 0G(x, , Xp)
oq, opy

9G(x, Xz)_l_ (&.i p: O

2. —|G(x,,
ot m 3q1+ m aqz) (%2, %)

0(f(x0)av

+ F(qy) - ap
1

dx, =0, (33)

~ (e - % + Flgy)- 5;’)—) G(xs. %)

)y [ 08(19: — gsl)
ap, f e G(X;, X,) dX,
_ a<f;’;2)>&v .f a¢(|qa2q" ‘I3|) G(X1 , xs) dX3 — 0,
2 2 34)
with

K(q) = f —aﬂ’—aq_—“i) SO Newdx'.  (35)

Equation (33) is quite similar to the usual Fokker—
Planck equation for a plasma. Equation (35) is similar
to the usual two-particle correlation function, except
that the driving terms, due to discrete particles, are
absent.
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Equation (34) may be solved by the method of
separation of variables. First we note that

G(xz, X1) = G(X;, Xp) (36)

because

fx)f(Xav = (f(X2)f(X1))av .
Thus we could write Eq. (34) in the form

0G(X;, Xp) ( 0 P d )
9G(X1, X,) 2 G(Xy, X,
ot m 8q1 t o m aqz (x2. %)

(F(ql) .

_ a(f(xl»av .
o

+ F(qy) - apz) G(x,, X,)

o4(lq, —
oq,
_ 9(f (Xa))av . 0¢(lgs —
op, 9,
Now assume (37) has a solution of the form
G(xy, X) = X;(%1) Xa(Xo)-
Substitution of (38) into (37) gives
1 09Xy (x))
}};5(7 + B T -
_ 0(f (X1 )av 0¢(l9: —
op: 0q,
_J_(a_X(L) S
X(x)\ Ot m 3 qq
. 0X(Xs) 0d(lq: — gs))
op. g,

%))

G(x3, X,) dXg

qsl)

G(X1 . X3) dX3 = 0. (37)

(38)

0X.(xy)
op,

%D . (x,) dx3)

F(q,) -

— Xu(%s) — F(qy)

_ 0(f(Xe))av .
op;

X Xo(X3) dxs) =0. (39)

Equation (39) is a sum of two factors, one depending

on x, and the other on x,. Thus, one of these factors

must be equal to the constant y and the other to —y.
We may write (39) in the form

d a X 1(X1)
£ —X
dt Xi(x) evaluated along 0 ot m 6 q; 1(%)
— F (q 1) . a_‘Xi(x_l)
op,
_ 8 (X)av f 0¢(la, — gsD)
o
X Xy(x5) dx3 — yX1(Xy),
dXy(xp) - 0(f(X2))av . 04(lq: — qsl)
dt levaluated along o opa 9q;

X Xy(X3) dx3 + yXo(xp). (40)
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Here 0 represents the trajectories which give (f(x))av .
Integrating gives

t
X0 = X0, 067+ [ e =yt =)
0

integrating along
trajectories

(a(f(x1)>av 04(lq; — as)) X,(x5) dx ) dr',
op. o, 1(X3) dXy

¢
Xy(Xe, 1) = Xy(Xp,00€” + f
0

integrating along

traj ectories
04(lqs — qal)
0q;

exp [y(t — )]

y (a<f(x2>>av .

X,(x3) dxa) dr'. 41
op,

Since we are only interested in the product
X,(x;,)Xx(x;), we see we may choose y to be zero.!®
Equations (40) and (41) then just give the solutions to
the linearized Vlasov equation.

It should, perhaps, be noted here that the product
X,(x,)Xz(x;) is not symmetric in x; and x,. However,
it is easy to construct symmetric solutions from these
products, i.e., [X;(x) Xp(Xz) + Xa(xX3)Xp(x;)]. We must
allow only symmetric combinations in the final solu-
tion. If we start with symmetric solutions, they
remain symmetric.

We may build up the solution to the general initial-
value problem for Eq. (37) from these product solu-
tions. First we write the initial value of G as a sum
of products of delta functions,

G(x;,X;,t =0) =ffG(x’, x",t=0)

X 0(x; — X)Xy — X") dx’ dx". (42)

Next let y(x;, ¢t; x') and y(x,, ¢; x") be the solutions
given by (41) for which X\(x,,0) and X,(x,, 0) are
d(x; — xX') and d(x, — x"), respectively. Then the
general solution to Eq. (37) is given by

G(x;, X3, 1) =ffG(x’, x", t = 0)

X y(Xy, t; X)x(Xs, t; X") dx' dx". (43)

If G(x,, X;, ¢t = 0) is symmetric in Xx;, X,, then (43)
will be too.

We may note that the above solution holds even
if (f(x))av is a function of ¢. If (f(x;))av is time inde-
pendent or slowly varying with ¢ the above method is

** Note added in proof: This is perhaps most easily seen by noting
that the solutions can be written as Xj(x;,?) = e 7t§;(x,, t),
Xy(xg, D) = e¥t£y(x,, 1), where §; and &, are the solutions for y = 0.
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equivalent to Dupree’s!® operational method for
solving the second member of the BBGKY hierarchy.
In fact the same method of separation of variables may
be employed to obtain his result. The only difference
is that there are source terms due to the discrete par-
ticles. These are, however, readily included once we
know the solutions of the homogeneous equation.

As given above, Eqs. (33) and (34) would be difficult
to solve, for they apply to the general case where
(f(x))av may be spatially nonuniform and time
varying. However, they can be applied to many types
of systems; uniform and nonuniform plasmas, and
clusters of stars. One case which is very often con-
sidered is that in which (f(x))av is spatially uniform
and is either stationary in time or varies only slowly
in time. In this case G may be solved for adiabatically
in terms of the variations of {f(x))av, and one obtains
quasi-linear theory without mode coupling.

D. Other Approximations

There are many other methods of terminating the
hierarchy which one can think of. One such method
is to employ the superposition approximation which
Kirkwood originally proposed for use in statistical
mechanics. Here one approximates the three-point
distribution function in terms of the two by

(f(x)f(X2)f(X5))av
- (f(xD)f (X2))avl f (%1) £ (X3)av (S (Xa) f (X5)) av
(f(xD))avl f (Xaav{f(Xs))av

We may write

(f (xl)f (Xg))av = f (x1)>tw<f (x2))av[l + G(xq, X5)].
45)

(44

Equation (44) then becomes

(f(x)f(xa) f(X3))av
= (f(x))av{f(X))av{f (Xs))av[l + G(xy, X5)
+ G(x;, X3) + G(X;, X3) + G(x,, X;)G(X, , X;)
+ G(x1, X)G(X3, Xg) + G(Xy, X5)G(Xy, Xg)
+ G(xy, X5)G(X1X5)G(X2X5)]. (46)
One further approximation we could make is to
assume that G is relatively small and neglect terms

containing three G’s. If we make this approximation
and further assume that (f(x))av is spatially uniform,

16 T, H. Dupree, Phys. Fluids 4, 696 (1961).
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the first two members of the hierarchy become

ot
_[ M= 2 e, x an
0q, op,

x a% (F(x)av{ F (X2))avG(Xs, Xa)

(B2 4 B2 gyt i, x)

m op, m 0qy
(ol —a) 8
0q, op,

X {f(X1))av(f(X2))av(f(X3))avG(Xy , Xg) dX4
- 2= 8D gt ot

X G(Xg, Xg) dxg

_ f(aqb(lql—qan, 9, e —a) 9 )

oq, op, aq, P,
X {f(xD)av{f (X2)av{f (X3))avs (47)
Z G(x;, X;)G(x;, X;) dX,. (48)
i*k
itk

If terms quadratic in G are neglected, then this
reduces to the previous case. When these terms are
kept, they give mode coupling terms. If it is further
assumed that (f(x))av varies slowly with respect to
G, then this equation should be similar to quasi-
linear theory with mode coupling (the equivalence
has not been shown, however).
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For a class of quasi-monochromatic spectra, including Lorentzian and Gaussian line shapes, it is
shown that knowledge of the modulus of the complex degree of temporal coherence () does not suffice
to reconstruct the spectrum. This is due to the existence of zeros of ¥(r) in the complex 7 plane, giving
rise to a significant contribution to the phase of y(7). The position of the zeros and their physical inter-
pretation are investigated. The case of band-limited spectra is also treated, and some general properties

of the distribution of zeros in this case are given.

L. INTRODUCTION

ET a light beam be split into two parts, which are
later reunited, after a time delay = has been
introduced into one of them. A sufficiently accurate
measurement of the resultant intensity as a function
of 7 would enable one to determine the energy spec-
trum of the light beam. This is the basis of Michelson’s
method of interference spectroscopy.!
In fact, we havel—

) = f ® g(@)e do, (L.1)

where y(7) is the complex degree of temporal coherence
of the light beam and g(w) is the spectral density,
which is real and nonnegative:

g(w) 2 0. (1.2)
The experiment described above would lead to a
measurement of Re p(r). According to (1.1), g(w)
might then be obtained by taking the inverse cosine
transform. This corresponds to the Wiener—Khintchine
theorem for stochastic processes: the autocorrelation
function and the power spectrum are Fourier trans-
forms of each other.
The function y(r) is usually normalized so that

y(0) = 1. (L.3)

The integral in (1.1) extends only over positive
frequencies. In the classical theory of coherence, this
arises from the fact that the field is real, so that, in its
Fourier representation, the negative-frequency com-
ponents are the complex conjugates of the positive-
frequency ones. This allows one to eliminate negative
frequencies by working with analytic signals.! In the
quantum theory of coherence,?* the same restriction

* On leave of absence from Centro Brasileiro de Pesquisas
Fisicas, Rio de Janeiro, Brazil.

1 M. Born and E. Wolf, Principles of Optics (Pergamon Press,
London, 1959), Secs. 7.5.8 and 10.4.1,

2 L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

3 E. Wolf, Japan. J. Appl. Phys. 4, Suppl. I, 1 (1965).

¢ R. J. Glauber, Phys. Rev. 131, 2766 (1963), Eq. (10.16).

arises from the preferential role played by the an-
nihilation operators for the field in the photoelectric
detection process.

For a quasi-monochromatic beam, Re y(7) is a
rapidly oscillating function, with mean period given
by the average beam frequency. Thus, direct measure-
ments become quite difficult at high frequencies,
although they have been performed in the far
infrared.>®

It is much easier to measure the envelope of the
rapid oscillations, which is a slowly varying function
(it is proportional to the visibility of the interference
fringes?). If we write

y(r) = [y(7)| exp lig(r)], (1.4)
it is readily seen that |y(r)| can be taken as defining
the envelope, while ¢(r) gives the phase of the
oscillations.

Even for very narrow spectra, it is often possible
to employ correlation techniques, such as the Hanbury
Brown-Twiss effect,”® to measure |y|, but it would
be very difficult to measure ¢.

The question then arises whether knowledge of |y|
alone is sufficient to reconstruct the spectral density
g(w). This is analogous to the well-known phase
problem in x-ray diffraction,® and similar problems
arise in the theory of image reconstruction'® and in
the Fock—Krylov formulation of the quantum theory
of decay.t

When the spectrum is known to be symmetric

5 J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).

8 P. Jacquinot, Rept. Progr. Phys. 23, 267 (1960).

7 L. Mandel, in Proceedings of the Symposium on Electromagnetic
Theory and Antennas (Pergamon Press, London, 1963), p. 811.

8 M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev.
142, 25 (1966).

% M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev.
132, 2764 (1963).

10 A, Walther, Opt. Acta 10, 41 (1963).

111, A, Khalfin, Zh. Eksperim. i Teor. Fiz. 33, 1371 (1957)
[English transl.: Soviet Phys.—JETP 6, 1053 (1958)].
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about its mean frequency @, it is possible to recon-
struct it if |p| and @ are known, because the phase is
then given essentially by a trivial factor exp (—id7)
(cf. Sec. III).

It has been suggested by Wolf'? that it may be
possible to solve the phase problem also in more
general cases, by taking into account the analytic
properties of y(r) that follow from (1.1) and the
nonnegative definiteness condition (1.2).

Since the integral in (1.1) contains only positive
frequencies, y(7) can be analytically continued as a
regular function of 7 in the lower half of the complex
7 plane 7 (7). The fact that g(w) is real implies

=) = y¥).
If we assume that the Paley-Wiener condition
* |
f |in ly(leldT <w
- 1 + T

is satisfied, it is possible to express the phase ¢(r) in
terms of In |y(r)| by a dispersion relation??

(1.5)

(1.6)

¢(r) = Pu(7) + 95(7), (L7

Pulr) = —%TPf ll%ﬂz%f dr’,
7 Jo 7P 17

where
(1.8)

the symbol P denoting the Cauchy principal value,
and
po) = Sarg (“=%), (1.9)

where the sum is extended over all the zeros r, of
¥(7) in I_(7). This corresponds to the representation

¥(7) = [y(n)| exp [ig ()] TT (T—Z”L) (1.10)
The last factor, which represents the contribution
from the zeros, is known as a Blaschke product, and
we call pg(7) the Blaschke phase.
Since @g(r) > 0 with a proper definition of the
phase (cf. Sec. II), the function @,(7) given by (1.8)
represents the minimal phase. Furthermore,

by Im~,
n (t — Re7,)? + (Im 7,)°

dop =2
dr

50 that

<0, (1.11)

doldr < dpy,/dr. (1.12)

The phase problem is therefore reduced to the
determination of the zeros 7,. According to (1.5), if
Tn 18 @ Zero, so is —7*, so that the distribution of
zeros is symmetrical with respect to the imaginary

12 E. Wolf, Proc. Phys. Soc. (London) 80, 1269 (1962).
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axis. It follows from (1.2) that there cannot be any
zeros on the imaginary axis,’® so that all the zeros
must occur in pairs.

It has been conjectured by Wolf?? that, for light
emitted by ordinary sources, y(r) may have no zeros
at all in I_, or at least in that part of /_ which would
significantly affect the reconstruction of the spectrum.
On the other hand, if zeros are present, they should
have some physical significance, the understanding
of which would be of considerable importance for
interference spectroscopy. In the absence of zeros,
the solution to the phase problem would be given by
the minimal phase.

This conjecture was supported by an explicit
calculation of y(r) for blackbody radiation.!* It was
shown that there are no zeros in 7_ in this case, so
that knowledge of [y(7)| suffices to reconstruct the
spectrum, in spite of its not being symmetric.

It has also been shown!® that, in the case of com-
plete coherence, i.e., if [y(7)} = 1 for all =, condition
(1.2) leads to a unique solution, namely a perfectly
monochromatic beam: y(r) = exp (—iw,7).

These examples correspond to extreme cases: a
very broad spectrum (blackbody radiation) and an
infinitely narrow one (monochromatic radiation). The
case of greatest practical interest is that of quasi-
monochromatic radiation, such as that from an
optical maser.

The following questions arise in the quasi-mono-
chromatic case: (i) Are there any zeros? If so: (ii)
What is their location? (iii) What is their physical
interpretation? (iv) Do they give a significant contri-
bution to the phase or is the minimal phase a good
approximation for reconstructing the spectrum?

The present paper is concerned with the investiga-
tion of these questions. There are two quite different
approaches that may be taken in such an investigation.
The first one is to deal with specific classes or ex-
amples of quasi-monochromatic spectra given a priori
and assumed to be physically realizable. The second
and far more ambitious approach would be trying
to derive the relevant features of the spectrum from
a physical model of the source, taking into account
the statistical features implied in the definition of the
spectral density. As a further refinement, the effect of
the measurement process might also be considered.

Only the first approach is taken here. The classes
of spectra that are treated include the Lorentzian and
Gaussian line shapes as special cases, and particular

13 P, Roman and A. S. Marathay, Nuovo Cimento 30, 1452 (1963).
( Y. Kano and E. Wolf, Proc. Phys. Soc. (London) 80, 1273
1962),
15 C. L. Mehta, E. Wolf, and A. P. Balachandran, J. Math. Phys.
7, 133 (1966).
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attention is devoted to them. In all the cases treated,
it is shown that there exists a large number of zeros.
Their location is determined and their physical
interpretation discussed. It turns out, in all these
cases, that most of the phase information is con-
tained in the zeros and very little in the minimal phase,
so that knowledge of |y(r)| alone is not sufficient to
reconstruct the spectrum.

The classes of spectra to be considered certainly
do not encompass all possible quasi-monochromatic
spectra, so that the results need not apply to all cases.
However, they indicate that, in general, one cannot
expect the minimal phase to be a good approximation
to the solution of the phase problem. To determine
to what extent these results can be applied to actual
light beams, and to make further progress in the solu-
tion, a deeper investigation, based on the second
approach, would seem necessary.

The distribution of zeros depends not only on the
behavior of the spectrum near the main peaks, but
also far away from them, and in particular on its
behavior near the end points of the region where
it is nonvanishing. In Sec. II, we consider quasi-
monochromatic spectra extending over all frequencies,
from zero to infinity. In Sec. 111, we consider the case
of band-limited spectra, which is of particular im-
portance in connection with the phase problem in
x-ray diffraction. Some general theorems about the
distribution of zeros are given. The main conclusions
are summarized in Sec. IV.

II. QUASI-MONOCHROMATIC SPECTRA

A spectrum is called quasi-monochromatic if the
spectral density g(w) takes on appreciable values only
for

lo — @o| < 8, 2.1
where w, is the midfrequency, and
€ = 0jwy K 1. 2.2)

In typical cases, € < 107¢ for thermal light; for laser
light, it can be several orders of magnitude smaller.

We consider in this section several examples of
quasi-monochromatic spectra for which y(7) has a
large number of zeros in I_. Before discussing them
in detail, we shall give a simple argument that relates
the existence of these zeros to some common features
of the spectra.

The spectra considered have a (very small) tail
extending down to o = 0. In practice, the low-
frequency behavior of the spectrum will be affected
by the frequency response of the measuring device,
which acts as a bandpass filter. It is largely a matter
of taste whether one considers the present model or

COHERENCE THEORY 563
that of a band-limited spectrum, treated in Sec. III,
as a more faithful representation of an actual situation.
We shall see that the basic results are very similar in
both cases.

To determine the number of zeros of y(7) in I_,
we apply the well-known theorem?!® according to
which the number of zeros of the regular analytic
function y(7) within a contour C is

N = Agarg y(z)[2m, 2.3)

where A arg y denotes the variation of arg y round
the contour C. We take as contour C the segment
—T < 7 < T of the real axis, closed by a half-circle
of radius T in /_(7), where T — o0.

Let us rewrite (1.1) as

Y1) = exp (—ior) f " gwo + 1) exp (—imn) dn.
e (2.4)

According to (2.1) and (2.2), during the time interval
for which y(r) is appreciable, i.e., for |7| < 7y, with

2.5)

Ty 2 T, = 073,

where 7, is the coherence time, the integral in (2.4) is
a slowly varying function as compared with the
exponential factor, so that most of the phase variation
is given by this factor:

Aarg y(x —wgAr (—7y <7 < 7). (2.6)

The asymptotic behavior of y(r) for very large
times depends on the behavior of g(w) for w — 0.
We assume for the sake of simplicity that

glw) ~ Aw* for o —0, 2.7
where o > 0 and A4 are constants. It then follows
from the Abelian theorem on the asymptotic behavior

of Laplace (Fourier) transforms?? that
p(1) ~ AT (x + D)[(ir)** for |rf|—>ocoinl_. (2.8)

Thus, for sufficiently large times, we no longer have
oscillatory behavior, but only a slowly varying
(algebraic) decay. It follows from (2.8) that the varia-
tion of argy around the half-circle of radius 7,
for T— oo, is

Aargy(r) = —(x + DAargr = (« + Dw. (2.9)

If we now assume that the transition from oscil-
latory behavior to the asymptotic behavior (2.8)
takes place smoothly, for r > 7,, without intro-
ducing large additional phase variations, it follows

18 E, C. Titchmarsh, The Theory of Functions (Oxford University
Press, London, 1939), 2nd ed., p. 116.

17 G, Doetsch, Handbuch der Laplace-Transformation (Verlag
Birkhiuser, Basel, 1950), Vol. I, p. 473.
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from (2.3), (2.6), and (2.9) that

N ~ (woTo/m) — $(o + 1). (2.10)
According to (2.5) and (2.2),
WoTg P WoT,~ Wof0 = €1 (2.11)

and we have, typically, ¢! > 10°% Thus, unless « is
also of this order of magnitude in (2.7), the number
of zeros N is very large. We assume that « is much
smaller; in fact, « = 0 in the examples to be con-
sidered, but nothing would be essentially changed if
we took « > 1, provided that « < €.

It should be emphasized that the above result gives
only an order-of-magnitude estimate of the number
of zeros, based on the assumption that there are no
compensating phase changes for |7| = 7,. This as-
sumption is verified in the examples discussed below.
The large number of zeros then arises from the large
phase change that takes place within a few coherence
times. It is by no means implied, however, that the
same result is valid for any arbitrary quasi-mono-
chromatic spectrum.

Within this approximation, one can also say
something about the distribution of zeros: most of
them must be located within a half-circle with radius
of the order of 7, centered at the origin. To see this,
it suffices to take T ~ 7, in the contour C considered
above.

To find out more about the location of the zeros
and their effect on the phase of y(r), we now turn to
specific examples.

Example 1: Lorentzian Peak. This corresponds to
taking
g(w) = Bd[l[(w — wo)* + &%)

in (1.1). This spectrum is usually associated with the
emission of a single line. The constant B jis deter-
mined by the normalization condition (1.3), which
gives B~ 1/m for € = d/w, K 1; we take B = 1/m
for simplicity.

Let us investigate the behavior of y(7) in I (7).
According to the symmetry relation (1.5), it suffices
to consider the behavior in the fourth quadrant.
Substituting (2.12) in (2.4), and introducing the
dimensionless variables

(2.12)

wer=z=Xx+ iy, €= 0w, 2.13)
we find
€ X @ e—-iuz
=—g " du. 2.14
yo)=%e ﬁw”qzu (2.14)

The "evaluation of this integral is undertaken in
Appendix A.

H. M. NUSSENZVEIG

The behavior of p(z) for |z| < 1 follows from (A3)-
(A6):

w(z) =1+ (ie/m)zlnz
—i{l + (¢/m)[l — C—4im — i In(1 + )]}z
+ O0(z¢Inz) (]z] K1). (2.15)
For |z| > 1, employing (A7), we find

P(z) = e — [ie/n(1 + €’)z]
x {1 — R2if(1 + )z] + 0"}
zel, |z] > 1. (2.16)

For z € 2, the first term on the right-hand side is to be
omitted (regions 1 and 2 are defined in Appendix A).

In particular, along the positive real axis (z =
x > 0), (2.16) gives the behavior of y(r) for times much
larger than the mean period (7 3 wy?). The first term
has the familiar exponentially decaying behavior
associated with the Lorentzian spectrum, with life-
time 7, = & (coherence time). The remaining terms
represent corrections to the exponential decay law,
arising from the restriction of (1.1) to positive fre-
quencies only. The correction terms decay much more
slowly than the exponential, following an inverse
power law, so that they must ultimately become
dominant.

According to (2.16), the transition from one decay
law to the other takes place for exp (—ex,) ~ (mxp) e
or, since € « 1, for

for

X = Xy & € 1ln (we2).

@.17)

Thus, the transition time is given by 7g ~ In (we~%)7,,
which agrees with (2.11). For € < 107%, we find
7o # 307,, so that the degree of coherence would be
unobservable, in practice, for + = 7,.

The nonexponential nature of the decay law for
very large times as a consequence of the one-sidedness
of the spectrum is a well-known effect in the decay of
unstable particles.!!.18-20

Let us now determine the zeros of y(z) in the fourth
quadrant. It is readily seen that there are no zeros
with |z| < 1 and no zeros in region 2, so that it
suffices to consider |z| 3> 1 in the region 1. For e K 1,
according to (2.16), the zeros are approximately given
by the roots

z,=Xx,+ iy, =r,exp(,) (—ir<0,<L0)
of

exp (—iz — ez) = ie/(nz). (2.18)

18 M. Lévy, Nuovo Cimento 14, 612 (1959).

1 G, Beck and H. M. Nussenzveig, Nuovo Cimento 16, 416
(1960).

20 J, Schwinger, Ann. Phys. (N.Y.) 9, 169 (1960).
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FiG. 1. The zeros of the complex degree of coherence
for a Lorentzian peak. ® —zeros,

Equating modulus and phase of both sides, we get
ex —y=In(nle) + 3 In(x% + y?), (2.19)

Xot ey, =2nm—3w+0, (n=1,2,3,---).
(2.20)

The zeros?! are located at the intersections of the
curve (2.19), drawn in full line in Fig. 1, with the
family of curves (2.20), drawn in broken line in Fig. 1.
They are approximately equally spaced, with spacing
|Az| ~ 27. The total number of zeros N is given by

N~xpfr~ =2(me)lne D x, =€, (2.21)

in agreement with (2.10).

For x < x,, the zeros are relatively far from the
real axis, but a large number of them falls within this
interval, so that they can have a large effect on the
phase of the degree of coherence. This indeed happens,
as will now be seen,

The evaluation of the minimal phase @,(x) is
carried out in Appendix B. The results are contained
in (B5)-(B7), and they are represented by the curve
in broken line in Fig. 2.

The actual phase ¢(x) is given by (B8)«(B10) and
it is represented by the curve in full line in Fig. 2.
The only points it has in common with ¢ ,(x) are the

N»
g (x)
o ‘p Xy '/2"0 "
s SN
2~
\‘\_‘[M(l) —
<, et N IR -
Tz

F1G. 2. Behavior of the actual phase (——) and the minimal
phase (- — -) for a Lorentzian peak.

211, A. Khalfin, Dokl. Akad. Nauk SSSR 141, 599 (1961)
[English transl.: Soviet Phys.—Dokiady 6, 1,010 (1962)], asserts
that a function essentially identical to (2.16) has no zeros at all in
the lower half-plane. His result seems to arise from an incorrect
analytic continuation.
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vertical tangent at x = 0 and the asymptotic limit
—3im as x — oo (however, ¢ approaches this limit
much faster than ¢,). The nearly linear behavior of
@(x) up to x ~ x, is due to the near symmetry of the
spectrum. Note that ¢, < ¢ and dyy/dx > doldx,
in agreement with (1.12).

Since ¢ and @j; have very little in common, most
of the phase information must be contained in the
Blaschke phase ¢5. How does this affect the recon-
struction of the spectrum ?

It follows from (1.1) and (1.5) that

g(w) = 71, Re L " 10 exp lighs) + iwr] dr. (2.22)

Let ga(w) denote the function obtained when ¢(7)
is replaced by ¢(7) in the above integral. According
to (2.16), the main contribution to the integral arises
from x « x,, so that, by (B5),

Pu(x) ~ Qe/m)[x In x — (1 + In xo)x + O(X*/xP].

(2.23)
The coefficient of the linear term determines the
center frequency of the peak. By comparison with
(B9), we see that there is a large frequency shift.
However, we can always assume that the center fre-
quency is independently measured and adjusted. We
are interested mainly in the shape of the peak, which
depends on the curvature of the phase, rather than
its slope.

The shape will be distorted mainly by the first term
of (2.23). This term has a large curvature and gives
rise to a large phase variation in the interval (0, x,),
so that it should produce appreciable distortion.

This is confirmed by a numerical evaluation, as
shown in Fig. 3, where g(w) (curve in full line) and
gu(w) (curve in broken line) are plotted®? as a func-
tion of (w — wy)/d. The results were adjusted so that
the maxima of the two peaks would coincide.

Although the height and half-width of the peak in
gu(w) do not differ too much from the correct
values, there is considerable distortion. It would be
a far better approximation in this case to omit the
minimal phase altogether, employing only the phase
factor exp (—iwyf) corresponding to the center fre-
quency.

It should be stressed that the term in the minimal
phase that is mainly responsible for the distortion
[first term of (2.23)] arises precisely from the range of
values of x in the dispersion integral [first integral of
(B1)] where the exponential decay law is approxi-
mately valid, i.e., where |y(x)| would be measurable
"9 Since both [¥(x)] and the first term of (2.34) depend only on

ex in the relevant part of the domain of integration, one obtains a
universal curve (independent of ¢) as a function of this variable.
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(w-w,) /38—
1 1 1 1

-3 -2 =1 [+] 1 2 3

FiG. 3. The functions g{w) (——) and gyu{w) (~--) as
a function of (®w — wy)/0.

in practice. This result therefore depends only on the
Lorentzian shape of the spectrum in the neighborhood
of the peak, and is insensitive to the low-frequency
behavior.

We conclude that the reconstruction procedure by
means of the minimal phase would lead to incorrect
results in the present example.

Example 2: Gaussian Peak. Let us now take
g(@) = Bexp {—[(@ — @)/20]%},

which might be regarded as a representation of a
Doppler-broadened spectral line. Again with ¢ =
d/wy K 1, the normalization condition (1.3) gives
B~ (2n¥6)L.

The corresponding function y(z) is given by (Cl)
(cf. Appendix C). Taking into account the asymptotic
expansion of the error function,!® we find

exp [—(4¢")]
2i(7r&)(ez + i/2¢)

1
X [1 Tt ]
for Imz > —(2)™. (2.25)

(2.24)

W(z) ~ exp (—iz — €2°) +

This approximation is valid, in particular, along the
real axis. Thus, p(x) decays according to a Gaussian
law which, for very large times, is replaced by an

H. M. NUSSENZVEIG

inverse power law, in agreement with (2.8). The
transition between the two types of behavior takes
place for x ~ x,, where

X = (21D x, = L, (2.26)

According to (C1)-(C4), the zeros of y(z) in the
fourth quadrant of the z plane are approximately
given by

i eiar/4 %

2y N —:2—6‘2+T[(2n—i)77]
_pt
% exp {_iln [27(2n — $)?]
2n(2n — 3

The distribution of zeros is shown in Fig. 4. The
distance between two successive zeros decreases as
n~t, in contrast with the uniform spacing found in
Fig. 1. The total number of zeros is again given by
(2.10).

For x < x,, the zeros are far from the real axis
and far apart. This suggests that the minimal phase
may be a better approximation here than in the pre-
vious example. This is confirmed by the expressions
for @ ,(x) and ¢(x), given in (C6)—(C9).

If we replace @ by @, in (2.22), the reconstructed
spectrum will be approximately Gaussian, although
the center frequency still suffers a large shift. Thus,
assuming the center frequency to be independently
adjusted, we get a reasonably good approximation
to the spectrum. However, we would again get a
better approximation by omitting the minimal phase
altogether, since the correction to the linear term in
(C6) is entirely different from that in (C8).

}. 2.27)

Example 3: A Pair of Lorentzian Peaks. The ex-
amples hitherto considered correspond to nearly
symmetric spectra. Since the phase problem becomes
trivial for an exactly symmetric spectrum (cf. Sec.
I11), it is of interest to consider also larger departures

y

o] ’I‘c Xo x

FiG. 4. The zeros of the complex degree of coherence
for a Gaussian peak. e —zeros.
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from symmetry. For this purpose, let us take

Bd 1+a
g() = [@_wf+¥

1 —a :I

(@ — wy)® + & .
(2.28)
This spectrum corresponds to a pair of Lorentzian
peaks, centered at w; and w,, and taken, for sim-
plicity, to have the same width é. Their intensity ratio
is (1 + o)/(1 — «). For definiteness, we take w, < w,
and 0 < « < 1. The asymmetry is measured by «.
Let us also introduce the dimensionless parameters

26

w, + w,

z = Hew; + w7, <1,

€ =

p="2—""141 (2.29)

Wy + o,
Then, it follows immediately from (2.16) that

W2) ~ B{%e—”‘“[(l + W) + (1 — 0)e 7] — —“—}
wZ

for zel,|zj > 1. (2.30)

The zeros can be obtained by equating modulus and
phase of both sides, as in Example 1. We find a
family of curves (shown in broken line in Fig. 5)
similar to those in (2.20), but the curve corresponding
to (2.19) (shown in solid line in Fig. 5) has a different
behavior. It has been drawn in Fig. 5 for the case of
two well-separated peaks, 3> €, and we have also
assumed that §1n (¢~ 3 1. The curve is tangent to
that of Fig. 1 (shown in dash-and-dotted line in Fig. 5)
at the points x; = ja/f (j=10,1,2,- ).

The oscillations of this curve, which are reflected in
the positions of the zeros, correspond to beats be-
tween the center frequencies of the two peaks. The
beat frequency is measured by the parameter §. In
the limiting case of two identical, infinitely rarrow
lines, all the zeros would be located on the real axis,
at the points x; = (j+ /B (j=0,1,2,- ).

The amplitude of the oscillations is determined
by the asymmetry parameter «. It is largest for « = 0
(two identical peaks) and it vanishes, as it must, for
o« = 1 (single peak).

The explicit evaluation of the minimal phase is
more difficult in the present example. However, it

BBy
c
T /l /1 f/l T = T 2
\ 1R 1 » T
.. i \ IR VALY B
Lok} ] |
Y \ \ i/ tn S 1
v~ ANy N k- [T
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-2k A —
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Fi1G. 5. The zeros of the complex degree of coherence for
a pair of Lorentzian peaks. e—zeros.
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should be clear, by comparing Fig. 5 with Fig. 1,
that the Blaschke phase must be even more significant
here, since the zeros are located closer to the real axis.
The shape and asymmetry of the spectrum are
directly reflected in the distribution of zeros, so that
most of the information must be contained in the
Blaschke phase, and not in the minimal phase.

III. BAND-LIMITED SPECTRA

If we assume that the bandpass filtering effect of
the measuring device can be adequately represented
by a sharp cutoff, the resulting spectrum is band-
limited:

3.0

where 2a is the bandwidth and w, is the central
frequency of the band. This case is also of consider-
able importance in connection with the phase problem
in x-ray scattering,® where the band limitation is due
to the finite size of the crystal.

According to (1.1) and (3.1),

|w—w0| >a,

g(w) =0 for

wota
WHngmFMm

= exp (—iw,m)G(w), 3.2

where

G(7) =f g(wy + w)e ™ du. 3.3)
We assume that (—a, a) are the effective cutoff points
in (3.3), so that the domain of integration cannot be
reduced without altering the value of the integral.

It then follows from (3.3) and the Paley—Wiener
theorem?? that G(7) is an entire function of exponential
order 1 and type q, i.e.,

|G(7)| < Aexp (a|7])

as |7| — co in any direction.

If we make the additional assumption that the
spectrum is symmetric, i.e., glw, — u) = g(w, + u),
Eq. (3.3) becomes

G(r) = 2 f :g(w,, + ) cos (u7) du
= G(=7) = - (3.5

Thus, apart from a sign factor, the phase of y(7) is
given just by the factor exp (—iw,7) in (3.2). The sign
may be determined by arguments of physical plausi-
bility, so that knowledge of |y| and w, would enable
us to reconstruct the spectrum in this case, by taking
the inverse cosine transform of (3.5).

This does not imply, however, that y(r) has no

(3.4)

22 R. P. Boas, Entire Functions (Academic Press Inc., New York,
1954), p. 103,
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zeros for symmetric spectra; on the contrary, it
follows from (3.5) that it has an infinite number of
them. In fact, since G(—r) = G(7), we see that G(r)
is an entire function of +* of order 4 [according to
(3.4)], and an entire function of nonintegral order
has an infinite set of zeros.?* According to Theorem 1
below, this result is valid for any band-limited
spectrum, symmetric or not. For a symmetric spec-
trum, according to (3.5), the distribution of zeros is
symmetric not only with respect to the imaginary
axis, but also with respect to the real axis: if 7, is a
zero, so are —73, —7; and 7} .

The zeros of entire functions of the form (3.2) have
been investigated by several authors.25-27 We quote
below some of the most significant results that have
been found, adapted to the present case.

The following theorems have been proved by
Titchmarsh?®:

Theorem 1: The function y(7) given by (3.2) has an
infinite set of zeros.

Let =, = t; exp (i0,), 72 = tzexp (i), - -+ be the
zeros, arranged in order of increasing modulus:
0 <1 Lt £ (according to (1.5), this implies that
the zeros 7, and —7¥ will always be paired together).

Theorem 2: The series X2, 17! is divergent, but
>» , t;1sin 0, is absolutely convergent.

This implies that the zeros tend to be located near
the real axis for large n. Note that, since =, and
—7%* are paired together,

dtllsinf, =i 7, (3.6)
n n
Theorem 3: If n(f) denotes the number of zeros

having |7| < ¢, we have
t — o0, 3.7

Thus, the spacing between two adjacent zeros must
approach =/a for large n.

n(t) ~ 2at/w  as

Theorem 4: We have
() = exp (—iogn) TT (1 - 1),

Ta.

(3.8)

where the product is extended over all the zeros.
Furthermore, we have the sum rule

2;;‘ = —iwy — 7'(0) = —i(wy + @), (3.9)

24 Cf. Ref. 23, p. 24.

2 G. Pélya, Math. Z. 2, 352 (1918).

28 g, C. Titchmarsh, Proc. London Math. Soc. (2) 25, 283 (1926).

27 M. L. Cartwright, Quart. J. Math., Oxford Ser. (1) 1, 38 (1930)
and 2, 113 (1931).
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where
wota
o= wg(w) dw
wo—%
in the mean frequency. This gives the sum of the
series (3.6).

The product expansion (3.8) is simpler than the
Hadamard canonical product representation employed
in Ref. 9. This expansion brings out the artificial
character of the separation (1.7) into minimal phase
and Blaschke phase in the present case.

In fact, since y (+) is now an entire function, there
is no reason to assign a preferential role either to the
lower or to the upper half-plane. If we arbitrarily
decide to split the phase into a Blaschke phase as-
sociated with the zeros in I_(7) and a minimal phase,
as in (1.10), it is clear, by comparison with (3.8), that
the minimal phase corresponds to just another
Blaschke product, involving also the zeros in the
upper half-plane 7, (7).

Thus, all the zeros, both in I, and in I_, are relevant
to the phase problem. It has been shown by Walther!®
(cf. also Ref. 9) that, given [y(7)|, the positions of all
the zeros 7, are determined up to a reflection on the
real axis. All possible solutions differ only by “zero
flips” of the type 7, — 7% (accompanied by —7% —
—~1, for the other member of the zero pair, in order
to preserve the symmetry relation (1.5)). This result
is essentially due to the fact that a Blaschke factor
(v — 7,)[( — 7¥) introduces a pole in the opposite
half-plane, unless 7* also is a zero; for a representa-
tion restricted to a half-plane, this would not matter,
but here y(7) is an entire function.

So far no use has been made of the nonnegative
definiteness condition (1.2). This condition entails
new restrictions on the distribution of zeros, as
illustrated by the following theorems?3:

(3.10)

Theorem 5: If g(w) > 0 is a nonincreasing (non-
decreasing) function, all the zeros of y(7) have positive
(negative) imaginary part, except possibly when g(w)
is piecewise constant.2®

An example is

g(w) = A exp (bw) (3.11)
in (3.2). The corresponding zeros are
T, = (nwfa) — ib. (3.12)

This can also be taken as an illustration of the *‘zero

28 C. L. Mehta and E. Wolf (private communication) have de-
rived the same result independently, by a simple graphical argument
based on interpreting the integral (3.2) as the limit of a sum of
complex vectors. The exceptional case is that of piecewise constant
g(w) with a finite number of jump discontinuities at the points
w; = Wy — a + psalq where p, and g are integers. In this case, there
are infinitely many zeros on the real axis.
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flip” ambiguity: A exp (bw) and A4 exp (—bw) give
rise to complex conjugate zeros, but to the same
value of |y(7)|. More generally, |y(7)| does not allow
us to distinguish between g(w) and the ““inverted”
spectrum g(2w, — w).

Theorem 6: If g(w) > 0 is continuous and (except
perhaps at a finite number of points) differentiable,
and if

< —g'(w)glw) LB (wy—a< o< w+ a),

(3.13)
then, all the zeros of p(7) lie in the open strip

a<Imr <B, (3.19)

the only exception being the example (3.11) (for
which the strip reduces to the line Im r = —b),

The result contained in Theorem 3 can be made
more precise by specifying the behavior of g(w) near
the endpoints of the interval (w, — @, wy + a), which
determines the asymptotic behavior of the Fourier
integral®® (3.2), and consequently also the asymptotic
distribution of zeros. As an example, we have??

Theorem 7: If g(w) is continuous within the interval
(wy — a, wp + a) and g(w, & a) # 0, and if g'(w) is
integrable, the zeros of y(r) are asymptotically given
by

nm i glwg — a
" [g(wo 7 a)} Y, (3.15)
where €, > 0 as n— oo.

It is clear from Theorems 3 and 7 that the asymp-
totic distribution of zeros is determined by the
properties of the cutoff, and therefore contains no
information about the shape of g(w) within the
interval (wy — a, wy + a). This information must be
contained in the zeros that are located closer to the
origin,®

As an illustration of these results, we close this
section by reconsidering the example of a Gaussian
peak, but now with band limitation:

Example 4: Band-Limited Gaussian Peak. Let
w —

g(w)=ﬁ§ex [—( = )] (I — w0l < a),

=0 (lo~ wp > a). (3.16)
Since this is a symmetric spectrum, the corresponding

phase problem is trivial, but we are interested only
in the distribution of zeros. We assume that the band-

AN

2 A. 1. Erdélyi, Asymptotic Expansions (Dover Publications, Inc.,
New York, 1956), p. 46.

8¢ A related conclusion was reached in Ref. 9, by a different
argument.
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width is much larger than the width of the peak, so
that

=dla K 1. 3.17)
Introducing the dimensionless variable
ar={=§+ iy, (3.18)
we find, similarly to (2.25),
) ~ B exp (~iognexp (—7') + FEIHD
2i(xr?)
[ exp (i) _ exp (-—il)]}
20+ G20 28— (/2
for n> —§&, (3.19)
where
& = 2™ (3.20)

For 7 < —§&,, the first term within the curly brackets
is to be omitted, so that there are no zeros in this
region. All the zeros are contained within the strip
|9l < &, in agreement with Theorem 6. The distri-
bution of zeros is symmetric with respect to both
the real and the imaginary axis, so that it suffices to
consider  in the fourth quadrant.

Within the strip, for |{| « &, we find, just as in
(2.27), that the zeros are located very close to

; ir/4
(= — é + "7 [(2n — Palt

_;In[2n(2n — p
x exp| i 2R =B qrl e Gan

Their distribution is very similar to that shown in
Fig. 4, with the variables appropriately relabeled.

On the other hand, for |{| > &,, the zeros are
located on the real axis, very close to the points

(3.22)

C’n = nﬂ,

in agreement with Theorem 7.

These results also illustrate the remarks about the
role of “distant” and “nearby” zeros. It is clear that
information about the shape of the spectrum is con-
tained primarily in the zeros (3.21), and not in the
distant zeros (3.22).

Finally, expressing the zeros in terms of the vari-
able z = wyr = wy{/a, we see that (3.21) differs from
(2.27) only by the replacement: (2¢2)~! — (2¢x)2.
Thus, if the admitted band extends down to fre-
quencies well below w, (y ~ €), the distribution of
nearby zeros is almost unaffected by the cutoff, in
agreement with the remarks made at the beginning of
Sec. II.

IV. CONCLUSION

In all the examples of quasi-monochromatic spectra
that have been considered here, it has been found that
y(7) has a large number of zeros. Their location has
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been determined and it has been shown that they
play an important role in the phase problem. The
spectral reconstruction procedure based on the
minimal phase does not lead to satisfactory results in
these cases.

What is the physical interpretation of the zeros that
have been found ? For spectra with a single peak, the
behavior of the degree of coherence from 7 = 0 up to
several coherence times is determined mainly by the
behavior of the spectrum in the neighborhood of the
peak. This is the region ordinarily accessible to
experiment; it corresponds to the domain of validity
of the exponential or Gaussian decay law in Examples
1 and 2, respectively. However, this domain is limited
by the restriction of the spectrum to positive fre-
quencies. The asymptotic behavior of y(7) for 7> 7,
is determined by the low-frequency behavior of the
spectrum.

The zeros that have been found in this case arise
from the interference between the initial and the
asymptotic decay laws, so that they depend both on the
shape of the peak and on the low-frequency behavior.
The latter affects most strongly the distribution of
distant zeros.

In the case of multiple peaks, as in Example 3, the
beats arising from the combination frequencies give
rise to zeros close to the real axis; in the limiting case
of infinitely narrow lines, these zeros must tend to the
real axis.

For band-limited spectra, there is an infinite num-
ber of zeros in the 7 plane, but only the nearby ones
contain information about the shape of the spectrum.
The distant zeros arise from the band limitation and
depend mainly on the behavior of the spectrum near
the end points of the band. In this case, there is no
reason to give a preferred role to either the lower or
the upper half-plane, so that the splitting into minimal
phase and Blaschke phase seems quite artificial.

As was emphasized in the Introduction, the above
results need not apply to arbitrary quasi-monochro-
matic spectra. It is even possible to construct examples
of such spectra® for which y(r) does not have any
zeros in I_(r). The assumptions that led to the exist-
ence of a large number of zeros in the examples
considered here have already been discussed in Sec. II.

In particular, changes in the low-frequency behavior
of the spectrum can modify considerably the distri-
bution of zeros. This is related to the well-known fact
that small changes in the value of a function on the
real axis can produce a large effect on its analytic
continuation into the complex plane.

1 D, Dialetis, J. Math. Phys. (to be published).
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On the other hand, the minimal phase depends
only on the behavior of |y(7)| along the real axis.
Changes in the low-frequency behavior of g(w) affect
mainly the asymptotic behavior of y(7) for very large
7, where it would not be measurable in practice. We
have seen in Example 1 that it is precisely the domain
where y(7) is measurable that gives rise to distortions
in the spectral reconstruction by means of the minimal
phase; this result is independent of the low-frequency
behavior.

One can make the dispersion relation less sensitive
to the high-r behavior by making additional sub-
tractions at 7= 0. However, this would require
knowledge of higher-order moments of the spectrum
(e.g., the mean frequency, for one subtraction). While
this should improve the accuracy of the reconstruc-
tion, there is no reason to believe that the subtracted
minimal phase would be a useful approximation to
the remainder.

As was mentioned in the Introduction, a more
ambitious approach would be to attempt a theoretical
derivation of the spectrum associated with a given
quasi-monochromatic source. However, even for a
single emission process, the asymptotic decay law is
not uniquely defined; it is known not to be exponen-
tial, but its exact form depends on the details of the
measurement process.’®=2° The effect of taking an
ensemble average to obtain the degree of coherence
is unknown. One would also have to take into ac-
count the effect of the measuring apparatus, e.g.,
its frequency response and the limitations due to
noise.

In practice, if the spectrum is known to be nearly
symmetric, one may obtain a good first approxima-
tion by assuming complete symmetry (in which case
the phase problem can be trivially solved), and one
may then investigate the effects of a small departure
from symmetry. If the spectrum is strongly asym-
metric, it may still be possible to represent it by a
superposition of symmetric spectra, e.g., when there
are several peaks. The number and relative position
of the peaks may be inferred by analyzing the resulting
beat pattern, which also appears in |y|. This seems
to have been the procedure originally applied by
Michelson.

In conclusion, we see that the determination of
|¥(7)| alone does not seem to suffice, in general, for
the unambiguous reconstruction of quasi-monochro-
matic spectra, even when the requirements of analy-
ticity and nonnegative definiteness are taken into
account. This is perhaps not very surprising, since the

32 A. A. Michelson, Phil. Mag. 31, 338 (1891); 34, 280 (1892).
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F1G. 6. (a) Division into regions
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analytic properties of y(7) do not originate from any
far-reaching physical principle, such as causality
(cf. Sec. I).

Additional information, either in the form of
theoretical restrictions derived from a physical model
of the source or by further measurements,?3* seems
necessary to solve the phase problem. It is not clear
at the present time which procedure would be most
suitable for this purpose.
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APPENDIX A. EVALUATION OF »(z) FOR A
LORENTZIAN PEAK

It follows from (2.14) that

e—iz “J‘izw s dt _“J'izao s dt]
Z)=—|¢ e ——¢e e " —,
) 2i1r[ (e—i)z t —(e4+i)z t
(A1)

where the paths of integration are straight lines
parallel to ¢ = izA. The integrals can be reduced to
the exponential integral, defined byt

dt

. (A2)

Ey(u) =f e'=— (largu| <),

3 H. Gamo, J. Appl. Phys. 34, 875 (1963).

3 C, L. Mehta, Nuovo Cimento 36, 202 (1965).

% Handbook of Mathematical Functions (National Bureau of
Standards, Washington, D.C., 1964), p. 228.

W

W

(b)

where it is assumed that the path of integration
avoids the origin and does not cross the negative
real axis.

To perform the reduction, we must subdivide the
fourth quadrant of the z plane into the regions 1 and
2 shown in Fig. 6(a). In region 1,

—7m <L arg(—ez — iz) < —in;

in region 2, 47 < arg (—ez — iz) < . For a point
z, € 1, the path of integration in the second integral
of (A1) crosses the negative real axis [cf. Fig. 6(b)],
so that it has to be taken across the pole at the origin
to reduce it to (A2). This does not happen for a point
2z, €2, nor does it happen in the first integral, so that
we finally get

z) = 0(1, 2)e™ + (e7[2mi)
X [e*E(ez — iz) — ¢ “E(—ez — i2)], (A3)

where
01,2)=1 if zel, 6(1,2)=0 if ze€2. (A4)
We have®®
E,(u) = Ein(u) —Inu — C, (AS)
where C is Euler’s constant and
Ein(u) = f =P o o3 EVY (4
) t n=1 nn!

is an entire function. The discontinuity across the
cut of the logarithmic term in E;(—ez — iz) com-
pensates the discontinuity (A4), so that (A3) represents
a regular, single-valued function in the fourth quad-
rant of the z plane. Note, however, that it has a
logarithmic branch point at the origin.

To find the behavior of y(z) for |z] 3> 1, one can
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employ the asymptotic expansion of E,(u):

S EDE o)

(A7)
where the remainder is smaller than the first neglected
term.

APPENDIX B. EVALUATION OF THE PHASE
FOR A LORENTZIAN PEAK

It follows from (1.8), (2.15), and (2.16) that the
minimal phase, for x > 1, is approximately given by

u u

Pu(x) ~ — 2x l:ePJ%——',le dx’ -
kul 0 X" — X
®  dx’ “®In x’ dx’
o Qe
+ n(e) @ox'z—xz-*- 2o x%— x*
=~ S| -] g () |t
T X ™ € Xo— X
216 - (=3)) ®)
m xO xo
where
1 ==[yimi-na @
is the dilogarithm function.*® We have
f(x) = Z a7 (x| <1) (B3)
and® "=
J&) = f(=x) + D) = f(=xD) == (x> 0).
(B4)

These relations allow us to obtain rapidly con-
vergent expansions of (Bl) both for x « x, and for
XD Xy

2 3

“_(1+€xo)£+0(%)

w xO xo

for 1K xKx,, (BS)
3.
¢M(x)=—’—'-—1~(exo—2)"—°+o(ﬁ’)
2 = x x®

for x> x,.

Pa(®) = — Zn |2 —
T X

(B6)
Finally, for x — 0, we find

ou(x) = (e/m)xInx + Ox) -0 as x—0. (B7)

These results are to be compared with the actual
phase ¢(x). It follows from (1.5) and (2.9) (with
o = 0) that we must take @(0) = —@(~ 0) = —i},
and (2.3) then implies that p(0+) = —@(0—) = N,

2 K. Mitchell, Phil. Mag. 40, 351 (1949).

37 This result follows from term-by-term subtraction of equations
(4.2) (with x replaced by —x) and (4.3) in Ref. 36.
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where N is the total number of zeros. Taking into
account (2.15) and (2.16), we get

@(x) &~ N + (e/m)xInx + O(x) 0<x<1), (BS)
@(x) &~ Nm — x — (x¢/x) cos x exp [—e(xy — x)]

(1 K x K %), (BY)
o(x) ~ —47 + (x[x,) cos x exp [—e(x — xp)]

(x> x). (B10)

APPENDIX C. EVALUATION OF y(z) FOR
A GAUSSIAN PEAK

Substituting (2.24) in (1.1), we find, in terms of the
dimensionless variables (2.13),

y(z) = % exp (—iz — €%2%) erfc (w), €1
where
w=jez — 1/2¢ (C2)
and
erfc (w) = % | exp (—) (C3)

is the error function, which is an entire function of w.
Thus, ¢(z) in this case is an entire function of z.

The zeros of erfc (w) are symmetrically distributed
with respect to the real axis and they are contained
in the half-plane Re w < 0. Those located in the
second quadrant are approximately given by3®

;In [27(2n — ph
2m(2n — ) } '

(C4)

According to (2.25), the minimal phase is given by

2o /2 ’
ou(x)~ — z—x{e”Pf sz dx -+ [Lz +In (2(#*)5)]
T x'¢—x 4¢

]

®  dx' ®In x’ dx’
Lo X% — x? + Lu X% — xz}

___”(xs_ X+ %
2 -2 x_xo

) ) ©

where f(x) has been defined in (B2). It follows that

Pul(x) ~

w, &~ 4(2n — Pt exp ‘

x3) In

3
2xx2 4 (X K X)),

0

- 2—" + (C6)

Pu(x) ~ —‘2'—3—‘+

whereas, according to (2.25), the actual phase is

given by

@(x) ~ N7 — x — (¢/d) sin x exp [—(x2 — x%)/2%,]
0 <xKx), (CB)

Px) s —tm —tan” (x/x) + -+ (x D x).  (C9)

88 This £ follows from the asymptotic expansion of erfc (w) given
in Ref. 19, p. 33. Similar results for erf(w) = 1 — erfc (w) are
given in Ref. 35, p. 329,

(x> x0), (C7)
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A Rayleigh-Ritz procedure is outlined for deriving approximate equations of “particle” motion
(the over-all motion of a singularity-free particlelike solution) in a superimposed small-amplitude
external field. The method is illustrated here for a classical nonlinear model scalar field theory. A
relativistic generalization of the approximation procedure is described.

I. INTRODUCTION

IGOROUS particlelike solutions to Lorentz-
covariant nonlinear model field theories, solu-
tions which are spatially localized, time-independent,
singularity-free, and of finite energy, have been the
subject of recent papers.’2 Our purpose in the present
paper is to outline a systematic Rayleigh—Ritz approxi-
mation procedure for deriving the motion of such a
“particle” in a superimposed external field, more
precisely, the over-all motion of a particlelike solution
induced by the nonlinearity of the field equations
with the addition of a small-amplitude wave solution.
This Rayleigh-Ritz approximation method appears to
be ideal for obtaining unambiguous equations of
““particle” motion from any nonlinear field theory
associated with an action principle that admits a
singularity-free particlelike solution of finite energy,
the method applying irrespective of whether the field
theory features Einsteinian general covariance and
concomitant Bianchi identities.® We also sketch an
analogous approximation theory for the quantum
motion of the particlelike solution, application of a
standard canonical quantization to the dynamical

1 G. Rosen, J. Math. Phys. 6, 1269 (1965).

2 G. Rosen, J. Math. Phys. 7, 2066 (1966).

2 For obtaining the equations of motion in a general relativistic
field theory which does not admit a singularity-free particlelike
solution, one must use ¢ither the Einstein—Infeld-Hoffman method
[e.g., L. Infeld, Rev. Mod. Phys. 29, 398 (1957)] or the Fock method
[e.g., V. A. Fock, Theory of Space, Time, and Gravitation (Pergamon
Press, Inc., New York, 1962)]. Each of the latter methods, depending
in an essential way on general covariance and the concomitant
Bianchi identities, involves a series expansion and iterative solutional
procedure which is certainly not justifiable in a rigorous sense, for
close to the mass point (or field singularity) the field equations are
essentially nonlinear. Furthermore, unambiguous equations of
motion are obtainable with an Einstein-Infeld-Hoffman or Fock
method only if supplemented with certain suitable coordinate
conditions {e.g., H. Wojewoda, Zh. Eksperim. i Teor. Fiz. 45, 2051
(1963) [English transl.: Soviet Phys.—JETP 18, 1408 (1964)]} and
certain additional “‘nonradiative” conditions on the mass point
itself [e.g., A. Peres, Phys. Rev. 137, B1126 (1965)]. It is for these
reasons that the Rayleigh-Ritz approximation procedure discussed
here would be preferable mathematically for a singularity-free
particlelike solution in the context of an Einsteinian general
relativistic theory, notwithstanding the venerability of the Einstein—
Infeld-Hoffman and Fock methods.

theory based on the “reduced Lagrangian” of the
classical Rayleigh—Ritz procedure. The approximation
theory is illustrated here for the rigorous particlelike
solutions to a nonlinear model scalar field theory, and
a relativistic generalization is described.

II. CLASSICAL AND QUANTUM
NONRELATIVISTIC EQUATIONS OF MOTION

Let us consider a Lorentz-covariant nonlinear field
theory with the invariant Lagrangian density,

£ =4, ¢, V9), M)
and the action principle,
6det =0, L Ef £ d’, 2

where ¢ = &(x, t) is a generic (multicomponent) real
field. Suppose that the field equations derived from
(2) admit a spatially localized time-independent
singularity-free particlelike solution,

¢ = ‘ibo(x), (3)

and also a (nonlocalized) small-amplitude singularity-
free wave solution,

¢ = Pex(x, 1). (4)
With additive superposition of the right members of

(3) and (4), we seek an approximate solution of the
form

¢ = "So(x —E) + qbex(x’ t), (%)

where the coordinates § = E(¢) locate the center of
the “particle.” Keeping terms at most quadratic in
dex, the Lagrangian density (1) is evaluated with (5)
and the resulting function of &, , x, and ¢ is integrated
over x. Thus, the Lagrangian in the definition part of
(2) is expressed explicitly as

L= L(E» g’ 1) (6)

by dropping an additive function of ¢ alone. Note that
the Lagrangian (6) is suitable for describing the

573
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dynamics of a particle with coordinates . Indeed,
the action principle (2) supplemented with a Rayleigh—
Ritz argument guarantees the approximate validity of
the Euler-Lagrange equations derived from (6).
Hence, the Euler-Lagrange equations derived from
(6) are approximate classical equations of motion for
a particle with the coordinates € in a superimposed
small-amplitude external field. It also follows that the
“reduced Lagrangian” (6), representing the particle
system accurately to within the approximation of
three principal degrees of freedom, can be used to
formulate a corresponding Schrodinger equation for
the approximate quantum motion of the particle.

In order to illustrate this Rayleigh-Ritz approxi-
mation method for the motion of a particle in an
external field, consider the solvable nonlinear model
field theory* based on the Lagrangian density,

£ = (0)® — (V)2 + g0¢, @

with 0 = 0(x, t) a real scalar field and g a positive
physical constant. The field equation associated with
(7) admits rigorous singularity-free spherically sym-
metric static solutions of the form

0 = 6y(x) = Z(Z'g + x|~ ®)

in which the “size parameter” Z is a free nonzero
constant of integration. For a solution of the form
(8) the total field energy or “particle rest mass” is

2

[y~ gax=Z=m,  ©
2

a quantity independent of Z. The particlelike solutions
(8) are dynamically unstable, but the characteristic
time for dissolution of such a solution is of the order
Z%#% and is therefore arbitrarily large for |Z| suffi-
ciently large.

Now let fex = fex(x, t) denote a small-amplitude
singularity-free wave field which satisfies the linearized
field equation, fex — V20ex = 0. With fex super-
imposed additively on the rigorous particlelike
solution (8), we seek an approximate solution in
which (8) is generalized dynamically,

0= oo(x — E) + Bex(x, t)’ g = g(t) 10
Evaluated with (10) the Lagrangian density (7) works
out to give

£ (- V002 — 28 - Vip)lex + (Be)? — (V5,)?
- 2V00 . Veex - (Vaex)2
+ g(65 + 6030ex + 1504602) an

up to terms of quadratic in fex and where the argu-
ment of 0, is understood to be (x — ). We simplify

GERALD ROSEN

the integration of (11) over all x by making use of the
formulas
V20, + 3g65 = 0,

f(VGO)2 d® =f3g0§ d’x = §my,

(12)

Discarding the term [[(fex)? — (V0ex)?] 3%, an addi-
tive function of ¢ alone, we thus obtain

fViBOVjBO &x = Fmyd;; .

L =~ % mo(g)2 - 2& 'f(veo)gex d’x — my

-2 f V - (6exV0,) d* + 15g f 6202, d°. (13)

The three integral terms in (13) can be evaluated easily
with explicit integration provided that |V9ex/9exl and
|V0ex/Ocx| are small compared to (Z%g?)~? in the
neighborhood of the particle. With the latter con-
ditions satisfied by Oex , we have

f (V0o)bex d®x = 0,

fv . (Hexveo) dsx fnd —47Tzeex(g, t)’

fagegx d3X = 7Tzz2g-§6ex(g, t)z, (1.4)
and hence (13) becomes
Lg %m0€2 — My — V(g’ t)a (15)

in which
V(E, t) = —8nZ0ex(E, 1) — 1572Z%30x(E, )2 (16)

Thus the external field acts on the particle through
the “effective potential” (16). In view of the particle-
like solution (8), Z is analogous to an electric charge
with 6 analogous to an electrostatic potential, and
so the linear (dominant) term in (16) is of an “anti-
Coulombic™ character, similar to an electrostatic
potential energy except for the minus sign. Finally we
note that the Euler-Lagrange equations derived from
13) )

mE = —VV(E, 1) (17
give the approximate classical motion of the particle.

The reduced Lagrangian (15) also leads to the
Schrodinger equation,

"—h%-” = [— 2—}:—0(;&)2 + my + V(E, t)}w (18)

for the corresponding quantum motion.
In the case of two particles separated by a distance
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large compared to their radii, the field equation
admits an approximate solution of the form

6= 0o(1) + 0u(2), B0(i) = Zeo(Zlog + Ix — GV,
in place of (10). Straightforward integration over all

x of cross terms in the Lagrangian density (7) produces
the potential energy of interaction

V= —87Z\Zy &) — g(z)'—l
— 307*Z%)Z5 8t 1By — Bl ™
+ (higher-order terms in the reciprocal
of the separation distance |§;, — §)))-

The leading potential energy term is of an anti-
Coulombic character, two particles with Z3,Z,, > 0
attracting each other with a force proportional to the
product of their size parameters divided by their
separation distance squared, the particles repelling
each other if their size parameters have opposite
signs; on the other hand, the potential energy term
proportional to the reciprocal of the separation
distance squared is of a manifestly attractive short-
range character, two particles attracting each other
with a force proportional to the product of their
radii (“particle radius” o~ Z%%) divided by their
separation distance cubed. Owing to the large numer-
ical prefactor 3072 the latter short-range attractive
force is one or two orders of magnitude greater than
a value suggested by naive dimensional considerations.
Note that the leading anti-Coulombic term in the
potential energy for two interacting particles follows
from the linear term in expression (16) by evoking the
elementary algorithm of mechanics: “To obtain the
potential energy of interaction for two particles,
evaluate the potential field due to the first particle at
the location of the second particle and multiply the
result by an appropriate physical constant (a ‘charge’
or mass) associated with the second particle.”
However, the elementary algorithm of mechanics
applied to (16) with Z6,(§, 1) — Z,Z () €1y — §(a| ™
does not produce a numerically correct expression for
the potential energy beyond the leading anti-Coulom-
bic term. For example, the term proportional to the
reciprocal of the separation distance squared contains
an extra factor of 2, reflecting the symmetrical
contributions to the integral over all x from the
neighborhoods of both particles. We suspect that the
elementary algorithm of mechanics is in general only
valid for long-range |§,, — E|™ type potential
fields.
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III. RELATIVISTIC GENERALIZATION

The preceding Rayleigh—Ritz approximation method
yields nonrelativistic equations of particle motion,
valid for €2 small compared to unity. It is easy to
generalize the method to obtain relativistic equations
of particle motion, valid for larger values of 2 = 1.
In place of (5) we seek a more general approximate
solution of the form

4’ = S‘ﬁo(i) + d’ex(x, t)s (19)

where X is related to x at any instant of time by an
inhomogeneous Lorentz transformation,

%= AXx — §),
(A);; =0, + [ —E 4+ (1 — ENEE,, (20)

and S in (19) is a generic matrix function of A
that mixes the components of ¢ according to their
Lorentz transformation character. The eigenvalues
of the 3 x 3 time-dependent matrix A are 1, 1,
and (1 — €2, A being the spatial part of a 4 x 4
homogeneous Lorentz transformation; thus we have
d3x = (det A)y1 d%% = (1 — §?)* 43&. Since A changes
slowly with time if dex is relatively small (for then &
is relatively small), it follows that

[ B0 40, 980 dxz —mga ~ 898, )

where $0 = S¢,(X) and use is made of the Lorentz
invariant character of the Lagrangian density and the
expression for the “particle rest mass,”

mo= [, 0.Y40a% @
with ¢, = ¢4(x). Hence, by substituting (19) into the
Lagrangian density, expanding the result up to terms
quadratic in ¢ex(X,?), and discarding an additive
function of ¢ alone, we obtain the reduced Lagrangian
in relativistic form

L= —mo(l - .gz)& - V(Ea t)(l - éZ)Q,

where the generic “effective potential,” V(E, ), is in
general composed of terms linear and quadratic in
dex(E, 1) and Lorentz transforms as an invariant. For
the nonlinear model scalar field theory, the reduced
Lagrangian (23) is the relativistic generalization of
(15) with V(§,t) in (23) working out to give (16)
unaltered.

(23)
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The mean square end-to-end distance R} is calculated for the subset of all random walk configurations
on a D-dimensional simple cubic lattice which do not return to the starting point. Explicit results are
obtained in the limit N > 1 for the one-, two-, and three-dimensional lattices. The values of the first two
terms in the asymptotic series for R} are, respectively, N + N, N + Njlog N, and N + 0.435/N-%. An
unexpected relation is obtained between R} and Sy , the average number of different lattice sites visited in
an N-step random walk on a perfect lattice. It is Ry = Sx(Sx+1 — S»)™".

1. INTRODUCTION

N this paper we calculate R%, the mean square

end-to-end distance, for a particular subset of all
N-step random walk configurations on the one-, two-,
and three-dimensional simple cubic lattices. The
subset consists of those random walk. configurations
which satisfy the N — 1 restrictions that the 2nd,
3rd, - - -, and Nth steps cannot overlap the first step.
This restricted random walk, or excluded origin
problem is a special case of the problem in which no
step can overlap any other step. This latter problem
arises in lattice models of long polymer chain mole-
cules which account for the self-excluded volume of
the polymer chain.! Some time ago,? we determined
the increase in the mean square end-to-end distance
for a D-dimensional random walk which results from
the introduction of the single restriction that the jth
and kth steps cannot overlap. The method employed
there is not useful in the present problem where the
number of overlap restrictions is large and the restric-
tions are “nested” in the sense that, for a given pair of
interacting steps, intermediate steps are involved in
other overlap restrictions. The method of solution
which we use is based on a one-to-one correspondence
between the excluded origin random walk configura-
tions and a set of random walk configurations on a
lattice containing an absorbing point at the origin.

The problem of calculating the probability distri-
bution of the end-to-end distance is formulated in
Sec. 2 and solved formally in Sec. 3. The absorbing
point is treated as a defect in an otherwise perfect
lattice. The method used is similar to that used by
Rubin®-5 in treating random walk models of polymer

! There is an extensive and growing literature on this problem.
See, ¢.g., M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959);
C. Domb, J. Chem. Phys. 38, 2957 (1963); S. F. Edwards, Proc. Phys.
(Soc. gLondon) 85, 613 (1965); J. Mazur, J. Chem. Phys. 43, 4354

1965).

2 R. J. Rubin, J. Chem. Phys. 20, 1940 (1952).

3 R. J. Rubin, J. Chem. Phys. 43, 2392 (1965).

4 R. J. Rubin, J. Res. Natl. Bur. Std. (U.S.) 69B, 301 (1965).

® R. J. Rubin, J. Chem. Phys. 44, 2130 (1966).

chain adsorption on plane solution surfaces and thin
rods, and is equivalent to the method presented by
Montroll®? and Montroll and Weiss® for discussing
random walk problems on slightly defective lattices.
Lifshitz® appears to have made the earliest use of

-these methods in lattice vibration problems.

The expression for R}, is evaluated in Sec. 3 in the
limit N 3> 1. The formal expression which is obtained
for R% is unexpectedly given in terms of Sy, the
average number of different lattice points visited in
a random walk of N steps on a perfect lattice. The
relation is

Ry = Sn/(Sy41 — Sy)-
In obtaining the asymptotic value of R% in the one-
and three-dimensional lattices, we have used the
asymptotic series for .Sy given by Montroll and Weiss.®
The necessary analysis is also carried out for the
two-dimensional lattice.

Some aspects of the results are discussed in Sec. 4.

2. RECURRENCE EQUATIONS

We consider restricted random walks on a D-
dimensional simple cubic lattice such that the walker
steps between nearest-neighbor lattice points only
but cannot return to the starting point. Let C(D; N)
denote the set of all N-step random walk paths on a
D-dimensional lattice which originate at the origin;
and let Co(D; N) denote the subset of Cy(D; N) which
do not return to the origin. We wish to calculate the
mean square displacement at the Nth step for the
subset Co(D; N) in the limit N 3> 1 for the one-, two-,
and three-dimensional lattices. A simple one-to-one
correspondence can be established between the ran-
dom walk paths in Co(D; N) and random walk paths

S E. W. Montroll, Applied Combinatorial Mathematics (John
Wiley & Sons, Inc., New York, 1964), Chap. 4.

7 E. W. Montroll, Proc. Symp. Appl. Math. Am. Math. Soc. 16,
193 (1964).

5 E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

? Lifshitz’s work appeared in the Russian literature in the 1940’s.
A summary appears in I. M. Lifshitz, Nuovo Cimento Suppl. 3,
716 (1956).
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on the same lattice in case the origin is an absorbing
point. It is clear that if the origin is an absorbing point,
all (N — 1)-step random walk paths which start from
the 2D nearest-neighbor lattice points to the origin
and which are not located at the origin at the (N — 1)th
step are in one-to-one correspondence with the paths
in Cyo(D; N). Consequently, we now consider the
random walk problem when the origin is an absorbing
point,

For simplicity of exposition, we treat the two-
dimensional lattice explicitly. The result for the D-
dimensional lattice is similar and is obtained in an
identical manner. If P(m,, my; N) denotes the prob-
ability that the random walker is located at lattice
site (m, , m,) at the Nth step, then P(m,, my; N + 1)
is related to the probabilities one step earlier by the
expression

P(my, mg; N + 1) = H{P(m, — 1, my; N)
+ P(my + 1, my; N) + P(my, my — 1; N)
+ P(my, my + 1;N)} (1)

provided that (m;, m,) is not a nearest-neighbor to
the origin, ie., (my, my) # (£1,0) and (m,, my) #
(0, +1). The probabilities P(£1,0; N+ 1) and
P(0, &-1; N + 1) are related to the probabilities one
step earlier by expressions analogous to (1)
P(£1,0; N + 1) = }{P(+2,0; N)
PO, £1; N+ 1) = HP({1, £1; N)

@

For convenience, we assume that the probability of
being at the origin at the (N + 1)st step is the sum of
the probabilities of arrival from neighboring sites plus
the probability of having been at the origin at the
preceding step,

P0,0; N + 1) = {P(1,0; N) + P(—1,0; N)
+ P(0, 1; N) + P(0, —1; N)} + P(0, 0; N).
€)
The recurrence equations (1)-(3) have the property

that the total probability is conserved, i.e.,

S S Pmy,muN+1)

My=—c0 Mys=—o0
o €®*
= > 3 P(my,myN).

my=—00 My=—00
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In the next section we solve the recurrence equations
(1)~(3) for the starting conditions

P(1,0;0) = P(—1, 0;0) = P(0, 1; 0)

=P0, ~-1;0)=4% @)
with all other P(m,, m,; 0)’s equal to zero. Once the
solution P(m,, m,; N) has been obtained, the mean
square displacement at the Nth step is determined
from the expression

S 3 (mt+ m)P(my, my N)

2 M= MY=—a0
RN =

i i’ P(m,, my; N)

Mmy=—0o0 Myg=—0o0

> (5)

where the primes on the double sums indicate that the
P(0, 0; N) term is omitted.

3. SOLUTION OF RECURRENCE EQUATIONS

The recurrence equations (1)-(3) can be solved for
the initial condition (4) by introducing a generating
function. Multiply the equation for P(m;, my; N + 1)
by (2m)~ exp (i0ym; + i,m,) and sum over all values
of m, and m,. The result is

G(6,, 6;; N + 1) = }(cos 6, + cos 6)G(8,, 05, N)

+ (1/2m)[1 — 3}(cos 6, + cos 6,)] P(0, 0; N),
©

where
1

G(el’GZ;N)z_— 2 z P(ml,ma;N)
2w My==m0O Mg=—t
x exp [i0,m, + if,ms,].
Next, multiply the equation for G(6,, 6,, N + 1) by
y¥+1 and sum from N = 0 to N = oo to obtain
_G(Ol, 62; 0) + P(Gl, Bg;y)
= By(cos 0 + cos BTy, 63 )
+ (1/2m)y[l — ¥(cos 6, + cos 6)1A(0, 05 ), (7)

where

['@,, b5 y) = NE_G y¥G(01, 635 ¥), ®
h(m,, ms; y) =N20yNP(m1, ms; N), )]
1 o w0
T(6,, 0;; y) = 5; 2 E h(my, my; y)
My 00 My
X exp (imy8, + imyf,). (10)
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When the starting values (4) are substituted in

G(0,,6,;0) in Eq. (7), one obtains, after some

rearranging of terms,

$(cos 0, + cos 8,) + (y — 1) h(©0, 0; )
2n[1 — 4y (cos 6, + cos 6,)]

1
+ i;yh(O, 0; ).

r'e,, 02;)’) =

an

Equation (11) is an implicit equation containing
h(0,0; y) on both the right- and left-hand sides. An
equation for determining /(0, 0; y) can be obtained
by multiplying Eq. (11) by (2)~* and integrating with
respect to 6; and 0, from — to +=. The result is
h(0, 05 y) = {(L10 + L10 + Lo + To1)
+ yh(0, 05 Yoo — 10 + 10 + Loa + Lo 1)),
(12)

where

1 2 prw 0 T
Ino.={(—)| d6,| db
! (277) J:—ﬂ lf—w 2

The integral I, o in (12) is evaluated as
Lo = oFil}, 45 15 %), (14)

where ,F)[a, b;c; x] denotes the hypergeometric
function; and the integrals I, , and I, ., are equal
and expressible in terms of [ , as®

L=y "oo— 1. (15)
As a consequence, the explicit expression for 4(0, 0; y)
can be written as

exp (im0, + in0,)
1 — y(cos 0, + cos 6;)
(13)

h(0,0; y) = y i1 — ) (1 — Igp),  (16)
and that for I'(6,, 6,; y) as
1 1
I'@,, 0,; y) = — ——
(61, 025 y) 21—y
y {1 1 — Hcos b, + cos b,) _1__} an
1 —3y(cos 0, +cos ) Iy,

The generating function I'(6;, 6,;y) in (17) is a
weighted sum of all the P(m,, my; N)’s. In order to
obtain an explicit expression for R%,, the mean square
displacement defined in terms of the P(m,, my; N)’s
in Eq. (5), we first subtract (1/2m)h(0,0;y) from
I'(6,, 6; y) and then select the coefficient of y¥

1 dy 1
— 1 T(6,, 053 ¥) — — h(0, 0;
o yN+1[ (61, 625 ¥) P ( y):l

> 2 P(my, my; N) exp (ifymy + ifym,),
2 My=—00 Mg=—00
(18)

2

1

J. RUBIN

Fig. 1. Cuts and inte-
gration contours C, and
Cy in the complex y
plane.

~
N

where C, is a counterclockwise contour around the
origin in the complex y plane (see Fig. 1). The explicit
expression for R} in the case of the 2-dimensional
lattice is

1 dy a  d
— ——( - — — = |I'(6,, Os;
Rt o 27 fco yN+1( d6? d6§) O 60:9)

01=04=0
N
1 dy 1
— ——|T(0, 0; y) -~ — h(0, 0;
2mi joo yN“l: ( ) 2 ( y):l
A [ 1
- N+lgq . 82
_ 271 Joo Y (1 — ¥y, , (19)
1 dy 1

5_77'1' Co yN+2 (1 =y,

where Iy, is the hypergeometric function (14). The
expression for R% in a D-dimensional lattice is
identical with (19) except that I, , is replaced by

1 D pr7
IO,"'.O = (2—77) J; d@l' .

X f dbp[l — D"y(cos 6, + - - - + cosfp)I™.

(20)

The solution of our random walk problem on a
slightly defective lattice has led to a result involving
I, ... o(p), the generating function for a random
walk on a perfect lattice, a well-known connection.®-®
However, the particular form of the result is some-
what unexpected. It is the ratio of two quantities
appearing in the paper of Montroll and Weiss®

Rzzv = SN/(SN+1 — SN) = SN/AN+1’ (21)

where, in the notation of Montroll and Weiss, Sy is
the average number of different lattice points visited
in an N-step walk; and Ay, an auxilliary function, is
the average number of new lattice points visited when
the (N + 1)th step is taken. Montroll and Weiss have
studied the function Sy in considerable detail, and
we can utilize their results in one and three dimensions
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to calculate R% . In the case of a one-dimensional
lattice, where the asymptotic series for Sy is

Sy~ (8N[m)¥{1 + (1/4N) — - - -},
we obtain the well-known result
. N1+ (1/4N))

(N + D1 + [1/4(N + D]} — N*{1 +(1/4N)}
~2N, D=1. (22)

In the case of the three-dimensional simple cubic lat-
tice, where the asymptotic series for Sy is

Sy~ (Njug) 4 Quyud)(Njm)* + -+ -

and uy = 1.51639 and u, = 1.16955, we obtain the
result

(23)

N, 2_u;(ﬁ)*
2 Uy u(2) T
Rv~T3
— + =2 2N + nt — NP
Uy Ug

~N[1 + (04351NH], D=3. (4

Montroll and Weiss have only obtained the leading
term in the asymptotic series for Sy in two dimensions
using a Tauberian theorem. We have carried out the
required analysis for Sy in this case in the Appendix;
and the value of R%, is

Ry ~N[l + (/InN)], D=2.
4. REMARKS

(25)

Although the calculations in this paper have been
carried out explicitly for simple cubic lattices, it ap-
pears from an analysis along the lines used by
Montroll*? that Eq. (21) for R% is valid on face-
centered and body-centered cubic lattices as well.
Montroll and Weiss® have obtained the asymptotic
series for Sy in these two lattices; and they only
differ from the simple cubic lattice result (23) in the
numerical values of u, and u, .

The denominator A, in Eq. (21) for R} is

AN+1 = E Z' P(my, my; N),

My=—00 My=—00

the probability of not visiting the origin up to the
Nth step. The asymptotic values which we have
obtained for this quantity are

@/mN), D
w/ln N, D
ug! + uug?n N7, D

1,
Ay~ 2, (20)
3.

579

These values are consistent with the results of Polya?®
that the probability of eventual return to the origin
on a D-dimensional cubic lattice is unity in the infinite
one- and two-dimensional lattices and 1 — (1/u,) for
the three-dimensional lattice. The results in Eq. (26)
show the rate of approach to the limiting values.

It is of interest to compare the contribution to the
mean square end-to-end distance of the N — 1 nested
overlap restrictions considered in this paper with the
contributions of N — 1 independent or separate
overlap restrictions. It was shown in Ref. 2 that J,,
the increase in R}, resulting from the single restriction
that the kth and the (k + s)th steps cannot overlap, is
proportional to s%, 59, and s—% in the case of the one-,
two-, and three-dimensional random walks, respec-
tively. Thus, in the case of the 2-dimensional random

walk, the quantity Ne1

2 5,
s=1

is proportional to N, whereas the actual contribution
of the set of nested overlap restrictions to R%, is N/In N.

APPENDIX. ASYMPTOTIC EXPRESSIONS FOR
Ry = Sy/Ay,; FOR N >» 1 IN THE 2-
DIMENSIONAL LATTICE

Montroll and Weiss® and Dvoretsky and Erdos!!
have given an asymptotic formula for Sy in the case
of the 2-dimensional lattice. We use the contour
integral expressions for Sy and Ay and obtain the
first two terms in the asymptotic series for Sy/Ax,,.
First consider the integral for Ay
1 dy 1

Ay =— .
N 2mi Joo YV — y)oFulh, 35 15 57

(A1)

The integrand contains logarithmic branch points at
»y = 1. Introduce cuts in the complex y plane which
start at y = +1 and extend out to 4 0 respectively
as shown in Fig. 1. The contour C, can be deformed
into the contour C, shown in Fig. 1. The dominant
asymptotic contribution of the line integral around
C; to Ay for N> 1 comes from the portion of the
contour between Q and R in the immediate vicinity
of y = 1, where there is a pole superimposed on the
logarithmic branch point (see Fig. 1)
1 (B ady 1
Ay~z— N+1 S 121"
2miJoy (1 — y)Fil} 45 15 57

For our purposes it is sufficient to set the distance of
Q and R from y = 1 equal to N-* and assume that

(A2)

19 G. Polya, Math. Ann. 84, 149 (1921).

11 A. Dvoretzky and P. Erdds, in Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability
(University of California Press, Berkeley, California, 1951), p. 353.
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In N» 1. It is then possible to replace the hyper-
geometric function .Fi[4, 4;1;)%] by its analytic
continuation!? where, in the interval of integration,
the only significant term.is

il 35 1y I~ In[1/(1 — p)]. (A3)
The phase of the logarithm is chosen so that the
logarithm is real on the real axis between y = 0 and
y = 1. Thus, we have for the value of ,Fi[}, 4; 1; ?]
on the lower and upper sides of the cut

aH{In [1/(y — 1)] — im},
7 n [1/(y — 1)} + im}, upper.
(A4

Substituting (A4) in (A2), one obtains the following
expression for Ay

A NLU‘ dy _1 ™
N 2ail ity — yIn [1)(y — D] — im
148} dy 1 T }
1 ML —yIn 1)y — D] + in

- ”fl+N—* dy 1 1
1 Yy — 1[Iy — D]+ 7

lower,

oFil}, §; 1§}’2] N{

+

‘ (AS)
Replacing y by 1 + x/N in (AS), neglecting «#2, and
integrating by parts, one obtains

n dx 1

o [14+ &/N)P2InN—Inx
Now, consider the corresponding integral for Sy

R
SN—I—- dy 1 T

2mi Jo y¥H (1 — ' In [1/(1 — )]
Integrate (A7) by parts using the fact that

_%E{qntiy”=uliwmqm;—»F

where

ANN"T

(A6)

(A7)

E«(2) =f el dt
and obtain ?

N L dy 1 ,
SNNE{_LN‘* y El[_ln (y - 1) * m]

1 dy 1 .
_fHN_* zE El[—ln (y — 1) - m]}.
(A8)
In the interval of integration in (A8), one can replace

12 A. Erdelyi, W. Magnus, and F. Oberhettinger, Higher Trans-
cendental Functions (McGraw-Hill Book Company, Inc., New York,
1953), Vol. 1, p. 110.
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the exponential integrals??

£~ (y ) i) ~ B = G = 1)}

+ 1 { 2 24 im
y— Hn[1)(y — D]  In*[1/(y ~ 1)]
4 — 7% 4 2im o
In® [1/(y — 1)] }

The result is

N gy 1

SNNN”J; yN+2y—1

1 2
* :ln2 [1/(y = DI e [1/(y — 1] " }
(A9)
Finally, as in Eq. (AS), replace y by 1 + x/N, and
integrate by parts

vt dx
Sy~ N"f N+3
o [1+ (x/N)]

x 1 + 1 2+..-}
{lnN—lnx (InN—lnx) )

(A10)
The expression for R, from (A6) and (A10) is

R?v = SN/AN+1

&
foN 1+ (i7N)]N+3(ln N 1— In x)2

~N+N

fN% dx 1
o [1 4 (x/N)PM*3 (In N —1In x)
(Al11)
In arriving at Eq. (A11), we have consistently neglected
terms of higher orderin(InN )~1. We must now estimate
the value of the two integrals in (All). This can be
done by splitting the interval of integration into three
parts: from 0 to (In N)™1, from (In N)~! to In N, and
from In N to N, It is a simple matter to show that
for the denominator

(nN)! dx 1
f < (In N)7?,
0 14+ /NN —Inx

[Ia N + In(ln )]

In N dx 1
< .
f(m M1+ &/NP*PInN —~Inx
[InN —In(In N)T?, (A12)

S j'“” dx 1
am [+ /NP InN —Inx’

12 A. Erdelyi, W. Magnus, and F. Oberhettinger, Higher Trans-
cendental Functions (McGraw-Hill Book Company, Inc., New York,
1953), Vol. 2, p. 145.



RANDOM WALK WITH AN EXCLUDED ORIGIN

and

i dx 1
J;nzv [+ /N InN —Inx
< 2(In Ny )1 + N7'In N)~NV+2),

Therefore, the dominant contribution of the denom-
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inator is (In N)~*. The same procedure can be used
for the numerator to give
Nt 2
dx ~ 3( 1 ) N(]n N)—2.
o [14 (x/N)¥*\InN —Inx
Thus, we finally arrive at the following estimate
Ry~ N[1 + (In N}

(A13)
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Short Simple Evaluation of Expressions of the Debye-Waller Form Valid for
Anharmonic Modes not in Thermal Equilibrium

T. D. ScHuLTZ
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A one-sentence nonalgebraic evaluation of averages, such as occur in the theory of the Debye-Waller
factor, is given, which is valid for certain types of anharmonic modes and also for ensembles more general

than the canonical ensemble.

N a recent paper, Mermin' reconsidered the
evaluation of the average
(€5) = tr peSjtr p,
where

S = z (c;a; + dia:)a p=exp(—f Z wia;rai)’

B = 1/kgT, (1)
and the a, and a:.f are boson annihilation and creation
operators. He has given an algebraic derivation of the
well-known result

(% = exp [} 2 ¢; d; coth $fw;] 2

in one sentence, albeit a rather long one, using the
identity e4+B = e4eBe~44.B] ([4, B] a c-number).
Here, we offer another (and shorter) one-sentence
derivation which, though restricted to a macroscopic
lattice (i.e., very many nonvanishing ¢,’s andfor d’s),
is more general than the usual algebraic proofs in that
we assume only that the density operator p has the
form
3

with the p, any reasonably general probability density
functions [i.e., pi(n,) should be a positive semi-definite
operator with unit trace].

DERIVATION

If we calculate (¢S) in the representation in which
all the operators X; = c,a, + d,a} are diagonal, the
diagonal elements of p, define a normalized set of

p= H pn), n, = aIai

1 N. D. Mermin, J. Math. Phys. 7, 1038 (1966).

classical probabilities and the Central Limit Theorem
of probability theory,® which is then applicable,
states that the sum S=3 X,

has a Gaussian distribution (in this case with mean
zero, because (X;) = 0), from which we deduce

(¢%) = exp H(S? = exp } 3 (X?)
= eXp [2 ¢; d((ny + $)], for general p,(n,),
= exp [} 3 ¢, d;coth 3w, if py(n) oc e

“
REMARKS
It should be emphasized that all other proofs,
including Mermin’s, implicitly or explicitly make use
of the fact that each normal mode amplitude has a
Gaussian distribution at any temperature (the utiliza-
tion of this fact is the aim of all the various algebraic
maneuvers), a fact which is unnecessary in treating a
macroscopic system provided only that no small set
of modes contributes to (e5) out of proportion to its
number. The derivation is thus valid for independent
but anharmonic modes, and for independent modes
not at thermal equilibrium, but not, for example for
the Mossbauer effect whenever the emitting (or
absorbing) nucleus produces a localized mode in the
lattice.

z See any book on probability theory, such as R. v. Mises,
Mathematical Theory of Probability and Statistics (Academic Press
Inc., New York, 1964), p. 294; or W. Feller, Probability Theory and
Its Applications (John Wiley & Sons, Inc., New York, 1950),
Vol. I, p. 201.
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and

i dx 1
J;nzv [+ /N InN —Inx
< 2(In Ny )1 + N7'In N)~NV+2),

Therefore, the dominant contribution of the denom-
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inator is (In N)~*. The same procedure can be used
for the numerator to give
Nt 2
dx ~ 3( 1 ) N(]n N)—2.
o [14 (x/N)¥*\InN —Inx
Thus, we finally arrive at the following estimate
Ry~ N[1 + (In N}

(A13)
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A one-sentence nonalgebraic evaluation of averages, such as occur in the theory of the Debye-Waller
factor, is given, which is valid for certain types of anharmonic modes and also for ensembles more general

than the canonical ensemble.

N a recent paper, Mermin' reconsidered the
evaluation of the average
(€5) = tr peSjtr p,
where

S = z (c;a; + dia:)a p=exp(—f Z wia;rai)’

B = 1/kgT, (1)
and the a, and a:.f are boson annihilation and creation
operators. He has given an algebraic derivation of the
well-known result

(% = exp [} 2 ¢; d; coth $fw;] 2

in one sentence, albeit a rather long one, using the
identity e4+B = e4eBe~44.B] ([4, B] a c-number).
Here, we offer another (and shorter) one-sentence
derivation which, though restricted to a macroscopic
lattice (i.e., very many nonvanishing ¢,’s andfor d’s),
is more general than the usual algebraic proofs in that
we assume only that the density operator p has the
form
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with the p, any reasonably general probability density
functions [i.e., pi(n,) should be a positive semi-definite
operator with unit trace].

DERIVATION

If we calculate (¢S) in the representation in which
all the operators X; = c,a, + d,a} are diagonal, the
diagonal elements of p, define a normalized set of

p= H pn), n, = aIai

1 N. D. Mermin, J. Math. Phys. 7, 1038 (1966).

classical probabilities and the Central Limit Theorem
of probability theory,® which is then applicable,
states that the sum S=3 X,

has a Gaussian distribution (in this case with mean
zero, because (X;) = 0), from which we deduce

(¢%) = exp H(S? = exp } 3 (X?)
= eXp [2 ¢; d((ny + $)], for general p,(n,),
= exp [} 3 ¢, d;coth 3w, if py(n) oc e

“
REMARKS
It should be emphasized that all other proofs,
including Mermin’s, implicitly or explicitly make use
of the fact that each normal mode amplitude has a
Gaussian distribution at any temperature (the utiliza-
tion of this fact is the aim of all the various algebraic
maneuvers), a fact which is unnecessary in treating a
macroscopic system provided only that no small set
of modes contributes to (e5) out of proportion to its
number. The derivation is thus valid for independent
but anharmonic modes, and for independent modes
not at thermal equilibrium, but not, for example for
the Mossbauer effect whenever the emitting (or
absorbing) nucleus produces a localized mode in the
lattice.

z See any book on probability theory, such as R. v. Mises,
Mathematical Theory of Probability and Statistics (Academic Press
Inc., New York, 1964), p. 294; or W. Feller, Probability Theory and
Its Applications (John Wiley & Sons, Inc., New York, 1950),
Vol. I, p. 201.
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Representations of compact metric groups in Hilbert spaces over the quaternions are studied. A
generalization of the Peter—Weyl theorem is formulated and proved. The problem of finding all the
trreducible quaternionic representations of an arbitrary compact metric group is solved, and a rule is
given for computing the “Q-characters” of all the irreducible quaternionic representations once the
characters of all the irreducible complex representations are known. For the Abelian case, it is shown that
every irreducible quaternionic representation is equivalent to a complex representation and hence one
dimensional. An example is given of a non-Abelian group whose irreducible quaternionic representations

are all one dimensional.

I. INTRODUCTION

T is well known (see, e.g, Birkhoff and von
Neumann,® Yang,? Mackey,® Michel?) that the
lattice of closed linear manifolds of a quaternionic
Hilbert space is a possible candidate for the logic of
propositions (see Varadarajan®) of a quantum me-
chanical system, and that there is nothing canonical
about the (classical) choice of the complex number
system for the development of quantum mechanics.
But, in spite of the wide-spread knowledge of this
fact, very little work has been done toward setting
up a theory of quaternionic quantum mechanics apart
from the fundamental work®—® of Finkelstein, Jauch,
Speiser, and Schiminovitch. We hope that our
present work is of some help in this context, as the
theory of group representations is indispensable for
the exposition of quantum mechanics and compact
metric groups are an important special case.

II. PRELIMINARY IDEAS

We present this section in some detail as our
orientation differs from that of Finkelstein et al.

Let @ denote the division ring of real quaternions.
We denote an arbitrary element ¢ of Q by g = ¢, +
g + g,] + q,k, where q,, ¢q,, g,, g, are real. We

L . Birkhoff and J. von Neumann, Ann. Math. 37, 823 (1936).

2 C. N. Yang, in Proceedings of the Seventh Annual Rochester
Conference (Interscience Publishers, Inc., New York, 1957), p. IX-26.

3 G. W. Mackey, The Mathematical Foundations of Quantum
Mechanics (W. A. Benjamin, Inc., New York, 1963), p. 73.

* L. Michel, Invariance in Quantum Mechanics and Group Fx-
tension, Group-Theoretical Concepts and Methods in Elementary
Particles (Gordon and Breach Science Publishers, Inc, New York,
1964), p. 148.

& V. S. Varadarajan, Indian Statistical Institute preprint (1965),
p.- 207,

& D. Finkelstein, J. M. Jauch, and D. Speiser, “Notes on Quater-
nion Quantum Mechanics I, I, and III”, CERN (1959).

? D. Finkelstein, J. M. Jauch, S. Schiminovitch, and D. Speiser,
J. Math. Phys. 3, 207 (1962).

8 D. Finkelstein, J. M. Jauch, S. Schiminovitch, and D. Speiser,
J. Math. Phys. 4, 788 (1963).

® D. Finkelstein, J. M. Jauch, and D. Speiser, J. Math. Phys. 4,
136 (1963).

identify the reals with the set of all quaternions g
with g, = g, = ¢; = 0 and the complex numbers with
the set of all quaternions ¢ with g, = ¢; = 0. Every
g € 0 may be written in the form « + f, where «
and § are complex. We denote by ¢* the conjugate
of the quaternion q.

1. Vector Spaces

By a vector space over Q (to be called a Q-space)
we always mean a left-vector space over Q. A Q-
Banach space is a complete normed Q-space. If X
is a topological space, we denote by Cy(X) the Q-
Banach space of all bounded quaternion-valued
continuous functions on X with the supremum norm.

An inner product on a Q-space V is a quaternion-
valued function on V x V, denoted by (...), with
the properties:

@) (x,p) = (y, )%,
(i) (px + p'x', ») = p(x, y) + p'(x', p),
(ii) (x,x) > 0,=0 ifandonlyif x =0,

where x, x’, ye V, and p, p’ € Q. From (i) and (ii) we
have
G, py + 27 = (x, 0)p* + (x, y)p"*

It is easy to prove that, on an inner product Q-space,
lxll = (x, x)¥ defines a norm.” A Q-space V is called
a Q-Hilbert space if there exists an inner product on
V such that the induced norm makes V a complete
normed Q-space. The concepts of orthogonality,
basis, etc., for Q-Hilbert spaces are defined in the
usual way. In what follows H denotes a Q-Hilbert
space.

An operator on H is a bounded linear transforma-
tion of H into itself. An automorphism of H is a
bijective operator on H. For every automorphism 4,
there exists an unique automorphism 4~ such that
AA™ = A4 = I. The set of all automorphisms is
a group in a natural way.
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The elementary theory of Q-Hilbert spaces can now
be developed as in the complex case. We note in
particular that, for every operator 4 on H, there
exists a unique operator A* on H such that (4x, y) =
(x, A*y) for all x, y € H. A* is called the adjoint of A.
An operator A on H is called Hermitian if 4 = 4*
and unitary if 44* = 4*4 = .

The spectral theory of Hermitian operators in Q-
Hilbert spaces parallels the theory in the complex
case.b7

Let now V be a finite-dimensional Q-space. (Note
that V may be endowed with a Q-Hilbert space
structure.) Given a basis (e;, -, e,) of V, every
linear transformation A4 on V has a matrix representa-
tion (a,,), defined by

Ae, =D a,e,.
r

If A and B are two linear transformations with
matrices (a,,) and (b,,), respectively, then the matrix
of AB is given by (c,,), where

crs = z btsart i
t

Observe that our rule for matrix multiplication differs
from the usual rule for matrices over a field.

If A has the matrix (g,,) with respect to an ortho-
normal basis (e,), then a,, = (4e,, ¢,). The matrix of
A* with respect to the same basis is then (b,), where
b,, = (A*e,, e,) = a* . If Ais Hermitian, then 4 = A*
and hence a,, = a¥ . If A is unitary, A*4 = A4* =1
and hence

* *
2 Ay = 673 = z Aysbir -
t t

We note here that, if 4 has the matrix (a,,) with
respect to a basis (e,), then

Re (tr 4) = Re (3 a,,)
is defined independently of the basis (e,).

2. The Symplectic Picture

It is convenient for our purposes to restate the
usual definition!? in geometric language.

If V is a Q-space, then the additive group of V can
be considered as a C-space (i.e., a vector space over
the complex numbers). This we denote by V¢ and
call the symplectic picture of V. If (e;, - -,¢,) is a
basis for V, then (e;, - -, e,, /e, - -, je,) is a basis
for VC. Hence V¢ is of dimension 2n. A linear trans-
formation A on V is also a linear transformation on
VC. This we denote by A°. If the matrix of 4 with
respect to the basis (e,, -, e,) is 4; + A,j, where

10 C. Chevalley, Theory of Lie Groups, I (Princeton University
Press, Princeton, New Jersey, 1946), p. 18.
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A, and A, are complex matrices, then the matrix of
A with respect to the basis (e;, - * - , e,, sJers,jen)
is

A, A,
-4, 4

b

where & denotes the complex conjugate of the com-
plex number « and B = (b,,) if B is the complex
matrix (b,,).

3. Integration Theory

Let (X, Z, u) be a measure space. We always
identify functions which differ only on wu-null sets.
A quaternion-valued measurable function

J&X) = fox) + LX)+ folx)] + [0k

on X, where f, [r = 0, 1, 2, 3, are real-valued (meas-
urable) functions on X]is said to be integrable with
respect to u if and only if fy, fi, f;, f5 are integrable
with respect to u. If fis integrable, the integral of f
with respect to u is defined as

fae=foe» )
([ e

The following properties of the integral are easily
verified (g € Q is arbitrary):

Q) f<f+ 2) du =ffdu +jgdu,
(i) f (pfa) du = p( ffd.u)q,
G jfdu)*= [+ du.

(iv) ffdui < f 1] du.

The only nontrivial relation is (iv). This may be
proved by a slight modification of Cramér’s proof!
for the complex case.

We define L3(X) as the set of all quaternion-valued
measurable functions f such that | f|? is integrable
with respect to u. It follows that fe L3(X) implies
that f* € LZ(X). If we define for f and g in L3(X)
(f,8) ={fg*du then L3(X) becomes a Q-Hilbert
space with (., .} as inner product.

If f, g € L3(X) and | f*g du = 0, we say that f and
g are left orthogonal. If f and g are also orthogonal,
we say that f and g are bothways orthogonal.

1 H. Cramér, Mathematical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946), p. 65.
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We note thatif fe LZ(X)and p € Q, then fp € L3(X).
If f and g are left orthogonal then fp and gg are left
orthogonal for any p, g € Q.

III. Q-REPRESENTATIONS

In what follows, we denote by G a compact metric
group and by u the unique normalized Haar measure
on Z, the class of Borel sets of G.

Let H be a separable Q-Hilbert space and A(H)
the group of automorphisms of H. By a Q-representa-
tion® 4 of G in H we mean a homomorphism g — 4,
from G to A(H) such that g — 4,x from G to H is
continuous for every fixed x € H. The Q-representa-
tion A is called unitary if A4, is unitary for every
g€ G. An example of a Q-representation of G in
L3(G) is the right regular representation. This is, in
fact, unitary.

When H is finite-dimensional, we may, on occasion,
regard the 4, as matrices with respect to some fixed
basis of H.

The notions of equivalence, irreducibility, etc., of
Q-representations are defined in the usual way.2?

We now state some basic theorems. The departure
from the complex case is only slight and so we omit
the proofs.

Theorem 1: Any Q-representation 4 of G in H is
equivalent to a unitary Q-representation.

Theorem 2: Every unitary Q-representation of G
is a direct sum of irreducible unitary Q-representations
of G. Every irreducible Q-representation of G is
finite-dimensional.

The irreducible unitary Q-representations of G
split up into equivalence classes in a natural way. We
shall index these equivalence classes by «. (It follows
from our analysis that the set of all o’s is countable.)
Let n, be the dimension of any irreducible Q-repre-
sentation of type «.

Consider now a unitary Q-representation of G in
H. Let

H= @S,
4

be a direct sum decomposition of H into irreducible
subspaces and let the irreducible subspaces S, of type
« be indexed by a set of cardinality ¢,. We call c,
the multiplicity of type « in the decomposition

H= @&S,.
¢

12 G. W. Mackey, “Theory of Group Representations,” Lecture
Notes, The University of Chicago (1955), p. 3.
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Theorem 3: In any decomposition of H into irre-
ducible subspaces the same types occur with the
same multiplicities.

Schur’s Lemma®: Let H, and H, be two finite-
dimensional Q-spaces. Let (4,) and (Bp) be irreducible
collections of linear transformations on H; and H,,
respectively. If M is any linear transformation from
H, to H, such that (B;M) = (MA4,), then M is either
0 or an isomorphism.

Corollary 1: If U and V be two inequivalent irre-
ducible unitary Q-representations of G in Q-Hilbert
spaces H, and H,, respectively, then

f(V,,MU;‘x, Ydg=0, xeH,, yeH,
for any linear transformation M from H; to H,.

Corollary 2: Let U be an irreducible unitary Q-
representation of G in a Q-Hilbert space H of di-
mension n. Then for any Hermitian operator M of H
into itself

f (U,MU;, y) dg = Rer M) (f: M) x, y

).

Remark: Note that with our geometric approach
Corollary 2 may be proved directly without invoking
the ersatz determinant used by Finkelstein et al.?

IV. ORTHOGONALITY RELATIONS AND THE
PETER-WEYL THEOREM

We now begin an analysis of the irreducible (and
hence finite-dimensional) Q-representations of a com-
pact metric group G.

Let 4 be an irreducible Q-representation of G in H
of dimension n and let [a,(g)] be the matrix of A4,
with respect to an orthonormal basis (e,). The func-
tion a,,(g) = (4,¢,, ¢,) is a continuous function on G
for every r, s; i.e., the matrix entries [a,,(.)] of A with
respect to an orthonormal basis are continuous. It
follows that the matrix entries of 4 with respect to
any basis of H are continuous, i.e., are elements of
Co(G) and hence of L}(G).

We know that (see Theorem 24 in Ref. 13) in the
complex case the matrix entries of two inequivalent
irreducible unitary representations are orthogonal.
A similar result holds in the quaternionic case. To see
this, let U and V be inequivalent irreducible unitary Q-
representations acting on Q-Hilbert spaces H and K,
respectively, and let #,(g) [respectively v,,(g)] be the
matrix entries of U, (V,) with respect to the ortho-
normal basis (e)[(f,)]. If M:H->K is the linear

13 L. Pontrjagin, Topological Groups (Princeton University Press,
Princeton, New Jersey, 1958).
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transformation defined by Me,=f,, Me,=0 if Then the representation g,— U, is unitary and,

s # t, then by Corollary 1 to Schur’s Lemma
0= [(oMU;e ) dg

= f w3 8)onale) de,

and also by the invariance of the integral,
= [ MUz, 1) a5

= fugf(g)v;s(g) dg.

In words, every matrix entry of U is bothways orthog-
onal to every matrix entry of V.

To study the orthogonal relations between the
matrix entries of a single representation U, let
M:H—H be the linear transformation defined by
Me, = ¢, and Me, = 0 if 5 5 ¢, Then we have, as
above,

f (UMU;%,, e) dg = f U (n8) dg

- f u(Qulg) dg.  (A)

In case r=ys and t=w, M is Hermitian with
Re (tr M) =1 and so, from Corollary 2 to Schur’s
Lemma, it follows that

j (@) dg =

Further, Eq. (A) shows that the »% matrix entries are
mutually orthogonal if and only if they are mutually
left orthogonal. However, in contrast to the complex
case, it is not necessary that they be orthogonal, as
the following example shows.

for all w, s.

= e

Example 1: Let G be the symmetric group of degree

3. The elements of G are
01 2 01 2 01 2
8'0"'0 2,g1—021,gz—102,
0 2 01 2 01 2
Bl 205 o1/ ® 21 o
1 0 01

LetI =
01 —1

Uy=1 U, =[(+)N2V,
U, = [(V3 = Dil2J2 — (V3 + 1)jj2v2W,
Uy = [(~1 + V3021, U, ={(—1— 302l
Us = [—(3 + Di/2v2 + (/3 — Dji2v2).

[ I

and define

s -

moreover, irreducible, because the only vector sent
into a multiple of itself by all the U, is the null vector.
Since in each matrix the two elements in the principal
diagonal are equal, two of the matrix entries are
identical.

Let A, = [a,(g)] be any irreducible Q-representa-
tion of G of type «. Define

F, = Span|a,(g)g:1 <r,5 <n,,q€Ql.

It is easy to check that F, depends only on the type «
of the representation and not on the particular repre-
sentation chosen. We call F, the space of matrix
entries of type «. Since every element of the generating
set of F, is a (real) linear combination of the 4n?
elements of the type

a,(8): ()i, a,(8)j> Ak, 1 <1, 5 < g,

F, is a closed linear manifold of L}(G) of dimension
at most 42 (see also Theorem 11, this paper).

The following theorem generalizes the Peter—Weyl
theorem to the quaternionic case.

Theorem 4: The subspaces F, and F; are bothways
orthogonal if « 5 £. If Y _F, denotes the set of finite
sums of elements of {J,F,, where « ranges over all

types and D ,F, the uniform closure of 3 ,F,, then
SF,=Co(G) and @F, = L5(G).

Proof: Let [u,(g)], [v.{(g)] be unitary representations
of types « and § respectively. For any p,g€ Q

f (4@ P]lg)a]* dg
= pq*f[(pq*)“’urs(g)pq*]vfw(g) dg =0,

by the orthogonality relations proved earlier, since,
for any quaternion ¢, the representation [ u,(g)q]
is equivalent to [u,,(g)]. Since the elements of F, and
Fgs are linear combinations of elements of the form
{u.(g)p] and [v,[(g)g], respectively, we have shown
that F, and F, are orthogonal. To prove that F, and F,
are left orthogonal, it is enough to show that, for
2, 4 € 0, pu(g) and gv,,(g) are left orthogonal. But

f [pu,(2)1*[qv,.(2)] dg

=f ur(@Ip*qva2)(p*q) 1 dg(p*q) = .

For the second part, let us denote by A the set of
all real functions arising from all possible real repre-
sentations of G. Then (Ref. 13, p. 119) the finite real
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linear combinations of elements of A are dense in

Cr(G), the Banach space of real-valued continuous

functions on G. It follows that finite quaternion linear

combinations of elements of A are dense in Cy(G).
Therefore, to prove that

?a = CQ(G)’

it is enough to show that every function in A is a
linear combination (and hence a finite sum) of
functions in U,F,. But since every real representation
A is equivalent to a direct sum of irreducible Q-
representations and since the matrix entries of
irreducible Q-representations belong to U,F,, it
follows that every matrix entry of 4 and hence every
element of A is a linear combination of elements of
U,F,.

Since Cy(G) is dense in LY(G) and uniform con-
vergence implies L%-convergence and since the F, are
mutually orthogonal subspaces of L3(G), we have

Lo(G) = ©F,.

Corollary: There exists at most a countable number
of inequivalent irreducible Q-representations of G.

Proof: L}(G) is separable.

The following theorem (cf. Ref. 13, p. 120) may
now be proved exactly as in the complex case.

Theorem 5: We select one representative from each
equivalence class of irreducible Q-representations of
G and denote them by

U(l)’...’ U(n)’.. .

Then for every element g € G distinct from the identity,
there exists an n such that U!® is not the identity
transformation.

V. Q-CHARACTERS

Let A, = [a,{(g)] be a Q-representation of G of
degree n. Define

X(A,) =Re[3 a,(g)].

Then it is easy to see that if 4 and B are equivalent
Q-representations, then X(4,) = X(B,). In this way
we may associate with every equivalence class of
Q-representations a real-valued function X(g) which
we call (see also Finkelstein, Jauch, and Speiser?) its
Q-character (to distinguish it from the usual defini-
tion of the character of a complex representation

S. NATARAJAN AND K. VISWANATH

which we call the C-character). We denote by X,(g)
the Q-character of any irreducible Q-representation
of type a. Note that if 4, is of type «, then

Xi(g) = 1 3 lan(g) + 1an(9)i* + ja,(g)*
' +ka, (@k*] € F,.

Thus we have the following theorem.

Theorem 6: Two irreducible Q-representations are
equivalent if and only if they have the same Q-
character. Moreover, Q-characters of inequivalent
irreducible Q-representations are orthogonal.

VI. CLASSIFICATION OF IRREDUCIBLE
O-REPRESENTATIONS

We now proceed to study the inter-relations between
the irreducible Q-representations and the irreducible
C-representations of G. Let B be an irreducible C-
representation of G and B its contragredient.!* Recall
that (if y denotes the complex character) (B,) = x(B,).
B satisfies exactly one of the following three con-
ditions?®-16:

(a) B is not equivalent to B.

(b) There exists a matrix M such that M = M7
(the transpose of M) and MB,M~' = B, for allg € G.

(c) There exists a matrix M such that M = — M7
and MB,M~1 = B, for all g € G. We say (cf. Ref. 16)
that B is nonreal, potentially real or pseudoreal
according as it satisfies (a), (b), or (c).

Note that every C-matrix representation B may be
considered to be a Q-matrix representation since we
have identified the complex field with a fixed subfield
of the quaternions. However, even if B is irreducible
as a C-representation, it need not be irreducible as a
Q-representation. The following theorem® gives a
necessary and sufficient condition.

Theorem 7: An irreducible C-representation B is
an irreducible Q-representation if and only if B is
not pseudoreal. If B is pseudoreal, then B decomposes
over Q into the direct sum of two equivalent irre-
ducible Q-representations.

Consider now an irreducible Q-representation A
of G. We say that A4 is (i) of class R if it is equiv-
alent to a real representation, (ii) of class C if it is
equivalent to a C-representation but not equivalent

14 H. Weyl, The Theory of Groups and Quantum Mechanics (Dover
Publications, Inc., New York, 1931), p. 123.

1> G. Frobenius and 1. Schur, Sitzber. Akad. Wiss. Berlin KI.
Phys. Math. 186 (1906).

16 E. P. Wigner, Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra (Academic Press Inc., New York,
1959), p. 285 et seq.
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to any real representation, and (iii) of class Q if it is
neither of class R nor of class C. The following three
theorems establish correspondences between the
various classes of irreducible Q-representations and
C-representations.

Theorem 8: A Q-representation is of class R if and
only if it is equivalent to a potentially real representa-
tion. Two potentially real representations are Q-
inequivalent if and only if they are C-inequivalent.

Proof: Since a C-representation is potentially real
if and only if it is equivalent to a real representation,®
the first part follows. For the second part, we have
only to note that the C-character of a potentially real
representation is real and hence equal to its Q-
character.

Theorem 9: A Q-representation is of class C if and
only if it is equivalent to a nonreal representation.
Two nonreal representations B and C are Q-inequiv-
alent if and only if B is C-inequivalent to both C
and C.

Proof: If 4 be a Q-representation of class C, Q-
equivalent to a C-representation B, then it is clear
that B cannot be potentially real. Also, since B is
Q-irreducible, B cannot be pseudoreal by Theorem 7.
Hence B must be nonreal. To prove the converse, we
have only to show that a nonreal representation B
cannot be Q-equivalent to a potentially real repre-
sentation D. But this is evident, since X(B)) =
Hx(B,) + x(B,)] is orthogonal to X(D,) = x(D,),
using the classical orthogonality relations.

If B and C are Q-inequivalent, then X(B,) is not
equal to X(C,) and hence y(B,) is not equal to either
7(C,) or x(C,), i.e., B is C-inequivalent to both C and
C. Conversely, if B is C-inequivalent to both C and
C, then X(B,) = }[x(B,) + x(B,)} is orthogonal to
X(C,) = 3{x(C) + x(C,)] and hence B and C are
Q-inequivalent.

We now turn our attention to pseudoreal represen-
tations. If B is one such, then by Theorem 7, B =
B' ® B* where B! and B? are equivalent irreducible
Q-representations, Since y(B) is real, X(B}) = §x(B,)
and hence the equivalence class of B! is uniquely
determined by B. We call any member of this equiv-
alence class a Q-representation induced by B.

Theorem 10: A Q-representation A is of class Q if
and only if it is induced by a pseudoreal representa-
tion. Two pseudoreal representations are C-inequiv-
alent if and only if their induced Q-representations
are Q-inequivalent.
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Proof: Let the Q-representation of class Q of
dimension » act on the Q-space V. We may assume
that 4 is unitary. Then g— AC is a unitary C-
representation of G in V€.

We first prove that g — AS is irreducible. If it is
not, let (e;, - - -, e,) be a basis in V© of some invariant
subspace S for 4°. Since A is unitary, by replacing
8 by S+ if necessary, we may assume that r < n. The
Q-subspace spanned by (e;,--°,e) in V is then
invariant under A4. Since A4 is irreducible, we can
conclude that r = »n. But then the matrix of 4, with
respect to (e;, "+, e,) is the matrix of Af restricted
to S with respect to (e, - -+, e,) which is complex—
a contradiction since 4 is of class Q. Hence A is
irreducible.

We show next that A is pseudoreal. If A, has the
matrix 41 + A2%j (where A} and 42 are complex) with
respect to some basis in V, then with respect to the
corresponding basis in V¢, 4% has the matrix

4 A4
- &l
Since A is unitary, AC has the matrix

A; 4
—a 43|

The matrix
0 -7

I o

M =

has the properties M = — M7 and MASM™ = AT,
i.e., A° is pseudoreal.

Since the equality X(4,) = }x(4%) is evident by
looking at the matrices of 4, and AS, we conclude
that 4 is induced by A4°.

Conversely, if B is a pseudoreal representation
inducing the Q-representation 4, then A4 has to be of
class Q. For, if not, we may assume, by what has been
proved so far, that A is either a potentially real
or a nonreal representation. In either case y(A4) is
orthogonal to yx(B) = 2X(4) = 2 Re [y(4)]—a con-
tradiction.

The second part is proved by a comparison of
characters.

To sum up, the situation is as follows: There is a
one-to-one correspondence between the equivalence
classes of potentially real (respectively pseudoreal)
representations and the equivalence classes of Q-
representations of class R (class Q). There is a one-to-
one correspondence between pairs of equivalence
classes of nonreal representations, each pair consisting
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of the equivalence classes of a representation and its
contragredient, and the equivalence classes of Q-
representations of class C.

This leads us to the following rule for the computa-
tion of irreducible Q-characters. Recall that an
irreducible C-representation with character y is non-
real, potentially real or pseudoreal according as

M
2
©))

Rule: Every real irreducible C-character y(g) deter-
mines an irreducible Q-character X(g) = x(g) or
4x(g) according as y satisfies (2) or (3). Every nonreal
irreducible C-character y(g) determines an irreducible
Q-character X{(g) = Re [y(g)]. All the irreducible
Q-characters are obtained in this way.

In the complex case, a C-character y is irreducible
if and only if its (L*-) norm is unity. For the quater-
nionic case, we may show that the square of the norm
of an irreducible Q-character is 1, 4, or } according
as the corresponding representation is of class R, C,
or Q. This does not in general give us a criterion for
deciding the irreducibility of an arbitrary finite-
dimensional Q-representation, but if the square of the
norm of its (@-character is }, we can conclude
that the representation is irreducible and is of class

Q.

Every Q-character X(g) is an invariant function,
i.e., X(g) = X(hgh™) for all h € G. In contrast to the
complex case, it is not in general true that the irreduc-
ible Q-characters form a basis for the subspace of
invariant functions 7 in L}(G). In Example 2 of Sec.
VII, for instance, there are only five irreducible Q-
characters, whereas L3(G) is of dimension 8. However,
since, as is easily checked, the irreducible C-characters
form a basis for 7, we may conclude from our analysis
that the irreducible Q-characters form a basis for /
if and only if every irreducible C-character is real.
This happens, for instance, when G = SO(3).

In passing we note that SO(3) does not admit of any
irreducible Q-representation of class Q, since it does
not admit of any irreducible C-representation of even
degree.

We conclude this section with the following result.

fx(gz) dg =0

or
= —1.

Theorem 11: If A is an irreducible Q-representation
of type « and degree n, then the subspace F, has
dimension n?, 2n%, or 4n® according as A is of class
R, C, or Q.
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Proof: If A is of class R, we may assume that A4 is
real and orthogonal. Since the (real-valued) matrix
entries of 4 are then orthogonal and the reals com-
mute with all the quaternions, F, is of dimension
nt,

If 4 is of class C, then again we may take A to be
complex and unitary. If 4, has the matrix [a,(g)], its
contragredient has the matrix [4,,(g)]. By definition,
every element of F, is a linear combination of ele-
ments of the form a,,g)(B + 7)) = fa{g) + ¥jag),
where B and y are complex. Again using the classical
orthogonal relations, we may conclude that F, is of
dimension 2n?.

Now, let A4 be in class Q. Consider A¢. By
Theorems 7 and 10, there exists a matrix M such that

B, 0
0 C,

where B and C are equivalent to 4. Therefore, F, is
spanned by the right Q-multiples of the matrix
entries of MA“M~! and hence of 4°. But the set
of matrix entries of A° is closed (except possibly for
sign) with respect to complex conjugation and by the
same method used earlier in the proof, we can con-
clude that F, is spanned by the matrix entries of A°.
But, by Theorem 10 again, 4% is an irreducible C-
representation. Invoking the classical orthogonal
relations once more, we conclude that F, is of
dimension 4»2,

MASM™ =

b

VII. ABELIAN GROUPS

Let now G denote a compact metric Abelian group.
Since every irreducible C-representation of G is one
dimensional, it follows from Theorem 10 that G does
not admit of any irreducible Q-representations of
class Q, ie., every irreducible Q-representation of G
is equivalent to a C-representation. It follows im-
mediately that every irreducible Q-representation of
G i1s one dimensional. However, in contrast to the
complex case, it is not true that if every irreducible
QO-representation of a compact metric group G is
one dimensional, then G is Abelian, as the following
example shows. We denote by G° the group opposite
to G (i.e., the elements of G° are those of G and the
group operation in G° is given by g - & = hg).

Example 2: Let G be the quaternion group, i.e.,
G = [+, &1, +j, £k]. Consider G°. We show that
every irreducible Q-representation of G® is one
dimensional.

If g € Q, let R, denote the linear transformation of
the Q-space Q, given by R,(p) = pq for all p in Q.
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Consider the representations:
(1) g~ R,;
2)g—>A,=R, forall geG%
G g—~4, =R, if g==%l, i

= R_, otherwise;

@4 g—>A4,=R, if g= %1, +j,
= R_, otherwise;

(3 g4, =R, if g= 41, £k,
= R_; otherwise.

It is easy to verify that the above five (one-dimen-
sional and hence irreducible) Q-representations are
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mutually inequivalent. If F, is the subspace in
L3(G") = Q® associated with the rth-representation
above, then F, has dimension four and each of the
remaining F, Has dimension one. It follows that G°
cannot have any irreducible Q-representation in-
equivalent to all the five above and in particular that
G° does not have any Q-representation of degree
greater than one.
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This paper extends to three-dimensional vector electromagnetic scattering problems our previous
development of the scalar problems. We introduce a vector—dyadic formalism that facilitates exploiting
the previous results, and derive analogous integral equations which specify the multiple-scattering
amplitudes for many objects in terms of the corresponding functions for isolated scatterers. One
representation is in terms of the dyadic analog of Beltrami’s operator. For arbitrary configurations,
the multi-scattered amplitudes are developed as series in inverse powers of the separations of scatterers
(with coefficients in terms of isolated scatterer amplitudes and their derivatives); for two scatterers,
we derive a corresponding closed form in terms of a differential operator. Another representation is a
system of algebraic equations for the many-body multipole coefficients in terms of the isolated scatterer
values. Explicit closed forms are derived for two arbitrarily spaced elementary scatterers (electric
dipoles, magnetic dipoles, etc.) both by separations of variables, and by working with elementary dyadic

fields.

1. INTRODUCTION

N previous papers'—® we considered the two- and

three-dimensional scalar problems of multiple
scattering of waves by arbitrary configurations of
arbitrary scatterers. In the present paper, the results
are extended to the three-dimensional electromagnetic
case. We parallel our previous analysis of the three-
dimensional scalar case,® and exploit as much of that
development as feasible; similarly, because recent
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results of Hansen,® Stratton,!® Silver,! and Wilcox,2
as well as with additional representations and theorems
derived in the course of the present development (e.g.,
by separating variables in the vector wave equation).
We use dyadic surface integral forms, complex
integral dyadic plane-wave representations, inverse
distance series involving the vector scattering ampli-
tudes acted on by the dyadic analog of Beltrami’s
operator, series for dyadic fields in terms of dyads of
vector harmonics, etc. To facilitate discussion we
start with a relatively conventional vector formalism,
and then switch to dyadic representations.

In the following we always indicate dyadics by
using a tilde—g, 4, ¢, etc., and write vectors as g, u, ¢,
etc.; a caret always indicates a unit vector—g, %, 0,
etc., but we also define some special symbols (o, i, €,
n, etc.) to represent unit vectors. For brevity, we regard
the numbered equations and figures of Ref. 3 as part
of the present text, and cite them as Eq. (3:8), Fig. 3:1,

etc.
2. ONE SCATTERER

2.1. Vector Fields

The three-dimensional scattering of a plane electro-
magnetic wave (with e #* suppressed) is specified in
the external region by a solution of

VxVxy—kdp=0, V.4y=0,

k = |k| = 2m/4, 1)

subject to prescribed conditions on the scatterer’s
surface, and subject to the condition that ¢ consist of
a plane wave ¢ plus a radiated wave u. With increasing
distance from the scatterer (r — oo) the function
(which represents either the E or H field) reduces to a
plane wave

K = ki, )

where €, i, and o are unit vectors. Because of the
divergence condition V-.¢ =0, the “polarization
vector” €is perpendicular to the direction of incidence,
€ -i = 0; to make this explicit, we write

@(i: €) = ee’kT, r = ro,

p(i: €) = €+ (I — ii)ekr = € (i),

gi) = (I — ie™, ©)

where [ is the unit dyadic, and @ is a dyadic plane wave.
The difference Y — ¢ = u, the scattered wave, may

® W. W. Hansen, Phys. Rev. 47, 139 (1935); see also Physics 7,
460 (1936); J. Appl. Phys. 8, 282 (1937); W. W, Hansen and J. G.
Beckerly, Physics 7, 220 (1936); Proc. IRE 24, 1594 (1936).

10J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941).

11§, Silver, Microwave Antenna Theory and Design (McGraw-Hill
Book Company, Inc., New York, 1949).

12 C, H. Wilcox, Commun. Pure Appl. Math. 9, I15 (1956).
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be specified by the Sommerfeld-Silver radiation
condition!!12

lim rfo x (V x u) + iku] =0, as r— co.

“

For concreteness, we may take the origin of coordinates
of r as the center of the smallest sphere which com-
pletely encloses the scatterer; we use the same
geometry as in Fig. 3:1.

From (4) and Green’s theorem it follows?!2 that for
r~ o0,

u~ go,i: eh(kr), h(r) = hi’r) = e"lir, (5)

where the normalized “scattering amplitude” g(o, i: €)
specifies the “far-field” response in the direction of
observation o to plane-wave excitation of direction
of incidence i and polarization €. Since V - u = 0, we
have 0 - § = 0, and we may write

g(0,i: €) = (I — 00) - g(o, i: €).
In general, we take Y = E, and V x $ = Hiwy, =

Hiw. At the surface of a perfect conductor,

nxyY =nx(p+u =0, 6)

where n is the surface normal. For a scatterer specified
by relative electrical constants € and u we introduce
the internal field ¢’ such that
VxVxy —k%' =0, V.¢' =0,
k' = k(ep)t,
and use the surface conditions
nxY=nx¢, nx(Vx)=nx(Vx/u.
®)
Surface integral representation: Introducing the
free-space dyadic Green’s function!®?¢
gg) kh(k |Ir — r'))
K? 47i ’
VxVxT — k= —-Jr—r),

we apply Gauss’ theorem for dyadics to construct

M

I, r) = (i +

€)

f[(Vxqu)-f‘-—u-(Vxfo‘)]dV
=fn-[(qu)xf‘+ux(fo‘)]dS

= —f[(qu)-(nx ) — @ x w-(V x I ds.
(10)
In the region external to the scatterer, we use (1), (9),

13 H. Levine and J. Schwinger, Commun. Pure Appl. Math. 3,
355 (1950).
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and (10) to reduce the dyadic form of Green’s theorem
(10) to
u(r) =f[(V xu)+(@x ) —(@xu)-(VxI)]ds,
11

where now n points away from the scatterer, and
where the integral is over any surface enclosing the
scatterer and excluding r. We rewrite (11) as

w)-(nx A)
~mxu)-(Vx A]dS
= {h(k |r — r']), u(r’; iz €)};
Rk |x — ¥')) = (I + VV/EDhk |r — ¥'|) = T4nik,
h(r) = e'ir. 12)
If we replace I by I'- e in the above, where e is an
arbitrary constant vector, then (10) reduces to the
usual vector form of Green’s theorem [say (10) - e]
and the left-hand sides of (I1) and (12) reduce to
u-e.
Since {h(k |r — r'}), @(r')} = 0 for r outside S, we
may also write
u(r) = {h(k It — r'l), ()}
From (13), (9), and (8), we obtain

$=¢ —H(ﬁ—z - k2)¢’-f

+ (1 - i—)(v x ) - (V x 1”‘)} v, (14)

u(r;ize) = f— [(V x
ari

(13)

which also holds for an interior point, in which case
Y = ¢’ is supplied by the internal (instead of the
external) singularity of ['. The case u = 1 is discussed
in detail by Saxon,” and a generalization of (14) is
considered in Ref, 14.

Ifkir—1r|>» 1and r > r, then

h(kc |vr — v'|)) ~ (I — o0)e~* ¥ h(kr) = G(—o)h(kr),
(15)
and (12) reduces to the far-field form (5) with
g0, iz €) = {({ — 00)e™ >~ u(r'’; i: €)} = {§(—0), u}.
(16)
For any unit vector y perpendicular to 0 we have
Y-80,i:€) = {p(—o0:Y),uli: e)}, (17
where 1’ has been suppressed. If y = ¢ = g/g, then
the left side of (17) reduces to g(o, i: €).
Scattering theorems: To facilitate subsequent appli-
cations we use the present formalism to derive certain

theorems which g fulfills. See Saxon® for derivation
based on a tensor scattering matrix.

1 VY. Twersky, J. Math. Phys. 3, 716 (1962).

ELECTROMAGNETIC WAVES 591

Consider two solutions of a scattering problem for
two different incident waves, say ¢, = ¢, 4 u, and

2 = ¢y + Uy, such that ¢, = ¢(i,: €,), etc. Since
Y, and 4, satisfy the same conditions at the scatterer
fi.e., (6), or (7) plus (8)], we have {{,, P }g = 0 oniits
surface S, and since ¢, and ¢, fulfill (1) in the external
region, it follows from (10) - e that

{1, $e} = {(p1 + W), (@ + )} =0 (18)

for any surface (including the surface at infinity S,)
surrounding the scatterer. Since

{(Pl ’ (PZ} = {ul > UZ}SOO = 05
(18) reduces to
{1, U} = —{u;, @y} = {epy, 0}, (19)

where the last equality follows from the explicit form
of the operator in (12). Thus since ¢, = ¢(i;: ¢;) =
€, - ¢(i;), we use (17) in (19) to obtain the reciprocity
relation

€ - 8(—iy, it €) = € - g(—ip, 011 €).  (20)
This holds for the relatively weak surface condition
{$1, Po}g = 0, which includes (6), etc.

If ¢, is replaced by its complex conjugate ¥, then
for lossless scatterers

{‘Pf» b} = {(‘P:‘ + “;)’ (2 +ux)} = 0. (21)
We have {¢¥F, ¢,} = 0, and

(08, wh = 2 20k [0 x )+ 0 x gy s,

1 . .
= 2——7—7 fg(o; i:e) - g%0,i;: €) dQ,, (22)

where d(Q, is the differential solid angle around o,
and the integration is over all angles of observation.
Since ¢p* = e*e~ ™" = ¢p(—i*: €*), we reduce (21) to

Gf . g(if, ire) + e; . g*(i:a itey)
—1 . .
- [t01:e) g0 00 40, @3

In particular, in the forward scattered direction, such
that all i’s reduce to i, and all €’s to €, we obtain the
“energy theorem”

—Ree-g(iize) = 4L flg(o, i:€)2dQ,

kz
= —Q(:e), (29
4z
where Q is the total scattering cross section. If the
scatterer is not lossless, then 4= /k? times the left-most
form of (24) equals the sum of scattering plus absorp-
tion cross sections.
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Plane-wave representation: If u is known, then (16)
gives g by integration. An inverse relation follows
from (14) by using'®

htkir — 1)) = 1 fe"’"’"“"’ daQ,, (25)

2
where the limits of the complex paths of the angles
associated with the unit vector p(r, §) (each path
analogous to one in Sommerfeld’s integral for H{V)
are chosen to ensure Im p - (r — ') > 0. See additional

discussion in Noether!® and after (3:8).
Substituting the corresponding dyadic

Mkir -1 = (i+ )h(k Ir—r)

— _1_. ¥ _ ikp (r—1’)
= f(i pp)e dQ, (26)

into w of (12), and using definition (16), we obtain the
vector analog of (3:9):

u(r; i) = ~21— f (T — pp)e™™, u(r'; i: €)} dQ,
w

=L fe"’“’"g(p, ire)dQ,, 1))

2
which holds at least for r > r,,, = a. (See Ref. 3 for
weaker condition.)

Cartesian representation in inverse powers of r: The
asymptotic form given in (5) is the leading term of a
series expansion of u in inverse powers of r which
converges forr > ry.. = a; see Wilcox!? for a detailed
discussion. This series, with coefficients expressed in
different forms, may be obtained from (27) by various
procedures, ¢.g., by means of

51- f ¢OR(p) dQ, = h(AD(r; D)F(o),

D(Db—1- 2)
2!
D(D—1-2(D—2:3):"-

i n . —D
* (21‘) n!

D =

Dr; D) =1+ — D+(r)

(D~

[n—1]n)

1 . .

y [0; + sin 60,(sin 63,)], (28)
where r is a parameter, F(o) is representable as series
of surface harmonics, and D is Beltrami’s operator;
see (3:10) to (3:16) for details. Using (28) for the

15 F. Noether, in Theory of Functions, R. Rothe, F. Ollendorf, and
K. Pohlhausen, Eds. (Technology Press, Cambridge, Mass., 1948),
p. 167, Eq. (7).
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Cartesian components of (27), we obtain
u = h(krYD(kr; D)g(o)
BP=Dgy...],

- h(kr)[g + o DB (2k ) 2
29

subject toV-u=0and Vx V x u — k2u = 0.
Special function representations: In the following,
except for normalization factors, we work with the
transverse vector spherical functions introduced by
Hansen,® and discussed by Stratton,® Morse and
Feshbach,® Saxon,” Stein,'® and others. We use

M, () = h,(kr)C3(0),
C™o) = —r x VY™(0) = (6% - gﬁag) Y™(0)
= —L(0)Y7(0),

Y™0) = P™(cos H)e'™,
Y, ™0) = (—1)™[(n — m)!}(n + m)!]1P7(cos B)e~™?,
(30)
Here h,=h{" is a radiating spherical Hankel

function, and P™ is an associated Legendre function.
Similarly

Nuw(®) = [n(n + Dh(kr)PT (0)

+ Oplkrh,(kr)]B} (0)]/kr,

Py(0) = oY} (0), By (o) = rVY} (o) = o x C™(0).
@3

The two sets are related through AN = V x M and

kM = V x N. For real directions, the corresponding

even and odd vector harmonics P42 and C%2 of

Morse and Feshbach® (pp. 1865, 1898, 1899) are the

real and imaginary parts, respectively, of the present

P and C™/[n(n + 1)]t. We have

C."(0) = (—=D"[(n — m)!f(n + m)!][Cr(0*)]*.

We also work with N in an alternative form,
essentially as in Morse and Feshbach® (p. 1866):

e nn+ 1 o "
i IN,,(T) = 2(n + 1) [hn-—l i IE,,...l - hn-l—ll +1Hn+1]1
B, B,
En—l = Pn +—, Hn+1 = Pn - i (32)
n r+1

where we have dropped arguments and the index m
for brevity. Henceforth, also for brevity, all four-digit
page numbers we cite are to be found in Morse and
Feshbach.®

18 S. Stein, Quart, Appl. Math. 19, 15 (1961).
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The angular functions satisfy the following orthog-
onality relations:

fc—,;'"-BedQ =fc;"'-Pch =fP;m-B¢dQ =0,
jC;"‘ « C4dQ =fB;”‘ <B4 dQ
= n(n + l)fP;"‘ P dQ
= (—1)"470,,0,,,n(n + D/2n + 1),
fE;l”l «HY,,dQ =fE,’,’_’i‘ - C4dQ

=fH;:; .CEdQ =0,

n[En B d0 = @4 0 [ d0
= (—=1)"470,,0 s »

Pr.BP = P} CP =Bl -CP =0,

C™.C*=B"- B, (33)

The asymptotic forms of Hansen’s functions are

"M, (kr) ~ h(kr)C,(0), "N, (kr) ~ h(kr)B,(0),
(34
where i = h{V as in (5).
From pp. 1782 and1875 we may write the normalized
dyadic Green’s function for r > r’ as

kit =D =3 3 M, 0M _,@)

n=1 m=—n

+ Nnm(r)N:L.—m(r,)](_l)m dn ’

" = 2"_‘{'1_ s (35)
nin +1)

where the functions with superscript 1 are the non-
singular nonradiating functions (j type), and those
without superscripts are the radiating functions
(A9 type). If we substitute (35) into (12), we obtain

u(r; iz € = 3 [M,,,(1)c,n(i: €) — iN,, 0D, 1: 1",
Cam(iz €) = (=)™ d,{M}, _,(r"), u(r’; i: €)},
bpm = (=)™ dy{N; s 0} (36)

The scattering coefficients (or multipole coefficients)
¢ and b are of the magnetic-type and electric-type,
respectively. If we introduce (34) into (36), and
compare with (5) we have

g(o, iz €) =3 [CT(0)c,n(i: €) + Br(0)b,,(i: €)], (37)
which may also be derived directly from (16) by
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substituting [from (35) with r ~ co, or from p. 1866].

3’5 —0) = (I — oo)e~*

=2 [CR(OM;, (') + iBL(O)N, _ ()i *(—1)" d,,.
(398)

We could also have obtained (36) for u by substituting
(37) into (27). Thus

w=L [ 3 (CH0)rm + BI@D,1 40,
v

Cam = Mfc;"'(o) - g(0) dQ, )
4
—1y"d
by, = (—L—"fB;m(o) . g(0) 49, , (39)
47
which reduces to (36) on using
"M, (1) = - fe""’"C:,"(p) Q,,
27
PN == [emwae, @)
o

(the radiating function analogs of the forms on
pp. 1865-1866).

General representation in inverse powers of r: The
present series leads to an inverse-distance expansion
fully analogous to (3:16). For the scalar case,® we
substituted Hankel’s polynomial form

B = B[ 1+ n(n + 1)i[2r)
+ n(n + Din(n + 1) — 1- 2] A20G2r)° + - - :I
= h(r)D(r; n[n + 1)), (41)

into u= Ya,,(Dh,(kr)i"Y™o), and then used
Legendre’s equation

n(n 4+ 1)Y,(0) = DY (o), (42)

and the scalar amplitude g =Y a,,({HY¥Y™0) to
obtain the form u = h(kr)D (kr; D)g(o) [implicit in
the Cartesian representation (29)].

We obtain the analog of (42) for the vector
spherical harmonics by separating variables in the
vector wave equation (1); we write (r) as a series
of functions R,(r)F,(0), and obtain

F,(0)[r*%* + (1/R,)0,(r?0,R,)]
=V x(VxF,)—VV.F]= D-F,o), (43)

where D reduces to DJ in Cartesian coordinates. In
polar coordinates, with F = F,F + Ff + F,p,0 =",
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we have

D.F= f{DF, +2F, + s_i_a [4(sin 6F,) + aq,Fq,]}
1
-+ 9{ DF, + —-—-I;— [Fy + 2co0s60,F,] — 26‘9F,}
sin® 6
+ ‘{DF — L [—F, +2c0s68,F,] — —= 3 F}
AT sin?6 ~° *7 sing )
(44)

If we specialize (43) to RF ="M of (30), and use
Bessel’s equation

k*r* + 8,40, k) /h,] = n(n + 1), (45)
we obtain the vector analog of (42):
[n(n + 1) — D-]C,(0) = 0. (46)

Similarly, if we specialize (43) to RF = N of (32),
apply (45) for h,,_, and &, ; and use the orthogonality
properties of E, _,, H, ., as in (33), we obtain

[(n - 1)}1 - 5'] En——l =0, En—l =P, + Bn/n’ (4?)

[+ D +2) — DM, =0,
IP{n+1 = Pn - Bn/(n + 1)~ (48)

The above provides a different procedure than the
usual one of synthesizing solutions of the vector wave
equation from known solutions of the scalar equation:
We separate variables in the vector equation to obtain
(43) and work with solutions of the form 4,(r)F,(0),
where F represents the three sets of eigenvectors
E,, C,, and H, , of the linear operator D.

Using (41) we rewrite M of (30) and N of (32) as

i,M, = hD(nln + 1])C,,
"IN =k n(n + 1)
" 2n + 1

x [D(ln — 1IME,; — D(ln + 11l + 2DH,, ],
49
where the three D’s are polynomials in (n[n + 1),
([n ~ 1]n), and ([n + 1}[n + 21), respectively, From
(46)-(48), we have
Doy + 1)F, = DD )F, =D - F,,
Dkr; D) = I+ (i/2kr) D

+ @f2kry2 D (D =12+ . (50)
Using (50) in (49), we obtain
i"M,(r) = h(k)D(kr; D) - C,(0), (51
i"IN(r)
= h(kryD(kr; D) - [n(n + 1))(2n + DYE,_, — H,,).
(52)
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From the definitions in (32),

- 2n+1
nin+1)

E'n—l -
(52) reduces to
"IN (1) = h(kr)D(kr; D) - B,(0). (53)

We may now construct the full vector analog of the
scalar solution (3:16). Substituting (51) and (53) into
(36), reduces the solution to

u = h(kn)D(kr; D) - ZICT(0)cn + BL(©0)b,]

= h(krYD(kr; D) - glo, iz €), (54)
where the differentiations are with respect to the
angles of .

The longitudinal (with respect to o) P terms do not
appear explicitly in (54) [or in (53)]; however, except
for the leading term (the far-field form 4g), components
along o are generated by the D - operation. The polar
representation of the above series form obtained by
using (44) for D, with polar components of subsequent
terms expressed recursively in terms of the first (g),
was derived originally by Wilcox,!2 who also showed
that the series in r~" converged absolutely and
uniformly in r, 6, and ¢ in any region r > r, . = a.

Since our series for the scattering amplitude g(o)
of (37) is a general transverse form, we see from (27)
and (54) that

n+1 "

:—;— f e TR(p) dQ, = (r)D(r; D) - Flo), (55)

where r is a parameter, and where F(o) is representable
as a series of transverse vector surface harmonics. To
cover vector problems for which V. %0, we
generalize (55) to include nontransverse components
(P). This corresponds to fields which involve the
longitudinal functions

Ly (1) = B4, [, (kr)IP(0) + (h,/kr)B(0)
;—n+l
=5 5 (el By + (1 Dhyi™H, ]

j—n+1
=1 f TP dQ,, (56)
27
essentially as on p. 1865, and in terms of E and H of
(32). Thus if
F(O) == Z{C;" (o)cnm + B?(o)bnm + P:? (o)pazm];

then substituting (57) for F(p) in (55) we obtain

&)

ife”‘"'F(p) dQ,
2n

= z [Mnm(r)clnm ha iNnmbnm e ianpnm]in =V. (58)
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From the second equality of (56), and from (41), (47),
and (48) we obtain

m—1 __ —
Lo = = [n(1n — 11mE,
+ (1 + DD(n + Lin + 2DH,, |

= hD(D)- [ME,_, + (n + DH, 4]

2n+1
= hD(D) - PX0),
where the final form followed from
nE, 3 + (1 + DH,y = 21 + DP,.
Substituting (51), (53), and (59) into the series V of
(58) gives
V = kD(D) * 3 [C20)cnm + BI(O)bor + P(0)D,,]
= h(kr)D(kr; D) - F(o). (60)

Thus (55) holds for any F(o) representable in terms of
any series of vector surface harmonics.

(39)

2.2. Dyadic Fields

We may parallel the above development of the
scattering problem of the vector plane wave (i: €)
of (2) by the analogous development for the dyadic
plane wave introduced in (3):

@(i) = (I — ii)ettr = ([ 4+ VV/k?)eitis
=V x V x Ie+is/k2,  (61)

The dyadic scattering problem, because of its higher
symmetry, is often the easier one: for the vector form
(2) we must specify both a direction of incidence i
plus a direction of polarization € in the plane perpen-
dicular to i, but in (61) we specify only the direction of
incidence i = k/k. The vector plane wave follows from
@(i: €) = §(i) - €, and we may introduce a dyadic
scattering amplitude®—® Z(o, i), such that the vector
amplitude follows from

g(o,i: €) = §(o,i) - €. (62)

We may rewrite (61) as
(i) = (ee + 88)e™r =cp(i: €)e + (i1 §)8, (63)

where i, €, 8 form an orthogonal set of unit vectors.
From the superposition principle, the corresponding
dyadic scattered wave is thus

#i(r; i) = u(i: €)e + u(i: §)5. (64)

Asymptotically, we have

ii(r; i) ~ h(kr)[g(o, i: €)e + g{o, i: 8)8] = h(kr)g(o, i)
(65)

595

with
g(o, i) = g(o,i: e)e + g(o,i: 8)8 (66)

in accord with (62) and with Saxon’s definition.”"®

Although we could construct the dyadic functions
from the vector ones by using (64) and (66), it is some-
what simpler to consider the dyadic scattering
problem systematically. In the following, (1d) means
Eq. (1) in terms of 4, etc.

Surface integrals: If we transpose the dyadic I°
terms in (10), we obtain

f[f‘T-(Vxqu)——(Vxfo‘)T-u]dV

= —f[(n x DT (Vxu) —(VxD)T - xulds,
(67)

where the superscript T indicates the transposed
(Gibbs’ conjugate) dyadic. For any dyadic solution of

(1d),
(VxVx ) =kF=VxVxFT

mx F)'= —FTxn, (VxF)T=—F(xV), (63)

where (xV) operating to the left on F in the last
equality means differentiate to the left on F but leave
the vector part of xV on the right of F. In particular,
for F = T of (9), we have

M=0 (xD)"=—-T"xn,
VxD)'=-VxT =hk|r—rko x I. (69)
From the steps leading to (10) and (67), we obtain

f[FT-(VxVxa)—-(VxVxF)T-a]dV

= -—f[(n x FYT «(V x @) —(V x F)T-(n x #)] dS.
(70)

In the Iegion external to the scatterer, we use (70)
for F = ' = hk[4wi to obtain

fi(ry i) = 4im f[(n x BT «(V x i)

—(V x B -(n x @)]dS = {k, @}, (71)

where n points away from the scatterer. It is this
definition of the brace operation for dyadics, equiva-
lent to (12) for #@ replaced by a vector u, that we use
henceforth. Since (4T - B)T = BT . 4, we have &' =
{h, @}, and also

AT > ot _ K AT 7
it = {h, a1} —4ﬂif[(qu) (n x A)

~@x )T (VxhdS=—{& k. (72)



596

Similarly
£(0, i) = {F(—0), &(r'; D}. (73)
From (18d), i.e., {%,;, P,y = 0, we proceed as for
(19) to obtain

{‘771’ a4} = —{#, ¢2} = {‘f’z, ﬁl}T’ (74)
where the last equality follows from (72). Thus using
(73) in (74), we obtain Saxon’s result®

g(_il > i2) = gT(_izs il),

which also follows from (20) and (62):
€ - [§(—iy,0p) - €] = €+ [§(—is, 1)) - €]
=€ gT(_iz’ i) - €.
From (74), We §€e that il . g~(i1 s i2) = g~(i1 N iz) . iz = 0?

i.e., g is transverse both fore and aft [cf. (66)]. From
(66) and (74), we have

(75)

£(iy, i) = §7(—la, ~i)) = €,8(—ip, —i;: €))

+ 8:g(—iy, —i;: 8), (76)
which supplements (66) in providing a vector repre-
sentation for #(i;, iy) in terms of observed instead of
incident polarizations.

Similarly from (21d), i.e., {§} , 9¥,} = 0, we proceed
as for (21) to obtain
{‘ﬁ, ﬁz} + {ﬁf, ¢2} + {ﬁf, '72} =0. an
The first term equals g(if, i,), the second reduces to
+{g¥ , 4,}T* = gT*(i}, i,), and the last equals

(it a} = 4—’7‘” 2ik f (0 x £h)*" - (0 x Z;h) dS

=L [0 0.1 a0
27

Thus the dyadic analog of (23) is

(78)

gt i) + 21 = — o f g'0, i) - g0, i) 402,

§=g" (19
as obtained originally by Saxon® by a briefer, more
abstract procedure. The symbol g' represents the
Hermitian adjoint of g. In the forward direction
if =i} = i, = i, we may reduce (79) to (24):

—e - [5G, i) + £, 0)]-€ = —~2Re [e- (i, i) - €]

=2 {501 e
=3 flg(o, i)-€?dQ
= f—; Q(i: €). (80)

Plane wave form: To construct the dyadic analog of
(27), we use (I — pp) - (I — pp) = I — pp, and rewrite
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(26) in terms of the form (61) as
Bk |r —r'|) = 51; f¢(r; p) - §'s —p)dQ,. (81)
Substituting in (71) and using (73), we obtain
s == [ gtes ) 20,0 40,

- 2i feik"'g(p, i) dQ,. (82)
ks

Similarly for (55d), etc.
If the scatterer is not at the origin r = 0, but at
r = b then we may work with
i+ (b3 i) ~ h(kr)@(b; —o0) - £(0, 1) - G(bs i)
= he—05(0, i). (83)
Special function series: Corresponding to
#0) = ¢ = (I — ™
= 2 [M;.(nC,."() — iN,,B."li"(—1)" d,,
_2n+41
" an+ 1)’
we have
ii(r; i) = 3 [M,,(0)c,,({0) — iN,,,.b, D], (85)

(84)

&0, i) = 3 [CF(0)e, (D) + Byb,,.(0)], (86)
where

cnm(i) = 2 [anmvuc;”(i) + ﬂmnqu;M(i)]’

b = 2 [VmanCo (1) + Oy B D] (87)

The reciprocity relation (75) gives

Oy i, n,—m = (_ 1)"+v°‘nmvu »
and similarly for é; for # and y we obtain this form
with (—1)7+v+1,
For a spherically symmetric scatterer,
ﬁ(l'; i) = E [Mnm(r)C;m(i)cn - anmB;mbn]ln(_l)ma
(88)

g(o, i) = 3 [CT(0)C,"(i)c,, + B7(0)B,™(i)b,I(—1)",

z =7§1 mén ’ (89)

where b and c are independent of directions. We may
rewrite (89) as

50, = 216,60, Dy + B0, Db,

n

Cofo, i) = 3 CR(O)C;"(H)(—1)™ = L(0)L(H)P,(o0 - i),

ﬁ,,(T,_i; = [o x L(0)][i x LA)]P,(0-i), (90)
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where P, (0-i) = X Y™(0) Y, ™(i)(—1)™ is the Legendre
polynomial, and L is defined in (30).

The form (90) has essentially the same symmetry as
for the scalar problem: The reciprocity relation (75)
reduces to

g(0, 1) = Z(—o, —i) = £'(i, 0). on

Substituting (91) into (79) gives the simpler form
T | N PN -
—Re §G;, i) = 4_17 fg*(lls 0) - §(0, i) dQ, (92)
and using (90), and
fén(i19 0) * EV(O, i2) dQ = 0’

fﬁn(il 5 0) * ﬁv(o’ iZ) aQ = 47Tﬁn(i1 ’ iz)a'nv/dn ’

with D = C or B, we obtain

—d,Rec, =|c,|%, —d,Reb,=|b,2. (93)
In the forward direction, we have
g6, 1) = (I — ii) 3 n(n + D, + c,)], (94)

and the total cross section equals —4/k? times

Re> 11
If only the dipole terms are significant, then
§0,i) = Cic, + Biby, &, =Y+ C, By =B+ B,
C? = CY0)CYXi) = $¢;sinbsinb;,
€l = Re Ci(0)Ci*(D
= (86, + §¢, cos 6 cos 6,) cos (¢ — ;)
+ (6@, cos 6, — ¢, cos 0) sin (¢ — ¢,),
B = BY0)B(i) = 00, sin 6 sin 6;,
B! = Re BY(0)BI*()
= (00, cos 0 cos 6, + ¢¢,) cos (¢ ~ ¢;)
+ (0¢; cos 6 — §0; cos 6,) sin (p — @,). (95)

For a homogeneous sphere of radius a, for the
surface conditions (6d),

— _am[xj n(x)]
T 0 Mxh, ()

Cn ka.
h.(x)

(96)

For conditions (7d) plus (8d), we supplement (84)
and (88) with the internal field

¥ =3 ML (kDC,"()c, — iNG, B, b 1i"(— D",
N

d,, x=

n

and obtain

T 00,5k ()] — h)AXT Ol
=c,(u), b,=cue)) X =FKa.

8)
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See Morse and Feshbach® (pp. 1882fF), Stratton!®
(pp. 563ff), and Van de Hulst¥? (pp. 113fT).

Small scatterer of arbitrary shape: For an arbitrarily
shaped scatterer with all dimensions very small
compared to wavelength, in terms of dyadic electric
(P) and magnetic (/1) dipole moments (pp. 1886ff),
we have

d-G="hkry-p-¢+ (Vxhy-m-(V x §lk?
=[h-p+(Vxh-m-@ixDikl-¢ (99
where j arises from the E field ¢, and # from the
associated H field proportionalto V x ¢ = i x ¢gik =

i x I - ik; both j and 7 are independent of i and o.
From the definition of % in (12), we obtain

h = (I — 00)J€ + 00H = A",

Og[xty ()]
X

() = . HEy =2,
X
Vxh=—khoxI=—khIxo=—(Vxh".
(100)
Using A~ (T —o00)h, Vx h~ioxIh in (99) to
obtain # ~ gh, we write
go,i) = (I — 00) p- (I —ii)
—(xD-m-(Ixi)y=g +8§,. (101)
Here
I—ii=ee+88=—(Uxi)-(Ixi),
Ixi=ixI=8¢e—eb
are both planar dyadics; the first is symmetrical, and
the second is antisymmetrical. Both annihilate com-
ponents of vectors parallel to i; the second (/ x i)
turns perpendicular components through 90° around
i as an axis, and the first [[ — ii = —(7 x )?] is the
negative of a turn through 180°; see Gibbs® for
detailed discussion of (I x i)".
From theorem (75) applied to (101), we obtain

p=p", m=m"; (102)
thus each is symmetrical and may be put in the form
B = p.EE + p,ih + p,Ll, where the vectors corre-
spond to the principal axis. From theorem (79), we
obtain

Rep=2L (500 praa=tp-p,
ki

—Rem = — ‘-‘Ijrfﬁz-(fx 0)-(I x 0) - * dQ

= 3 - W, (103)

17 H, C. van de Hulst, Light Scattering by Small Particles (John
Wiley & Sons, Inc., New York, 1953), Chap. 9.

18 See J. Willard Gibbs, Vector Analysis, Vol. 11 Collected Works,
Vol. I (Yale University Press, New Haven, Conn., 1948), pp. 61ff,
for (I X i)*; and also E. B. Wilson, Gibb’s Vector Analysis (Yale
University Press, New Haven, Conn., 1943), pp. 299ff. More
generally, the dyadic operations of this paper are based on their
development, and also on C. E. Weatherburn, Advanced Vector
Analysis (Bell and Sons, London, 1949), and on Ref. 6.
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With s equal to either &, #, or {, we have —Rep, =
%|p.J?; similarly, with s or ¢ or r equal to either x, y,
or z, we have —Rep, = —Rep, = %> p..pk.

The special case (95) corresponds to p = b1,
o= le .

o) =b(J—o00)-(I—i) —cfox D) (I x 1)

= b}(gg + ?396) * (Bigi + ‘33@9‘%)
+ 01(959 - 9‘?’) . (‘f’"igi - 5«‘?’1) (104

For later use, we make the relations between (95) and
(104) explicit by rewriting /# in terms of Hansen’s
functions. From (35) for r’ — 0 we see that all terms
vanish except

Njo — 3(P? + BY) = ¥(F cos 6 — § sin 6) = 32,
Ny, —> (P! + BY) = #[7e™ sin 0 + €*(cos 686 + i¢)]
Niy= "%(er) —~ —3 §(& — iP),

(105)
where 2, (£ + i9)//2 and (£ — i§)/v/2 form a set of
orthonormal vectors, Consequently,

(k) = h™ = 2Nyg(kr) + (& — if)Ny — (£ + 9Ny
= #Nyo + Ny, + PNygos (106)
Using the asymptotic forms of the left- and right-hand
sides, we also have
I—o0 = BY0) + }(* — i/)B} — (% + ip)B]*
= £Bj(0) + £ ReB; + 7 Im B}
= £B,(0) + XB,(0) + $B,(0), (107)
where since, (I — 00) = (f — 00)*, we may transpose
the left and right members of each term. Similarly,
since V x N2 = (V x N)Z = kM? etc.,
V x hlk = —(V x byT[k
= MZ + M — i) — My (% + iP)
= —iMyp ~ IMy;, — FMyy,, (108)

I

oxI=1Ixo
=—(ox T =45C} + 2Re C! + yIm C}
= 5C, + %C, + $C,. (109)
Since I x 0 = (I — 00) - (T x 0), wealso have [ x o =
B.(0)C{0) + B,C, + B,C,.
Substituting (107) into the electric term of (101),
and letting § and f range over %, §, £ we may write
glo. D) = Et B (o)p B, p,=5-p-1;
58=1%9,2 (110)
We may also work with the first form of (107) to
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obtain

g0, 1) = 2 BIOB*Opm. s mop = —1,0, +1,
mp
11
where, e.g.,
Poy=Z2+P+ (2 + if) = (P} + BY: - (P] + B).
If the principal axes of j coincide with £, y, Z then
{110) reduces to

£,(0,1) = B (0)B.()p, + B,(0)B,(i)p, + B.(0)B,()p,.
(112)
The analogous discussion goes through for g, i.e.,
g,=—Ixo)-m-Ixi)=Tx0)-m-(Ixi
= g C(0)m,Ci), etc. (113)

See Morse and Feshbach® (pp. 1886ff) for an
alternative development and for illustrations of j
and . Electric dipole dyadics are also considered
by Yvon,'® Mazur,® Fixman,? Brown,*® and others.

3. MANY SCATTERERS

For many scatterers in the geometry of Fig. 3:1, we
write the vector field as

¥ =iz €) + W, W~ Akr)S(o,i:e), (114)

where U and § have the forms (12) and (16) with u
replaced by W. The “compound amplitude” § fulfills
the same theorems as g.

Proceeding as in RefS. 1 and 3, we express the total
scattered field of a configuration of scatterers (whose
“centers” are at b,) as

W = F U r — b)e™™, U, = {Ak [r, — ]}, U,x)}>
(115)
wherer, = r — b_and x| are an observation point and

surface point respectively in the local coordinates of
scatterer 5. For kr, ~ o0,

U, ~ h(kr){#@;; —0), Ur)} = hkr)G,(0), (116)
where G,, the “multiple-scattered amplitude” of
scatterer 5, reduces to the single-scattered function g,
as the others recede to infinity. In terms of G, the

compound amplitude equals
S(0,i: €) = Y &*U-OhG (o, [i: €]), (117)

where the brackets are to indicate that i: € plays a less
complete role in G thanin S or g.

18 1. Yvon, Actualités scientifiques et industrielles (Hermann Cie.,
Paris, 1937}, Mos. 542 and 543,

20 P, Mazur and M, Mandel, Physica 22, 289 (1956).

21 M. Fixman, J. Chem. Phys. 23, 2074 (1955).

22 W. F. Brown, Ir., in Handbuch der Physik (Springer-Verlag,
Berlin, 1956), Vol. 17.
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Integral equations: Substituting & of (26) into U, of
(115), and rewriting in terms of G, of (116), we obtain

Uyr,) = 2177 fe"’% G,(p) 4Q,, 118)

U=7 ei""”feik"('_b’)Gs(p) dQ,[2m.  (119)

Proceeding as in Ref. 1, we use r, =r, + b, — b,
r, + b, to express ¢ and W in the local coordinates
of scatterer ¢, and write the total field referred to ¢
as a set of plane waves plus one outgoing wave U,:

¥(b, + 1)

— eik'bg [e‘iki-rte + EIJ‘eik(p—i)-bueikp'l‘gGs(p) dQ/27T + Ut]

= "™®, + U], (120)

where Y’ means sum over s % ¢ and where ®, is the
total excitation at ¢. Then knowing the response (u)
of the scatterer to one plane wave, we use the super-
position principle to write

U, =ufize) + 2'!&"""" Puy(p: ¥,)GLp) dQ/2m,

Y = G,/G,, (121)
where vy, is the polarization of G,.
The asymptotic form of (121) for r,— oo gives a
“self-consistent” system of integral equations for the
multiple-scattering amplitude:

Gy(0) = g(o, iz ¢)

+ f 0 Iig (0, p: ¥)G,(p) dQ,/2m,  (122)

where in general g(o, i: €) and g(o, p: y,) are not par-
allel. Forming e - G,, and using the reciprocity rela-
tion (20) to replace e - g (o, p: Y,) by Y, - g—p,—0: ¢)
we see from the definition (116) for G, that the inte-
gral converges if Im p - (b, + r; — r;) > 0. In terms
of by, = b,b,,, we require by, > [(t) + 10« b lnaxs
i.e., that the sum of the scatterer’s projections on b,
do not overlap.

The integral equation (122) is essentially a *“reci-
procity relation” between G and g. This follows on
applying Green’s theorem (10) to ¢, and ¥, with ¢,
as the solution for ¢, incident on an isolated scatterer
t, and ¥, as the solution for ¢, incident on a collection
of scatterers which includes #; ¢, and ¥, satisfy the
same conditions at t’s surface and the same wave
equation in its interior. Consequently, essentially as
for (18), we obtain

0= {q'n T2}t

= {(¢p1 + ), (@; + X' Uperu + Up)},, (123)
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where the subscript ¢ indicates integration is over a
surface that isolates scatterer ¢ from the others. We
have {¢p, , ¢@,} = Oaspreviously; similarly {¢p, , Uy}, =
0 since U, has no singularities inside the surface that
isolates ¢; finally {u,y, U}, = {u,, Uy}, = O follows
from the asymptotic forms (5) and (116). Consequently
(122) reduces to
{<P1 H Ut2} = _{utl ,(P2} - {utl s Z’ Usze_ik.b“}' (124)
Using the definitions of G and g as in (116) and (16),
and proceeding as for (20), we reduce (124) to
€ G(—iy, 0,1 €) = €+ g(—1i,, 012 €)

+ {3/ Upebs, u,}. (125)
Introducing the plane wave representation (118) for
U,, and the definition of g in the kernel, gives

€ G(—i) = € - g(—i,,i;:¢)

+ z/feik(p—r)-bngt(_p, ijte) - G,(p) de/Zﬂ. (126)

Applying (20) to g,, and replacing —i; by o we reduce
(126) to € + (122).

Equation (122) is a mixed vector-scalar form. The
analogous mixed vector-dyadic form is obtained by
introducing the dyadic isolated-scattering amplitude
g of (66). Thus since g(o,i:€) = g(o,i)-€, and
g(o, p, v,) = £(o, p) - Y,, we may rewrite (122) as

Go) = §(0, 1) - €
+3 f e Dbug 0, p) - G(p) dQ,[2m. (127)

Similarly, we obtain a complete dyadic representation
by introducing a multiple-scattered dyadic amplitude
G, such that

G(o) = G(0) - ¢,
and dropping €:
Go) = Zfo. 1) + Z’fe"’““’""""gxo, p) - Gyp) dQ/2m,

(129)

which is the complete analog of (3:34). Alternatively
from {¢,, ¥}, = 0 we obtain (124d), i.e,,

{1, O} = —{fin, §a} — {Hy, 3 Upe™™™}
= _{ﬁtla ¢2}
—_ z, f eik(p—i)-bf'{ﬁtl, @(r,; p)} . Gs(P) dQ2m,  (130)

where the last form followed from (118d). From
(116d) and (73) and (74), we reduce (130) to

G(~i) = &' (~ia, 1y)
+ zrfeik(p-i)-bug'l‘(_p’il) -G (p) dQ[2mw, (131)

(128)
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from which we obtain (129) by using the reciprocity
relation (75) to convert g to g(—iy, i;) and §(—i,, p),
and then replacing —i, by o. See Appendix A for
additional relations and discussion of reciprocity.

Large spacings: We obtain forms of (129) convenient
for large k |b, — b,| = kb,, by applying (55):

G0, i) = (0,i) + X' F,,- §0, b))+ G(by,, D),

F o = h(kb,)e **sD,,

= Ru(b7) + Soub™) + N7 + -

132)
where D is given terms of D in (50), and the present
subscripts indicate that the differentiations of (44) in
D are to be performed with respect to the angles
associated with the unit vector b,,. We introduced the
additional factor i in the argument of G to facilitate
iteration. If we keep only the leading term of D
(ie., I), then

G0, 1) ~ g0, D) + Z

i *bte—ikebyy

lkbts gt(o ts) Gs(Bts’ ):
(133)

if we dot-multiply from the right by € we have the
system of equations discussed by Saxon? (pp. 92-99).
(The analogous equations for the scalar problem, and
the iterated orders-of-scattering form are discussed by
Karp, and by Twersky in the papers cited in the
survey, Ref. 5.)

The leading term of (132) is the single-scattered
value, or equivalently the “first-order” of scattering
g0, ). Iterating (132) starting with § (e, i) yields a
series in inverse powers of kb,, which involves § and
its derivatives. Thus the (kb)~! term [either of (132) or
(133)] is the far-field multiple scattering form of the
second order of scattering:

2' jéts * gt(o, Bts) * gs(Bts » i) » jets = h(kbts)e_ik'b" iy

i.e., the dyadic analog of (3:37). Terms to order
(kb)~2 are given by

z Jets gt(o ts) Z Jesp gs(Bts,Bsp) gp(Bspa )
+z ‘M’ts gt(o Bts) gs(Bml)
Moy, = (i[2kb )Ry - D,

where the double sum corresponds to the third
far-field order, and the single sum is the first “mid-
field” correction to the second far-field order; this is
the analog of (3:38). The next terms in the expansion
of G, the terms or order (kb)~2 are given by (3:39d),
obtained from (39) of Ref. 3 by replacing g by £, the
previous scalar operators J¢ and A by the present
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dyadlcs and the previous N’ by
= [(1/2kb¢8)2/2]3€ts Dy (Dy — 2.
Algebrazc equations: 1f we substitute spherical
harmonic representations for g, and G, in (129), i.e.,
g0, i) = 3 [C7(0)c],,() + B (0)b;,, ()], (134)
Go) = 3 [C}(0) €, + BR(0)Bn),  (135)
and use the orthogonality of the C’s and B’s we obtain

Ch = cha® + '3 [0 9
- [CH(P)C;, + BiP)B,,] dQ,/2m,

Brm = o + 2 2 fe"""’_”"’“bi.m(l))

- [CAPC;, + Bip)B,] dQ, 27, (136)
If we expand the isolated scattering coefficients as
series of spherical harmonics as in (87), then we may
write

Clhim = Com®) + 2 2 [0 myuCrob(st; v, 7q)
+ BCE — aBE + BBE],
B =bi ) + 3> [yCE + 0CE — yBE + 6BE),
(137)
where the scheme for the indices is shown only once,

and where
—ik-bgs

e f e C (p) - CH(p) dQ
w

= §C.C) = §(B-B),
& =8B-C)=—¥§C:B). (138)
Following the procedure used for the scalar case, we
write C+ C and B - C as sets of products of surface
harmonics Y'Y to reduce the present &’s to sets of the
E’s of (3:42), and then use (3:43) to write § and &' in
terms of #’s and their derivatives times Y’s. We
illustrate this subsequently. (In the above, we have
generated implicitly the addition theorems discussed
by Stein.16)
In particular, for spherically symmetric scatterers
(137) reduces to

Chm = (—1)"c,{C3"()
+ >’ 3 [CLE(st; nm, rg) — B2, 81},
B, = (—D)"bL{B"(H) + 3’ 3 [CLE + B8]},
' (139)

which we apply in detail to two scatterers in the next
section.

&(st; vu, rqg) =

4. TWO SCATTERERS

For two scatterers, we take the primary origin
(r = 0) as the midpoint of the line joining the centers
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of their circumscribed spheres. The centers are located
at

b, = b(b, 7, f) = bb,_,

b, =bb, 7 — 7,7 + ) = bb_ = —b,

where b, 7, f are spherical coordinates; the local
coordinates with respect to these centers are written
asr, =r, and r, =r_. For this case the scattered
field reduces to

Ur) = 2T, (r,) + e * 0 (r),

+8 = bki-b, = £k b, (140)
and the compound scattering amplitude equals
S0, i) = &G (0, i) + VG (o, i),
+A = kbo - b: = +ko-b. (141)
The plane wave representation yields
0. = 2i f T Gup) A, (142)
o
where
G(0) = F+(o, 1)

+ £Fid f e 5.(0, p) - G(p)dQ, 2. (143)

4.1. Inverse Separation Representation

For two scatterers, (132) reduces to

Gx(0) = §+(0, 1) + Fz - §(0, bs) - G(bo),

F1+ = h(2kb)e™®D., (144)
where the subscripts on D .. etc., indicate that the
differentiations are to be performed with respect to

the angles associated with the unit vectors b
Replacing o by b ., we solve for

Gelbz) = (I — Fr- Zrlba, be) - 5 v Zulbe, b
* [Zebs, ) + Fx - Gxlbs, by) - £u(bs, D],
(145)
which when substituted into (144) gives a closed
operational form for G ,(0) in terms of the isolated
scatterer functions g, ie., the analog of (3:50).
Since the inverse dyadic [[ — X]- equals [ + X +
X.X+ -+, we see that the expansion of the
closed form in powers of 57! yields the series (3:51d)

to (3:54d), on replacing the previous scalars by our
present functions.

4.2. Radially Symmetric Scatterers

For two spherically symmetric scatterers, we use
isolated scattering amplitudes g, as in (134) in terms
of ¢t and 4%, and G as in (135) in terms of G and
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Bt . Specializing (139), we have
Com = (—=)"c{C™(i)

+ z [c:vFug:l:(nm’ v,u) -
= (—D)"ba{B."() + Z [Ch6% + 38,03
(146)

$?':ﬂ 8:’!:]} ’

where
Si(nm, v,u) = T2 J‘ eizkbb.h -+ C;"‘(p) . C“‘,(p) do /2 T

(147)
and similarly & involves B, ™ - C.

To illustrate the above, we keep only the electric
and magnetic dipole terms (b; and c;), and suppress
the arguments 2kb in h,, and b, in Y™ We retain
only the six equations of (146) involving C,, and
8,,, for m = 0, £ 1. The integral §,(10, 10) involves
C?. CY = sin’r = (Y, — Y,), and consequently, from
(3:14), we have 6.(10, 10) = %(h, + Y,h,); similarly
for the other integrals. Thus

Clo/ct = Ci0)
+ € [§(he + Y2h)Cl + 1Y 31,CTy

+ Ya'hC, — Yik BT + Yi'h B,
—clill c:lt = C;l

+ e [Y3'hCly — 4(2he — Y;hp)CT,

+2Y3°h,CL, — Y1'h, B, — Vil B3],

—Ci/a =C

+ ¢ P[}Y3h,Cl, + $Y3hCH

— 3(2hy — Yoh))CL, + Y10, B,

+ Yih B, (148)
plus the analogous set for $* obtained by inter-
changing all forms of “B”” and “C” in the above and
replacing all Y7* by — Y.

If the axis (13) of the pair of scatterers is taken along
the polar axis (%) [i.e., scatterers located at z, =
4b,x=y=0] then 7=0,7 and g =0. All Y’s
but ¥, =1 and Y,(6,) = +1 vanish, and we may
compress the remaining terms by using

§(ho + he) = 2l[p = H,
3(2hy — hy) = (ph)' [p= X

p=2kb, ¢;=c¢, b =0b. (149)
Thus
Cilc = Ci(i) + €™ HEY,,
Ciife = —C7() + e P(JCY + hIBY),
CL,/c = — Ci(i) + €*(JCL, F hB1y),
B3/b = Bi(i) + T HB,,
B /b = —B7({) + e Z(ALB], + h,Cy,
Bi,/b = —Bi(i) + eq:m('je\% - = hlcl_.l (150)



602

Since C? = ¢ sin 6, and B? = § sin 6, the components
C,, and B,, vanish for incidence along the pair’s
axis (0 = 0); for these ““axial” components, there is
no coupling between electric and magnetic moments.
On the other hand, the “perpendicular” components
$,,, and C, , are coupled in general.

For the axial components, we iterate once and
regroup terms to obtain

Ch = *{C20) + PHCICHD + ¢ HE])

+ F Fi2s
I U A

1 — ¢t¢H?
(151)
B, = bTABBYI), (152)

where A(b) is obtained on replacing c¢’s by &’s in A(c).
For the perpendicular components, we first con-
sider the cases when only the electric or only the
magnetic effect exists.
Electric dipoles: If ¢* = 0 the multiple-scattered
field is fully specified by (152), and by the simplified
form of the last two equations of (150),

B = —p*B'M — ePRB;),  (153)

plu.s the analogous equation for $:E, involving
Bi(i). Thus

B = —b*D()B (), By, = —b*D(M)B(),
D) = (1 + b F2R)(1—bTbX2), (154)

where D differs from 4 of (151) only in that H is
replaced by .
For this case,

g:t(o» i) = E(O, i)bi = (EO + El)bi:,

where the B’s are the corresponding B’s of (95).
Similarly,

Gi(o) = G¥(o, 1) = bAX(b)BO + bxD=(pF)BL.  (156)

Thus while each isolated scattering amplitude is an
electric dipole determined essentially by the direction
of incidence, the corresponding multiple-scattered
amplitude is a sum of two uncoupled “compound
dipoles”: the compound axial term bA and per-
pendicular term bD are each the closed form of the
corresponding geometrical progression of orders of
scattering.

If the direction of incidence is along the dipole axis
(i = £), then B® = 0, and if the incident polarization
is € = £, we have

(155)

(157)
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If the direction of incidence is perpendicular to the
axes (i = %), and if the incident field is polarized
parallel to the dipole’s axis (€ = %), then B'+% =0
and

B.7=—-fsinf=vy,, go,%:3%) = biy,,
G = b*A(bY,. (158)

On the other hand, if the polarization is perpendicular
to the axis (¢ = ) then B°- § = 0, and

B'. 9 =g cos ¢+ 6sin pcos b = v,,

go, %: §) = b*y;, G =b*D(b7)ys. (159)

In all the above, the forwardscattered values of g
and G have the same polarization as the incident wave.
The same holds for arbitrary direction of incidence
i=o0 for which case we have B*= §0sin®6 and
B*=100cos?0 + 9. If e=5, then g=be and
G = bDe; similarly if € = § (perpendicular to i),
then g = be(sin? 0 + cos?9) = be, and

G = be(A4sin2 60 + D cos? 6).

Although &, and g_ satisfy (75), the theorem does
not apply individually to the corresponding multiple-
scattering functions G, and G_ for the elements of the
pair: the reciprocity relation applies only to the

scattering amplitude for the configuration $(o, i) as in
(141). From (141), (152), and (154), we write

§=F + F,
F_,_(O, i) = ei(J—A)G“‘+(o, i) = gib-li—o) I?_,_ 4 g ilito) @
F (0,i) = e 8G (0,i) = e MO R 4 oirlito) g,

_ b{B%, 1) biB o) 5, 5 b

K, = - ’ K— = K >
YT — bt HE 1 — bbb e *pt
o i : M
R=—2"2_ B%,i) — ————— BYo, i).

= OV T e 2O
(160)

From (160), we have

F_'f(—i, —0) = ¢iibi—o k+ 4 MUt R F_,_(o, i),
FT(—i, —0) = e W0 R | b0 B g (g )
§T(—i, —0) = FI(—i, —0) + FT(—i, —0) = §(o,i).
(161)
Thus, although the individual functions do not
satisfy theorem (75) (because the phase of the K term
is not preserved) their sum does—arid this is all that is

required. See more general discussion in Appendix A.
In the forwardscattered direction,

86, i) = G,G, 1) + G_G, 1)
=K, + K+ 2Kcos (2kb-i), (162)



MULTIPLE SCATTERING OF ELECTROMAGNETIC WAVES

where we may use B°= e sin26 and B =
€,€; cos® § + €,€,. From theorem (80) the total cross
section for a pair of scatterers equals

Ql:e)= —@nk*) Re(e- G- ¢€)
= —(4n[k?)2 Re [e-(K, + K_+ 2Kcos 25) - €].
(163)

For the special case of a pair of identical scatterers
(b* = b7) under symmetrical excitation (i.e., § =
kbei=2nm;n=0,41,---, with n=0 -corre-
sponding to incidence perpendicular to the axis) we
have

G_ =G, =G =bA4B + DR,

A=1/1—-bH), D=1/1—-5bX), (169
and the total cross section follows from
Re (i, i) = 2 Re G(i, i)
= B2 Re b4 + B2Re bD. (165)
For lossless scatterers,
— * — 1pi2 :
RebA:Reb(l bH) =Reb |bl J’ 7 =:2£,
i1 — bH|? i1 — bH|? P

and since the theorem for an isolated lossless dipole
gives —Re b = £ |b|2, we have
—% bl + %))
[t — bH|?

Similarly for Re Db we replace H, J by ¥, § with
&= ap(lej/P- Thus
Re 8(,1) = —3(1 + §3) lo4P® B°

+ 31 + £%) 16DI* B, (166)
from which we obtain Q by dot multiplication as in
(163).
_ For 6 =2nm it is simple to demonstrate that
6(i, , ip) satisfies the general theorem (79). For the
present case 87(i,, i,) = G(,, i,), and consequently,
(79) reduces to ‘

—Re 8, , ip) = Zl—f 8(i;, 0) - §%(o, 1,) dQ,;
T
equivalently,
—2Re G(iy, iy)
=L [66,0- 6*0, i 10 + e aa,,
w

(167)
where A = kbb - 6 = kb cos 0. Since G* is obtained
by replacing b4 and bD by their complex conjugates,
we may show directly by proceeding as for (148) that
(167) is satisfied. For example, in the right-hand side

Re b4 = = —3%(1 + 3J) |bA]>
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{bD|? B;I(l'l)Bi(ig) is multiplied by
[Bi0)- B2 + e 4+ e ag,

= ZJ‘Bi -B1dQ —f -(-2-13-&) (€® + %) dQ;

the first term gives —%2#, and the second gives —§x
2jo — jo) = —~87n§. Since —3[1 + 33/2] [bD]? =
2 Re bD [from (165) and (166)], etc., we see that both
sides of (167) yield identical terms.

Magnetic dipoles: Similarly if b7 = 0 in (150), we
use (151) and the second and third equations of (150):

€y = —c*[C'() — e7™Cike],  (168)

plus the analogous equation for € ; involving Ci(i).
Thus, as previously,

Cii = —c* DM, €y = —c*D(TCH).
(169)
The single scattered amplitude is
gr=CHC" + O, (170)

with the s as in (95), and the corresponding multiple
scattered values are

GF(0,1) = cFA(cHC* + c*D(cH)CL  (171)

The present case is completely analogous to the
previous and corresponding results may be obtained
by inspection.

For axial incidence i = 2 we have C° = 0, and if
the incident E is polarized parallel to %, then corre-
sponding to (157), we have

Clet=1fcosp—¢gsinpcosh =1y},
20,8 2 =go,2: 5 = ¢y}, G=c"D(c1.
172)
For normal incidence i = £, if the incident E is along

the axis (€ = %), then C°. % = 0 and corresponding
to (158),

CI' t= Yé = —Y%s g(oa % 2) = ciY;s

G = ¢=D(cP)Y}. (173)

If the polarization is along $, then C'-$ =0, and
corresponding to (159),

C°p=¢sinb=1v;, g %)=y,
G = c*A(cM)y;- (174)
One electric plus one magnetic dipole: The remaining
elementary situation in (150) is that in which one
scatterer (+) is an electric dipole and the other (—)
is a magnetic dipole. For this case we set b~ = ¢t = 0
5o that the required functions in (151) and (152) reduce
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to the single-scattered values
Ch = ¢ Cy(i), Bi, = b™Bi), (175)

which correspond to the first and fourth equations of
(150). The second and fifth of (150) reduce to

Ch = —cIC" + € Bihi],

B, = —bH[BT! + ¢ Chy], (176)
plus the analogous set for C;_; and $,", in terms of
C} and B} with A, replaced by —#,.

Solving (176) and its analog we obtain
Cr, = —cECT'() + ™ FB(D),
Ciy = —c ECi(i) — €™ FBy(i),
B = —bEBT'() + ¢ FC(D),
B+, = —bTEB}(i) — ¢ ®FCi(i),
E=1/(1 — b*ch}), F=cbthE.
The single-scattered amplitudes for this case are
G =brB+ B, g =c(C+ Y, (178)
and the corresponding multiple-scattered amplitudes
equal

77

G. = b*B + b™EB' + ¢ ™FD,
G =c¢C°+ ¢ EC* + ¢¥FD",
D = Bj(0)C; () — By (0)Ci(D) = i Im BY(0)C1*(i)
= i(f¢; cos 6 cos 6, — ¢b,) sin (¢ — @)
+ i(80, cos 0 + @, cos 6,) cos (p — @,),
b* = Ci(0)By () — CTY(0)Bi(i) = —i Im Cy(0)B1*(i)
= —i(0¢ — @b, cos 0 cos 6,) sin (¢ — @,)
— i(80; cos 0, + ¢, cos 0) cos (p — @,). (179)
The present case is much less symmetrical than the
preceding ones, and provides a simple illustration of a
scatterer containing cross terms [e.g., C}(0)B(i)]
corresponding to coupling between electric and
magnetic dipoles.
For axial incidence i = 2, we have B° = C° = 0.
If € = X then
D-g2=iy, D'-%=—iy,
G, « % = (b'E + ¢ ™ Fi)y,,

G_-% = (c’E — ¢®Fi)y}. (180)
In the forward direction,
8§=G, + G_ = (b" + ¢ )E% + 2sin 2kb)FX.
(181)

For normal incidence i = %, if € = Z then B.z=
Co2=D'"2%=0and
b.:=—iy,, G,=>b'y,—ie™Fy,,

G_ = ¢ Eyl. (182)
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In the forward direction,
G, =b*%, G_=cE;
8§ =G, + G_= (bt + ¢ E)z
Ife=j then By =C1+9=D-y=0and

(183)

D'. 5= —i(fsin ¢ + @ cos 0 cos ¢) = —iy,,

G, = bTEy;, G_ = cy;— iv,e™F. (184)
In the forward direction
§=G, + G_=(bTE + ). (185)

More generally in the forward direction we write

g_.=ce G,.=G.e (186)

g, = bte,

If € = y then
G, = b'E + e *Ficos 0,
G_= ¢ sin?0 4 c"E cos® 6 — e®Ficos 0. (187)
Similarly, if € = § then
G, = b*sin® 0 + bE cos® 6 + ¢ **iF cos 0,
G_ = ¢ E — e™iF cos 0. (188)
Thus, in all cases, the forwardscattered values have
the incident polarization.

Electric plus magnetic dipoles: For the general
situation of (150), each scatterer has both electric and
magnetic dipole moments. The axial components are
as in (151) and the corresponding perpendicular
components follow from the remaining four equations
of (150). Thus eliminating Cf; and 3§, from the
second and fifth, we obtain

CE = —cf{CT'DR(D, o) £+ BTIDS(b, 0)}/A,
B35 = —bF{B'DR(e, b) F CT'DS(c, b}/A,
R(b,¢c) =1 — b*b 32 — b h?
+ JecTe™ [l — bTh (3 + hy)),
S(b, ¢) = h JebEBT — %)
+ hbTe [l — bTb(JC* + hY)),
A=1—3¥b"b" + ctc”) — hi(ctb™ + ¢ bh)
+ cte bth (3 + h))P, (189)
where R(c, b) is obtained from R(d, c) by interchanging
b and ¢, and similarly for S. The corresponding
coefficients Ci£, and B, are obtained by replacing
C;!and B! by C{ and B}, and &, by —4, .
Equations (151), (152), and (189) provide the co-
efficients for an explicit closed form for multiple
scattering by two arbitrarily separated scatterers such
that each is fully specified by its appropriate electric
and magnetic dipoles when isolated. The set covers

the special cases considered previously and allows us
to obtain corrections, e.g., to (156) for the case where
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the magnetic dipoles are not negligible. The present
results apply to small spheres of different radii with
both ¢ and u different from unity, to two perfectly
conducting spheres (for which case the electric and
magnetic coefficients b, ¢ are of the same order of
magnitude), etc. Simple forms of the present results
follow not only for the cases considered as illustrations
but also for the limit of separations small compared
to wavelength (kb ~ 0) for which region we use the
origin expansions of the A’s, as well as for separations
large compared to wavelength (kb >> 1) for which
case we use the asymptotic form of the #’s. From
symmetry considerations, specializing the above two-
scatterer results to identical scatterers, enables us to
write down the corresponding solutions for one
scatterer near a perfectly conducting plane, two
protuberances on such a plane, and one protuberance
on the wall of a perfectly conducting quadrant; see
analogous expressions for two cylinders given
previously.z

4.3. Small Scatterers of Arbitrary Shape

To construct analogous closed forms for two non-
spherical scatterers small compared to wavelength,
we base the development on (99)ff, and its general-

ization to an essentially arbitrary exciting electric
field ©:

G O=hep-® 4 (Vxh-m-(VxDk. (190)

Electric dipoles: For a configuration of two arbitrary
electric dipoles specified by p. excited by ¢, the
multiple-scattered fields U, may be written

~

O, =i, ¢+, -0 =a, - a,=hkr) p.,

where @t is the value of the source term at the
scatterer located at bb, = bb, and where @ is the
corresponding total exciting field; similarly, for
brevity, U+ means the field of U_ evaluated at bb,,
etc. We have

&= = gt + 0% = ¢ + a5 - &7
consequently,

&t = (T — a2 a0 (G5 4 i §),
¢ = (I —i)e*™, af = h(2kb) - p..,
h = — bbyJ + bbH, (193)

where 6 = k - b, and J and H are defined in (100).
We consider first the case corresponding to Sec.
4.2, for which p, = p,I (small spheres, elementary

model for oscillating electrons, etc.), where we have
replaced the previous b+ by j.. to avoid confusion with

(192)

23V, Twersky, J. Appl. Phys. 23, 407 (1952).

ELECTROMAGNETIC WAVES 605

the other b’s. Since

WF @ =ppheh=p.p [ — bb)Je: + bbH?),
we may write

IT—az-af =1 —bb)(1 — p,p_X

+ bb(1 — p,p_H?),
and express the reciprocal as

(it oy = 1= 88 b
1—p,p¥* 1—p,p H
(194)
We also have
§* — i ¢* = (I — bb)(1 + Kepze™)
+ bb(1 4 Hpze™)] . ¢*. (195)

Thus using (194) and (195), we reduce (193) to
* = [(] — bb)Dx + bbas] - ¢,
Az = (1 + pze"™H)[(1 — p,p_H®) = A(H, p=),
Dz = A(X, p), (196)
where 4 and D are essentially as defined in (151) and
(154). The corresponding scattered waves from (191)
are thus
U, = k)« ps [0 — B5)D. + BbAs) - g
= h(r,) - P..gx, (197)
where P is the multiple-scattered moment. The
asymptotic form of (197) for kr» 1, r> b is
U, ~ het'*8G_, with
G.(0,i) = (I — 00)- P (I — ii)
= (I — 00)+ p[({ — bb)D+ + bbA<])- (I — ii).
(198)

If we take b = 2 (i.e., if we measure 6 from b), then the
multiple-scattered amplitudes G, of (198) may be
rewritten directly in the form (156) by using (107), i.e.,
for this choice of axis we have

P, = p.[(£% + §9)Ds + £245),
and using (107) reduces (198) to the form (112) with
Po=py,=psDoandp, =p,dz.

For a small sphere of radius a with 4 =1 and
dielectric constant €, we have p = i(ka)*(e — 1)/
(e + 2). For small spacing p = 2kb < 1 we may use
J ~ —H[2 ~ ifp® Thus

e — 1
xp~ iy (5 (<53)

in the static limit kK — 0. For this case we may also
neglect k6 — 0. For identical scatterers we then have

LIty By (2]

P 1—2R’
(199)

r 14+ R
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On the other hand, for p > 1 we have X ~ k, and
H ~ —2ihy/p; if we neglect H, then we get the “far-
field multiple-scattering form”

P ~plD{ — bb) + bb], 3 ~ ho(2kb); (200)
more generally we use J =A[l + (i/p) — 1/p%,
H = —2k[(i/p) — 1/p*] to convert P to the analog of
(144) plus (145).

The above dyadic dipoles are spherically symmetric
in that § = b1 means the vector dipole j - € = pe has
the direction of the incident polarization. We can also
consider the case of a fixed vector dipole j = pdd
(i.e., a fixed metal wire oriented along d), or the
general dipole p = pT of (102)ff. For simplicity we
assume that the prmczpal axes of the scatterers are
parallel, and take { = b. Thus we may write

i, = ke, = R(pufé + ppuiiid) + HpLl, (201)
and obtain
I~ ﬁ::::: . ﬁi =(1- J62P§+p§-)c§é +0 - J(’,zp“p,,_)ﬁﬁ
+ (1 — H p )L,
(I — vl u)™ = E(3, p)E + E, (%, p)ii
+ E(H, pli,
(202)

E(X.p) = 1/(1 — Xp, . p; ), etc.

Substituting into j - & = P - ¢, we construct
P=po- 1l — i aZ]7 - [T 4 de™)
= PeD(Psx)EE + Py D22 + PesA(pr) EE.
(203)

Magnetic dipoles: Similarly for two magnetic
dipoles, say each of the form

5. Vxg=Vxh-(mk? -Vxg

=(~Mmo x I).i+(Ix i) i, (204)
we may work with the electric functions
U,=5,-V x &% (205)
' ="+ Ur=¢ +0:-Uxd (208
to obtain
Vx®F =[] —(Vx&) (Vi
VU x ¢E+Vxir-Vx ¢l (207)
Since

Vx5=VxVxh-ifkt="hm,

the function [ J! is of the same form as for the
electric case but with the previous p replaced by m.

For i, = m,I corresponding to the spherically
symmetric case of Sec. 4.2, we have from (207) and
(196),

V x & = [(I — bb)D(mz)
+ bbA(m)] - G= x iik. (208)
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Thus using (208) in (205) with & as in (204), we obtain

U, = ihymy(o x D)« [(I — bb)D(mz) + bbA(m.))
- (I x i)e*®
=(Vxh) M. -Vx gk (209)
where M is the multiple-scattered moment. Since
hkry) ~ —ih(kry) ~ —ih(kr)e™,

the scattering amplitudes are

Go=—(ox D). M, -Ixi)
= —(0 x I)em_[(I — bb) D(mz) + bbA(m=)]- (I x i).
(210)
If we take b = 2 then (210) may be rewritten directly
in the form (171) by using (109) to reduce G to the

form (113).

For a small sphere of radius a with ¢ =1 and
permittivity w, we replace ¢ by u in the previous
illustration. Similarly for the magnetic analog of the
more general case (203) we obtain
M, = m Dm)EE + m, D(mz)iii

+ mgAmp)L (211)

See Appendix B for analogous results for scalar
problem.

Electric plus magnetic: If we are dealing with one

electric (#,) and one magnetic (#_) dipole, then we
may work with

=d, (T + O =i, - D (212)

U =5 -Vx(g~+ 0)=05_.-Vxd, (213)
where

Or =g+ 5tV x D, (214)

Vx® =Vxg¢g +(Vxa) & (215)

Solving (214) and (215) we obtain
O =T — 5. Ux ;] g7+ 55V x ¢,
_ (216)
Vx® =[]—(Vxa) 57

VX g+ (Vi) ¢l (217)

We have
gi — V x E. ]’i}}/k2 = —~kh1(5 X f)’ )';?/kg,
and similarly
V x i = —kh(=bx D)p=kibx1D)-p.

For the case of Sec. 4.2, we have j = p/ and
= ml and

eV xiar=-mphbxD)-(bxD
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Thus
-t -Vxiayr={I—-J—- bbym_p,niy*
= bb + (I - b6b)[(1 — p,m_h})
= bb + (I — bb)E,
and consequently
&+ = [bb + (I — bH)E
— im_hy(b x De (I x V)E] - ¢*,
E =1/(1 — p,m_k}). (218)
Similarly
V x & [ik = {[bb + (I — bH)E]- (i x 1)
— ip (b x De™®} - ¢_. (219)
Using (218) and (219) in (212) and (213) gives the

corresponding electric dyadic fields. To obtain the
scattering amplitude we use

i, = p h(hr*) ~ p h(kr)e *4(I — o0),
and similarly

#_ = —khy(o x Dm_[k* ~ —hee"*m_(o x D]ik.
Thus

G, = (I — 00)- {p,[bb + (I — bH)E]
—i(b x Iy (i x hHFe ™} . (I — ii),

F=p m hE, (220)

G_= —(o x I)- {m[bb + (I — bH)E]
+i(bx I)-(I x )Fe®}-(ix D), (221)

where we replaced 7 — ii in the last term by —(7 x i) -
(I x i) to stress the similarities of the form of the
composite moments P, and M_ corresponding to
(220) and (221), respectively. To reduce (220) and
(221) to the forms in (179), we take bb = 2% and use
(107) and (109).

For the more general case of

X = 59 17’ C’
(222)

Po= D p X%, = mi%,

with £ = b, we have
=V xh-mk®=—h(€x I)-mjk
= hy(iim, — HEmy/k,
V x i = ki x I+ p = —khy(&iip, — 7Ep,).
Consequently
otV x @, = hi(Ep.m, + fijp,my),
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Thus

&+ = [{{ + EEE(pm,) + AFE(pymy)]
o« I + ihye ™ (m,&f — mgib)(I x )]+ ¢+, (223)
Po=p -0 (¢
= P;ZE + p:E(p;, m)E€ + PrE(p,me)ii
+ i [F(pgmp)&i — F(p,mif)Gi x I),
G.=I—o00). P _.(I—ii. (224)
Similarly

V x &_ = [{{ + E£E(m,p,) + 77E(m,p;)]
+ (T — ihy(Eiip, — 7pJe™(i x D]+ ik(i x ¢),
_ _ (225)
M_=(m_-V x O)(iki x ¢!
= m{{ + myE(mp,)E€ + m,E(m,py)ii
- ietza[F(mgpn)Sﬁ - F(mnpg)ﬁél(i X i)’
G.=—(xI)-M-(Ixi, (226)
which differs from (224) in the interchange of m
and p and the replacement of i by —i.
If each scatterer consists of an electric plus a
magnetic dipole such that the isolated-scatterer

values equal #, 4 ¥, with # and & as defined in this
section, then we write the scattered electric dyadics as

O, =i, - +05,-Vx O =, +5,.-VxID).0%
(227
with
Ot =gt (iE+5£-Vx - OF, (228)
where V x [ K ® is a temporary expedient for V x ®.
Eliminating ®F from the right-hand side, we obtain

O = (g + @ FT 4+ 5 -V §)

+ (- 0 + 0%V x D) - P

+ (5L + £V x 57) .V x O (229)
plus the corresponding expression for V x ®*
obtained by replacing all left-hand elements in the
terms in parentheses by their curls, e.g., V x &=
involves

U x ¢t 4+ (V x 32) - 6F + (V x 32) - (V x ¢),

etc. Essentially as for the previous case, we may solve
the simultaneous equations for ®+ and V x &+ to
reduce the above to the case considered previously by
separations of variables.

APPENDIX A. RECIPROCITY RELATIONS

We should stress that G of (131) does not in general
satisfy the reciprocity relation of the form (75):

gt(—il , 1) = g;r(_iz, iy). (Al)
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We may always write
Gt(_il s ig) = Rt(_iz, i) + it('—ila ip)
= R(—iy,ip) + 3 Ri(—hy, ige ™=,
(A2)
where R, (R for “reversible’”) includes only those
“chains” of successive scattering processes which
start and end with scatterer ¢, and L includes those
that start with s £ 7 and end with . Interchanging the
directions we get
G;r(_i2 > i1) = R5';1‘(_i2 s il) + z’ R'tls(_i2s il)e_ikh.bn
= R't(_il ’ iz) + z’ R;s(—il ’ iz)e_ikirbu,
(A3)
so that
G~t(_i1 oiy) — GzT(—'iz 1)
= 'R (g, )leehe — ), (Ad)
is not in general zero. We illustrate this explicitly for
an elementary case in (160)ff. In the present Appendix
we list additional theorems for G.
The compound scattering amplitude
S(—iy, i) = 3 &Mt WG (—iy, i) (AS)
of (117) satisfies the same theorems as g. Thus using
(A4) in (75), we obtain
Gt(_il ) = G;r("iz s i)
= 3 NG (—iy, 1) — Gl(—hy, 1)),
(A6)

These equations follow essentially from ¥, ¥, =0
over any surface bounding the collection. In addition,
we have {§, ,¥,}, = 0 which led to the “reciprocity”
relation of (131), i.e.,

Gt(_i19 iz) = g;r(_izg i)
+ E/feik(p—lz)-bug'*;l'(_p, il) ¢ Gs(p’ i2) dQ/27T,
(A7)
as well as the result obtained by interchanging and
transposition:

G;r(—iz, il) =~§(—i1 s iz)

+ 3 [T, ) - gi—p. 1 42
(A8)
Subtracting (A8) from (A7), we obtain

Gt(_il’ ip) = G;r(_iz, ip)
+ zlfeikn.bu[e_ih'b“g;r(*p* il)Gs(ps i2)

— e MbaGT(p, i) - G(—p, iy)] dQ/2. (A9)
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Similarly from {¥;,¥,}, = 0 we obtain
Gt(—'ila i2) = G;r(—iz’ il)
+ foeikb‘bta [e_ikg'qu;r(_p’ i)Gs(pi i2)
— e duGT(p, i) - G (—p, ip)] dQ[27, (A10)

which we may reduce to (A9) by substituting (A7)
for GF(—p).
The above “reciprocity relations” follow from
{P1, P} = {‘;Fl,l?z}c = {fx ,1?2}t = {?1 ,l?z}t =0,
(Al1)

where ¢ indicates the surface that isolates scatterer ¢
from the others, and ¢ indicates a surface around the
whole collection. We may also regard the theorems
for lossless scatterers that follow from

{'Pf, Po} = {‘F:’ ¥y} = {'7’:" ‘?2}: = {111';" ¥} =0,
(A12)

as “‘reciprocity relations.”
The first form of (A12) yields (79), and the second
yields (79) with g replaced by the compound amplitude

G. Using (A5) in theorem (79) for G, we obtain
Gif, i) + GI (3, iy)
= — 3G, ip) — Gy, iy)Je™*ir"bn
_ 2—1—” f (Gl (0, 1,) - G o, iy)
3G G

+ 337G G e O mmtivbati b g (A13)

where b,,, = b, — b,,, etc. In the forward direction
it =i,=1i, =1if =i for the class of scatterers
such that G%(o, i) = G{(i, 0) we have

—Re G(i, i) = Re X' G (i, i)
1 ~ ~
+ f [GFG, 0)- Go, i) + X' G} - G,
+ 336, Gt 4Q. (A14)

We consider a special case of (A14) corresponding to
two simple scatterers in (163)ff, and have considered
other special cases in the papers on periodic and
random distributions cited in Refs. 4 and 5.

The third form in (A12) yields

Nk stgr s |
Gi(l’;’ 12) + g:(lz s 11) = - 2—7T fg:(o’ ll> * Gt(O, lg)on

1 ’ ) ja)bys & . ~ .
— L3 e glgn 1y 6.1 a0, (A1)

in which we may specialize to forward scattering and
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use (75) for § to eliminate Re g(i, i). Finally the fourth
form of (A12) yields

G, ip) + Gdy, 1)
= — 2—1- fG:(O, i) Gt(o’ ip) dQ),

_ i z,J\eik(p—iz)‘bu Gz(p*’ il) . GS(P, i2) dQ

,
_ Ly o iy 6010 0]
(A16)

For forward scattering and G*(o, i) = G(i, 0) we have
—ReC (i, i) = - fG‘*(i, 0) - G(o, i) dQ,
‘ 47
* zi Re Z'f SHODRGHG, p) - G(p, 1) dQ. (ALT)
ko

We consider special cases of (A17) in the papers on
periodic and random distributions cited in Refs.
4 and 5.

APPENDIX B. SCALAR DIPOLES

In the previous developments of the analogous
scalar problems (Refs. 1 and 3), the case of two
different monopoles was used as the simplest illus-
tration. For the present electromagnetic case, our
discussion of two electrical dipoles as in (191)ff
provides the dyadic analog of the previous results for
monopoles: i.e., if we replace the dyadics by appro-
priate scalars we again get the earlier results. Thus the
scalar version of (191)ff is

u:t: = aOih(.krj:)’
(1 + u$e¢i25)(p:t
1 —uu_

_ I+ agem™®h(2kb)]¢*

1 — afagh?®

U, = u 0%

— ik
p=e,

Ot = (p:t + ui(D:F -

; (B1)

where h = h{Y for the three-dimensional problem
[see Ref. 3, Eq. (63)], and h = H{Y for the two-dimen-
sional problem [see Ref. 1, Eq. (71)].

The corresponding scalar problems of symmetrical
dipoles,

u = iHP(kr)a,(2) cos (0 — 6)g, @ = €™,
u = ihV(kr)a,(3) cos (6 — 6)p,

(B2)
(B3)
where (B2) and (B3) correspond to two dimensions
and three dimensions, respectively, were considered by

separations of variables.»® The normalization of the
scattering coefficients a,(2) and a,(3) is here chosen so
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that for lossless scatterers, we have —Re a,(n) =
nla(n)2, e.g., for » =0 at the surface, we have
a, = —2J1/H, and a, = —3j,/h,. The present dyadic
development for two magnetic dipoles (204)ff suggests
an analogous development for generalizing the scalar
results to two arbitrary dipoles.
We rewrite (B2) and (B3) in the single form
u=v.Vp=—(ak?)}Vh)- (Vg)
= —(a/k®)[kh o] - [iki]
= —iah'¢(i - 0), (B4)
where £ is either H{V or AV, and h' = 9, h(kr) is
either —HY or —A{V; similarly a = a;(2), a,(3). We
may now proceed essentially as for (205). Thus for
two dipoles we use

Us=v, -V(¢g* + U= v, . VO*,
v= —(a/k*)Vh,
D= = g* 4 vE. VDT,

(BS)
(B6)
Taking the gradient of (B6), and eliminating V®+ from
the right-hand side, we obtain the analog of (207):
VO* = [[ — W Wil [Vg= + WE.Vg . (B7)
We have

VY = —(a/k?)VVh
= a[bbh{ + (I — bb)h,/p]

= a[bbie + (I — bb)H], p = 2kb, (BY)

where £ is either AV or H{V, and h, is either AV or

H®. Thus VvZ.Vvi =a,a [BbJe* + (I — bb)H?),
and

(I — Vv Wyt = bbE(J) + (I — BH)E(H),

E(X)=1/1 —a.a X, (B9)
Vo* = [bbA(Ie) + (I — bH)A(H)] - Vo =*
=P.Vgtfa,,
* TFi20
A(a*, ) = Mf_: , (B10)
1 —a,a ¥

where P, are the multiple-scattered moments.
Substituting (B10) into (B5), we obtain
U,=v, P -Vo¥la, ~ h(kr)et"*2G_, (Bl1)
where the multiple-scattered amplitudes equal
G (0,iy=0-P-i
= o [bba_ A(a¥, ) + (I — bb)a, A(a¥, H]-i.
(B12)

(Note the shift in location between H and J type
functions from axial to perpendicular components as
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compared to vector problems in the text proper; this
is in accord with the relations between, e.g., acoustic
pressure dipoles and the electric functions in the text.)

If we express (B12) in terms of the appropriate
two- and three-dimensional special functions, we
obtain the previous results [(85) of Ref. 1 for circular
cylinders, and (69) of Ref. 3 for spheres].

To generalize the above to arbitrary dipoles, we
replace v in the above by

v=—(/k)Vh-p, (B13)

so that
u=—1/k)Vh-p:-Vo =ihgo-p-i, (Bl4)

where, e.g., p may be constructed from the known
approximations for elliptic cylinders and ellipsoids.
For the case where the principal axis of j, and j_ are
parallel (i.e., essentially as in the text) we obtain (B11)
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and (B12) with P replaced by
Pi = péi:A(PEZF ’ H)éé + pnj:A(PtFF’ H)ﬁ";

+ praA(per. 1, (B19)
where the & term is to be dropped for two dimensions.

We could also extend the above to all moments by
working with

u(n) = (L h) @ p, ® (L,p); n=2,3. (BI6)
Thus for monopoles
L=1, p=a. (B17)
For dipoles
L=V/ik, ®=- p=/(ab). (B18)
For quadrupoles we have
L,= (i+ nV—Z), ® =: p,=(abed)/(n — Dn,
k (B19)

which represents u as the scalar resulting from
double-dotting a tetradic® fore and aft by dyadics.
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The irreducible Hermitian representations of the Lie algebra of the homogeneous Galilei group were
first constructed by using the method of the maximal compact subgroup. The same representations were
then obtained by contracting the irreducible representations of the homogeneous Lorentz group. In the
Appendix, the faithful representations are given with the diagonalized generators of the velocity

transformations.

I. INTRODUCTION

HE homogeneous Galilei group § is a 6-parameter

Lie group. The corresponding 6-dimensional Lie
algebra consists of the linear combinations of the
elements X, K,, K;, J;, J,, and J; with the com-
mutation relations

[Ki, K;] =0, (LD
Vi, K1 = i€ Kom (1.2)
s 3] = i€ggmd - (1.3)

In the following, we construct the Hermitian
irreducible representations of this Lie algebra in a
basis which diagonalizes J2. We first use the method
of the maximal compact subgroup’; we then apply
the method of contraction to the irreducible represen-
tations of the Lorentz group.? In the Appendix, the
faithful representations are expressed with the
diagonalized X;, K,, and K.

II. HERMITIAN IRREDUCIBLE REPRESEN-
TATIONS OF THE LIE ALGEBRA OF G
In order to obtain the irreducible Hermitian
representations of the infinitesimal elements of G,
we proceed in two steps.
First, the general form of the matrices K;, K,, and
K is such that
Vi, P;] = i€iimP
is determined from the known expressions of the
irreducible representations of the J,’s.
Let us choose, in the representation space, a basis
labeled by the spin eigenvalues /, and [ is fixed by the
1 We follow the way proposed, in the case of the Lorentz
group, by I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro,
Representations of the Rotation and Lorentz Groups and Their
Applications (Pergamon Press, Inc., London, 1963), Part 1, Chap. II,
Sec. 9. The method of the maximal compact subgroup has been
further extended by the Syracuse University group, particularly by
Jacob G. Kuriyan, Ph.D. thesis, Syracuse University (1966).

2 E. Indnii and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 39, 510
(1953); E. J. Saletan, J. Math. Phys. 2, 1 (1961).

eigenvalues m of J;. We also introduce a third
parameter 7 to distinguish between the subspaces
with the same /; however, such a parameter is not
necessary in the present case, since we restrict our-
selves to irreducible representations; for these repre-
sentations, any / appears at most once. We then have

Joll, m)Y = mil, m), 2.1)
JolbmY =al o [L,m+ 1), 2.2)
J_|l,m)y = |l,m— 1), 2.3)

where
() =+ ml—m+1), (24
Jo=J+ iJ,. (2.5)

The states |/, m)’ are normalized to one; later on, we
change this normalization.

Now, if we want to obtain the general matrices
representing K;, K;, and K submitted to conditions
(1.2), we can use the Wigner—Eckart theorem,?
according to which the matrix element

s m'| T(1, q) | j, m)
of the gth component of the tensor of first rank
(= vector) T (1) is given by
Gm' T, g) 1 j, m)
= ()L g, jym L, mhIQ) + DY
Grrmip, @6
where ¢ takes the values 1, 0, —1, and
(g, j,mll,jj,m"

is the usual Clebsch-Gordan coefficient. Equation
(2.6) gives the expected result if we put

T, =K, =K+ iK,, Ty=Ki,

T,=K =K, —iKk,. (2.7)

3 See, for example, A. R. Edmonds, Angular Momentum in
Quantum Mechanics (Princeton University Press, Princeton, N.J.,
1957).
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However, we prefer to follow here the notation of
Gel’fand, Minlos, and Shapiro! in order to make use
of their results on the Lorentz group. These authors
have shown that, if

Kgll, m) = ¢,y m I, M"Y, (2.8)
we have
Crimm = cl’,l;mam‘m’
Cr1,pm = Cz—l,l(l2 - mz)%’
Crrm = Gl + 1) — mz]é,
if [I'=1>1,

Crim = €, M.

Now, let 4(/) be given by
1 3
h(l) = (l—_ll: cr+1.r/cr—1,r) H

with /, being the smallest weight involved in the
representation. If we replace the states |/, m)’ by the
states

(2.9)

cl’.l;m = 03

(2.10)

|l, m) = h(]) |I, m)’, (2.11)
and if we define 4; and C, by
A4, = —ic,;, Cy=[h(D)/K(1 — DN—Der,, (2.12)

we obtain for K;, K,, and K_ the representation
quoted in Egs. (1.1), (I.4), (1.5), and (1.6) of Table I.
Js, J., J_ are still given by (2.1), (2.2), and (2.3) with
|I, m)" replaced by |/, m).

What remains to be done is the determination of
A4, and C, by taking into account the relations thac

[K5, K, ]=0, [K,,K]=0,

and that the representation is Hermitian and irreduc-
ible (for K;, J,). This is the second step of our
procedure.

By following the method of Gel’fand, Minlos, and
Shapiro! for the Lorentz group, we obtained, after
lengthy calculation, the results that the irreducible
Hermitian representations are characterized by two
numbers /, and /;. J; is the smallest weight involved
in the representation. (—/2) is the value of the Casimir
operator K2 + K, K_. In the representation (/,, /),

A= ilh[I(1+ 1), €, = =171 — AP — DE,
where /; is either a pure imaginary number or zero.

Case I: I, is the pure imaginary number. In this
case, the representation is infinite dimensional, / takes
the values [y, [y + 1, {, + 2, * - - . The representation
is single-valued (double-valued) if and only if /, is an
integer (half odd integer).

Case II: I, = 0. The representation is finite. Since
A, and C, are equal to zero, the translations are

JACQUES VOISIN

trivially represented and the representation is un-
faithful. It coincides with the irreducible representation
I, of the rotation algebra.

III. § AS A CONTRACTION OF THE
HOMOGENEOUS LORENTZ GROUP €

We are going to obtain the irreducible represen-
tations of § by considering this latter group as the
contraction of the homogeneous Lorentz group £
with respect to the rotations.

The group £ has six infinitesimal operators M,
K, corresponding to rotations in the planes (i, k)
[[,k=1,2,3] and (;,0) [i = 1,2, 3], respectively.
The commutation relations, in the usual normal co-
ordinate system, are as follows (with J, = M3 + iMy,,
J. =My —iMy, J3= My, K=K, +iK,, K=
K, — iK,, and K,):

Vi, Jsl=—J,, V_.Dsl=J_, [J,,J ]=2,,

[K+,’ J+] =[/_,K]= [Ja’ K;] =0,

[J+, K] = _K+, V-, K] = K_,

V., K]1=—-[J_,K,]=2Kj,

[K+’J3]=—K+’ [K—’J3]=K—’
K., Ksl=J,, [K ,Ksl=—J_, [K,,K ]= —2J;.
3.1)

A. Irreducible Hermitian Representations
of the Lie Algebra of

The representations of the generators Jy, J,, Kj,
K, of G and those of the generators J3, J,., K;, K,
of £ differ by nothing other than the values of A4,
and C;.% In both cases, Eqs. (1.1)(1.6) of Table I are
valid. But instead of (I.7) and (1.8), we have in the
case of £ the following values for 4, and C,

A, = il JI(1 + 1),
C, = DI — B — BIEr — D,
The pair of invariants (/,/;) can take three
different types of values.

Case I: [, is a pure imaginary number, /, is an arbi-
trary integer or half-integer. The corresponding
representations form the so-called main series of
representations; they are infinite dimensional (/ = [,
Lh+1,0,+2--).

Case II: I, =0, I; is a real number such that
|4l < 1. The corresponding representations are in-
finite dimensional too (I=1/y,/,+ 1,---). They
belong to the so-called supplementary series.

Case III: I, = 0, I = 1. The corresponding repre-
sentation is finite. It belongs to the supplementary
series.

4 1. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Ref. 1.
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TaBLE 1. Lie algebra of 8.
Tyl m) =m|l, m) 18}
Johm =l |Lm+ 1) a1.2) @EE={+ml—m+1)
J_|Lmy=d|l,m—1) €3)
Ksllomy=C(lt —mt |l — L,m) — A |l,m) — Cpogl( + 12 — meR |1 + 1, m) 1.4
Kllmy=Cll—mi—m—DREl—=Lm+ 1)~ Al —m+m+ D] [Lm+1)
+Cnll+m+DI+m+ DRI+, m+ 1) s
K llbmy=—=Cll+ml+m=DR|I~1L,m+1)— Al +m—-m+ DE|,m-—1)
—Call=m+ DU —m+ DRI+ 1,m—1) (1.6)
1
Ay = ilghIQ + 1) an  G=—7 ¢ - BIEr -1 as)

Case I: I, = pure imaginary; l =ly, b+ 1, - lh = {

Casell: I, = 0; 1= 1,.

positive integer,

positive half odd integer.

B. Contraction of €

The rotations form a subgroup of £ with respect to
which contraction may be carried out in the sense of
Indnii and Wigner.? If we make the substitution

M:§=Mif’ ‘Ié=‘]3, J;._.=J:b,
or
(32)

K, =eK;, Kj=ceK;, K =eK,,

the commutation relations (3.1) lead, in the limit
e—0, to the commutation relations (1.1)-(1.3)
characteristic of the Galilei group.

Now, let us consider the irreducible Hermitian
representations of the algebra of € and from these let
us try to obtain representations for § by using the
contraction procedure. Relations (I1.1)«(1.3) in Table 1
remain unaltered under the substitution (3.2), but the
same is not true for (1.4)-(1.6), because 4, and C,
are replaced by

Ay = ilg(el)I + 1),
C; = (IO — )P — €Rjar — D). (3.3)

Now, let € go to zero. For the representations
belonging to the supplementary series (|| < 1), 4,
and C, tend to zero. Hence, the generators K,, Ky
are represented by the null matrix. For J;, J, we have
the representation (I.1)-(1.3) with either / = 0 if we
contract the finite representation (Jp = 0, [, = 1) of £
orl=0,1, 2, if we start from the representation
(I, = 0, || < 1). In the former case, the final repre-
sentation is irreducible (trivial one-dimensional repre-
sentation), in the latter case, it is reducible into the
representations' =0, =1, -+ of the rotation
algebra. ‘

On the other hand, in the case of the principal
series, we have two possibilities: either we keep /;
(and /) fixed, then 4, and C; tend to zero with ¢ and

we obtain a representation which is reducible into
the representations / =1/, =1, + 1, *~- of the
rotation algebra; or we let /; go to infinity (which is
allowed since, here, any positive value may be
accepted for |/;]) in such a way that
lim Le=E&

jal=o
=0

(3.4)

with E a fixed finite number; here we have again to
distinguish between two cases—if Z =0, 4, and C,
are zero at the limit and we are reduced to the case
considered above; but if Z 5 0, 4, and C; tend to
the nonzero limits

A, = ed, — iZLJI(l + 1), (3.5)
1= €C,— (iD[—EXE — BEL — D) (3.6)

with E a pure imaginary number. / can take the
values [y, {,+ 1, - ; the corresponding repre-
sentation is obviously an irreducible representation
of Type I for § [infinite (faithful) representation].

APPENDIX. FAITHFUL IRREDUCIBLE

REPRESENTATIONS OF THE ALGEBRA

OF § WITH THE DIAGONALIZED K,,
K,, AND K_

It can be derived from results obtained by Wight-
man® that the irreducible faithful representations of
the homogeneous -Galilei group can be written
(v = change in velocity or acceleration, R = rotation)
as

[U(v, BYY(q) = exp iSp - exp iq - vF(RIQ) (A])
with |q| a constant, .S the integer (half odd integer),
and ¢ the angle of the rotation R;'RRy-., about
e; R, is the rotation about the axis e;Aq/g by the
smallest positive angle between g and the unit vector
e, on the axis Oxs.

5 A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962).
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It is then possible to obtain the corresponding
representation for the generators by going to the
infinitesimal elements. We find

K, =gq,

iJ; = qx(0/0q93) — 9:(9/9g2) — iSlg:/(q + ga)},

iJy = q5(0/0g:) — q:(9/0gs) — iS[qe/(q + g5)],

il = 91(9/0q,) — 92(9/0q,) — iS. (A2)
The values of J; are obtained by computing the angle
of the rotation R;*1RRy-., for an infinitesimal R. We
use the 2 x 2 representation of the rotations and the
formulas®

Ry=27H1+ (@ L/ 41 + @~ L/g)
+ ilo - (LAD/q]}, (A3)
R(n, 6) = 1 + Lifs - n (Ad)
if 0 is infinitesimal
q = Rq=qcos 0+ (q-mn(l — cos 6)
— (A sin 6 =~ q — (nAQ)0.  (AS)

8 The general method used here is especially well explained by
A. J. Macfarlane, J. Math. Phys. 3, 6 (1962). See also J. M. Levy-
Leblond, J. Math. Phys. 4, 776 (1961).

Putting now
R'RRz-1, = 1 + }igo ‘w (A6)

we have

~ _n'13+n'(q/q) 9

= 1+ (q-ly)/q
Thus, we obtain the result (A2), since from (Al) we
deduce

[U@©, BY](q) = (I + iSp)[1 + 6(AY,) - n]¥(q)
(A3)

(A7)

if R is infinitesimal.
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This paper considers all resistive instabilities of a self-pinched cylindrically symmetric beam of
charged particles in a finite or an infinite Ohmic plasma channel. The problem is reduced to an ordinary
second-order linear differential equation for the longitudinal component of the perturbed electric field.
The equation can be solved for a uniform beam shape, yielding an implicit transcendental equation
whose roots define the various modes. We find that for each azimuthal ‘‘quantum number™ m there are
two infinite sequences of modes and two exceptional modes, except that some of these modes are
missing for m = 0, 1, and 2. In all modes we find stable oscillation at very low and very high frequencies,
and instability at intermediate frequencies, the growth rates generally reaching maxima somewhat less
than the betatron frequency wg. The largest maximum growth rate is in the ““hose” mode (the only
exceptional mode for m = 1), where it is approximately 0.29 wg. For a general smooth beam shape,
the catalog of modes is similar to that for a uniform beam, except that there also appears a continuous
spectrum. It is also proved for general beam shape that at low frequencies the “hose” dispersion
relation becomes the same as that derived earlier under the assumption of rigid beam displacement;
this is not the case at higher frequencies.

I. INTRODUCTION

HIS article deals with the general resistive insta-

bilities of a self-pinched cylindrically symmetric
unmodulated beam of charged particles passing
through an Ohmic plasma channel. The modes are
characterized by the appearance in the fields and
currents of exponential factors

e'imae—iwteikz (l 1)

* Morris Loeb Lecturer, Physics Department, Harvard University,
Cambridge, Massachusetts.

multiplying various functions of r. The streaming
modes, with @ of the order of the plasma channel
conductivity o, have been adequately treated in
previous articles!; the present work deals only with
the resistive instabilities, with |o] < o.

What we hope to get for our trouble is a dispersion
formula giving k (or w) for general complex values of

1 E. A. Frieman, M. L. Goldberger, K. M. Watson, S. Weinberg,
and M. N. Rosenbluth, Phys. Fluids §, 196 (1962); earlier references
are quoted therein.



614 JACQUES VOISIN

It is then possible to obtain the corresponding
representation for the generators by going to the
infinitesimal elements. We find

K, =gq,

iJ; = qx(0/0q93) — 9:(9/9g2) — iSlg:/(q + ga)},

iJy = q5(0/0g:) — q:(9/0gs) — iS[qe/(q + g5)],

il = 91(9/0q,) — 92(9/0q,) — iS. (A2)
The values of J; are obtained by computing the angle
of the rotation R;*1RRy-., for an infinitesimal R. We
use the 2 x 2 representation of the rotations and the
formulas®

Ry=27H1+ (@ L/ 41 + @~ L/g)
+ ilo - (LAD/q]}, (A3)
R(n, 6) = 1 + Lifs - n (Ad)
if 0 is infinitesimal
q = Rq=qcos 0+ (q-mn(l — cos 6)
— (A sin 6 =~ q — (nAQ)0.  (AS)

8 The general method used here is especially well explained by
A. J. Macfarlane, J. Math. Phys. 3, 6 (1962). See also J. M. Levy-
Leblond, J. Math. Phys. 4, 776 (1961).

Putting now
R'RRz-1, = 1 + }igo ‘w (A6)

we have

~ _n'13+n'(q/q) 9

= 1+ (q-ly)/q
Thus, we obtain the result (A2), since from (Al) we
deduce

[U@©, BY](q) = (I + iSp)[1 + 6(AY,) - n]¥(q)
(A3)

(A7)

if R is infinitesimal.

ACKNOWLEDGMENTS

The author wishes to express his hearty thanks to
Professor E. C. G. Sudarshan for his kind interest in
this work and for critical discussions. The author
thanks Professor M. Dehousse for the hospitality
extended to him at the University of Bujumbura. He
also thanks Dr. J. G. Nagel for assistance with the
final form of the manuscript.

This research was supported in part by the U.S.
Atomic Energy Commission.

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8, NUMBER 3 MARCH 1967

General Theory of Resistive Beam Instabilities

STEVEN WEINBERG*
Department of Physics, University of California, Berkeley, California

(Received 1 June 1966)

This paper considers all resistive instabilities of a self-pinched cylindrically symmetric beam of
charged particles in a finite or an infinite Ohmic plasma channel. The problem is reduced to an ordinary
second-order linear differential equation for the longitudinal component of the perturbed electric field.
The equation can be solved for a uniform beam shape, yielding an implicit transcendental equation
whose roots define the various modes. We find that for each azimuthal ‘‘quantum number™ m there are
two infinite sequences of modes and two exceptional modes, except that some of these modes are
missing for m = 0, 1, and 2. In all modes we find stable oscillation at very low and very high frequencies,
and instability at intermediate frequencies, the growth rates generally reaching maxima somewhat less
than the betatron frequency wg. The largest maximum growth rate is in the ““hose” mode (the only
exceptional mode for m = 1), where it is approximately 0.29 wg. For a general smooth beam shape,
the catalog of modes is similar to that for a uniform beam, except that there also appears a continuous
spectrum. It is also proved for general beam shape that at low frequencies the “hose” dispersion
relation becomes the same as that derived earlier under the assumption of rigid beam displacement;
this is not the case at higher frequencies.

I. INTRODUCTION

HIS article deals with the general resistive insta-

bilities of a self-pinched cylindrically symmetric
unmodulated beam of charged particles passing
through an Ohmic plasma channel. The modes are
characterized by the appearance in the fields and
currents of exponential factors

e'imae—iwteikz (l 1)

* Morris Loeb Lecturer, Physics Department, Harvard University,
Cambridge, Massachusetts.

multiplying various functions of r. The streaming
modes, with @ of the order of the plasma channel
conductivity o, have been adequately treated in
previous articles!; the present work deals only with
the resistive instabilities, with |o] < o.

What we hope to get for our trouble is a dispersion
formula giving k (or w) for general complex values of

1 E. A. Frieman, M. L. Goldberger, K. M. Watson, S. Weinberg,
and M. N. Rosenbluth, Phys. Fluids §, 196 (1962); earlier references
are quoted therein.



GENERAL THEORY OF RESISTIVE BEAM INSTABILITIES

@ (or k). It is helpful to have in mind a more specific
problem of practical importance in experiments like
those at the Astron: Suppose the beam is tickled at
z=0 with a perturbation having a single real
frequency w and with m value and radial dependence
such that only a single mode is excited. The instability
grows if Imk <0, and at a point z downstream
the number of e foldings is z |Im k|. Our primary
aim is then to decide, for each mode, at which real
value of w there occurs a maximum in —Im & and to
calculate this maximum value. However, there are
conditions of “free growth” for which w and k take
complex values determined by a saddle-point con-
dition?; hence we really solve our instability problem
only when we understand the behavior of k(w)
throughout the complex w plane.

One of the resistive instabilities with m = 1, the
“hose” mode, has already been intensively studied®¢
under the assumption that the beam moves rigidly
from side to side. This assumption is expected to be
valid for very small w, or more precisely, when the
skin depth (c?/4wow)? is much larger than the beam
radius. However, the growth rate is also expected to
reach a maximum when the skin depth is of the order
of the beam radius, and in this most important case
we cannot rely on the rigid beam approximation.
Furthermore, the ‘“‘sausage” (m = 0) mode and all
higher modes depend for their existence on beam
deformation, so we could never hope to treat them all
until we learned how to take into account the per-
turbations in the individual beam particle orbits. In
this paper we discuss all m values in a unified way, with
no assumption of beam rigidity in any mode.

The simplifying assumptions made here are:

(1) Beam particles undergo no collisions. This
assumption is essential not only to our calculation but
also to the very existence of the beam. (For a high-
density beam moving very fast with respect to the
plasma, we might have to take intoaccount beam-beam
collisions without worrying about beam-plasma colli-
sions. In this case the instability could be treated
hydro-dynamically without looking at individual beam
particle orbits.)

(2) The unperturbed beam particles all have
velocities with the same z-component v. This assump-

2 This point is discussed in detail in Sec. XIIL

3 The original work on the “‘hose’ instability was done by C.
Longmire (unpublished) and M. Rosenbluth, Phys. Fluids 3, 932
{1960). See aiso Ref. 4, and unpublished work by H. Lewis, K.
Brueckner, G. Ascoli, H. Chang, S. Yadavalli, H. Singhaus, and
- R. Briggs.

4 The “hose” instability was discussed for general beam shape, with
emphasis on the effects of beam modulation, by S. Weinberg, F.
Math. Phys. 5, 1371 (1964).
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tion is made for simplicity, and does not appear to be
of critical importance in these modes.

(3) The particles in the unperturbed beam move in
circular helices® around the z axis. This assumption is
made so that a beam particle feels a simple harmonic
force from the perturbed fields. It could be given up,
but only at the cost of having to solve an additional
nontrivial second-order differential equation for the
perturbed particle orbits.

(4) The parameters of the beam and plasma are
such that

ldnoav L 1, (L.2)
wgafv L 1, (1.3)
and we only look for modes with
lwl a KL v, (1.4)
ke K 1. (1.5)

Here, o is the plasma conductivity, ¢ is the speed of
light, a is a characteristic beam radius, v is the z
component of the unperturbed beam particle velocity,
and w; is a typical value of the unperturbed beam
particle gyration frequency around the z axis. All
previous work on the hose and sausage modes has
been based on the assumptions (1.4) and (1.3),
because they lead to an enormous simplification in the
derivation of the dispersion relation and in the
dispersion relation itself. The point of the assumptions
(1.2) and (1.3) is that we expect and do find the fastest
growing modes to be such that

lw] & c*f4matao,

(1.6)
(1.7

and in this case (1.2) and (1.3) are necessary and
sufficient for (1.4) and (1.5). {As an example, nominal
values for the beam experiment at Astron® are
o~ 10%sect, a~1lcm, w,~9 x 108sec™?, and
v = ¢, so the left-hand sides of (1.2) and (1.3) take the
values 0.002 and 0.03, respectively, and our assump-
tions are well justified.] It should be noted that (1.4)
and (1.6) yield
|| /4o ~ |wPa?c? L 1,
and, as already remarked, this excludes the streaming
modes from our present consideration.
In Ref. 4 we first found the “exact” hose dispersion

relation, and then applied (1.2)-(1.7), at the cost of
considerable clarity and physical insight. Here we use

o — kvl ~ wg,

5 This assumption was used in unpublished work by H. Lewis to
obtain the “‘sausage” dispersion relation for a uniform beam. Our
result for this case [Eq. (8.12) with m == 0 and R = o0] is identical
with that previously obtained by Lewis.

8 N, Christofilos, private communication.
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(1.2)~(1.7) from the beginning; it is hoped the reader
finds this an improvement.

The first half of the present paper (Secs. II-VI) is
devoted to a derivation of the dispersion relation as
the condition for the solubility of an ordinary second-
order differential equation [Eq. (6.1)] for the z
component of the electric field. In Sec. II we describe
the unperturbed beam. In Sec. III we use assumptions
(1.2)(1.7) to calculate the perturbed electromagnetic
fields and forces generated by a given perturbation in
the beam charge density. The response of a beam
particle to these forces is calculated in Sec. IV, and in
Sec. V we use the results of Sec. IV to calculate the
perturbed beam charge density. Putting this into the
simplified field equation derived in Sec. I1I, we emerge
in Sec. VI with our fundamental equation (6.1).

It becomes immediately apparent upon inspection
of Eq. (6.1) that in each mode the dispersion relation
has a basic scaling property, which can be expressed
in the formula

Q® = (0 — kv)* = w;idmica*o/c?). (1.8)
The quantity A% is for each mode a dimensionless
function entirely determined by the shape of the beam
particle number density n(r) (and by the precise
definitions chosen for a and w,) except that for a
finite plasma channel radius R the A? functions
also depend on the fixed parameter a/R.

The second half (Secs. VII-XIII) of this paper is
concerned with the construction of a catalog of modes
and a detailed examination of the properties of the A2
functions in each mode, leading to an estimate of the
forced and free growth rates. In Sec. VII we check’
that the rigid beam “hose” dispersion relation derived
in Ref. 4 for general beam shape emerges here as the
limit of Eq. (1.8) for w K c*/47oa? in the case m = 1.
In Sec. VIII we specialize to the case of a uniform
beam, and derive the dispersion relation as an implicit
transcendental equation

Jolgq af 7})) 2
et B
n(-’ wlaajn) laa

_ HY(qa))},,(qR) — Ji(qa)H (L) 1 (qR)
H(Ga)) e 1(qR) — J,(a@)H{ 1 (gR)’

? The existence of a mode, for which £} —>0 as w - 0, can be
inferred from the translational invariance of Maxwell’s and Newton’s
equations, and the uniformity of the background plasma. The beam
could be anywhere within the plasma channel, and its being at one
position. rather than ahother “‘breaks” this translational symmetry.
There is a theorem, known in quantum field theory as the Goldstone
theorem, which states that whenever the equations (i.e., the

(1.9)

Lagrangian) of a system have a symmetry which is not shared by

some solution of these equations (in our case, the unperturbed
beam), this solution must admit perturbations (in our case, the hose
mode) which allow arbitrarily small wavenumber and frequency.
See J. Goldstone, Nuovo Cimento 19, 154 (1961), and J. Goldstone,
A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962),
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where a is the beam radius, R is the plasma channel
radius, and

q* = 4miow/c® (Img > 0),
24 — m?® — 1Y)
(4 — m® — 13 — 4am*p®’
2= 2m*(1 — 772)(1 _ 278 )
R —m? 4 —m? — 22/
2 = Qo) = (0 — kv)*lw}.

Then in Sec. IX we catalog the solutions of this equa-
tion for A2 as a function of ¢2 It is found that for each
m there are generally two infinite sequences of modes
Apy and B, and two exceptional modes C,, and D,,,
except that the modes B,,, Gy, Dy, Dy, 4,,, C, are
missing. The “hose” mode is C;. The high- and low-
frequency behaviors of A2 in all these modes is derived
in Appendix B and by machine calculations,® and
summarized in Sec. IX, Tables 1 to 3, and Figs. 1 to 5.

In Secs. X-XIII we return to the case of a general
smooth beam shape. We show in Sec. X that there
occurs here a continuous spectrum? similar to that
found in Ref. 1 for the streaming modes. That is, there
are real positive (2 values [in bands given by Egs.
(10.12)~(10.16)] each of which allows a solution of Eq.
(6.1) for all real or complex w. The solutions contain
logarithmic and step function singularities, but the
location of the singularities depends on 2, so that
the fields are nonsingular when integrated over a
range of Q2 The continuous spectrum includes only
stable oscillation frequencies (i.e., Q real) so it is of no
practical importance here; this is in contrast with the
streaming modes,! for which the continuous spectrum
is unstable and is in fact the whole spectrum. In Sec.
X1 we treat the discrete modes, for which Q is a
function of w, and we show that they correspond,
more or less, to the 4, B, C, and D modes found in
Sec. IX for a uniform beam, The limits of Q as 0 —
and (for A, B, and C; modes) as w — 0 are shown to
be the same as for a uniform beam, except that w,
must be replaced with the particle gyration frequency
at r =0; however, the way that Q approaches its
limit as & — oo depends sensitively on the beam shape.
The analytic properties of the function Q(w) are
discussed in Sec. XII and used to construct approxi-
mate dispersion relations, which for the uniform beam
compare rather well with exact computer results.

We conclude in Sec. XIII with a discussion of how

=1-

8 Computer results for the most important modes were very
kindly supplied by S. C. Wright.

® We are very grateful to K. M, Case for pointing out the existence
of a continuous spectrum in this problem. The continuous spectrum
found here is very closely related to that of the streaming modes,
discussed in Ref. 1.
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the dispersion relation is to be used in calculating the
number of e foldings under conditions of forced
growth and free growth. In the former case w is a
fixed real tickling frequency, and 4% in Eq. (1.8) is
complex, so there are two roots, one growing and one
decaying. In all modes A%0) and A%(cc) are non-negative
real numbers, so we may expect Im 4 to reach its
maximum when the argument of 4% is of order unity,
at which point |[Re 4] and |Im | are also of order
unity. [Inspection of Eq. (1.8) then explains why (1.6)
and (1.7) characterize the most rapidly growing modes.]
Calculation® of the maximum growth rates for the
uniform beam (with R = 24) reveals that they all lie
between 0.09w; and 0.12w;, except that the m =1
“A4 modes” have maximum growth rate 0.17w,, the
m = 0 “sausage” modes have maximum growth rate
0.26w,, and last but not least, the m = 1 “hose” mode
has maximum growth rate 0.29w,.

The saddle-point method is used at the end of Sec.
XIII to treat the case of free growth. It is found that
at a fixed distance vz — z behind the disturbed part of
the beam, the saddle point moves as z — oo to @ — 0,
and the number of e foldings grows as

# op ZNHFENFD (N 1 ) )

if the beam density n(r) approaches n(0) + O(r*Y) as
r— 0. This conclusion seems to indicate that for
asymptotic free growth (or more generally, for all
large w) the instability is worse for a smooth beam
shape (N small) than for a uniform beam (N large).
However, it is necessary to take this conclusion with
some reservations, because for a smooth beam shape
the particles participating in the instability are limited
for large w to a small area near the beam axis, and the
instability may not matter. A general treatment of this
phenomenon (including the effects of noncircular
orbits) seems called for, and may be the subject of a
future article.

II. UNPERTURBED BEAM

The average velocity of the beam particles is in the
z direction, with magnitude v, and their number
density at a distance r from the beam axis is n(r).
Therefore the unperturbed magnetic field points in the
+ 0 direction, with magnitude

dmev | "
Boo(")=‘1:_(_ .

r'n(r') dr'. @n
We assume the plasma to maintain local charge
neutrality, so the force on a beam particle is solely due
to the magnetic field. Assuming the beam particles to
move on circular helices, their velocity has no r
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component, so the magnetic force points in the —r
direction, with magnitude

—Fo(r) = (ev]c) Bog(r).

If the beam particles have angular frequency o(r), we
must equate (2.2) to the relativistic centrifugal force
MyoX(r), obtaining for the angular frequency

2.2)

4me*v®
Myc*r?

oXr) = J; Tr'n(r-’) dar', 2.3)

with
y = [1 — v¥c?] 3.

For instance, if the beam density n(r) is uniform, Eq.
(2.3) gives just the familiar betatron frequency

o*(r) = wj = 2me*v’n[Myc® (inside beam). (2.4)

However, we do not restrict ourselves to the case of a
uniform beam.

Equation (2.3) has two roots for «(r), corresponding
to the possibility of both clockwise and anticlockwise
helical orbits. We usually expect both to occur with
equal probability, and so assume in this article, though
it would be a trivial matter to extend our analysis to
the case of a polarized beam.

II. PERTURBED FIELDS AND FORCES

Our unperturbed system has a translation symmetry
in each of the coordinates 6, z, and . Therefore we
may assume that the cylindrical components of the
perturbed fields E,, B, and perturbed current J, take
the form

™21t ¢ functions of r.

3.1

Here, m s an integer, with m = 0 for the sausage mode,
m = +1 for the hose mode, etc.

The exact Maxwell equations can therefore be
written as

(m[PE,, — ikEyp = (i0/0)By,,  (3.2)

ikE,, — E}, = (io/c)B,s, (3.3)

(1/r)(rEyp) — (im[r)E,, = (iw[c)B,,,  (3.4)

M B, — kB, = (“’"’—-_——“")El, + 47, 39
r [4 7 (4

ikB,, — Bj, = (i’i"—“ﬂ)Ew + 20, ()

(o C
Loy —Mp, = (171‘-’—“——"”)19 + 4. @
r r [ C

(We have set the plasma current equal to oE,;; a prime
means 0/0r.) It is very convenient to use (3.2), (3.3),
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(3.5), and (3.6) to express the transverse field com-
ponents in terms of E,,, By,, Ji,, and Jyq:

@By = =22 B, 4+ kB, — Y27, (38)
re c
—mk io _, 4riw
q°Eyg = —— Ey, — — B, — —%Jw, (3.9
r C [s4
g8, = (T2 (Mg, 4 i, 4 27Ky,
I r C
(3.10)
¢*Byy = —'(M)E’lz - @BM _ MJIH
(sl ¥ [+

(3.11)
where ¢ is the transverse wave number, defined by
g* = —k? + (iwfc)(dmro — iw). (3.12)

Equations (3.4) and (3.7) give decoupled equations for
E,, and By,:

19 0 m
UL A LA ) E
rarrar 1z rz 1z+q iz
4rr (.2 imk k9 )
= T+ Jip + = — 1y, ),
g + k%) "t P rarrl
(3.13)
10 @
v o lf—n’;Blz'i'quz

- l:_im‘]lr + g— rJla]. (3.14)
or

We now invoke the approximations discussed in the
Introduction. Specifically, we look for modes with

lo] a KL v, (3.15)
|kla L 1, (3.16)
lgla~1, (3.17)

where a is a characteristic beam radius and v is the
unperturbed beam particle velocity z component. By
Eq. (3.17) we do not necessarily mean to exclude the
possibility that |g| @ ~ 0.01 or |g| a ~ 100, but only to
require that |g| a is much closer to unity than is || a/v
or |k| a; however, the fastest growing modes in
fact turn out to be those with |g] @ quite close to unity.

From (3.15)—(3.17) we see that |g| >> k| and |¢| >
Jew/cl, so (3.12) now gives g as

(3.18)
Note that (3.15) and (3.17) are consistent only if
3.19)

q® = dmiow/c?.

cEfdmoay K 1.
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We also find that o ~ ko] is of the order of the
typical betatron frequency w;, so (3.15) and (3.16) are

consistent only if
wgafv L 1. (3.20)

We have already made assumptions (3.19) and (3.20)
in Sec. L.

We next simplify the electrodynamic equations
(3.8)~(3.14), using (3.15)—(3.20), and estimating

g~ 0/0r~1jr~1/a 3.21)

everywhere in these equations. Our starting point
is the tentative assumption that the perturbed beam
particle velocity v; has comparable r and 6 com-
ponents, and a z component at most comparable with
these. This ansatz is verified later in this section; it
actually turns out that v,, is much less than »,, and
v19. The perturbed beam current components are

Jy, = envy,, (3.22)
J1g == envy,, (3.23)
Ji. = envy, + enyp, (3.24)

where n is the unperturbed beam density and #, is the
perturbation to n. Charge conservation gives

+iwen, =V« J,

or
+iQny = V - (nvy), (3.25)

where
Q= w— ko (3.26)

Hence vy, and vy, may be estimated as of order

vy ~ Qanyfn, (3.27)

and so
Ji, = evny, (3.28)

the other term in (3.24) being smaller by at least a
factor |Q|a/v. [Equations (3.15) and (3.16) imply
18] a & v.] Also (3.27) lets us estimate the transverse
perturbed beam currents (3.22) and (3.23) as being of
order

Jir ~ Jig ~ eQan, . 3.29)

Formula (3.28) and the estimate (3.29) show that the
Ji, and Jy, terms on the right-hand side of Eq. (3.13)
are smaller than the J,, term by factors of order
(Qa/v)(ka), and hence may be neglected. Recalling that
Ig] > {k|, we may thus simplify Eq. (3.13) to read
19 ¢

-=r

ror or

—drievw
1 .
C2

(3.30)

2
m
E,, — _r? E;, + qulz =

We may also estimate E,, as being of order

E,, ~ (4mevwa?/c®n, . (3.31)
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Using (3.29) and (3.14), we may estimate B, as being
of order
By, ~ (47eQa?[c)n, . (3.32)

Using (3.29), (3.31), and (3.32) in (3.8)-(3.11) yields
the estimates ‘

E,, ~ E,~ (dmewQa®/cHn, or (dmewkva®/cPn,,

(3.33)
By, ~ By ~ (dmevalc)n, . (3.34)

Also, (3.10) and (3.11) now simplify to
B,, = (mc/wr)E,,, (3.35)

B,y = (ic/w)E;,, (3.36)

the terms neglected being smaller by a factor ka(Qa/v).

We are now in a position to decide which are the
important forces on a beam particle. A particle in an
unperturbed orbit of radius r feels forces due to the
perturbed electromagnetic fields, given by

Fy, = elE,, + (ar[c)B;, — (v[c)Byy),
Fip = elEyg + (v/C)By,], (3.38)
Flz = e[Elz - (G"/C)Bl,], (339)

where « is the angular gyration frequency at r. We
have already assumed that the typical value w; of «
is much less than vfa. Our estimates (3.31)-(3.34) of
the field magnitudes then lets us replace (3.37) and
(3.38) by

Fy, = —(ev[c)Byy = (—iev/w)E,,  (3.40)

Fig = (ev[c)B,, = (evm|wr)E,,, (3.41)

the neglected terms being smaller by factors of order
(wafc)(Qalc), (walc)ka)(v/c), or (Qalv)wafv). And
F,, is smaller than F,, and F,; by factors of order
(wafv) or (wgafv), justifying our previous statement
that vy, is smaller than v,, and vyy.

The important results of this section are the differ-
ential equation (3.30) for the E,, generated by a given
n;, and the formulas (3.40) and (3.41) for the forces
in terms of E,,. To Eq. (3.30) we must also add a
boundary condition on E;, for r — oo, If the plasma
conductivity o stays constant everywhere, then outside
the beam we must require

3.37

It

E,, oc HV(gr), Imq > 0. (3.42)

The boundary condition for finite plasma channel
radius is worked out in Appendix A.

IV. PERTURBED BEAM PARTICLE ORBITS

The unperturbed orbit of a beam particle can be
characterized by three parameters, the radius r and
the values g and 4 of 6 and z at 1 = 0. The correspond-

619
ing perturbed orbit is then given by equations
F(t; roh) = r + DJ(t; reh), 4.1)
0(t; rph) = a(r)t + @ + rDy(t; roh),  (4.2)
2(t; roh) = vt 4 h. (4.3)

Here D, and D, are infinitesimal perturbations; we do
not perturb z because we have already seen that the
perturbed force is almost purely transverse.
The exact equations of motion are
¥ — 0% = F, 6, 2, )My, (4.4)

70 + 276 = F(7, 6, 2, 1)/ My, (4.5)
with My the relativistic beam particle mass. The
zeroth-order solution has already been discussed in
Sec. I1. The first-order terms give
Dy(t, rgh) — oX(r)D(t; rgh) — 2a(r) Do(t; reph)

= —[re®()] Dt; riph)

+ (MyyFy, [r, a(r)t + @, vt + h, 1], (4.6)
Dy(t; rgh) + 2a(r)D,(t; roh)
= (My)Fylr, a(r)t + @, vt + 1, 1]. (4.7)

On the right-hand side of Eq. (4.6) we have used the
fact that the unperturbed radial force is —Myra¥r).

We have already observed that the perturbed forces
have the functional form

F.(r, 6, z, 1) = c"™%e®%'F, (r) (4.8)
with 1 == r or 0, and F,(r) and Fg(r) two infinitesimal
functions of r. Then
Folr,or)t 4+ @, vt + h, 1]

=e—i[nwma(r)]teikheim(pfn(r), (49)

where again
Q= w — ko (4.10)

We may therefore conclude that the r and 6 com-
ponents of the beam displacement take the form
Dn(t; @, h) —_ e-z‘[ﬂ—mzx(r)]teikheimwion(r)‘ (4.11)
Inserting (4.9) and (4.11) in (4.6) and (4.7), we find
{=1Q — ma(D))* + re®()}Dy(r)
+ 2ia(r)[Q — ma(r)]Dy(r)
= (My)'F(r),
—~2i(N[Q — ma(H]D(r) — [Q — ma(r)}*Dy(r)
. = (My)"'Fy(r).
The solution of these equations is

FAr) + 2i(r)Fe(r)[Q — mar)]

MY = 4y — 19 — matrF + r(r)”
[—2ia(r)3",(r)/[ﬂ — ma(r)] ]
MyDetr) = + (1 — {re¥(N/[Q — ma(NFNFelr)

40?(r) — [Q — ma(r)] + ra®(r)
{4.13)
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The forces are given in Sec. III in terms of the
perturbed electric field E,,, which takes the form

E(r, 8, z, t) = ™™ e g(r). 4.14)
Hence from (3.40), (3.41), (4.8), and (4.14) we have
FAr) = (—iev]w)8'(r), @.15)
Fo(r) = (evm]wr)8(r). (4.16)
Using (4.15) and (4.16) in (4.12) and (4.13) gives

—liev &) — _2mar) r1E(r)

D(r) = My“j( Q—ma() ) @17

4o*(r) — [Q — ma(r))? + ra®(r)

ev | —2u(r) o,

Myw{Q — me(r ¥

ro?(r)
D) = + [l Q- ma(r)]2:|( )8(r)}
e 4o?(r) — [Q — ma(D] + roa®(r)
(4.18)

V. PERTURBED BEAM DENSITY

The driving term for the perturbed fields was shown
in Eq. (3.30) to be the perturbation n, in the beam
particle density. We must now express n, in terms of
the beam displacement functions found in the last
section.

The total perturbed beam density 7 =n + n; is
given by integrating the number n(z): ds dp dh of
beam particles between z, ¢, h, and 2 + dz, ¢ + dy,
h + dh, times appropriate é functions:

ri(rfzt) =fn(¢)¢ dr de dho[F(t; rph) — 7]

x O[0(t; rph) — O16[2(t; 29h) — z] (5.1)

with 7, 6, and 2 given by (4.1), (4.2), and (4.3). To first
order in the D’s, the 6 functions give

2=r—90t;r, 0 — «(r)t,z — v1],
=0 — a(r)t + < (ND,[t;r, 0 — a(r), z — vt]

(5.2)

~— r 1 Dglt;r, 0 — a(r)r, z — v}, (5.3)
h=z—ut (5.4
or using (4.11)
b= r — e 0tk (v), (5.5
@ =0 — a(r)t — e "%e™et=
X [F'Dy(r) — a'(MD,(1)]. (5.6)

The Jacobian of the transformation rfz — 2gh is
the determinant

1—e' DHr) —ime' "D, (r)  —ike' 'Dy(r)

= [—o'(Nt— e "Dyg(r) 1—ime' 'Dyp(r) —ike' "Dry(r)|,

0 0 1

o(rph)
0(r0z)
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where we have used the abbreviations

e( ) — ewlwtezkzezmﬂ

Dyo(r) = r'Dy(r) — &' (NED(r).
Keeping only terms of first order in D, we find that the
to/(r) terms cancel, giving

a(2@h)
o(rfz)

=1- e”‘ze"moe_"“’t{ﬂ');(r)' + im CDa(r)} .
r
(5.7)

Applying (5.5)~(5.7) to (5.1), we find the beam
density
o(vph)
d(r0z)

ri(rfzt) = {ra(r) — [rn(r)] e*%e™e "D (r )}

—_ rn(r) ezkzezmee—zwt
X {[rn(r)YD (1]’ + imn(r)Dy(r)}. (5.8
The perturbation in # is hence of the form
n,(rozt) = e*%™ %™ 'N(r) (5.9
with
N(@) = —(1/D)[rn(MDLN)] — (im[r)n(r)Dyr). (5.10)
This result, that n, = —V « (Dn), is certainly one that

might have been guessed from conservation con-
siderations. However, it is difficult to find any simpler
proof of (5.10) than the one given here.
Using (4.17) and (4.18) in (5.10), we find
1drn(r)d m® n
(r) 8r) + ™ . n(r)
rdr F(r) dr r° F(r)
2m (cx(r)n(r))’ }
+ &)y,
r{Q — ma(r)]\ F(r) ")
where F(r) is the denominator in (4.17) and (4.18):
F(r) = 4a®(r) — [Q — ma(P)]* + ra®(r). (5.12)
It is convenient to use the static equilibrium condition
(2.3) to express n(r) in terms of a(r):

&(r)

(5.11)

(4me2v? Myc®rn(r) = [ria®(r)]. (5.13)
This gives
i f1d d
Ny = 47-reua){;d f+(r) g(r)
- ?f+(r)8(r) —g,.(Me&m;, (5.14)
where
_ 20%(r) + ra®(r) 15
102 o @ - mof + e
=—2
BN = r{Q — ma(r)]

( a(r)Ra2(r) + ra(r)] )'
4oX(r) — [Q — ma(P + ra(r)/
(5.16)
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This answer is correct as it stands only in the
unlikely event that all beam particles have the same
sign for the rotational frequency «(r). It is much more
realistic to suppose that clockwise and anticlockwise
orbits are equally common (at each r), in which case
the beam density perturbation N°(r) must be averaged
over the two signs of oc(r) We then find

14, (r) 2, 80

4mevolr dr

- ':%f(r)sm - g(r)a(r)}, (517

ic?

N(r) =

where

S =3 + £M]

["052 () + 23(N(4 — mHa*(r) — Q* + ra®(r)]
[(4 — m®)a?(r) — Q¥ + ra® (r) — 4m* QP %ry
(5.18)
—40?%m?
g(r) = g, + g (D] = O — ()]
() f(r) !
@ — m¥ai(r) — Q* + ra®(r)
2m2a(r) ,
OE — R 2] {a(Nf(N} (5.19)

the functions f (r) and g_(r) being given by replacmg
or) by —ea(r) in (5.15) and (5.16). [It would also be
possible to treat a “polarized” beam by using different
weights for £, g, and f_, g_in (5.18) and (5.19).]

VI. FUNDAMENTAL EQUATIONS

Using (4.14) and (5.9) let us write the field equation
(3.30) for E,, as

14 2 gy ™ 5 + q%60) =
rdr dr

And (5.17) gives N(r) in terms of &(r), so the circle is
closed, and we emerge with a second-order ordinary

differential equation for &(r):

—dmiew = N(r).
4

Ld o — 1oL ey — ™11 — £
rdr dr r

+ ¢*&(r) + g(N&r) = 0. (6.1)
For the reader’s convenience, we repeat that f(r) and
g(r) are functions describing the beam response to the
field &:

fir) = [ro® (r) + 222 (N4 — m*)o’(r) — Q° + ra®(r)]
[(4 — m)e®(r) — Q° + ra® (NP — 4m*Q%(r) ~
(5.18)
_ —4mEQ? aA(r) f(r) !
8(r) = r[Q* — m2*(r)]\(4 — mP)oP(r) — QF + ro®(r)
2 .
4 D GOIOY, 619)

with a(r) the beam particle gyration frequency.

621

The solutions of (6.1) behave like r—™ and r*™
for r — 0 (or, for m = 0, like In r and 1), and we must
of course pick the solution that goes to r'™! for r — 0.
The boundary condition at the plasma channel radius
R is shown in Appendix A to be

E(R)[8(R) = —|ml/R. 62)
[For R = oo we just pick the solution that behaves
like H{)(gr) outside the beam.] The consistency of
these requirements on the behavior of &) at r =0
and r = R imposes a condition relating ¢* and €2,
which of course is the dispersion relation we seek.

Inspection of Eq. (6.1) reveals that the dispersion
relation has the form promised in Sec. I:

Q* = wji¥(q%a®), (1.8)
where a is some characteristic beam radius and w, is a
typical value of a(r). The circumstance that only Q2
rather than Q appears in the dispersion relation (which
implies that there is always one growing and one
decaying mode) arises because we average over the
two directions of beam polarization in Eq. (5.17). For
the same reason the dispersion relation depends only
upon m? rather than m. Had we allowed unequal
numbers of clockwise and anticlockwise beam particle
orbits we should have found the dispersion relation to
depend not only on Q2 and m?, but also on the relative
sign of Q and m; hence for each growing or decaying
mode with m > 0 there would be a decaying or
growing mode with opposite m and Q.

Since the dispersion relation does not depend on the
sign of m, we save writing below by always taking
m positive, m > 0.

VII. RIGID BEAM LIMIT

There is one special case where (6.1) can be solved

exactly for arbitrary beam shape. With Q = 0,49 = 0,

and m = 1 the functions f(r) and g(r) are given by
(5.18), (5.19) as

SO) = folr) = [ (1) + 262 [re™ (r) + 3a*(M)],
(7.1)
g(r) = go(r) = [2/ra(N][(r) f(N].  (7.2)

It is straightforward to check that (6.1) is then
satisfied exactly by

&(r) = &(r) = Ara*(r) (A const). 7.3)
Note that outside the beam (2.3) and (7.3) give
&(r) oc 1/r, in agreement with the requirement that
&(R)/6(R) = —1/R.
Also, (7.3) obeys the condition that for r — 0
&(r) oc r.
The meaning of the solution (7.3) can be understood
by referring back to the formulas (4.17) and (4.18)
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for the beam displacement functions D,(r). With
Q = 0 and m = 1 they give

—iev &(r) + (2/r)&(r)
Myo 30%r) + ra®(r)
ev 28(r) + [rt — oF("))eP(n)]E(r)

Dr) = (7.4)

Dlr) = Myo 30(r) + ro(r)
(7.5)
Using (7.3) we find
DAr) =d, (1.6)
Dy(r) = id, a.7n
where
d = —ievA{(Myw). (1.8

The Cartesian components of the beam particle
displacements are then given by (7.6), (7.7), and (4.11)
[with = k = 0] as
D, = &%"{D (r) cos [a(r)t + ¢]
+ Dy(6) sin [+t + o1}

—d (7.9
D, = &Ml D (r) sin [e(Nt + ¢]
+ Dy(0) cos [x(r)t + 1}
= id. (7.10)

We therefore conclude that this solution corresponds
to the rigid displacement’ of the beam in the direction
(1, +i,0). The mode m = —1 would correspond to
displacement in the (1, —i, 0) direction. Equation
(7.8) just expresses the fact that the perturbed electric
field vanishes like @ for w — 0. [To be honest, the
solution (7.3) was guessed by requiring that (7.4) and
(7.5) give constants.]

Now that we have a zeroth-order solution we can
do perturbation theory to obtain a relation between
Q? and ¢ when both are small. Let the solution in
this case be written

&) = &(r) + Q%(r) + - - - 7.11)

and expand f(r) and g(r) in powers of 2
SO =fr) + Q) + - - -, (7.12)
g =gfr) + QI+ -- -, 7.13)

where fy(r), go(r), and &y(r) given by (7.1)~(7.3), and
O() = [2e%(r) + re® (O[7e® 4 ra® ()]

. , (7.14)
[3o%(r) + r (M}
I(r) = __i__[ocz(r)[zaz(r) + m*’(r)]]'
r (Nl [Bed(r) + ra®(n]?
— _2__..[“(")[2“2(") + ?012'(?‘)]]'_ 2
ra¥r)L [34%(r) + re¥ (N ro(r)

N [oc(r)[2a2(r) + re® (D7) + raa'(r)]]'
[Ba¥(r) + re (1) )
(7.15)
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Keeping only terms of first order in Q? and g,, the
differential equation (6.1) gives

LA i L e — L 11— 010 + g)e)
rdr dr r
1d d 1
=~ 210 - &) = S VD)

— T(N&(r) — (g;) &(r). (7.16)

Multiply by r&y(r), and integrate from r = 0 to the
plasma channel radius R. Since §y(r) obeys the zeroth-
order equation we find

R 1d d_1 q
=["er L1 - ren L e
0 o dr ¢ dr
— L1t - 4L 60 ar
= [ — HRNERR) — {RIER)}.

The right side vanishes because §(r) is subject to the
boundary condition

_ 1 &R + Q%R

R §(R) + Q%(R)
1 &
o — = 4+ — ['(R)E(R) — e(R)EH(R)].
-t 802(r)[e( )E(R) — e(R)&(R)]
The dispersion relation thus becomes very simple
Q? = —q202, (7.17)
where U?is a real constant defined by
Ut — §§ 83(ryr dr _
I3 85D + r26§(N0(r) + D(E(N]Ir dr
(7.18)

We have done an integration by parts, using the fact
that ®(r) vanishes outside the beam.

The integral of I'6r can be re-expressed using
integration by parts as

R R
f T(&rrdr = A2f rdr
[} 0
[26%(r) + ra® (N)][40e°(r) + 38ra’(r)a®(r)
+ 9% (r)el (r)* + rPa¥(r)?]
Be(r) + ra* (NP .
The other terms in the denominator give

X

R R
f D(P{E(r) + r 265 }r dr = Azf rdr
[2(r) + ra?(r)1[146%(r) + 16ra*(r)e®(r)
+ 9 ()e® (n)? + r*a® (r)°]
Be*(r) + ra* ()P ’

X
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A marvelous cancellation gives at last

Ut = % fo A dr / fo *[Po(n)] dr. (1.19)

This can be rewritten in a more useful form by using
the fact that outside the beam

o®(r) = u?/r? (outside), (7.20)
where
o _ 4met? f ©
u’ = ru(r) dr. 7.21
My Jo (r (7.21)
Therefore

R
[FPo®(r)] dr = u?,
R R
f oM dr = u®*In R —f In r d(atr?).
0 0
The last integral is actually R-independent since

d(r*«*) vanishes outside the beam. We can thus define
a characteristic beam radius r, by

wlnr, Efwln r d(r*ad), (7.22)
so (7.19) becomes ’
U? = Lu?ln (R/r,) (7.23)
and the dispersion relation (7.17) reads
Q2 = —4q%* In (R/r,). (7.24)

This is in complete agreement with the results of Ref.
4 [Egs. (8.12) and (8.15)] if we note that the quantities
called w}a® and 2ro/C in Ref. 4 are identical with the
#? and r, introduced here. In Ref. 4 we assumed that
the beam moves rigidly, and we are not surprised to
see that this indeed gives the correct dispersion
relation for small Q and ¢, but is reassuring to have
this result proved. Also, we are encouraged by this
example to have faith in the rather complicated
formulas (5.18), (5.19) for the coefficients in our
fundamental equation (6.1).

VIII. UNIFORM BEAM: GENERAL
DISPERSION RELATION

In order to get quantitative results in more general
cases than discussed in the last section, it is necessary
to choose the beam shape so as to simplify the function
f(r) and g(r) as much as possible. The simplest choice
is the uniform beam

n(r) = {n for "<
0 r>a.

Then (2.3) gives the rotation frequency a(r) as

(8.1)

2
W for TS 8.2)
wga’[r

) = { r>a,
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where wj is the betatron frequency
w} = 2mne*v? [ Myc?.

(8.3)

The functions f(r) and g(r) defined by Eqs. (5.18) and
(5.19) are therefore

1 -7 r<a
= fi : 8.4
) S { 0 or r>a (8.4)
an
. gr) = —&4(r — a)/a, (8.5)
where
_ 24 — m? — 73
TEl G T e GO
s 2mi(1 —nd) ( 27 )
= 1— 8.7
: 2 —m? 4 —m?— 22/ ®7)
and
2= Yol (8.8)

Inspection of Eq. (6.1) and its boundary conditions
tells us immediately that the electric field here is

8(7’) o {Jm(qr/n)’ r < a,
H)(gr) — a,(qR)J . (qr), r>a.
(8.9)

The coefficient «,, is determined by the properties of
the plasma channel; if the channel is infinite then a,,
is zero, while for a finite uniform plasma channel with
radius R we show in Appendix A that

%.(qR) = H3 \(qR)/J ,_1(qR) for m >0, (8.10)
orform=0

o(qR) = Hi"(qR)/J,(gR).
Also, g is the root of g% = 4miow/c* with positive
imaginary part.

Our dispersion relation comes from the equations
connecting the solutions for r < @ and r > a. We note
first that &(r) must be continuous at r = a because it
is the tangential component of an electric field. The
jump condition on &'(r) is given by integrating (6.1)
fromr=a—ctor=a+¢;

Ela+ e —nt'la—e) — E8@fa=0

or

E (8, + Bla = (88 (1D

Imposing this condition on (8.9) yields the dispersion
relation

(S +

£ _ HY(qa) — «,(qRW.(94)
ga  H$(qa) — 0. (qR) (qa)
(8.12)

We remind the reader that &2 and %% are given in terms
of Q2 by (8.6)—(8.8), and «,,(¢R) is given by (8.10).
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IX. UNIFORM BEAM: CATALOG OF MODES

The uniform-beam dispersion relation (8.12) is
analyzed in detail in Appendix B; this section gives
only the results.

We find that for each m the modes may be con-
veniently classified into two infinite sequences, which
we call the 4, and B,,, modes, and two individual
modes called C,, and D,,. The only exceptions are that
the 4 modes are missing for m = 2, the B modes are
missing for m = 0, the C mode is missing for m = 0
and m = 2, and the D mode is missing for m = 1.
That is, the only modes with m < 2 are

A0n9 Aln’ Bln’ Cls B2ns D2
but all modes of types 4, B, C, and D are present for
m Z 3. By “mode” here we mean a value of Q?; for
each such “mode’ there are of course two roots for €,
one growing and one decaying, or both oscillating.
The “hose” mode is C,.

Ap(m #= 2)
For |gal « 1 we find

2

%—»3 + m? —(12m? + 1}
2m? — 1

@p
— 221__.___—)/'3“ 9.1
q“( aamt + i [ Fmm o OB

with j,,, the nth positive zero of J,(x). The only
exception is for m = 0, where
Qlog—~2 —2¢%°yn + - - -,
where y, is the nth root of the equation
TNy = 3(R/a)* — 1].
For |gal > 1 we find
Qo =[m — 2 — ji_i1 anf4g’a® + - . (94)
The 1/g%?* term in (9.4) is correct only for m = 3;
for m = 0 and m = 1, we have instead
Aot Qo =2 +j1,2¢°" + T, (9.9
At Qof = [1 + X2 /ag%" + -, (9.6)
with x,, the nth root of the equation
xJi(x) = —3J,(x).
The first three roots are
Xy, = 2.95, Xo = 5.84, X3 = 8.87.
B,,, (m % 0)
For [ga] K 1 we find
Q2
2= =3 4+ m? 4 (12m? + 1)}
Wg

9.2)

(9.3)

0.7

2m? —1

- q%’(l + m)/j;,, +-. (9.8)
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For |ga] 3> 1 we find

Q*lwg = [m + 2 + joiraldg’a® + 1% (99)
There are no exceptions.
Cm (m # 09 2)
For |ga| « 1 we find
Qo —m? —2m + 3 — 2m® — 4m + DY (9.10)

The next terms are of order g% but it is difficult to
give a general formula for their coefficients. We have
done the calculation to order ¢* for m = 1 and ¢*
for m = 3, and we find that, for |ga| K 1 and|qR| K 1,

2 r
Cy: %—» —§q2a2(ln5 + 1)
wg a 4

— iq‘a‘(lng - %) — 3q*a®R* 4 - -,
a
9.11)

Cs: 9: —1[9 — (33)}]
w

2
-3 o
For |ga| > 1the Cmode is very much like the 4 mode:

Q¥wh — [m — 2 — (12 )*4g%a* + - -1, (9.13)
where x¢ is the first root of Eq. (9.7)

B=x=295 (m=1),
and x¢, for m > 3 is the first zero of J,,_;(x)
Am =Jm-11 (m23).

The vanishing of (9.11) for ¢ = 0 identifies C, as the
hose mode. Equation (9.11) may be compared with
the results of the rigid-beam calculations made in
earlier work. We found in Ref. 4 that

Q’foy = 1 — inJy(qa){Hi"(qa)
— [H"(@R)[J (@R (qa)} (9.14)
and to order ¢* this gives
2
9—; = —%qzaz(ln R+ l) - '1%‘14a‘(1n R + 4)
g a 4 a
4,.2p2 R 5 44 101
4+ ¢'a*R ln-+§ — $q*R* (rigid).
a
.15)

Note that (9.15) agrees with the correct result (9.11)
to order g2, as it must according to the general theorem
of Sec. 7. [Equations (7.21) and (7.22) here give
u® = wia® and r, = ae~1.] However, (9.11) and (9.15)
begin to differ in the ¢* terms, which is not surprising
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since there is no reason why the rigid-beam result
(9.14) should give more than the 42 terms correctly.

If R is very much greater than g, it is possible to
have |ga] < 1 but |gR| > 1. In this case the correct
(or the rigid beam) hose dispersion relation is given by
(9.11) [or (9.15)] with g*a2R? (and ¢*R%) terms dropped,
and with the replacement

In R/a — In (—}iga) + 0.577. (9.16)

It is expected that similar rules work in all other
C and D modes.
D,(m#0,1)
For |ga| K 1 we find

Q% - m? —2m + & + 2m* — 4m + D, (9.17)
The next terms are of order ¢2 but (as in the C,, modes)
rather difficult to calculate in general. We have done
the work only for m =< 3; for |ga| « 1 and |gR| K 1
we find:

Dy: Q*wi—3 — (3 — ¥a/RP)g%a* + -+, (9.18)
Dy Q%wi— 39 + (33}
— (3% — &la/RP)q%a® + -+ . (9.19)

For [gal > 1 we find a behavior quite different from
that of the 4, B, and C modes:

D,: Q*/wﬁ—»mz{l + iq_la
x [1 + (43(%2——:?))*]_1+ } (9.20)

There are no exceptions to Eq. (9.20).

It is important to note that in all modes Q% w3
approaches a positive-definite constant A7 or A2, for
g*—0 or ¢> — oo, the only exception being that
A2 = 0 in the hose mode. Hence all modes are stable
for very small or very large w, oscillating at the
frequencies 444w, or +4,wg. Our formulas for the
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behavior of */w} as w approaches zero or infinity
show that Q2 is generally complex for finite real w
(finite imaginary ¢%) so that in all modes there is
one growing root with maximum growth at some
finite w; a method for estimating this maximum is
presented in Sec. XII.

The stable oscillation frequencies for @ — oo have a
simple physical interpretation. For |ga] > 1 we found
the limiting behavior

Q x(m+2) B,,
—_—
+m D,

A close look at Appendix B and Sec. IV shows that it
is only the beam particles with gyration frequency
+wg (rather than Fw,) that oscillate with these
frequencies. According to Sec. IV such particles suffer
a displacement proportional to

exp (—i[Q F mawglt) oc exp (;I:iI:—Q— F m} 0)

Wg
e (A
€ (B
e (C,)°
e (D)

Thus the perturbed orbit is a slightly eccentric ellipse
in modes 4, B, and C and a slightly enlarged or
diminished circle in mode D. This is very reasonable
because for |ga| 3> 1 the electromagnetic fields are
essentially frozen in place by the plasma conductivity,
so the beam particle orbits can be independently
perturbed into ellipses or circles of different radius.
Tables I-III and Figs. 1-5 summarize our conclusions
in numerical form for m =0, 1, 2, and 3, and for
m> 1.

TasLe 1. Catalog of modes for the uniform beam. The behavior of Q for ¢ — 0 (w —0) is
given by Q¥w} — A3 — ¢%?} + - - . Also, for ¢  © (0 — ®), (Q*w} — A% . Note the
relatively small changes in Q2 between these two limits,

Mode ’H i Mo
m=0: Ay, 2 0344 (n =1),0066(n=2), - 4
m=1: A, 0.39 0.049(n=1),0015(n=2), -~ 1

B, 7.61 0.086 (n =1),0.026(n=2), - 9
Hose — C, 0 0.125 + 3 In R/a 1
m=2: B,, 14 0076 (n =1),0028(n=2), - 16

D, 3 0.167 — 0.125 a?/R® 4
m=3: Ag, 1.55 —0.015 (n = 1), —0.0065 (1 = 2), - - - 1

B;,, 22.45 0.065(n=1),0028m=2), - 25

Cs 1.63 —0.188 + 0.075 a®/R* 1

D, 7.38 0.083 — 0.34 g% R* 9
m>»1: Ay, (m — 1.732)? (m — 2)?

By (m + 1.732)* (m + 2)®

C, (m — 1.707)% (m — 2)?

D, (m — 0.293)* m?
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FiG. 1. Growth rate vs frequency for the Ay, and A, (sausage)
modes computed (Ref. 8) for an uniform beam, with R = 2a.

X. CONTINUOUS SPECTRUM

We now return to the case of a general beam shape.
It is assumed that the beam density n(r) drops smoothly
and monotonically from a value n(0) at the beam axis
to n(a) = 0 at a radius r = a. A catalog of modes is
compiled in the next section, but first we must discuss
a type of mode qualitatively different from any found
for the uniform beam.

Suppose Q2 is such that f(r) becomes unity at some
radius ry, with

1 —flr)—= (@ —ry)fb for r—ry, (10.1)

the length b as well as ry, depending on Q2 in a fairly
complicated way. For |r — ry| K b the differential

TasLE II. Uniform beam modes at high frequency. For ¢ — o
(w — ) the behavior of the 4, B, and C modes is Q%/w} —
[Aw — x%/4q%a® + - --]%. In the D modes we have instead
Qwd —[Ao + x/2iga + - - 1% The number of e foldings in free
growth at a fixed distance u behind the head of the beam is, for
the 4, B, and C modes: # = [x*c*wguz/8naa®v?]} and for the D

modes # = 3V §[x"’c2w§yz2/naa20”]§.

Mode . X
m=10:A4,, ~2 542(n=1),990mn=2),---
m=1: A, -1 584(n=1),887(n=2), -
By, -3 514(n=1),842(n=2), -
Hose — C; -1 2.95
m=2:B,, -4 638(n=1),976n=2),: -
D, +2 1.05
m=3: A4, +1 842(n=1),11.62(n=2), -
3n -5 7.9 nr=1),11.06(n=2), -
Cs +1 5.14
Dy +3 1.59
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FiG. 2. Growth rate vs frequency for the 4,,, 45, By, B;» modes,
computed (Ref, 8) for an uniform beam, with R = 2a.

equation (6.1) becomes essentially
(d/dr)(r — ro)(d&dr) — k& =0, (10.2)
= —blg® + g(ro)]. (10.3)
Hence we may define two solutions of Eq. (6.1), which

TaBLE III. Parameters for fastest forced growth. The growth
rate Im € reaches a maximum value equal to (Im 4) ,wg when
the real frequency w takes the value ¢*Yy/dmoa®. The first two
columns were computed® directly from the *“‘exact” uniform
beam dispersion relation (8.12) for R = 2a. The last column
gives 4, as estimated by a method mentioned in Sec. XII;
apparently this method gives values about 15%; too high.

Mode Yy (Im A),, (Im 2)%t
m=0: Ay 7 0.225 0.29
Ags 35 0.255 0.29
m=1: Ay, 14 0.165 0.19
Ay 30 0.167 0.19
By, 20 0.10 0.12
B, 62 0.11 0.12
R%/a® = 1.25 2.1 0.293
1.5 2.0 0.310
Hose — C; 2 1.6 0.318 0.35
4 0.85 0.297
8 0.55 0.260
m=2: By 30 0.11 0.13
By, 78 0.12 0.13
D, 6 0.09 0.13
m=3: A, 0.12
Bs, 0.13
Cs 17 0.11 0.14
D, 15 0.097 0.14
m>»1: A4, 0.134
B, 0.134
C,. 0.146

D, 0.146
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FiG. 3. Growth rate vs frequency for the C, (hose) mode, com-
puted (Ref, 8) for an uniform:beam, with R = 2a. The dashed curve
shows the corresponding approximate result, based on the simple
formula (12.25), choosing w, to give ({w) the correct behavior as
@ —> 0. (A different choice of w, would simply displace the dashed
curve along the w axis.)
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near r, have the behavior
&= Io{lx(r — )8} > 1 + Ie(r —rg) +--+,  (10.4)
8 — Ko{lx(r — r)1h)
= =31 + i — 1) + - - 1In BCK(r — 19)]
+ dk(r —ro) + - (10.5)
Ordinarily we would have to avoid the logarithmic
singularity at ry, and take & = & . The requirement

that this solution also behave nicely when continued
to r = 0 and r = R imposes two conditions on £2?,
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F1G6. 4. Growth rate vs frequency for the By and B, modes,
computed (Ref, 8) for an uniform beam, with R = 2a.
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which we do not expect to be satisfied by any choice
of the single function Qg?).

However there is a less obvious kind of instability.
Suppose that the solution of Eq. (6.1) regular atr = 0
is

&(r) oc &yy(r) + B_8x(r), r <1y,

while the solution of Eq. (6.1) which behaves properly
atr = Ris

8(r) oc Byel(r) + BLE(), 1 > 1.
We try as our solution

8a(r) = Eu(r) + 0(r — ro)B_8:(r)
+ 08(ry — 1B 8(r).  (10.8)

This is admittedly singular at r = r, (though nice at
r = 0 and r = R) but it nevertheless gives a perfectly
nonsingular electric field if we consider, not just one
Q value, but a continuous range with a smooth
weighting function W(Q)

(10.6)

(10.7)

! : Z)] exp [im8]

X f dQW(Q) exp (-— 'Q-;%) &a(r) (10.9)

8r, 0,2, 1) =exp [—iw(

for, since r, depends on 2, the Q integration smooths
out the logarithmic and step-function singularities in
8-

We must still check that (10.8) solves the differential
equation (6.1). Using the fact that §; and & are
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FI1G. 5. Growth rate vs frequency for the D,, C,, and D; modes,
computed (Ref. 8) for an uniform beam, with R == 2g.
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defined to satisfy (6.1) for all r we find
2
L i —pon L — B -1+ 0+ g(r)] &lr)
rdr dr r
— (b — B [1 41— FOWr — rBeld)
rdr

+ 11— FOI8UAr — m)]. (10.10)

But 1 — f(r) vanishes [and &(r) is regular] at r, so
(10.10) gives no contribution in an integral over €.
{The first term must be integrated by parts, and then
both contain factors d(r — ro)[l — f(r)].} Hence
(10.8) is a satisfactory solution for a range of 22 values
and any fixed w. Such modes are usually said to belong
to the continuous spectrum of the differential equation.®

What is the Q2 range of the continuous spectrum?
We note from Eq. (5.18) that the condition f(ry) = 1
is satisfied by the Q2 values

Q% = (3 + me(r) + 3ra¥(r) = [(1 + 12mP)a’(r)

+ rZ(N)1 + 2m?) + P2 (10.11)
except that the “+” root is absent for m = 0. The
gyration frequency a(r) drops from «(0) at r = 0 to
some value a(@) < «(0) at the beam edge, while
2a%(r) + ra®'(r) [which is proportional to n(r)] drops
from 2x%*0) at r = 0 to zero at r = a. A little work

reveals that the continuous spectrum consists of the
Q2 values

m=0,
263(0) > Q2 > 2a%(a);
[4 — (13)}e2(0) > Q2 > (V2 — 1)%a%(a),
m=1,
[4 + (13)H2(0) > Q* > (V2 + 1(a); (10.14)
m>2,
3B + m? — [1 + 12m?]H)a2(0) < Q2
< (m — \/2%¥a),
G + m? + [1 + 12m2})a2(0) > Q2
> (m + v 2)%%a). (10.16)

[For sufficiently large m the limits in (10.15) must be
reversed.] The continuous spectrum thus consists only
of stable oscillation frequencies 2. We repeat that
the above ranges of Q2 allow solutions for any w, real
or complex.

(10.12)
(10.13)

(10.15)

XI. GENERAL BEAM SHAPE:
CATALOG OF MODES

We next examine the discrete modes for a general
beam shape, which (unlike those of the last section)
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correspond to the 4, B, C, and D modes found for
the uniform beam in Sec. IX. We first center our
attention on the limit w — oo, i.e., |gal > 1, because
this is by far the easiest way to catalog the modes, and
because it is the high-frequency limit which will be
seen in Sec. XIII to govern the asymptotic behavior of
instabilities under conditions of free growth. Then we
attempt to say something about the case of finite
frequency, by examining the behavior of Q?for ¢* < 0.

1. High Frequency

Inspection of Eq. (6.1) suggests that when g% — <o,
Q2 must approach a value Q2% , such that either f(r) or
g(r) becomes infinite somewhere. To simplify the
problem, it is assumed that the beam density n(r) is
flat at r = 0, drops smoothly and monotonically to
some value n(a) > 0 at the beam edge r = q, and then
drops very steeply to 0 just outside r = a. The functions
f(r) and g(r) are then stationary only at r = 0, where

2%(0)[(4 — mHa*(0) — Q7)

7O = [(4 — mHa(0) — Q** — 4m*Q%(0)’ (-5
g©0) = 0. (11.2)
At the beam edge, we have

g(r) > —&2(r — a)/a, (11.3)

g 2@ f (@)

Q* — m*a*(a)

2

* [1 4 m2)a2(a)2gj Q* + aaz'(a)]' (11.4)

Hence our guess, based largely on our experience for
the uniform beam, is that there are three kinds of
modes for |ga| 3> 1:

A&C: f(0)—> 0, Q> o20)2—m?, (11.5)
B: f(0)— o, Q—a0)2+m), (116)
D: £, Q> miaXa). (11.7)

Note that the vanishing of the denominator
(4 — mda2(a) — Q* + ad®(a)

in Eq. (11.4) does not lead to another pole of £2, since
it is canceled by a zero in f(a). The modes B,, Dy, 4,,
and C, are evidently absent.

ABC Modes
We suppose that for [ga| > 1 the value of Q2 is
Q=202+ m—03 [6/K1, (11.8)

the sign + being + for B modes and — for 4 and C
modes. In the region of r close to the beam axis, the
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beam density may presumably be well represented by

n(r) =~ n(O)[1 — (r/*M} 11.9)
with N an integer [the exponent of » must be an even
integer to avoid a singularity in n(r) when expressed in
Cartesian coordinates], and / a length of the order
of the beam radius a. Integration of Eq. (2.3) yields

2N
«*(r) =~ «*(0) [1 - l('—ﬁ)—ﬁ]

Inserting (11.10) and (11.8) in (5.18) and (5.19), we
find for |gal > 1 and r K/

(44 2m +2N) 2N]—1
~ |4 — ————TT"(r/l ,
0= 2t 2,
gr) = £mf'(r)/r. (11.12)
[Some care is needed to show that Eq. (11.12) holds
even for the A4; and C; modes.] Equation (6.1)
becomes approximately

1d d
rdr () d

(11.10)

(11.11)

&(r) — mz-f—(L) &)

r re

+ mTD g0y — g6y = 0. (11.13)
r

We introduce a dimensionless variable

p = [40(1 + N)/(4 F 2m + 2N ¥/ (11.14)

and write (11.13) in dimensionless form as

1d_p dg m 1 g
pdpl—p™Ndp  pP1—p¥
ZmNp2N—2 .
+———=8+u€=0 (11.15
L — o™ Iz (11.15)
with

= —[(1 + N)/(4 £ 2m + 2N)|'¥
X (46)NtVINg? 2 (11.16)
The boundary conditions on (11.15) are

lpl K 1, (11.17)

§~exp [—up™ (N + 1)] for |p| > 1, (11.18)
with u defined as the root of (11.16) with Re u > 0.

Solving (11.16) for & and inserting the answer in
(11.8) yields the dispersion relation for |ga| 3> 1
4 1+ N

_ /42 N/(N+1)7] 2
X (q212) ] (11.19)

with the eigenvalues u? to be found by solving Eq.

§~ p™ for

Q= a2(0)|:2 +m—
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(11.15) and imposing (11.17) and (11.18). It is interest-
ing to note that for a beam density n(r) very flat near
the beam axis we must take N large, and (11.19)
becomes

Q* = a®(0)[2 £ m + (WP/4g*P))?,  (11.20)

which is of the same form as the result found earlier
[see (9.4) and (9.9)] for the uniform beam, i.e.,

QF = ™2 £ m + (jpaa,afdg’a ). (11.21)

In analogy with the uniform beam we call the modes
with Q2 — (2 + m)a®(0) the B,, modes, while the
mode with Q% — (2 — m)2a*0) corresponding to the
smallest eigenvalue of (11.15) is called the C,, mode,
and all other such modes are called the A,, modes,
except that for m = 0 there is no C mode.

We make no attempt to discuss the low-lying
eigenvalues of (11.15). However, comparison of
(11.21) with (11.20) leads us to suspect that there is an
infinite sequence of u2 values tending to infinity. This
is verified by a WKB calculation in Appendix C. We
show there that the nth eigenvalue for a given m has
the asymptotic value for large n:

o ot ) (Y2
X (n+ im 4+ Phm. (11.22)

In particular, for a nearly uniform beam we must
take N large and (11.22) becomes

Hmn = (1 + 3m + ).

This may be compared with the uniform beam result
(11.20), which in place of u has

(11.23)

jm:tl,n_)(n + %m - i + ‘&)‘ﬂ (1124)

There is thus not a great deal of difference between an
uniform beam and a smooth beam nearly flat at the
beam axis.

It is apparent from Eq. (11.19) that for a given very
large frequency (|¢/[ > 1) the growth rate Im Q will
be larger for finite N than for a uniform beam; it
vanishes like &= ¥/¥+1 as @ — 0. To some extent this
enhanced growth rate is illusory, however, for (11.14)
and (11.18) show that, as w — oo, the fields and currents
are limited to a region around the beam axis which

vanishes as
6§N ~ w—‘}(N+1)

D Modes

The discontinuity condition at the beam edge
r = ais, as in Eq. (8.11),

{1 = fFONE[8)}ae + Efa = (8'[8)pye. (11.25)
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A trivial WKB calculation shows that, for r < a, the
solution of Eq. (6.1) with ¢2a® 3> 1 is a linear com-
bination of the two functions

" dr
8.(r) = r {1 — f(T ¥ exp [:I:iq f ———]
} o [1 =S
(11.26)
The well-behaved solution of Eq. (6.1) near r = 0 can
be seen by inspection to be
8(r) oc J(grill — fFO)ID).

For sufficiently large ¢ there is a range of r values with
lgrl>> [1 — f(O)] but f(r) = £(0); in this region (11.26)
gives

(11.27)

8,(r) oc rt exp (igr/[1 — fO)}),
while (11.27) gives, for Img > 0,
8(r) oc rt exp (—igr/[1 — fO)IP),

so the correct solution for r—a is just &_(r). Its
logarithmic derivative can be seen from (11.26) to be

8 (N6 () = —ig/[l —fOF (r<a). (11.28)
Outside the beam the field is, for |gR| > 1,
&(r) oc Hy(gn),
50
ENEr) = +ig (r> a). (11.29)
Using (11.28) and (11.29) in (11.25) gives the asymp-
totic dispersion relation

—ine + Efqa =i (11.30)
with

7 =1—f(a —e). (11.31)
Equation (11.30) is in agreement with the uniform
beam result (8.43), except that a finite slope of the
beam density n(r) just inside the beam edge affects
the value of f(a — €) and hence of #%; setting
Q2 = m2a®(a) in (5.18) gives

N =1— [ac®(a) 4 2¢%(a)][(4 — 2m*)a*(a) + aa*(a)]
Y [(4 — 2m2)a2(a) + aa2'(a)] _ 4m40(4(a) .

The solution of Eqgs. (11.4) and (11.30) takes the form

Q2 — m%(a) [1 + L] (11.32)
2iga

where
_ 2le%a) + 30’ (@)*)l(1 — mPa’(a) + }au*(a)]
(1 + 7)1 — m*a(a) + 1ac*(a)e’
x (a)2 — m®) + ea’a* (a)’].
(11.33)
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The form of (11.32) is the same as for an uniform
beam. Note that as w — oo, the field &_(r) vanishes
exponentially except within a skin depth of the beam
edge.

It is not clear what happens to the D modes when
we consider a smooth-edge beam, with n(a) = 0.

2. Finite Frequenty

Equations (11.11) and (11.16) show that, for large
negative real ¢%, the function 22 in the 4, B, and C
modes takes values such that f(r) becomes infinite at
some point r,, near the beam axis. Our experience
with the uniform beam suggests that this is still the
case for all ¢* < 0 in the 4 and B modes, and also for
sufficiently large —¢? in the C modes, except that r,
may be anywhere inside the beam. The D modes are
not expected to have f(r) infinite anywhere and are
not discussed further here.

According to Eq. (5.18), f(r,) is infinite if n(r,) 7 0
and

Q% = {ma(r,) + [4o3(r,) + roa®(ro)If2. (11.34)

For simplicity, we now assume that n(r) drops smoothly
and monotonically from »n(0) at r = 0 to n(e) = 0 at
r = a; then the Q2 values which allow solutions of
(11.34) with r, < a are

m=0
402(0) > Q2 > 20%(a); (11.35)
m=1 _
o2(0) > Q2> (V2 — D2a2(a), (11.36)
930) > Q> (V2 + 1)%a2a);  (11.37)
m>2

(m — 2)%2(0) < Q? < (m — V/2)%(a), (11.38)

(m + 2)%%(0) > Q2 > (m + v2)%(a). (11.39)

[The limits in (11.38) must be reversed for sufficiently
large m.] We must however exclude Q2 values
satisfying (10.12)«(10.16), for these lie in the con-
tinuous spectrum. This leaves the following bands:

m = 0(4),

402(0) > Q2 > 2a%(0); (11.40)

m = 1(4, C),
«2(0) > Q2 > [4 — (13)a2(0);  (11.41)

m > 3(4, C),

(m — 2)%«*(0) < Q2
<@+ m —[1 + 2mhHa20); (11.42)
m 2> 1(B),
(m + 2)%2(0) > Q2
>3+ m+ [1 + 12m?})a2(0). (11.43)
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The labels A4, B, and C have been attached in accord-
ance with the evident correspondence of the left-hand
limits in (11.40)-(11.43) with the known behavior of
Q2 as g — — co. However, our work in Appendix B
on the uniform beam suggests that in the C modes,
Q2 lies in the real bands (11.41), (11.42) only for
—g*® greater than some value Q2, at which Q2 has a
singularity and becomes complex, returning to real
values when —g” passes below another singularity Q2.
This is particularly clear in the case of the hose mode
C,, since in this case we know that Q2 — 0 for ¢ — 0
(see Sec. VII), and the value Q2 = 0 does not lie in the
“allowed” band (11.41). We have not allowed for the
possibility of a C mode with m = 0, because one can
easily show that for g2 < 0 there are no m = 0 modes
for which Eq. (6.1) is nonsingular, i.e., except for the
continuous spectrum, 22 must lie in the range (11.40)
for all 42 < 0. (See Appendix D.) Also, the 4 mode is
missing for m = 2 (just as it was missing in Sec. IX)
because for m = 2 the range (11.36) precisely overlaps
the continuous spectrum (10.15). Furthermore, all 4
and C modes are absent for m sufficiently large. This
is because the derivation of (11.42) made use of (10.15)
and (11.38), which, respectively, make sense only for m
sufficiently small so that

G+ m? — 1 + 12m)(m — V2)2 < «¥(a)/oX(0),
(11.44)

(m — 22f(m — 2)* < «2(@) «2(0). (11.45)

These inequalities hold for all but very large m if «(a)
is close to «(0), as is the case if n(r) is nearly constant
almost out to r = a and then drops steeply to zero
at r = a. But in any case (11.44) and (11.45) breaks
down for sufficiently large m. If (11.45) holds but
(11.44) does not, then the allowed range for A modes
is given by

(m — 2)2(0) < Q* < (m — V2)%%(a), (11.46)

while if m is so large that (11.44) as well as (11.45) is
not valid, then there are no 4 modes.

It is very satisfying that the right-hand limits in
(11.40)~(11.43) are precisely the same as the limits at
g* — 0 of the uniform-beam 4 and B modes discussed
in Sec. IX, except that what was w, has now become
«(0). We can therefore have some confidence in the
assertion that for low frequency the function QZ
approaches the values

Q' — (3 + m? — [1 + 12m*1H)a®0) [4,,,4>— 0],
(11.47)

Q2> (3 + m? + [1 + 12m21})a2(0) [B,,,q*— 0]
(11.48)
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We do not know the low-frequency limits in the C or
D modes, except, of course, that the C; mode has been
thoroughly examined at low frequency in Sec. VII.

XII. ANALYTIC INTERPOLATION

In this section we offer arguments to the effect that
Q2 is analytic in ¢ (i.e., in w) except for singularities
on the positive-real g% axis (i.e., on the negative
imaginary w axis). This property is then used to guess
at interpolation formulas for Q2 for general complex ¢2.

1. Causality

The usual causality argument may be used to show
that Q is analytic for Im @ > 0. (See Sec. XIII.) But
this argument breaks down in the presence of a
continuous spectrum, where £ is not a function of w
at all. Presumably this explains the singularity in Q
found in the uniform beam C modes in Appendix B;
the singularity occurs at a value of Q at which
1 — f(r) vanishes inside the beam, and hence which
would lie in the continuous spectrum of Eq. (6.1) for
a smooth beam shape. It would be well to understand
in more detail what is going on in the C modes when
they cross into the continuous spectrum, but for our
present purposes little harm will be done if we simply
forget the whole problem and accept the implication
of naive causality that  is analytic in the upper-half

o plane.
2. Poles

The next step is to show that Q can become infinite
only at a series of poles on the positive real ¢* axis, the
nth pole lying at

qfrm = j[zm——ll,n/Rza (12-1)

where R is the plasma channel radius and j, , is the
nth zero of J,(x). We note that when Q2 3> «® the beam
response functions f(r) and g(r) become negligible,
so Eq. (6.1) becomes the differential equation for an
undriven electromagnetic wave

1d d

4.4

rdr dr
The solution regular at r = 0is & = J,,(gr). This must
join smoothly with the known solution in the plasma
channel outside the beam

8(r) o J; ) (@RHG (gr) — Hph_1(gR)J ,(qr).
(12.3)

&(r) — r:z_: &r) + q%6(r) = 0. (12.2)

Thus we can have Q% — co only when
Jim-1(gR) —> 0 (12.4)

yielding Eq. (12.1).
It is also easy to obtain the residues of € near the



632

poles (12.1) by keeping terms in Eq. (6.1) of order
Q2. To this order, Eqs. (5.18) and (5.19) yield the
beam response functions

[} = —[r2a®(n)] [rQ22, 12.5)
gry=0. (12.6)

We also suppose that
&(r) = J(gqr) + «(r) (12.7)

with ¢ of order (-2, Neglecting higher-order terms,
Eq. (6.1) becomes

14 r 4 «r) — — 6(1') + gd(r) = #r), (12.8)
rdr dr

where

o) = —(rQY {~ PO L 1,00

- % Uaaz(,)],Jm(q,,)} . (129)

The solution of (12.8) regular at r = 0 is well known,

() = —}in f " O qr JHO(gr>) dr, (12.10)

with 7. and r, the lesser and greater of r and r. [We
are using the freedom evidently allowed us by (12.7)
to choose €(r) so that it does not contain a term
proportional to J,(gr) in addition to the integral
(12.10).] For r outside the beam we take r, =7,
r< =1, and (12.7) becomes

&) = Jular) = HinH (a0 " o00a0) d.
0
(12.11)
Comparing with (12.3), we see that
Jim—1/(@R)
H{m—l}(qR)

Letting g approach the values (12.1) on the left, and
using (12.9) and integrating by parts on the right, we
find from (12.12) and (2.2) that

— —-%iﬂfwrv(r).]m(qr) dr. (12.12)

Q> Q500 — )
are the positive numbers

(12.13)
where Q2

2 87Te
" MycszJ’i_u(J 1))

X J; {J;ﬁ(qmnr) +

2

- J?n(qmr))n(r)r dr.

(12.14)

If the plasma channel is infinite, then instead of the

poles (12.1) we find a cut on the whole positive real
q? axis.

mn
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3. Other Singularities

When ¢% — x% + ie (with x> > 0) we must take g in
Eq. (12.3) as the root with positive imaginary part,
g = £x + i¢, so (12.3) appears to have a cut on the
positive real axis. This cut is actually present if the
plasma channel is infinite, and leads to a cut in Q2
which takes the place of the poles (12.1). But for
finite R the cut is a chimera, since when ¢ — —¢ the
linear combination (12.3) merely changes sign.

It is tempting at this point to guess that Q2 is
meromorphic in ¢?, but this cannot be true. We know
that Q? stays bounded for [¢2| > co provided
Arg(g® # 0, so if Q? were meromorphic in ¢* it
could be written

Qz — Q2 z Qim

mn

with 2 an unknown constant. But a simple calculation
shows that for n -

(12.15) |

Gmn — n°7*[R?,
41:'8 ' f n(r) dr _=_

Thus the sum (12.15) does converge, but for large
nonpositive g% it behaves like K(—g¢%?#, violating our
theorem that {* can become infinite only at the poles
Gmn- [Also, letting R— oo for fixed nonpositive ¢?
we find that (12.15) becomes just Q2 + K(—g??3,
which is certainly too good to be true.]

The failure of meromorphicity seems to arise
because as ¢? increases from g% to g2, .. we would
expect £ to drop from + oo to — co, passing through
one or two bands of Q? values lying in the continuous
spectrum. Branch points may be expected at the onset
of such bands, though we confess to having made no
progress toward a detailed understanding of these
cuts. It is only a guess that they lie on the positive real
4% axis.

[This very complicated singularity structure is in
sharp contrast with the m = 1 solution found in Ref.
4 under the assumption of rigid beam displacement.
There, Q* was explicitly given as a meromorphic
function of ¢* which can be represented as in (12.15),
the residues 2, vanishing exponentially for » — oo,
This underscores the great qualitative change in the
dispersion relation made by giving up the constraint of
rigid beam displacement.]

The analyticity properties discussed above suggest
that Q may be written as a dispersion integral in ¢%:

Q= ) + q“‘f ;(—-———”)d”

2 2
4

(12.16)

Q2 - (12.17)

(12.18)
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with p(p) some weight function. Since Q approaches a
limit (o) for |¢% — oo, it must obey the sum-rule

() ~ 00 = [ ") dp.

The convergence of (12.19) then leads us to guess that
p(p) falls off fast enough so that all the singularities in
Q may be lumped together into a pole at ¢% = ¢2,
i.e., so that we may approximate

p(p) =2 8(p — go)ICx(0) — Q0)).  (12.20)
Inserting this in (12.18) yields the approximate formula

(12.19)

2

Qg% = Q) + 2 =
— Yo

[Q(w) — QO)] (12.21)

or
w

Qw) == Q0) + [Q(c0) — QO)], (12.22)

o + iw,

wo = qict|dwma. (12.23)

However, the hose mode requires special consideration,
for as w — 0 the function Q vanishes like (g%} or
(w), and this branch point is too strong a singularity
to lump with all the others. Instead, we must apply the
above arguments to Q? itself, and write

Q%q*) =~ Q¥(0)q*/(q* — g},

Qo) = wglwf(@ + io)lt [C],

where w; = «(0) and w, is given by (12.23).

The characteristic frequencies w, in (12.22) and
(12.25) can be chosen either to give Q¥(0) the correct
value, or to give Q(w) the correct asymptotic behavior
as w — oo, or any other way that seems best suited to
the problem at hand.

In order to test the value of the approximate
formulas (12.22) and (12.25) in a way that does not
depend on the specific choice of w,, we may use them
to compute the maximum value of the growth rate
Im Q achieved for real frequency w. Equation (12.22)
gives, for real w,

Im Q(w) = (e + 0B)[Q(w) — QO)]. (12.26)

Modes always come in pairs differing in the sign of €2,
and for @ > 0 it is the mode with €(o0) — Q(0)
positive that has positive growth rate, which reaches a
maximum when o = w,, where

(Im Q)max == 3{Q(®) — QO)].  (1227)
For the hose mode the growth rate is given by (12.25)
as

(12.24)
or

(12.25)

ol—o + (0? + wd)t
Im Q(w) =~ w,,[ 2ot + b o

]T (12.28)
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This has a maximum at o = wy/v/3, where

w
(Im Qmax = ;/% =0.35w,.  (12.29)
Table III shows that the values (12.27) and (12.29)
are not far from the true maximum growth rates for a
uniform beam, being generally about 159 too high.
In particular, for the hose mode the correct value of

the maximum growth rate is 0.29«w,.

XIII. GROWTH RATES AND SADDLE POINTS

At last, we come to the point. In this section we use
the results obtained in the previous twelve sections to
estimate the growth of various modes under various
conditions of excitation.

It is essential to begin by distinguishing between
Jorced growth at a fixed frequency and free growth at a
saddle point. Suppose the beam is tickled at z =0
with a disturbance (in a pure normal mode) having
t dependence

&) = f flw)e ™ deo, (13.1)

where f(w) is some smooth function reaching a
maximum at a real w,, with width I'; for example, if
the disturbance is turned on and off gradually, we
might take

nf(w) = T/{(0 ~ w)* + I,
&(t) = e torte 1t (13.2)
while if the disturbance (or the beam itself) is turned on

suddenly at ¢ = 0 and then turned off gradually, we
might take

—27if(w) = [w — w, + il
0, t <O,
&n =
o> 0. (13.3)
Then at any z > 0 the field has the z and ¢ dependence:

—Tyt

e e

&z, 1) =jw f(w) exp {—iwt + ik(w)z} dw
or

&z, 1 =f_m f(w) exp {~—iw(t — z[v) — iQw)z[v} do.
(13.4)

[Note that in the example (13.3) of a suddenly
turned-on beam, the analyticity of Q(w) in the upper-
half w plane ensures that &(z, f) vanishes for z > v1,
since then the contour of integration can be closed
with a large semicircle in the upper-half w plane,
where (w) and f(w) are analytic. Thus there is no
need to impose a special boundary condition at z = vt
in this case.]



634

We are in a condition of forced growth when
Tt —z/v + Q(w)(z/v)] K 1. (13.5)

In this case the exponential in (13.4) is essentially
constant over the support of f(w), and we may
approximate

8z, t) = exp [—iw(t — z[v) — iKw,)z[v]. (13.6)
The number of e foldings is
# = (z/v) Im Qw,) (13.7)

and the maximum growth is achieved by adjusting
the real frequency w; to the value at which (13.7) is
greatest. Table III gives values of this maximum
growth rate and the frequency w, at which it is achieved
for the various low A4, B, C, and D modes; it seems
that the hose mode is from this point of view the most
serious instability. Incidentally, when (13.7) is a
maximum we may define a real group velocity
u, = v[l — Q(w)I? = 1/k'(w,)

and (13.5) is just the condition that I' |t — z/u,| < 1.
In other words, we have forced growth at z, 7 if, at the
time ¢ — z/u, when the disturbance left the disturber,
the disturbance had not yet been turned off.

In contrast, we are in the case of free growth when

Lt — zjv + Q' (wy)(z/v)] > 1. (13.8)

For, even if w, is chosen to maximize Im Q(w,), the
phase of the exponential in Eq. (13.4) undergoes so
many oscillations in the frequency range w, — I' <
w < w, + T that cancellations intervene to prevent
the pure exponential growth found in Eq. (13.6). It
is well known that such integrals can usually be
estimated by the saddle-point method. Where this is
valid (and we do not venture a rigorous justification in
the present context) the growth is dominated by a
function

&(z, 1) oc exp [—iw(r — zfv) — iw)z/v], (13.9)
where w, is a complex frequency, depending on z and ¢,
and determined by the condition that the argument of
(13.9) be stationaryj, i.e.,

Q(w) =1 vtz (13.10)

Equation (13.8) can be viewed as just the requirement
that the saddle point not be at w,; if it were, then the
saddle-point method would give the same result (13.6)
as in the case of forced growth.

Although (13.8) requires that z or ¢ must be large,
we may still distinguish different cases according to the
relative magnitude of ¢ and z. We recall the basic
scaling law (1.8):

Qw) = wpl(in]w,), (13.11)

(13.12)

w,; = c¥fdnoa?,
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where A is a function whose value and derivatives are
of order unity when its argument is of order unity.
Hence, the two special cases of greatest interest are
|z — vt| wy > zwy and |z — vt| ©; K zwyg.

L |z — vt w; > zwy
In this case |Q'(w,)| is much greater than wg/w,, so
w, must be near one of the poles found in the last
section. For w near the nth pole, the function Q*w)
is given by Eq. (12.13) as

where

Oy = Cqpnfdmo = (PR 470) jim 1y, (13.13)

and the positive constants Q2 = are given by (12.14).
The saddie-point condition (13.10) then gives

w —r —'iwmn + 0[(an IZ - Utl/wmnz)§wmn]
and the electric field (13.9) behaves like

& o exp (—wpnt)- (13.14)

This just means that if we fix z and wait long enough,
we eventually find ourselves watching the decay of the
wave-guide modes excited in the plasma channel.

2. |z — vt] w; Kz,

In this case |Q'(w,)| is much smaller than w;/w,, so
w, must be in the asymptotic region o, 3> w,, where
Q(w,) approaches a constant. In all cases the asymp-
totic behavior of Q(w) is of the form

Qw) — wplh, + (x/2iga)® + -]
= wyld, + (if’?/16moa’w)’ + - -+, (13.15)

where 4, y, and » are real dimensionless numbers
depending on the mode in question. For the 4, B,
and C modes

v=N|(N+1) (4, B, C), (13.16)

it being assumed that the beam density n(r) behaves
like n(0) + O(r*¥) as r — 0. (For the uniform beam
we take N = oo, so in this casé¢ » = 1.) For the D
modes

v=14% (D) (13.17)
The quantities 1, are
—24m A&C,
Ao =(—2—m, B, [ws = «(0)].
m, D,

The numbers g are given for the uniform beam in
Table II and Sec. IX. (It is amusing that the rigid hose
calculation of Ref. 4 gets this backwards, giving
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v = { for a uniform beam and » = 1 for any other
shape!) The saddle-point condition (13.10) yields here

16moa’w,fix’e® — (+ 16maa’wmzfiyic vt — z])VOHY,
(13.18)
Q, — wgld, + (ix?c*vt — z]/16770'a2a)ﬂvz)"/(v+1’],

‘ (13.19)
so the exponential (13.9) becomes

§ oc exp {—iw,,&w(t — z[v)

- i(ix2c2[t _ z/v]/léﬂaaz)”/(”“’

1/(v+1)

wgZ -

X ( 8 ) [vll(v+1) oy vj(v+1)]}
v

and the number of e foldings is

# =Im (iv/(wl))uzcz[t . Z/O]f’lé?fﬂ'ag)v/(v+l)
% (wpz/v)m"‘*‘“(l + y)v—v/(v+l)' (13.20)

In the two most interesting cases, the fastest growing
roots give

v=1: # = [Ctoyot — 2)z/8mca®?)},  (13.21)
v=13: # =3/t — D) mea* . (13.22)

The distinction between forced and free growth can
also be drawn for a disturbance which at r=0
extends over some finite range of z. In forced growth
the number of e foldings is Im wt, with o evaluated at
a fixed real k. In free growth the asymptotic behaviors
of & is again dominated by a saddle point at which the
exponential in (13.4) is stationary, and all results

obtained above in the case of free growth hold also
for these different initial conditions.

ACKNOWLEDGMENTS

The author is glad to have the opportanity to thank
K. Brueckner, K. Case, N. Christofilos, H. W. Lewis,
and K. M. Watson for many valuable conversations
on beam stability problems. Also, he is very grateful
to S. C. Wright for performing the machine computa-
tion quoted in Sec. IX.

This work was performed by the author as a
member of the Jason Division of the Institute for
Defense Analyses, Arlington, Virginia.

APPENDIX A. BOUNDARY CONDITIONS AT
THE CHANNEL RADIUS

We suppose that outside the beam the perturbed
current J, drops to zero, while the plasma conduc-
tivity o stays constant out to a channel radius R,
where o drops sharply to zero. We assume there to be
a vacuum for r > R, though we shall also see that it
would make no difference if the whole system were

635

enclosed by a conducting cylinder of radius larger
than R.

The boundary conditions at R are the usual ones
at the surface of a cylinder of finite conductivity, i.c.,

AE,, =0, (AD
A(dno — iw)E,, = 0, (A2)
AE,, = 0, (A3)
AB,, =0, (A4)
ABy, =0, (AS5)
ABjy, = 0. (A6)

Using Egs. (3.8) and (3.11) (setting J; = 0) with (A4),
we find that (A2) and (A6) are equivalent, both
yielding at r = R:

Al(4mo — io|q*c)E],] = —(km/R)B ,Aq™. (AT)

Using Eqs. (3.9) and (3.10) (setting J, = 0) with (A1),
we find that (A3) and (AS5) are equivalent, both
yielding at r = R:

A(—iw[cq®)B;, = (km[R)E,.A(g™®).  (A8)
The relevant discontinuity equations are then (Al),
(A4), (A7), and (A8). We first consider the case
m $ 0, returning later to the sausage mode m = 0.
Outside the plasma channel E,, and B, are given
by the exponentially decaying solutions of (3.13) and
(3.14), with o and J, set equal to zero:

E,, = $Hin\(qo), (A9)
B,, = BH})\(4w7), (A10)

where g, is the value of ¢ with ¢ = 0,
gy = —k* + 0¥/c* Img, >0, (A11)

and §, B are unknown constants. Dividing (A7) by
E,, and (A8) by B,, then gives atr = R

(4m - iw) (gl) _ —io H{})i(40R)
g’c Ey/o  ge Hm](‘IoR)

“@(@)(L._
R \&/\g®
(—iw)(_lj'g) _ —io Hj3i(q0R)

g’c /\By,/.  ge¢ H{D(qoR)
km(a)(1 1)
=== - =}). (A13

+ e\ 2 (A13)

o

%), (A12)

0

The subscript “<”* means that the logarithmic deriv-

atives are evaluated just inside the plasma channel.
We now employ the approximations of Eqgs. (1.2)-

(1.5). If [gR] > 1 then there is nothing to do, since in
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this case we already know that E,, and B,;, become
proportional to H (%) (gr) outside the beam. Therefore
consider the more challenging problem, where |gR| is
roughly of order unity. The logarithmic derivatives
(E,,/E:,) < and (B;,[B,,) < are then of order R~ ~ |q|.

Also, since |goR] « 1 we have (for m # 0)

H{D(qoR)/H{m (qoR) =~ —|m|/q,R.  (Al4)

But then the left-hand side of (A13) is smaller than
the first term on the right by a factor of order |g,R|,
and using |g| 3> |g,| lets us write (A13) as

(8/%) = (iw/kc)(m/|m|). (A15)

Using (A 14) and (A15) in (A12) (and taking [g] > |qol
and o > |w|) gives finally

(Ev/Er)< = —Im|[R (m #0).  (Al6)

The fact that (A16) as well as the differential equation
(6.1) is independent of the sign of m allows us to
restrict our attention to the case m > 0.

For m = 0 we see directly from (A7) that

(4_____"" = i“’) (E_l) = _ o H (4R) f’::l(q"R_). (A17)
qc E,./< qoc Hy'(qoR)
Instead of (A14) we now have, for |¢,R| K 1,
H(])’ R 1
0 @oR) . (A13)
Hol)(qu) goR In (—1C?qiR?)
where In C = 0.577--+. Hence for large o, (Al7)

gives

5 - Gmccscamr
= (53R In (—1C?GRIT. (A19)
E,/ < q0¢
For simplicity we take the condition |g,R| K 1 as a
strict limit, so that (A19) is taken to vanish,
Knowing (E, /E,,) < , we can now write the form of
the solution outside the beam but inside the channel.
In this region E,, is a linear combination of J,,(¢or)
and H'Y(gyr), and imposing condition (A16) at r = R
gives this linear combination as (for m > 0)

Elz oC Hirlz)(qr)
— {HY {(qR e r(qR)} (qr)  (m 5 0). (A20)

[For m =1 the ratio in brackets is just H{(gR)/
Jo(qR), a result already familiar from Ref. 4.] The
corresponding result for the sausage modes is

E,, oc Hy'(qr) — [H{"(qR)[J,(qR)Vy(qr) (m = 0).
(A21)

If the system were surrounded with a conducting
shell at R, > R the function H'(¢r) in Eqgs. (A9) and
(A10) would be replaced with some linear combination

STEVEN WEINBERG

F,(gr) of H"X(gr) and J,.(gr). But (A14) would hold
for F,(qr) as well as H'V(g,r), (unless the coefficient
of H'Y were much less than that of J,) since for
|9oR| < 1, F,, is dominated by its H} term. Thus, it
makes no difference what kind of tube the system is
in, except that we require a vacuum immediately
outside the plasma channel.

APPENDIX B. ANALYSIS OF THE UNIFORM
BEAM DISPERSION RELATION

In this Appendix we show how the results quoted in
Sec. IX are derived from the dispersion relation (8.12).
We first classify the modes according to their low-
frequency behavior, then classify them according to
their high-frequency behavior, and then show how
the two classification schemes are connected.

Low Frequency: |g| — 0
For |ga| < 1 the dispersion relation (8.12) may be
written

2 e 0t E) oy w0y, (BY)

qa Jm(qa/n) - 2,2

n Joqafn) 1[R® \

7 Jolqafm) _1[R" o @
qa Jo(qaln) z[az 1} +0(q") (m=0). (B2

[Equation (B2) holds only if [gR| K 1; if |gR] > 1
then the right-hand side is infinite.] We divide the
modes into those for which |ga/yn|+—> 0 at low fre-
quency (called 4 and B) and those for which |ga/n| — 0
at low frequency (called C and D).

A & B: |ga/n) 0

Here 7 must vanish at least as fast as ga. Equation
(8.6) may be written

2 _ A —2323 + mY) + (M — H(m? — 2)
1 [ — (m + 2002 — (m — 2)7]

The numerator of (B3) vanishes at two A% values
which define the modes of Types 4 and B:

A: 22=34m— (12m? + 1)},
B: 22=3+4 m*+ (12m? + 1)t

(B3)

(B4)
(B5)

However, the vanishing of the denominator prevents
n? from vanishing for the cases m = O(B) and m =
2(A), so these modes are absent.

Direct calculation shows that m 4+ £2 does not
vanish for m > 1 when A% takes one of the values
(B4) or (B5). Hence (B1) shows that for m > 0

N~ 44/ > (B6)

where j,,, is the nth positive root of J,,(x). Solving
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(B3) then gives for m > 0

Ay 234+ m?—(12m® + 1}

2m? — 1
— 2a2(1—————)/'f,m -, (B7
q (2m* + 1} Jmn + (B7)
B,.: A2—3 4 m+ (12m*+ 1)}
2m? — 1
— 2a2(1+________)/-f’m+.... B8
1 (2m* + i)/ (B8)
For m = 0, Eq. (B2) can be written
N —>qa[yn, (B9)
where y, is the nth root of the equation
JiyJo(y) = $[(R%/a®) — 1]. (B10)
Solving (B3) then gives form = 0
Ayt A2—2 = 2¢°p%y: + (B11)

If R>» athen y, ~ jy,.

C & D: |gajn)| - 0

The left-hand side of (B2) becomes — 4 for ga/n — 0,
so there can be no m = 0 mode of this type, and we
restrict ourselves to the case m > 0.

For ga/n — 0, Eq. (Bl) becomes

mn2+m+ =0 (B12)
We may write the left-hand side as a function of 22
my + m + &
_2[ = A*2m® — 4m 4+ 3) + m(m — (2)m — 1)2]
[2* — m*][2* — (2 — m)?]

(B13)
There are two zeros of the numerator, defining the
modes of Types C and D: /
C: Z2=m—2m+3—(2m®—4m+ 3}, (Bl4)
D: 2=m?—2m+ 2%+ (Qm?—4dm+ D (B15)
However, the vanishing of the denominator prevents
(B13) from vanishing for the cases m = 1(D) and
m = 2(C), so these modes as well as m = 0(C & D)
are absent.

In the m = 1 mode of Type C, Eq. (B14) shows
that 42— 0, so this is the hose mode. In order to
obtain A2 to order ¢* we need the following expansions:
For |A] € 1 and m = 1, Eqgs. (8.6) and (8.7) give

i It I
B f -8R (BI)
For |gajn| K 1
/ 2 2 2 44
_77_]1(‘10/’7)_)%[1 _ 51_‘1? _ 51_% + - :I (B18)
qaJy(qafn) qa 4" 961
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For |gal| K 1 and |[¢R| K 1
Hg"(qR)J{(qa) — J(qR)H;" (ga)
Hy(gR)J\(qa) — Jo(gR)H;"(qa)
- — —l—l:l — g%a®In R + 3q'a* In® R
qa a a
4 4 R 4 _2 2 2
+ 3q%a ln;—}qa(R —a)+---:|.
(B19)

Putting these expansions into (8.12) gives an implicit
dispersion relation

P = —%qza2(ln§+i) + 1q'%
X (ln25+ln%+1—76) — 3¢%°RE - - -,

a

(B20)
Solving (B20) to order ¢* gives the explicit dispersion
relation

C: 2= —§q2a2(ln R + 1)
a 4
- iq‘;a‘;(]nﬁ — g) —- '}q‘asz + .
a

(B21)
For the C and D modes with m > 2 we can evaluate
the 4% terms in A% by using the expansions

RACTD N P |
qaJ,(qafn)  q’a® 2m(m + D’
(B22)
Hy y(qR) (4a) — J o r(qR)H . (q2)
H,; \(qR)J ,.(qa) — m_l(qR)H m (qa)
qa 2m  2m(m — 1)\R®
(B23)
The implicit dispersion relation is now, for m > 1,
. 2 a_ m+2 5,
Cp>Dp: miP + D)+ & _2(m+ 1)qa
2\m
- 20"—1_—1—)(%) g°R® +---. (B24)

We do not attempt to make this explicit for general m;
the numerical results for m=2 and m =3 are
included in Table 1.

High Frequency: |g] — »

For |ga| 3> 1 the dispersion relation (8.12) may be
written

Ju(gaim)) | & _ . )
"(J,,. e M)) +E o @)
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We divide the modes into those for which |ga/n| 4+ «©
at high frequency (called Types # and $) and those
for which |ga/n| — co at high frequency (called D).

A & B: lqga/n] > o .

Here n must go to infinity at least as fast as ga.
From (B3) we see that there are two possible limits
for A%, which define the modes of Types 4 and $:

A 12> (2 — m), (B26)
B: A2 (2 + m) (B27)

For m = 0 the two limits are the same, and we call
the mode Type . For m = 2 the Type £ mode is
absent because the vanishing of the numerator of
(B3) prevents it from becoming infinite when 4% — 0.

In order to obtain the 1/¢? term in A2 we write
(B25) as

[T () xT ()] + (E°[x*n*) — 0, (B28)
where
x = qajn. (B29)
#: When 22 approaches the limit (B26) we find
7' —> 2 — m2[2 — (m—2)%,  (B30)
&P — m, (B31)
except that form = 0
n? —2/(32 — 4), (B32)
and for m =1
& — 3. (B33)

Hence for m s 0 the dispersion relation is

Ry A (m— 22— (m — 2)x*2g%a2 + - - -,
(B34)
while for m = 0
Ayt A2—>4 4 2x%q2a? A - - - (B35)
where x is a root of Eq. (B28), which becomes
xJo(x) = —md,(x), (B36)
except that for m = 1
xJ1(x) = —3J,(x). (B37)

$: When A% approaches the limit (B27) we find
nt— (m + 2)[2[42 — (m + 2)?2), (B38)
&2 — —m. (B39)
Hence the dispersion relation is
Bon: B—(m+ 22 + (m + 2)x%2¢%a> + -+ -,

(B40)
where x is a root of (B28), which becomes

xJ (%) = +mJ (x). (B41)
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Some standard Besseling shows that the roots of
(B36) and (B41) are, respectively,

A x =j]m—1|,n$ B: x =jm+l,na (B42)
where j, . is the ath root of J,(x). The roots of (B37)

must be calculated separately, and there are an infinite
number of them.

D: |ga/n| - =

Suppose we choose 7 as the root of (8.6) such that
gajn goes to infinity with positive imaginary part.
Then the dispersion relation (B25) for [ga}— oo
becomes

—in + &qa — —i. (B43)

If &% stays finite then 5 — —1, which is impossible
since we define g with Im ¢ > 0 and % with Im (ga/7n) >
0. Thus &2 — oo at least as fast as ga. If # also goes to
infinity we have #?/£2 asymptotically constant for
m > 0 (vide supra) so according to (B43) » must go
like ga, which is impossible since |ga/#| is assumed to
diverge. Hence we must have &2 — oo but %%+ .
Inspection of (8.6) and (8.7) shows that this happens

when
(B44)

except that for m = 1 the vanishing of the numerator
of (8.7) prevents &% from becoming infinite when
22— 1, and of course &2 for m = 0 is identically zero,
as the type D modes start with m > 2. When 12 — m?,
Eqgs. (8.6) and (8.7) give

22> me,

n— 1, = [Bm? — 2)/4m* — D}, (B43)
£ — m*[(12 — m?), (B46)
so (B43) becomes
D,: 1 mil + & — 2[1 m—l—]
ml + &]—>m +iqa(1+nm)
(B47)

The derivation shows that the square root in (B45)
must be taken positive.

Connection: g2 < 0

It should be noted that for purely imaginary g, the
high- and low-frequency formulas (B7), (B8), (Bll),
(B21), (B24), and (B34), (B35), (B40), (B47) all give
A real. The relative ordering of the values of 12 at low
frequencies is

m=0: A01>A02>"',

m=1: B11>B12>.">A11
> A > >0,
m=2: B21>B22>"‘>D2,

mz2>3: Byy>B,>+>D,>C,
> > Ape > Ay
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where “>” refers to the A% values of the modes indi-
cated. At high frequencies the relative ordering is

gy > Kgg > -0,

B> B> > Ap>HAp>-,

Bor > By >0 > Dy,

Bpr > By >0 > D,
S>> Ha > AL

(The missing modes are By, , Cy, Dy, Dy, 4,,, C, at
low frequency and B,,, Oy, D,, #,, at high fre-
quency.) If one could be sure that for a given m and
¢* < 0 the various ? are real continuous functions of
—g* which do not cross, then we could immediately
conclude that the modes A, 3B, D labeled by their
behavior for g2 — — co are to be identified with the
corresponding 4, B, D modes labeled by their behavior
for 4 — 0. That is, we would guess that £, = 4,,,,,
Byn = B, and D, = D,

But the trouble with this guess is that the C,, modes
are left out in the cold, there being no C,, modes they
can hook onto at high frequency. A careful reinspec-
tion of the ordering of the A? will convince the reader
that, as we move away from zero on the negative ¢°
axis, the C,, modes must either cross the others or reach
a singularity.

In fact, what happens is a singularity. In order to see
this without inessential complications, we take the
plasma channel radius R infinite, and write the dis-
persion relation (8.12) for ¢* < 0 as

 LakQaln) | & _ Ki(Qa)
1,(Qafn) Qa K,(Qa)
where ¢ = iQ, with Q > 0. For @ — 0 it is easy to
check from (B14) that #* > 0. As long as #? stays
positive (B48) requires that
my* + &+ m <0, (B49)

since xI, (x)/1,.(x) > m and xK_ (x)/K,.(x) < —m for
real positive x. However, it is easy to see that (B48)
has at some finite Qa a solution with #* — 0,. When
52 — 0 (B49) requires that we take the root with

234+ mi—(2m* 4+ D¥=22.  (B50)

[See (B3) and (B13).] In this case £* approaches a
finite limit £2 < —m, and (B48) gives @ — @, , where
&1 = ,aK 1 (010)/K(Q:a), (B51)

an equation with precisely one solution. For instance,
in the hose mode C; we have

2 =4 - (13)} =0.39,
£ = —6/[(13)} — 1] = —2.29,

m=0:
m=1:
m=2:
m>3:

(B48)

(B52)
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and (B51) gives

Q,a = 2.3. (B53)

However, it is not possible for #? to return above
zero when @ increases past Q;. For & — £ is of
order %2 when n — 0, so (B48) gives

i [ 41 ey xK;n(x)/Km(x)l}
XX

.__..(é%_.

(Qa — Qya)
Qo

P

[ xxiork,0] o

X
(BS4)

The derivative in (B54) is negative, so this is only
possible for 12 to go to zero from above when @ goes
to @, from below.

It is also not possible for »? to pass through zero to
negative values as @ passes (;, since the ratio
I’ (Qqa/m)/1,(Qqa[n) oscillates between + oo and — oo
as 72— 0_. We can only conclude that the function
A2 simply comes to an end in the C,, modes when —g¢?
reaches the value Q2.

There is still the question of what happens to 42
in the C,, modes when ¢ — oo along some direction
other than the imaginary axis. Here, A? is complex
and we do not expect to encounter a break in the
C,, mode. From the way the A% values are ordered
for ¢ < 0, we might expect that when ¢® is only
slightly above the negative real axis the C,, mode A?
will be nearly real for Re (—¢?) increasing from zero
to Q%, when A% becomes highly complex and passes
over an infinite number of A,,, modes to hook on
finally to a low +#,, mode, probably #,,. In fact, a
machine calculation® shows that this is what happens
in the C; (“hose”) mode. Following the 4% function
fromits known behavior atg = O up to large imaginary
values of ¢%?® (i.e., w large and real) shows the C,
asymptotic behavior is what we have above called the
#,; mode. Assuming the same to happen for m > 3,
we finally conclude that the correct identifications
must be

Am,n = A’m,m»b Bm,'n = ‘(Bm,m

Cm = ‘fem,la Dm = iDm‘ (BSS)
APPENDIX C. WKB SOLUTION OF
EQUATION (11.15)
We first write (11.15) in the Riccatti form
EPL )
pdppzN—lﬁ P2P2N_1
.2mNP2N-2 . 1 (81)2
= —= C1
:F(pzN_l)2+ﬂ P2N_1 & ( )
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For large u this gives &'/6 ~ u[p*¥ — 1]%, which
when inserted in the left-hand side of (6.1) yields
[P — 11

2p
d P
x — ——— e
dp [p* — 1]t
either sign being taken for the square root of p¥ — 1.
Integrating (C2), we find our WKB solutions

&6 = ulp™™ — 1]t —

+ o(i) )

& oc p e — 17 exp (ufdp[pw — 1]*). (C3)

These solutions are valid except very near p = 0 and
p=1

For p«1, Eq. (11.15) becomes just Bessel's
equation

1d dé& m? 9
~—p———&4+pué=0 (C4)
pdp dp p°
with solution
§ o J,.(up). (C5)
If u?is large we can find a region
Pl pKl (C6)
within which the solution (C5) becomes
8 oc p~¥ cos {/,tp — tmm — f} ((or)]

Comparing with (C3), we see that this may be written
in the WKB form

& oc pi[l — Nt
X cos {,u L pdp[l — "M — i — iﬂ} (C8)

Thus (C8) is a good solution for p < 1, except very
close to the turning point at p = 1)
For p very close to unity we may write

p =1+ xQNu>4, (€9
and Eq. (11.15) becomes
dii )16 i—i’ — =0 (C10)
We find two regular solutions
8. = xL3[3x3] (x> 0), (C11)
6, = xJ3[8(—x)F] (x <0). (C12)

It is easy to check that these forms are correctly
normalized to join smoothly at p = 1, since both
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(C11) and (C12) agree that for x — 0
&, — RHCEEIR + A2 + -],
_—RYT@IN + 3x* + - -1
For sufficiently large u? there is a region of |x|:
1 L x| Lt (C13)

within which we may use the well-known asymptotic
forms of (C11) and (C12)

&, — m)yixtexp {—%xt — }in F §im}
+ exp {3xt + Hir}] (1 K x K pd), (Cl4)
&4 — (2/m¥(—x) cos [§(—x) F 37 — }n]
(1 & —x L pb). (C15)

The correct linear combination of the solutions (C14)
is the one that decays exponentially, i.e.,

§oc &, — &, (C16)
and for x < 0 this is given by (C15) as
& oc (—x)t cos [#(—x)t — in]. (C17)

But when x is negative and in the region (C14) we have
p=1,(1 — p¥)t oc (—x)}, and

f[u-ptap=i-ol,

so (C17) may be written in a WKB form as
1
& oc p7H[1 — M1t cos {,u f [ — pMtdp — h:.
P

(C19)
The two forms (C8) and (C19) agree if

1=t dp =t am - pe 0)
0
with 7 an integer. The integral is just a Beta function
THIEN)
1,1
S (B
( L P

fol“ — P dp = (C21)

APPENDIX D. THE SAUSAGE MODES

The m = 0 case is sufficiently simple to allow the
proof of some useful rigorous results. We show that
for m = 0 the only possible modes are the 4, modes
and the continuous spectrum.

For m = 0 the functions f(r) and g(r) are

f@) = [re®(r) + 25N/ [re™(r) + 4a’(r) — Q%)
(D1

gr) =0, (D2)
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and Eq. (6.1) becomes

1d

=—r

rdr
Multiply (D3) by r&*(r), multiply the complex conju-

gate of (D3) by ré(r), subtract, and integrate from
0 to R; this gives

- f(r)]dir 8() + g°6() = 0. (D3)

R R
f rIimf(r) |8 dr = ~Im q2f r |&(r)|? dr.
0 0

(D4)
But using (D1), this is

2r 2
Im 2[ )+ 2200 ey gy
Jo ra'(r) + 4a*(r) — QF?

R
= —Im qu r &)t dr. (D5)

Thus when 42 is real, Q2 is real. For g < 0 the bound-
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ary conditions on &(r) are also real, so &(r) is every-
where real.

Now, multiply Eq. (D3) by r&(r) and integrate from
0 to R. We find

R R
f il — f(M&Xr) dr = qu r&%(r) dr.
0 0

Hence for g% < 0, the real function 1 — f(r) must be
negative somewhere. Outside the beam 1 — f(r) is
unity, so we conclude that 1 — f(r) must pass below
zero either by passing through zero or through in-
finity; in the former case we are in the continuous
spectrum (10.12), while in the latter case we have an
A, mode satisfying (11.40).

Note incidentally that (D4) does not imply that
¢g* must be real for real Q? in the continuous spectrum,
for when (10.12) is satisfied the function &() has a
logarithmic singularity which invalidates (D4).



JOURNAL OF MATHEMATICAL PHYSICS

Runge-Lenz Vector and the Coulomb Green’s Function
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The fact that the Runge-Lenz vector is an extra constant of the motion for a charged particle moving
in a Coulomb potential is found to account for the especially simple structure of the nonrelativistic
coordinate space Coulomb Green’s function. Also, the study of the consequences of this extra constant
of the motion leads to a separation of variables in the differential equation for the coordinate space
Coulomb Green’s function, and hence to a new derivation of the closed-form expression for this Green’s
function which avoids the use of infinite series and the detailed properties of special functions.

I. INTRODUCTION
THE Runge-Lenz vector,

A=13pxL—Lxp)— (mZe*/4mu,, v, =r1/r (1)
for particle motion in a Coulomb potential is a
constant of the motion both classically and quantum
mechanically.!'® Classically,®* the constancy of A
expresses the fact that the orbit of a particle moving
in a Coulomb potential does not precess. The Runge-
Lenz vector, A, together with the orbital angular
momentum vector, L, provide a complete set of
integration constants for the classical equations of
motion excepting only for the initial position of the
particle in its orbit. Also, the equation of the orbit
follows from the constancy of A in a remarkably
simple way. In the quantum-mechanical Kepler
problem too, the Runge-Lenz vector has proved to
be useful. With the help of this vector the Bohr energy
levels can be deduced strictly within the framework of
Heisenberg’s matrix mechanics.**5> The existence of
this extra constant of the motion—in addition to the
orbital angular momentum vector (which is always a
constant of the motion for a spherically symmetrical
potential)—is equivalent to an additional symmetry
of the Coulomb Hamiltonian beyond just invariance
under spatial rotations.

We here wish to investigate the consequences of the
existence of this extra vector constant of the motion
for the Coulomb Green’s function in coordinate
space. This function may be defined by the differential

* Present address: University of Minnesota,
Minnesota.

! Equation (1) is written in its quantum-mechanical form.

 Heaviside-Lorentz (equals rationalized Gaussian) units are
used.

3 C. Runge, Vector Analysis (E. P. Dutton and Company, Inc.,
New York, 1919), Chap. 11, Sec. 5, p. 79.

4+ M. Born and P. Jordan, Elementare Quantenmechanik
(Springer-Verlag, Berlin, 1930), Chap. 4, Sec. 35, p. 179.

5'W. Pauli, Jr., Z. Physik 36, 336 (1926).

Minneapolis,
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equation®
(V§+-2ﬁ’ + kZ)G(rz,rl,w)= 8, — ),
a
k= (2—"‘2)% Im(k) >0, v=2Em " (o
hl’ ’ 4mkh?’

subject to certain regularity conditions at the origin
and at infinity, or equivalently by the equation

G(rz, 11, @) = (1| G(w) 1),

G(w) = — R22m(H — hw))]. 3)

The quantity /e in (2) and (3) is any complex number
not in the eigenvalue spectrum (discrete and con-
tinuous) of the Coulomb Hamiltonian,

H = p*2m — Ze*/4nr.

That this investigation might lead to some interesting
results is suggested by the specific form of the function
G(ry, 1y, ). This is®8
G(rz s Iy w)
~_LTa=w 4 { W,'v;i(—ikum,-v;g(—ikv)]
Wiy (— iku) Sy, g (—iko) |
v=ry+ 1 — [ry — 1.
C)
The functions W and G here are Whittaker functions
as defined in Buchholz.? The dots over the Whittaker
functions denote differentiation with respect to the
arguments of the Whittaker functions. The Green’s
function is seen to depend upon r, and r, only through
the two variables u and v [the factor |r, — ry|~! which

occurs in (4) can be written 2(# — v)~']. Now, on the
basis of the spherical symmetry of the potential alone

4m |ry — 1y

Uu=ry+r +rp—r,

8 L. Hostler, J. Math. Phys. 5, 591 (1964).

7 K. Mano, J. Math. Phys. 5, 505 (1964).

8 L. Hostler and R. H. Pratt, Phys. Rev. Letters 10, 469 (1963).

® H. Buchholz, Die Konfluente Hypergeometrische Funktion
(Springer-Verlag, Berlin, 1953), p. 12, Eq. (7); p. 22, Eq. (25a).
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one can only deduce that the Green’s function must
depend upon r, and r; through the three variables
ry, Iy, and |ry, — 1y|, or three functionally independent
combinations of these. The Green’s function (4)
therefore has a structure simpler than that required
by invariance under spatial rotations alone. It is
tempting to speculate that this special simplicity of
the Coulomb Green’s function may be a consequence
of the additional symmetry of the Coulomb Hamil-
tonian, associated with the extra constant of the
motion, A.

This speculation is confirmed by the work presented
here (Sec. II). In addition (in Sec. III), we are led to
a method of reducing the partial differential equation
for the coordinate space Coulomb Green’s function
to a pair of uncoupled ordinary differential equations
[Egs. (27)] for the functional dependence on the
remaining two variables u and v. Hence we can give
a derivation of the closed-form expression (4) which
avoids the use of infinite series and the detailed
properties of special functions.!®11

II. CONSEQUENCES OF [A, H] =0

To begin our investigation, we note that the
constancy of A is equivalent to the commutability of
A with the Coulomb Hamiltonian, H. But if A
commutes with the Coulomb Hamiltonian, then it
also commutes with any function F(H) of the
Coulomb Hamiltonian,

AF(H) — F(H)A = 0. )

Taking matrix elements of this equation relative to a
basis of position eigenfunctions gives an identity
which must be satisfied by the coordinate space
representative,

Fry, 1)) = (re| F(H) Ir),
of the operator 5(H),

®)

("1'2V§ +r,-V,V, +V, — “2‘11_1)3:(1'2, )
= (—.rlvi +rn-ViV, +V, — “1‘1;1)37(1'2, r), (7

19 This derivation is quite similar to the one given in Ref. 8, and
the present work might be regarded as a refinement of this previous
work.

1t Actually, as far as the momentum space representative is
concerned, the question of the connection between the Runge-Lenz
vector and the Coulomb Green’s function is already answered by a
work of Schwinger [J. Schwinger, J. Math. Phys. 5§, 1606 (1964)]. As
shown by Fock [V. Fock, Z. Physik 98, 145 (1936); see, also, L. C.
Biedenharn, J. Math. Phys. 2, 433 (1961)], the full symmetry of the
Coulomb problem associated with the constants of the motion A
and L is the symmetry of the four-dimensional rotation group. In
Schwinger’s treatment of the momentum space Coulomb Green's
function, this four-dimensional rotational invariance plays a central
role. He shows that the equation of the momentum space Coulomb
Green’s function can be written as an integral equation in a four-
dimensional spherical space, and the four-dimensional rotational
invariance of the equations is manifest throughout the calculation.
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Fi1G. 1. This figure shows part
of the infinite three-sided pyramid
which is the domain of the vari-
ables x, y, and z of Eq. (8). The
shaded area is a section through
the pyramid at x = const. (The
scale is distorted for ease of
visualization.)

a, , the radius of the first Bohr orbit, equals 4mh%/mZe?.
Here u, , denote unit vectors in the directions r, ,.
Choosing F(H) = —hk*2m(H — hw), one finds that
the coordinate space Coulomb Green’s function,
G(ry, 1y, ), satisfies this identity, but we need not
specialize to this case until the end of the calculation.

The differential equation (7) involves the six
variables r; and r,. However, from the invariance of
the Hamiltonian, H, under spatial rotations, it
follows that 5(r,, r;) can depend upon r, and r, only
through the variables r,, r,, and |r, — r,|, or three
functionally independent combinations of these
variables. This enables us to rewrite (7) as a differential
equation involving only three independent variables.
Writing 5(r,, 1) = F(x, y, z), where

xX=r+r, y=lnp—rn, z=r—r,

®)
Eq. (7) goes over into

°F z¢ — y?
l:ayaz 2y @, + )
0*F x* —y? 0F
ax3y 2y (u; —uy) — Py (u; + wy)
at‘"‘
-2 (- w) - Fa' - w)| =0,

r2>0, r1>05 r2¢r1' (9)

The domain of the variables x, y, z is the infinite
three-sided pyramid of Fig. 1. As r, and r; run over
all possible values; x varies over the range 0 < x <
+ co. For fixed x, y = |r, — r,| varies over the range
0 < y < x. For fixed x and y, z = r, — r, varies over
the range —y <z < + y. The three edges of the
pyramid are the three rays y=z=0, x >0;
y=x=2z2>0;and y = x = —z > 0. These corre-
spond to r,, r; values for whichr, =1, r;, = 0, and
ry = 0, respectively.

The conditions r, > 0, r, > 0, r, # r,; associated
with Eq. (9) express the fact that the domain of validity
of Eq. (9) is the pyramid less its three edges. This
excludes the exceptional points r, =0, r, = 0, and
r, = 1, which occur in the derivation of Eq. (9), and
guarantees that the expressions entering Eq. (9) are
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well defined. The points r, =0, r, =0, and r, =1,
may also be singular points of the function F(x, y, z).

The xy plane cuts the region r, >0, r, >0,
r; ¥ r,—i.e., the pyramid less the three edges—into
two halves, denoted by A and 3 (see Fig. 1). These
consist of the points corresponding to r, > r;, > 0 and
ry > ry > 0, respectively. In the following analysis
we limit ourselves to the study of the function
F(x, y, z) in the region A. It is obvious that the same
considerations apply also to the region 3. In the end
we have to build up the function F(x, y, z) by piecing
together its values in the two regions.

The vector equation (9) is equivalent to the two
scalar equations

3(z? — yB)(92F [9ydz) — Y(0F [9z) = 0, (10)
32 — (025 |0xdy) — Y(3F [0x) — (yla))F = 0.
an

Of course, (10) and (11) follow from (9) only if u, and
u, are linearly independent. In region 4 the vectors
u, and uy fail to be linearly independent on the upper
surface y =z (w;=1u;) and on the side y=x
(u; = —w,). It might seem, therefore, that Eqs. (10)
and (11) would be subject to the additional conditions
y # zand y # x. However, the points on the surfaces
y =z and y = x are either already excluded by our
conditions r, > r; > 0, or they are regular points of
the function F(x, y, z). In the latter case, Eqs. (10)
and (11) continue to hold for y = z and y = x, by
continuity. Consequently, Eqs. (10) and (I1) are
valid throughout .
Equation (10) is equivalent to

0/0y(z* — y»0F [0z = 0,

which implies that (z2 — y*)0F/0z is a function of x
and z alone,

(2 — y)OF [0z = $(x, 2). (12)

The function ¢(x, z) occurring here can be evaluated
by evaluating the left-hand side of the equation for a
special value of y. For each pair of values of x and z
which occurs in region A, the point (x, y,z) with
y =z is a point in region A and, hence, a regular
point of F(x, y, z). This choice of y makes the factor
(22 — y?» in (12) vanish. Since 0F/0z remains finite,
the entire left-hand side of Eq. (12) vanishes. It
follows that the function ¢(x, z) vanishes throughout
#. Thus (z* — y?)0F/0z = 0 throughout #. This
in turn implies that

8F oz =0 (13)

and, hence, that F is a function of x and y alone.
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Extending this result to region 3 also, we can write

F(x, 3, 2) = 0F(x, y) + 6(=2)Fy(x, p),
0(z) = +1, z>0; 0z =0, z<0. (14

Again assuming the only singularities of F(x, y, z)
occur at the edges of the pyramid of Fig. 1, the
right-hand side of Eq. (14) must be continuous across
the xy plane, z = 0. This implies Fy(x, y) = Fy(x, y) =
F(x, y), say. From (14) it follows that F(x, y, z) is
represented by the single expression F(x, y) throughout
its domain of definition,

Fx,y,2) =F(x,y), r;>0, r; >0, r3%r,.

(1)
We have here (a slight generalization of) the
result which we were looking for at the beginning:
the coordinate space representative of any function of
the Coulomb Hamiltonian can depend upon r, and
r; only through the two variables x = r, + r, and
y = |ry — r;| —equivalently through the two variables
u=ro+r+jr,—rnlandov=r,+r, —|r,—r.
In particular, the coordinate space Coulomb Green’s
function

G(ry, 1y, w) = —(B2m){x,| (H — hw)™ |1y)

must be a function of only the two variables » and v.
However, in addition we learned that this function
of only two variables must satisfy the identity (11),
and we now want to explore the consequences of this
identity.

Equation (11) [with F(x, y, z) = F(x, y)] can be
rewritten

0 x2—)y*0 _1
—————yF — F = 0. 16
dy 2y ox y ay (16)
This equation can be integrated once by putting
YF(x,y) = 9D(x, y)[0y. an

We then find 9A/dy = 0, where

A = [(@*D/ox0y)(x* — y*)/2y — a7'D].
This implies that A is a function of x only: A = A(x).
Now for a given F(x, y), the function D(x, y) is not
determined uniquely by Eq. (17). We can still add to

D(x, y) any function of x alone. In this way D can be
adjusted such that A = 0,

(@®D/oxdy)(x®* — y®)2y — a7'D =0.  (18)
The mixed derivatives in Eq. (18) can be eliminated
by going over to the variables u=x+y=

n+rntin—nov=x—y=r+r—I|p—r
In these variables Eq. (18) becomes

(Z+ Lo (Z+L)p=0, a9

ou®  au o’  apw
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and Eq. (17) goes over into

u-—v

. 20
ou Ov (20)
These results “explain™ the special significance of the
variables » and v: For functions of # and v only, the
identity (7) can be reduced to an equation [Eq. (19)]
in which a separation of variables occurs.

III. DERIVATION OF COULOMB GREEN’S
FUNCTION BY SEPARATION OF VARIABLES

We now want to apply these results to the specific
case of the coordinate space Coulomb Green’s
function. In the domain of validity, r, > 0, r, > 0,
ry # r;, of the previous equations, the delta function
source term in the differential equation, (2), vanishes,
and the equation for the Green’s function is homo-
geneous. Writing

G(rz, I, w) = (I/y)[aD(xs }’)/a}’], (21)
Eq. (2) goes over into
0 (32D 92D | 2x 9D . )
0= — + = k*D
oy \ ox* + o0y! y 0xdy +
2 2 22
_2 i(x_'ié_g. - 2) (22)
r,0y\ 2y 0xdy a,

As a consequence of the identity (18) this simplifies to

2Q (321) o*D | 4kvx
=2 Q= A
oy ox® + oy:  xP—y

-D + k2D),

a7t = mZe*/dnh® = kv (as before). (23)

From (23) we deduce that Q is a function of x only:
Q = 4y(2x), for some function . Changing over to
the variables # and v, this statement becomes

O(u)D + O(v)D = 29(u + v)

az

o0 = (Z+5+52) @y
The identity (19) can be rewritten in terms of the same
differential operators O(u) and O(v) as occur in
Eq. (24), and gives a relation,

Ow)D — O@)D = 0, 25)

involving these operators in an independent linear
combination. Solving (24) and (25) for O(u)D and
O(v)D, find

OW)D = y(u +v), O@®WD = yw(u + v). (26)

It is now shown that the ‘“integration constant”
w(u + v) vanishes. Operating on the first of Egs. (26)
with O(v) and on the second with O(u), we deduce
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that O(v)y(u + v) = O(u)y(u + v). But for a function
of u 4+ v only we have

0%/ 0utp(u + v) = 0% dvp(u + v).
Consequently, the relation
O@)y(u + v) = O)yp(u + v)

reduces to simply kv(u — v)(wv)p(u + v) = 0, and
this in turn implies ¢(4 + v) = 0. Therefore Eqs. (26)
become simply

OW)D =0, O@)D = 0. %))

We have here reduced the partial differential equation
of the coordinate space Coulomb Green’s function to
a pair of uncoupled ordinary differential equations
for the dependence of the generating function D(u, v)
on the two variables u and v.

The general solution of the equation O(z)f(z) =0
can be expressed as a linear combination of the two
Whittaker functions'® W, .4(—ikz) and M,,.4(—ik2).
Thus D(u, v) may be expressed as a linear combination
of (the four possible) products of one Whittaker
function of argument —iku times one of argument
—ikv, all with the indices i» and 4. Exactly which
products are allowed is dictated by the regularity
conditions on G(r,,r;, w) as a function of r,. At
ry = 400, u = 4 co. Since the Green’s function must
vanish at ry = 400,'® the products involving u
through the A function are excluded.!* As regards
the variable v, this can be made to vanish in the
region ry >0, r; > 0, 1, # 1, of regularity of the
Green’s function by choosing r, antiparallel to r,.
But G(r;, r;, ®) would become infinite for this choice
of r, if products involving v through the W function
were allowed [because dW,,.4(z)/dz becomes infinite
for z = 0 (cf. Ref. 9, p. 28)]. We have now eliminated
all but one possibility, namely,

D(u, v) oc W, y(—iku) M, 3(—ikv).

Substituting into Eq. (21) [equivalently, Eq. (20)] we
obtain

G(rz’rl’ (.U) oC

jrg — 1|
xdt[ (= zkuww(—zkv)]. @8
Wiy 3 (— iku) Moy, 3(—ikv)

The homogeneous equations which we have been
working do not, of course, determine the nu-
merical factor which is missing here. To determine this
factor one must go back to the inhomogeneous

12 Reference 9, p. 25.
18 Reference 6, Eqgs. (1.2).
14 Here the condition Im (k) > 0 [cf. Eq. (2)] comes in.
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equation, (2), and match the singularity at r, = r; of
the expression on the right-hand side of (28) with the
amplitude of the delta function source term in (2).
This is achieved by the requirement

Gy, 1y, 0)~ —1fdwir, — 1y}, @a—>r). (29
Now when r, approaches r,, u approaches », and the
determinant in (28) goes over into the Wronskian of
the two functions W and . This Wronskian has
the value'? 1/I'(1 — #). Hence the missing numerical
factor in (28) is —I'(1 — #)/4x. Supplying (28) with

LEVERE HOSTLER

this factor gives the familiar closed form expression
(4) for the coordinate space Coulomb Green’s
function.
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The time-dependent Green’s function for a moving isotropic nondispersive medium is hereby obtained
by taking the w-integration of the time-harmonic solution which was previously obtained by means of
an operational method and by making use of the known result of the two-dimensional Klein-Gordon

equation.

INTRODUCTION

HE time-dependent Green’s function for a moving

isotropic medium was recently found by Compton.*
He applied a four-fold Fourier transform to the
pertinent differential equation to obtain the desired
result. In evaluating the reciprocal Fourier transform,
he considers the w-integration first, followed by the
k-integration. The steps involved in the calculation
are rather long, comparable to those of Lee and
Papas.?

In this paper, we show that the time-dependent
solution can readily be obtained by taking the w-
integration of the time-harmonic solution® which was
previously obtained by an operational method without
a lengthy calculation.

* The research reported here was sponsored by the National
Aeronautics and Space Administration under Grant NGR-23-005-
107 with the Langley Research Center, Hampton, Virginia.

1 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966).

2K.S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1668
(1964).

( 3C. T. Tai, Trans. IEEE Antennas Propagation, AP13, 322
1965).

THE BASIC EQUATION AND ITS SOLUTIONS

The time-dependent Green’s function considered by
Compton? satisfies the differential equation

(2, 2,12 02
ox*  8y® aodz® a 0z0t
QF  nPa\ o? = =
2 BN GR R
+(a cﬁ)aﬁ} K50
Shere =~ —8(R — R)S(t — 1), (1)
1 — g (n* — Dp
a = m——— BE T
1 — n?f? (1 — n?8%c
%
h = (ﬁi)’ i =z_)’ ¢ =(Ho€0)%’ v =va,.
Moo ¢

We define the Fourier pair

Flo) = f G()e—t dt, )
G) = i f Fo)e™ do. 3)

# Compton defines the Green’s function with a positive sign
attached to the delta function.
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C. T. Tar
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The time-dependent Green’s function for a moving isotropic nondispersive medium is hereby obtained
by taking the w-integration of the time-harmonic solution which was previously obtained by means of
an operational method and by making use of the known result of the two-dimensional Klein-Gordon

equation.

INTRODUCTION

HE time-dependent Green’s function for a moving

isotropic medium was recently found by Compton.*
He applied a four-fold Fourier transform to the
pertinent differential equation to obtain the desired
result. In evaluating the reciprocal Fourier transform,
he considers the w-integration first, followed by the
k-integration. The steps involved in the calculation
are rather long, comparable to those of Lee and
Papas.?

In this paper, we show that the time-dependent
solution can readily be obtained by taking the w-
integration of the time-harmonic solution® which was
previously obtained by an operational method without
a lengthy calculation.

* The research reported here was sponsored by the National
Aeronautics and Space Administration under Grant NGR-23-005-
107 with the Langley Research Center, Hampton, Virginia.

1 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966).

2K.S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1668
(1964).

( 3C. T. Tai, Trans. IEEE Antennas Propagation, AP13, 322
1965).

THE BASIC EQUATION AND ITS SOLUTIONS

The time-dependent Green’s function considered by
Compton? satisfies the differential equation

(2, 2,12 02
ox*  8y® aodz® a 0z0t
QF  nPa\ o? = =
2 BN GR R
+(a cﬁ)aﬁ} K50
Shere =~ —8(R — R)S(t — 1), (1)
1 — g (n* — Dp
a = m——— BE T
1 — n?f? (1 — n?8%c
%
h = (ﬁi)’ i =z_)’ ¢ =(Ho€0)%’ v =va,.
Moo ¢

We define the Fourier pair

Flo) = f G()e—t dt, )
G) = i f Fo)e™ do. 3)

# Compton defines the Green’s function with a positive sign
attached to the delta function.
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Thus, if Eq. (1) is multiplied by e~7®* and integrated
with respect to ¢, we obtain

(22,12 o
ox*  0y* a0z’ a 0z
2 2
+ w2(¥ — 9)}17((») = —e 8 (R — R,
c a
Q)
If we introduce an auxiliary function f(w) such that
Flw) = e*%f(w), )
then f(w) satisfies the following equation:
*  * 13 | o’
sttt -5+
(ax2 dy*  aodz® c? )f(w)

= _e—m(t'—mz’)é(ﬁ — R'), (6)

Except for the factor e=/*¢"+%) Eq. (6) is the same
as Eq. (26) considered in Ref. 3. Hence, its solution
is given by the following:

Case I: nff < 1
3 PN ’ 3
fw) = a?exp {—jolt -:ﬂjsz + (njc)a Ra]}, )
where ‘
R, = (a8 + rz)%’ r=(x-x)+ ()’ "}")2,
E=(z—-2).
Case II: nf > 1
0, la*s<r
fw) = ]} exp [—jw(t’ + Qz')] cos (wn/c) lal’}R;, ,
27R,
latte > r
(3)
where

R, = (lal & — )k

In view of Egs. (3) and (5), we can obtain readily the
solutions for G(¢); they are the following:
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CaseI: nf < 1

3 @
8:2Ra f—wexp [jw (-r + Q& — '—:.a*Ra)] dw

3
a n 3
= 0 Q& — = a®R,}, 9

47R, (T+ F=e ) ©)
where T =t — t'.

Case II: nf > 1

G(1) =

lal* (= i n.oio,
G = exp [jo(r + Q&)] cos - |a]*R, dw
41T2R; —0 c
_ Jal? o(r + Q¢ = "1altRi). Jalfe > 7,
47R, c
(10)
G(t) =0, |alte <r (11)

Our expressions for G(¢) appear to be of slightly
different form as compared to Compton’s, but they
are equivalent. In fact, the present ones are simpler in
form and also put the time-dependent part explicitly
in the delta function.

To discuss the locus of the wave front, we consider,
for example, the case corresponding to nf < 1. The
impulsive wave front is described by

T+ Q& — (njc)a’R, = 0. (12)
The above equation can be written in the form
where [(¢ — £)°14°] + (*/B) = 1, (13)
B = (;12——__—%2—2)27.

Equation (13) defines the same ellipsoid discussed by
Compton. It can be shown that the same algebraic
equation applies to the case nf > 1. For the latter
case, &, is numerically smaller than 4. The detached
ellipsoidal wave front is therefore confined within the
Mach cone defined by |a|}€ — r = 0.
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Relation between the Relativistic and Nonrelativistic S-Matrices
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It is shown that, given any Lorentz invariant S-matrix, it is possible to calculate from it, by purely
algebraic operations, a Galilean invariant S-matrix, and vice versa.

I. INTRODUCTION

HE requirement of Lorentz invariance is more

difficult to satisfy than the requirement of Galilean
invariance in quantum mechanics. A formula is given
below which shows that, if there is a theory that has
a Lorentz invariant S-matrix, then there is a related
theory that has a Galilean invariant S-matrix, and
that the two S-matrices are related by only algebraic
relations. If other conditions, such as crossing sym-
metry are required of the relativistic S-matrix, they
may be imposed on the nonrelativistic one and the
entire covariant problem reduced to the simpler non-
covariant one. In Sec. II the formula and related
definitions are given. In Sec. III the proof of the
invariance and unitarity is given, and in Sec. IV a
motivated derivation of the formula is given.

II. FORMULA RELATING THE RELATIVISTIC
AND NONRELATIVISTIC S-MATRICES

The S-matrices are taken between plane-wave
states | po). The relativistic S-operator is indicated by
S and the nonrelativistic one by s. The general element
of the S-matrix is

P101" " PaOul S G171 " " QT )- ey
The invariance of S is contained in the statement
UYL)SU(L) = S, where U(L) is the unitary operator
that represents the Lorentz transformation L. The
action of U(L) on the state |qr) is given by

UL) lqr) = (Qu/QPDDIR(L, )] ILgr').  (2)

The vector q is the spatial part of a four vector whose
time component Q, = (g2 + m?}, where m is the
mass of the particle. In the above formula Lq means
the spatial part of the transformed four vector
L(q, Q). The rotation R(L, g) is the Wigner rotation
associated with the Lorentz transformation L and the
four vector! g. The unitary matrix D is an irreducible
representation of the rotation group of dimension
2T + 1 when the particle in question has spin 7. The
T’s and masses are usually dropped.

1 E. P. Wigner, Ann. Math. 40, 149 (1939).

The general element of the nonrelativistic s-matrix is

(P11 " " PnTul S a1+ * AT - €)
The nonrelativistic operator s has the invariance
property U'(G)s U(G) = s, where U(G) is the unitary
operator that represents the Galilean transformation
G. The action of U(G) on the |qr) is given by
U(R) lgv) = D,(R) |Rq, 7),
UV)lgr) = lq + mv, 7),
for a change to a moving coordinate system. (4b)

for rotation R;

(4a)

In terms of the S-matrix elements the requirements of
Lorentz and rotational invariance become
P10y I S lqery o+ )
= 3 DiLJIRL )
X (Qrp, D, .)’lf
X (Lpyoi - - S LAy - N Qe+ +/Qy - I
X D, IR(L,q))] - - (5)

The dots indicate that the same factors are repeated
for each of the m-incident and »-final particles as for
the first. The analogous formula for the nonrelativistic
s-matrix is

P10y sy o) = Z

oy et

Do (R) - -

X (Rpyoy - | s |Rgyy ")
x Drl’rl(R) Tt (6)

Given the set of initial four vectors g, * * * q,, for the
Initial state, there is a Lorentz transformation A that
carries these four vectors to their center-of-mass values
g, -4, that is Ag; = §,. The §’s have the property
> §; = 0. The transformation 4 is to be a Lorentz
transformation without rotation. That is, if Q =
> q;, then each g, can be separated into its component
parallel to Q:(q,- Q)XQ/Q?% and its component
perpendicular to Q:q; — (q,- Q)Q/Q?% Only the
component of q; parallel to Q is changed by 4.
Given the set of three vectors §, * - * §,,, a Galilean
transformation can be made on them so that they have
the same total momentum Q as the original set of
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vectors q,° * - q,,. The Galilean transformation G
applied to §, gives G§, = §; = §, + m,Q/M, where m,
is the mass of the ith particle and M = 3 m,. The
components of ¢; and q, perpendicular to Q are equal,
and only the component parallel to Q is altered. The
Jacobian of the transformation from q to q is

&g dq, = (- Q

- d5q,,.
@)

The ’s are the energies in the moving coordinate
system, and the @’s are the energies in the center of
mass. The Jacobian is easily calculated from the
familiar facts that d®q/Q is an invariant for Lorentz
transformations and d3q is an invariant for Galilean
transformations. A similar set of vectors p, - - - ,, may
be defined for the final state.?

The proposed connection between the relativistic
and nonrelativistic S-matrices is

wm) da(-ll v

m/wl. ..

(101 " PO | SH T " QT )
= 3 DR, p) - D3l [R(A, b))
X (@, * - @, [Q + Qpﬂ)é
X (P11 Ba0l S 101 Q)
X (wq, * * * wq, [Qg, " " qu)%
X D, n[R(4, g)] -+ D,,r [R(4, 4] (®)

III. UNITARITY AND LORENTZ INVARIANCE

By direct calculation the unitarity and Lorentz
invariance of S are shown to follow from the unitarity
and Galilean invariance of s. The unitarity of S is
tested by evaluation the expression:

z Z fdsl...d3qm
e Tm
X <p101 e Pno'nl S |q171 e qm7m>
X A7y QT s’ [rypy - *1p). (9)

The sums should be over all intermediate states. The
outside sum in (9) indicates the sum over all possible
particle types and number of particles. The inner sums
and the integrals are the instructions for adding over
all states with a given number and type of particle. If
(8) is substituted for S in (9), the sum over r; involves

D, .. [R(4,p)] from S and D}. [R(4p,)] from S'.
Since D is unitary and the arguments of the two
D’s are the same, the result is a 6 . The factors
(g, " "~ g, [, * + - Q )* are the same for both S

and S', and
d3q1 PR d qm(wa v wﬂm/Qh

o qu) =d%, - d%,,.

2 A. Chakrabarti {J. Math. Phys. 5, 922 (1964)] has discussed
similar coordinates.
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With these remarks the unitarity sum (9) becomes
2 DL R4, p)l - D7, [R(4, p,)]

e
X (wp, vy, [Qy an)%
{Z z da . ds-m
Tl Tm
X <P101 pn nI N IqlTi o q:n‘rfm>6r1’71" T 67’,,,’1,,,"
X @l Bl s’ g+ o)
X (wn e wr;/'er e Qn)%

X Dpl’pl[R(A’ rl)] U Dpz’pl[R(A’ rl)]'
The expression in braces is just the nonrelativistic

unitarity condition so that the unitarity sum (9)
becomes

z D;lla'l [R(A’ pl)] o a-"o',, [R(A pn)]

I
X (g, "+ 0y, [Qy an)%
X (101" " Paoyl 1IRipl - - Fipp)
X (g, @ [Q er)%
X D, [R(A, )] D, ,IR(4, r)].

Unless the initial and final states have the same number
and type of particles, the sum vanishes. When the
initial and final states have the same number and type
of particles, the spin indices ¢’ and p’ must be equal
and the D functions are summed to d,,. The momen-
tum 4 functions of (p — ) multiplied by the weight
(w/Q2) gives d(p — q), so the expression is just

<P1°'1 e Pngnl 1 |r1P1 e rzpz>a
and the unitarity of S follows from that of s.
Lorentz invariance of S requires that

<P10'1 U pn 'nl S |qlTl e qu >
= z Dalal [R(Ls pl)] Tt u,,a,, [R(L pn)]
X (QLm T QLDn/Qm ’ QDn)
X (Lpyo1 - - - Lp,oy| S |Laymy
X (QLul e QL«,,./qu e qu)%
X Dy [R(L, g} "+ - Dy, [R(L, 4,)]- (10)
The S-matrix elements on both sides can be evaluated
in terms of the elements of s through (8). The Galilean
invariance of s guarantees the Lorentz of S. The
left-hand side of (10) is explicitly given by (8). The
S-matrix element on the right-hand side of (10) can
also be calculated from (8). The transformation that
takes the vectors Lg, ‘- - Lg, to their rest system
is B. If the sum of the ¢’s is Q, then 4 transforms Q
to its rest system A4Q = (0, M). Similarly, the
transformation B transforms LQ to its rest system

Lq, 0>
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BLQ = (0, M). These two results may be combined to
yield BLA-Y(0, M) = (O, M). The product BLA* is a
rotation R(L, Q), the Wigner rotation associated with
L and Q since it leaves (O, M) invariant. The set of

vectors qu
BLq,- -

Lqm is given by

Blq,, = R(L, Q)4q, - * R(L, Q)4q,,
= R(L’ Q)(‘il © R(L, 0),, -

The Galilean transformation to a moving coordinate
system from the center of mass does not change the
value of 5. The matrix element

(Lp,o,- - Lp,o,| S|Lq,r, - Lq,7. )
that appears on the right-hand side of (10) is
2 D;fal [R(B, Lpy)] - - Dy 5, [R(B, Lp,)]

X (wpl w,, [ QLm th QLpn)%

x (R(L, Q0% - - R(L 0,05l s IR(L, O,y - -
X R(L, Qi )@, " * * 04,/ Qra, -+ Qpa )t

X D, v [R(B, Lgq,)] - D,",,m,[R(B, Lqg,)]. (11

To simplify this, it is necessary to use the inverse of
(4) which gives

(Rp107 - Rp,o,| s |IRGy7Y - - - RY,,7r)
= ” z ” Da'l"al"‘[R(Ls Q)] e Da',,”al”'[R(L9 Q)]
:1 o, :-':
X (107 - Bu0'nl 8 @)+ Gur) Dirrpr
X [R(L, Q)" - - D7\, [R(L, Q)] (12)

When (12) is substituted into (11) and (11) is then
substituted into (10), the result is products of the type

D;llal [R(Ls pl)]D:lla'l [R(B’ Lp!.)]Dal"ﬂl'"[R(L9 Q)]
(13a)
on the left of the matrix element of s, and of the type

Dr_llrl [R(L’ Q)]Drl”rl’[R(B’ qu)]Drl’rl[R(L9 fh)]
(13b)

on the right of the matrix element of 5. These expres-
sions can be simplified by recalling that BLA™! =
R(L, Q), that R(L,L,,v) = R(L;L,v)R(L,,v), and
that R(R, v) = R. The product in (13b) is R(4, q,) =
R[R™YL, Q)BL, q,], since

D[R{R™(L, Q)BL, g,}]
= D[R{R—I(Lﬁ Q)’ Bqu}R(Bs qu)R(L5 ql)]
The right-hand side of (10) becomes the same as the

right-hand side of (8), demonstrating that the Galilean
invariance of s implies the Lorentz invariance of S.

FRANCIS R. HALPERN

IV. DERIVATION OF THE FORMULA

The formula (8) can be derived in a straightforward
way for the two-body to two-body S-matrix, and the
generalization can be guessed.? The combination of
the plane-wave states into irreducible unitary repre-
sentations of the Lorentz group .is achieved by the
formula

|pJuLSp) = 3.

a102

dapl daPz [P101P203)

X (P101P202 I pJuLSp). (14)
This formula is valid relativistically and non-

relativistically. The difference is in the transformation
coefficients (p,0,pzp, | pJuLSp) which are

(P101P20> , pJuLSp)
= ; o(p — p1 — P[P — P(P1P2)]/P2

X C(LSJ | Aow)C(S,1S,S | 010:0)y4(Q)  (152)

nonrelativistically, and

(P101P203 l pJuLSp)
= ; 8(p — p. — Pl — p(p1p2))/P?

X C(LSJ | Aou)C(S,S,S | 7y730)
X Dy [R(A, PYID,1[(A, p)l(Quy0p/MQ, Q)
(15b)

relativistically. The only difference in the formulas
is the appearance of the D’s and the factor
(Qo,0,/ MQ,Q,)t in the relativistic case. The weight-
ing factor is different from that of (8), since the
coordinates p and P have been used instead of p,
and p,. p(p1P2) = P = —Pe.

To achieve interacting states, the noninteracting
states are multiplied by a radial-wavefunction f(p)
and integrated p?dp. This radial-wavefunction is the
same relativistically and nonrelativistically. The
S-matrix elements

(qJ'wLS'p' (=) | gJuLSP(+))
are the same relativistically and nonrelativistically.
Finally, the different transformation coefficients (15a)
and (15b) lead to formula (8) when the S-matrix is
transformed to rectangular coordinates.
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This paper establishes the existence of N and D matrices with the property that the partial-wave T
matrix has the form T = ND-'. We consider the case of a finite number of two-body channels and
prove that, if T is analytic with right- and left-hand cuts and is suitably bounded, then N and D can be
constructed with all the usual properties—namely, N and D have the left- and right-hand cuts, respec-
tively, N is finite at the bound-state poles, and D tends to one as the energy goes to infinity.

L INTRODUCTION

HE matrix N/D method is a widely used technique
for computing scattering amplitudes in bootstrap
calculations. The technique was originally proposed
by Bjorken? as a generalization of the single channel
N/D method of Chew and Mandelstam.? In those
situations where the method is usually applied, one
is concerned with the scattering between n two-body
channels described by a symmetric (n X n) partial
wave scattering matrix 7(s). This amplitude has a
left-hand cut whose discontinuity is considered as
given (corresponding to the forces of the problem)
and, starting at sy, a right-hand cut whose discon-
tinuity is to be determined consistent with unitarity.
The matrix N/D technique for doing this can be
summarized as follows: One assumes that T can be
written in the form
T=ND?, (1.1)

where D satisfies the following conditions: (i) D is
real analytic with a right-hand cut, but no left-hand
cut. It may have a finite number of real CDD poles.*
(ii) 7D is real on the right, so that N has no right-hand
cut® (iii) D—1 as |s]— 0.8 (iv) TD is finite

* Present address: Physics Department, University of California,
Santa Barbara, California.

t Present address: Department of Physics, University of Colorado,
Boulder, Colorado.

1 See for example, F. Zachariasen and C. Zemach, Phys. Rev.
128, 849 (1962); E. Abers and C. Zemach, ibid. 131, 2305 (1963);
J. Fulco, G. Shaw, and D. Wong, ibid. 137, B1242 (1965). Other
references may be found in F. Zachariasen, Lectures at the Pacific
International Summer School in Physics (1965) (unpublished).

2 J, Bjorken, Phys. Rev. Letters 4, 473 (1960).

3 G. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

4 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

5 Qur analysis applies equally well to cases where D cancels
only a finite portion of the right-hand cut, as in the N/D equation
associated with the strip approximation.

8 If T does not vanish fast enough at infinity, one does not
expect to find a D which tends to one. These cases are not discussed
here. The existence of a D matrix when T satisfies weaker conditions
at large s than those used here is established in a forthcoming paper
of R. L. Warnock, who treats the problem from a different point
of view. We are indebted to Dr. Warnock for a helpful corre-
spondence and for drawing our attention to his own work, an
abstract of which appeared in Bull. Am. Phys. Soc. 9, 116 (1964).

at the bound-state energies. One now uses uni-
tarity to derive the usual nonsingular integral equation
for D (or N) in terms of the left-hand discon-
tinuity of 7. This equation is then solved to deter-
mine 7.

The N/D method hinges on the assumption that T
can be written as ND~1. One might imagine a situation
in which the T arrived at from a more complete
calculation could not be decomposed into ND~. In
this case solutions of the N/D equations might still
exist, but they could not yield the correct 7. In this
paper we examine the possibility of decomposing T
as ND! and conclude that for any T with the usual
properties this can be done with D satisfying con-
ditions (i)—(iv).

At first, one might think that proving the existence
of N and D matrices should present no problem. In
the case of a single channel, for example, the existence
proof is direct and simple. One forms the Omnes
expression,

Dy(s) = (s — s)” ™ exp (— -}wads’ ———ﬁ(i’—)——),

%0 s — s —ie

(1.2)
where we have taken

8(00) = 0, 8(sy) = mm.

The function D, has no left-hand cut, and N = TD,
is real on the right, so that D, satisfies conditions (i)
and (ii). Multiplying D, by a suitable rational function,
one can ensure that (iii) and (iv) are also satisfied.
This construction guarantees the existence of at least
one D function with the properties (i)—(iv).

For the multichannel case, however, there seems
to be no simple generalization of the Omnes formula.
One can, of course, write the S matrix as S =
exp (2iA), where the matrix A is real and symmetric,
and then D defined by Eq. (1.2) (with & replaced
by the matrix A) certainly has no left-hand cut.
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Unfortunately, the resulting N = TD is not real on
the right.”

Another obvious approach to the explicit con-
struction of a D matrix would be to diagonalize the
S matrix, S = U'S,U, and to construct a diagonal D
matrix, D;, using the Omnes formula (1.2) for each
element separately. This diagonal D, obviously has
the desired properties, but when one returns to the
original representation, the resulting D = UTD,U is
unsuijtable because the matrix U has a left-hand cut
which it communicates to D.

The situation in potential scattering (with a Yukawa
potential for example) bears out our contention that
the multichannel case needs special attention. In the
one-channel case S = f(k)/f(—k), where the Jost
function f(k) is analytic in the lower-half & plane, and
D defined as f(—k) has all the required properties. In
the multichannel case § = F(K)F~(—K), but the Jost
matrix F(—K) in general does have a left-hand cut.®
The identification D = F(—K) in fact satisfies con-
ditions (ii)~(iv) but obviously not (i). Thus, here too
the existence of a proper D is unproved.

In Sec. II we prove that one can, in fact, always
construct a suitable D for any T with the following
properties: (1) 7(s) is an (# X n) symmetric matrix,
analytic in the usual cut plane except at a finite
number of bound-state poles. (2) On the right-hand
cut T is continuous and piecewise analytic (i.e., has
only a countable number of branch point singularities).
(3) On the right-hand cut, each element of T and its
first two derivatives is bounded by some power of s
as follows:

IpTI < Cfs*, C,a>0,
pT’| and [pT"} < C/s*, B>1, (L3)

where p is the phase space matrix (S = 1 + 2ipTp})
and primes denote derivatives with respect to s.
(4) T satisfies extended unitarity on the right-hand
cut; i.e., 771 = Y — ip, where Y is a real matrix.?
Some comment on these assumptions is in order.
First, it may be seen that, apart from the analyticity
of 7, we use only properties of 7 on the right-hand
cut, Secondly, the bound (1.3) is chosen so that the
dispersion relation for (D — 1) is unsubtracted. The
case where subtractions are needed is not considered
here.* The bounds on the derivatives of T are
needed to eliminate pathological oscillations when s

? We should remark that we are not concerned here with methods
that use the determinant of the D matrix. It is clear that the Omnes
formula, (1.2), can always be used to construct the determinant of
D—or rather, the function which would be the determinant of D
if D exists-—but the existence of this “determinant of D" does not
guarantee the existence of D itself.

8 8ce, for example, R. G. Newton, J. Math. Phys. 2, 188 (1961).

? See, for example, J. R. Taylor, Nucl. Phys. 58, 580 (1964).
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is large. Finally, our use of extended unitarity is
comparatively inessential. In order to prove that a
certain equation—Eq. (4.5)—is of Fredholm type we
need to know that Im 7! is finite on the right-hand
cut; this is conveniently guaranteed by extended
unitarity, which implies that Im T = —p,, the
open-channel part of p.

Our procedure is first to assume that D exists and
to derive an integral equation which it must satisfy.
This equation is a singular integral equation for D in
terms of the physical values of 7. We show first that
if the equation has solutions at all, then it has solu-
tions which satisfy conditions (i)-(iv) and secondly
that it does have solutions. We present the whole of
this analysis in Sec. II, omitting only some mathe-
matical details which are given in Sec. IV.

In Sec. III we discuss the single-channel problem
and compare our construction of D with the usual one.
This discussion illustrates the role of CDD poles in
our approach. In Sec. IV we repair the omissions -
of Sec. II; in particular, we outline the proof of the
theorem on singular integral equations used in Sec.
11, and we verify that the D matrix which we construct
does satisfy condition (iii) that D — 1 and 5 — 0.

II. EXISTENCE OF THE D MATRIX

In order to derive an integral equation for D, we
first assume that 7= ND™!, where D has properties
(i)—(iv) of Sec. I. It then follows that D satisfies a
dispersion relation,

d , Im D(s )' ,

5 —5 — i€

D(s)-1+2 +1

i=1§ = C; T Js

2.1

where R, are real matrices and ¢; are real numbers
less than s,. To evaluate Im D we note first that
D = TN, where N is real on the right, so

Im D= (Im T"HYN = (Im T-H)TD. (2.2
Extended unitarity implies that
Ti=Y—ip=Y,—ipg, 2.3)

where p, is the open-channel part of p, so that both
Y, and p, are real everywhere on the right. Equations
(2.2) and (2.3) then give

Im D= —p,TD,

whence the dispersion relation for D becomes

_1 f 4o PAOTE) D)
£ s 5§ - i€
(2.4)
This relation may now be regarded as a singular
integral equation for D in terms of the values of T

D(s)=l+§

i=18 — C;
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on the right-hand cut. Its solution in the single-
channel case can be found in Muskhelishvili’® and
Omnes'! and is given essentially by the Omnes
formula (1.2). Properties (i)-(iv) can then be verified
directly from the solution. In the many-channel case
an explicit solution cannot in general be found, and
we proceed as follows: Any solution D of Eq. (2.4)
clearly defines a function analytic in s with the
right-hand cut. Multiplication of D by suitable
factors (s — b)/(s — ¢) can obviously guarantee that
TD is finite at the bound states. That any solution D
of Eq. (2.4) tends to one as 5 — oo is certainly very
plausible; we give a proof at the end of Sec. IV. Thus
to guarantee the existence of a matrix D having
properties (i)-(iv) it is sufficient to prove that: (a) If
Eq. (2.4) has any solution, it has solutions for which
TD is real on the right. (b) The equation does have
solutions.

To discuss the first question we rewrite the integral
in Eq. (2.4) as a 4 function plus principal value and
take the 6 function term to the left-hand side. Then,
since from unitarity {Eq. (2.3)},

1 + ip,T = Y,T, 2.5)

the integral equation becomes

» o , , ,
Y,TD=1+3 2 _L’f s PTG DE)

=18 — ¢, mwds s —s
(2.6)

The two integral equations (2.4) and (2.6) are equiv-
alent; i.e., any solution of the first provides a solution
of the second, and vice versa. But Eq. (2.6) may be
regarded as an equation for 7D = N and, since Y,
R,, c;, and p, are all real, its solutions can always be
chosen real.!? Since Eqs. (2.4) and (2.6) are equivalent,
this means that if Eq. (2.4) has any solutions, then it
has solutions for which T'D is real on the right.

We conclude that if Eq. (2.4) has solutions, they
can be chosen to satisfy properties (i)-(iv), and it
remains.only to show that it does have solutions. The
existence of solutions to equations of this type is
discussed in Sec. IV; we quote here only the results.
With the assumptions of Sec. I for T(s) a solution for
D exists provided that

® ? R
st(1+z : )¢,(s)=0, a=1,",k
8o =18 — C;
v )

where ¢ denotes transpose and the column vectors

10 N. Muskhelishvili, Singular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands, 1953).

11 R. Omnes, Nuovo Cimento 21, 524 (1961).

12 If N is any solution so is $(N 4+ N*).
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é1, **, ¢, are a complete set of linearly independent

solutions of the homogeneous adjoint equation of
Eq. 2.9),

46 = o160 — 401, @9

This theorem is the analog of the existence theorem
for Fredholm integral equations.!® In general, if there
are solutions to Eq. (2.8), conditions (2.7) cannot
be satisfied without CDD poles. However, since (as
is shown in Sec. IV) k is finite, we can always choose
R, -+ R, so that these conditions are satisfied by
choosing p sufficiently large. Thus, if we allow a
sufficient (but finite) number of CDD poles, a D
matrix having properties (i)(iv) can always be found.
It is easy to see that the minimum number of poles
necessary to satisfy Eq. (2.7) must be greater than
k/[n, but this number may be modified by the additional
factors (s — b)/(s — ¢) by which this D must be
multiplied in order to ensure that it vanishes at the
bound-state energies.

This completes our proof that one can construct a
suitable D matrix. To recapitulate briefly, we first
derived the integral equation, (2.4), which D must
satisfy if it exists. We next argued that if Eq. (2.4) has
solutions, then they can be chosen to satisfy conditions
(i)-(iv)—that D is analytic with only a right-hand cut
is obvious from Eq. (2.4), that TD can be chosen real
on the right was seen by inspection of the equivalent
Eq. (2.6), that TD is finite at the bound states can be
guaranteed by multiplication with suitable factors
(s — b)/(s — ¢), and the proof that D — 1 as s — o
is given in Sec. IV. Finally, that there are solutions (if
we allow enough CDD poles) is guaranteed by the
conditions stated in Eqgs. (2.7) and (2.8) and proved
in Sec. IV,

II. SINGLE-CHANNEL CASE AS AN EXAMPLE

In this section we show that, in the single-channel
case, our construction of the D function agrees with
the usual solutions obtained from the Omnes formula.
We dispense temporarily with the requirement (iv)
that D vanish at the bound states [since in both cases
this can be achieved by simple multiplication by
factors of the form (s — b)/(s — ¢)}.

To obtain D from the Omnes formula we define

d(sy) — &(0) = mmr
and adjust 4 so that 6(c0) = 0. The Omnes expression,

8(s") )

s’ — s —ie

Dy(s) = (s — s¢) " exp (— L ds’

s

18 See, for example, F. Smithies, Integral Equations (Cambridge
University Press, New York, 1958); see, also, Ref. 10.
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is real analytic with a right-hand cut, has the phase
~0(s) on the right, is everywhere finite and nonzero,
and behaves like s~™ as s — oo. The usual con-
struction of D then distinguishes two possibilities: (1)
m > 0. To ensure that D—1 as s — o0, one must
multiply D, by m factors (s — a;). This gives a D
function without CDD poles. (2) m < 0. In this case
D, must be divided by |m] = M factors (s — ¢,); i.e.,

M —1
D(s) = Do(S)(H (s — c,-)) . (3.1

i=1
Thus, D has M CDD poles.
In our approach D is determined as a solution of
Eq. (2.4), which in this case becomes

D(s) =1 +‘§1s .
_ l_f s 5P [i6(s)] sin 8(s") D(s") (62
wJs s — s — ie

As described in Sec. II, solutions exist if the in-
homogeneous term is orthogonal to all solutions ¢
of the homogeneous adjoint equation, Eq. (2.8). The
latter equation, written in terms of

y = ¢* exp (i6)/sin 0 (3.3)
is just
o(s) = _f , exp [—id(s")] sin 3(s)p(s") . G4
T V5 s’ — 5 —ie

which is the homogeneous form of Eq. (3.2) with §
replaced by —d. The analysis of Sec. II [in particular
Eq. (2.6)] therefore guarantees that if homogeneous
solutions ¢ exist they can all be chosen so that ¢
[or v exp (—i0)] is real on the right; i.e., v has the
phase 6 on the right. Now Eq. (3.4) shows that p is
real analytic with only a right-hand cut. So if we
define

P(s) = p(s)Dy(s), (3.5
then P(s) is real analytic, and real on the whole real
axis; i.e., P(s) has no singularities at all. Now since
Dy~ s~™ as s — co while, from Eq. (3.4), ¥ —0 as
s — oo, we can distinguish two possibilities for P(s):
(1) m > 0. In this case Eq. (3.5) shows that P — 0 as
s — co. Since P(s) is an entire function this means
that P = 0; i.e., there are no solutions ¢ to the
homogeneous adjoint of Eq. (3.2). Thus one can solve
Eq. (3.2) with any inhomogeneous term and, in
particular, one can find a D function with no CDD
poles. (2) m < 0. In this case Eq. (3.5) shows that
s™P —0 as s— oo which means that P is a poly-
nomial of degree less than |m| = M. There are
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therefore M independent homogeneous adjoint solu-
tions ¢,, * + +, ¢, which can be chosen so that

P = §° Y Dy(s) ~ 1/sM7* as |s| —> 0. (3.6)

If we now seek a D function without CDD poles
we must examine the conditions [° ds¢, =0 for
o=1,-+, M. Since from Eq. (3.3)

¢=Imw’ SOSS<®,

the integral of interest is

[Castio =[asim i = £ | asnio

=L[ dop9 =~ G
2iJe

where the contours C and C’ are shown in Fig. 1.
The last step follows because of the asymptotic
behavior (3.6), and it makes clear that the homo-
geneous adjoint solution ¢,, is not orthogonal to 1.
Thus there exist no solutions D without CDD poles;
exactly as we would expect.

. The condition that a solution with CDD poles
exists is of course

f ds(l +zzls— i)¢a(s)=0, a=1,, M.
(3.8)

The first integral here is given by Eq. (3.7), while a
similar calculation shows that

© a—1
f d s ¢a(s) — 7T(ci) .
s ST G Dy(c;)
Thus condition (3.8) for the existence of D becomes
z ( )a—l r;
=1 Dy(c,)

If we regard the pole positions c, as fixed, then exactly
M poles are needed to satisfy Eq. (3.9) with the
residues 7y, - - -, ry, uniquely determined. In fact, the

/
\%G

(3.9)

= Oy

Fig. 1. The plane
of the variable s with
the contours C and
C’ used in Eq. (3.7).
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matrix in Eq. (3.9) whose («i) element is (¢;)*™* is just
a Vandermonde matrix*4 and can be explicitly inverted
to give the residues,

= piep (T~ @) -

in exact agreement with Eq. (3.1).

This means that the usual constructive method and
the one based on the integral equation both yield the
same D. CDD poles are required when m < 0 but
not when m > 0. If D is then required to vanish at
the np bound states, we need no CDD poles if
(ng — m) < 0 and exactly (ng — m) if this quantity is
greater than zero.

IV. PROOF OF THE THEOREM ON
SINGULAR INTEGRAL EQUATIONS
The main purpose of this section is to establish the
conditions stated in Egs. (2.7) and (2.8) for the
existence of solutions to Eq. (2.4). These conditions
follow from a theorem due to Noether and Giraud,s
which we outline here for the sake of completeness.
We first rewrite Eq. (2.4) as

Kf =g
where X is the integral operator with kernel,

1 pf8)T(s)
s — s — l€

4.1)

K(s,s") = 18(s — s') + —
and we have written f for any column of the matrix
(P — 1) and g for the column of the corresponding
inhomogeneous term from Eq. (2.4). The conditions
(2.7) and (2.8) which we wish to prove can now be

restated : Eq. (4.1) has solutions if and only if

[Cate =0
S0
for all ¢ which satisfy

where (g, ¢) denotes the scalar product 3, g*(s)¢.(s)

The necessity of the condition (4.2) follows exactly
as in the proof of Fredholm’s theorem and needs no
discussion. To prove sufficiency, we introduce the
“reducing operator” M with kernel

1 py(s)T(s")
s —s+ie )

4.2)

M(s,s) = 18(s — s') —

This operator reduces the singular equation Kf = g

14 See, for example, J. V. Uspensky, Theory of Equations (McGraw-
Hill Book Company, Inc., New York, 1948), p. 214ff.

15 F. Noether, Math. Ann. 82, 42 (1921). G. Giraud, Ann. 'Ecole
Norm. Suppl., 51, 251 (1934). The exposition we follow is that of
Ref. 10, to which the reader is referred for more detail.
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to a Fredholm equation,

MKf = Mg, 4.4)

as we now verify. One can easily check that Eq. (4.4)
has the form?'®

10 =ho - Tasns e, @

where

Lis, 'y = [1 — 2ipy(s)T*(s)]

Q(S) =i2f ds ’ PO(S)T(S)

7° Jso -8+ lE
and there is a correspondmg expression for the
inhomogeneous term A(s). Now using the bound (1.3)
on T(s), it is a simple matter to verify that Q(s)
satisfies the bounds

19()] < C/s*™ and 1Q'(s)] < CJs,
where e is an arbitrary positive number.” From these
it follows that the kernel L(s, s) is L,. The inhomo-
geneous term A(s) is bounded by C/s*~¢ and so, unless
« >}, is not L,; however, by iterating Eq. (4.5) n
times, we can rewrite it as an equation for

Ja(8) = f(8) — h(s) — ho(s) — - -+ — h,_4(s) (4.6)

with the same kernel but with inhomogeneous term
h,(s) satisfying

Q() Q( )

Pos)T(s"),

tha(s)] < Cfs™*.

In this way we can obviously obtain a Fredholm
equation as required.

A necessary condition that f satisfy Kf — g = 0 is
that it satisfy the Fredholm equation MKf — Mg = 0.
The necessary and sufficient conditions for solutions
of a Fredholm equation are given by Fredholm’s
theorem ; in our case,

f ds(Mg, vs) =0, f=1,---,1
50

or, equivalently,

fwds(g, Miy)=0, f=1,---,I, (@47

where ,,-:,y, are independent solutions of

¢ For more detail see S. Mandelstam [Phys. Rev. 140, B375
(1965)], who treats this same equation from a somewhat different
point of view.

17 This can be checked directly by splitting the integral defining
Q(s) into three parts (5o, s — 1), (s — 1, s+ 1), and (s 4 1, o).
Alternatively, it follows at once from the general theorem on dis-
persion integrals given by L. Lanz and G. M. Prosperi [Nuovo
Cimento 33, 201 (1964)]. The bound on the derivative Q’(s) can be
established by proving that [Q(s + h) — Q(s)}/h is bounded by
C/s, where C is independent of 4.
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(MK)'y = 0. If conditions (4.7) are satisfied, then the
equation MKf — Mg = 0 has solutions of which the
most general is

[
f=RMg + zlayx,,, (4.8)
=
where x,-*,x, are the independent solutions of
MKy = 0 and R is the resolvent of MK. This vector
f does not necessarily satisfy Kf — g = 0, but since
it does satisfy M(Kf — g) = 0, it is clear that

r
Kf—g= 621 bsés, 49)
where &,,-- -, £, are a complete orthonormal set of
independent solutions of M¢& = 0. (The number r is
finite since the ¢ satisfy the Fredholm equation
KME=0)

We can now find conditions under which the
arbitrary coefficients a,, * - -, g, in the definition (4.8)
of f can be chosen so that all the &,,- -, b, in Eq.
(4.9) are zero. If this can be done then the resulting f
satisfies Kf — g = 0. From Egs. (4.9) and (4.8), it is
easily seen that the b, depend on the a, as

q
b,; = Z}_Aéya? + Css
=
where the numbers A4, are independent of the a, and
g, and

(4.10)

¢ = f “ds(g, [KRM — 1T &).  (4.11)

The necessary and sufficient conditions that the a, can
be chosen so that the numbers by, - - -, b, in Eq. (4.10)
are all zero have the general form

r
DB,c; =0, o=1,---,t(for some ),
Os= 1

which, by Eq. (4.11), can be written

fds(g,C,)=0, o=1,-"-,t, (412
L

where the exact form of the vectors {;,---
uninteresting.

Thus the necessary and sufficient conditions that
Kf — g = 0 have a solution are Eqgs. (4.7) and (4.12),
which can be rewritten as

, &, 1s

fds(g,%)=0, a=1, (40 (413)
o
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It remains only to show that conditions (4.13) are
implied by the conditions of the theorem, namely,

[Fase. =0

for all ¢ satisfying K¢ = 0. To prove this we consider
the equation (for f) Kf = Kh, where h is arbitrary.
Since this equation has a solution (f=h), the
conditions (4.13) must hold; namely,

4.2)

" ds(Kh, ¢,) = 0,
80

which implies
f “ds(h, K g) = 0.
30

Since k is arbitrary, this implies that K'g, = 0; ie,
all the ¢, of conditions (4.13) satisfy K'¢ = 0. Thus
the conditions (4.2) imply the necessary and sufficient
conditions (4.13), as required.

In order to apply these conditions as in Sec. II,
it is essential that the number of independent solu-
tions of the homogeneous equation K'¢p =0 be
finite. This follows from the fact that any solution
of K'¢ =0 also satisfies the Fredholm equation
(KM)'¢$ = 0.

Finally we must check that the D matrix determined
by the integral equation, (4.1) or (2.4), satisfies D — 1
as s — co. Since in this section we have written f for
any column of the matrix (D — 1), we must show that
f—0as s — co. Returning to the Fredholm equation,
(4.5), and using the Schwartz inequality, one sees that

11 < 1A,
+ ( f s LG s’)MZ)*( s uf,;(s')u”)*.

Now f,(s) is certainly L, and using the bounds already
given, it is simple to check that both terms on the
right are bounded by C/s*—. It follows that every
element of the matrix (D — 1) tends to zero faster than
C/s* as |s] — o0,
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The direct generalization of the isoparity (or G-parity), with the defining property that it is com-
mutable with the referring internal symmetry group, is investigated on the basis of the theory of
Lie algebra. This is one special problem of the group extension of a simple Lie group by an involution.
It is shown that the isoparity of this type can be defined for the simple Lie groups SU(2)(4, type),
SOQ! + 1By, 1 > 2), SpQI(C,, | 2 2), SOQN(Dy, 1 2 3), Gs, F,, E,, and Eg, but not for the
SU(l + 1)(4,, 1 > 2). The relation between the inner automorphism group and the Weyl group of
the simple Lie algebra concerned is available to construct the isoparity operator explicitly. Some

illustrative examples are presented.

1. INTRODUCTION

IAS is well known, the operation of charge conjuga-
tion C does not commute with that of rotation
in isotopic spin space, though the invariance of the
strong interaction of elementary particles under charge
conjugation leads the strict selection rules independent
of the conservation of isotopic spin. However, Michel'
resolved this apparent difficulty by introducing the
isoparity (or G-parity?) G, defined by

G, = CR = RC, @

where R = exp (in],) is the rotation by angle 7 about
the second axis of isotopic spin space in the usual
representation. Then such an operator G, becomes
commutable with all the generators J; of rotation in
isotopic spin space,

Gy, ,]=0 (i=1,2,3). ¥))

Accordingly, the existence of simultaneous eigenstates
of isotopic spin and isoparity provides with an aid in
deriving useful selection rules for many reactions. In
this respect, the isoparity G, may be interpreted as the
redefined particle-antiparticle conjugation instead of
the charge conjugation C when there exists an internal
symmetry.

From the most general point of view, the isoparity
problem may be regarded as that of the group ex-
tension®* of the internal symmetry group by an

1 1., Michel, Nuovo Cimento 10, 319 (1953).

2T, D. Lee and C. N. Yang, Nuovo Cimento 3, 749 (1956); C.
Goebel, Phys. Rev. 130, 258 (1956).

3 H. Zassenhaus, Lehrbuch der Gruppentheorie (Springer-Verlag,
Berlin, 1937), Vol. 1, Chap. 3.

4 L. Michel, in Group Theoretical Concepts and Methods in Ele-
mentary Particle Physics, F. Gursey, Ed.(Gordan and Breach Science
Publishers, Inc., New York, 1964), p. 135; F. Kamber und N.
Stautmann, Helv. Phys. Acta 37, 563 (1965).

involution. Biedenharn et al.® have exhausted all the
possibilities of the extended groups. In the case of
SU(3), the similar treatment was already carried out
by Dothan.®

In the present paper, the generalization of the iso-
parity to the internal symmetry built on any simple
Lie group except for E; is considered on the basis of
the theory of Lie algebra in such a way that the
isoparity operator commutes with hyper-charge as
well as isotopic spin. Hence, our discussions are re-
stricted to the strong isoparity® which has an obvious
physical meaning and is associated with the reflection
operator described by inner automorphism. It seems,
however, worthwhile to disclose in a simple and lucid
way the general character of the isoparity of this type,
and to derive the isoparity operator of the general
form? by means of the Weyl group® of the simple Lie
algebra concerned.

In Sec. 2, it is shown that our problem of isoparity
is simply connected with that of group extension
determined by a factor set. Such an approach to the
problem makes clear the most general mathematical
aspects of Dothan’s discussion.

In Sec. 3, the structure of the automorphism group
of every simple Lie algebra is fully investigated, and
what simple Lie group suits itself to the isoparity of
our type is examined. For the simple Lie group
SU(n)(n > 3), the isoparity cannot be defined with
inner automorphism. On the other hand, it is possible
to define it for the simple Lie groups SU(2)(4, type),

5 L. C. Biedenharn, J. Nuyts, and H. Ruegg, Commun. Math.
Phys. 2, 231 (1966).

8 Y. Dothan, Nuovo Cimento 30, 399 (1963).

7 K. Tanabe, Ph.D. thesis, University of Tokyo (1965).

8 N. Jacobson, Lie algebras (Interscience Publishers, Inc., New
York, 1962).
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SOQI + 1)(B,,1>2), SpQINC,,1>2), SOQI) x
(D,,1>3),G,, F,, E,;, and E;. The result for SU(n)
is essentially the same as that given by Okubo and
Mukunda.?

Finally, in Sec. 4, an actual method is investigated
to construct the isoparity operator. Some examples
are given by means of this method.

2. GENERAL CONSIDERATION OF ISOPARITY

For the sake of self-contained description, we first
make a brief survey of several definitions and a
theorem on group extension.? Let there be given two
groups N and F. A group E is called an extension of
N by F if the following relation hold,

E/N =~ F. 3)
Such a group E includes N as its normal subgroup
and is expressed as the sum of the coset M, corre-
sponding to every element x of F. An arbitrary repre-
sentative u, is selected from every coset
M (u,N = Nu, = M,).
Since u,u, € M, , it follows that

Uglty = (X, Pilgy, “ofx,y)EN.

C)
If, for every element x of F, an automorphism S, of N
is defined by

Sa) = u,au;' for YaeN,

&)
the multiplication law of E is given in the following
way:

(aum)(buy) = aSm(b)w(x’ y)uaw . (6)
Thus, the multiplication law of E is completely deter-
mined by the respective ones of N and F and by

the set {S,, w(x, y)}, which satisfies the following
conditions:

Sw[sy(a)] = (X, y)S:cu(a)w(x’ y)——l’
@(x, p)o(xy, z) = S,0(y, 2)(x, yz).
If, especially, u, is equated to 1, it follows that
Sl = 19

o(l,x) =w(x,1) =1 for YxeF.

M
®)

©)
(10)

In general, if there are given an automorphism S, of
N for every element x of F and an element ax(x, y) of
N for every pair (x, y) of elements of F such that
Egs. (7) and (8) are satisfied, the set {S;, w(x, )} is
called a factor set of F with respect to N. Furthermore,
if Eqgs. (9) and (10) are satisfied, the factor set is said
to be normalized.

? S. Okubo and N. Mukunda, Ann. Phys. (N.Y.) 36, 311 (1966).
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As has been seen above, a factor set is determined
by a given extension. Conversely, if a factor set is
given, the group extension can be constructed by
means of the set.

Schreier’s Theorem: Let the set {S,, w(x, y)} be a
factor set of F with respect to N. If the following
operation is introduced into the set G = N x F:

(a, x)(b, y) = (aSz(b)w(x’ }’), x}’), ( 1)

then E becomes an extension of N by F provided the
normal subgroup {(, 1); a € N} of E is identified with
N. Furthermore, all the extensions of N by F are
obtained in such a way.

This theorem is useful for our purpose. Since it is
known that any factor set is equivalent to some
normalized one (which means that the corresponding
extended groups are isomorphic to each other), we
hereafter use a normalized factor set.

Let F= {1, C} be a cyclic group of order two
(C%* = 1), which represents the group of charge con-
jugation. Then a normalized factor set of F is as
follows:

{‘SC’ Sl = 1; (,()(1, 1) = 13 (()(1, C) = 1’
o(C, 1) =1, o(C, C)}.

For the sake of simplicity, hereafter S is abbreviated
to S and w(C, C) to w, and the former is called the
automorphism corresponding to charge conjugation.
These quantities S and o satisfy the following
relations:

S(w) = o, (12)

YaeN. 13)

Schreier’s theorem determines the operation in an
extension of N by F in the subsequent way:

(a,1)b, 1) = (ab, 1), (a, 1)(b, C) = (ab, C),
(a, C)(b, 1) = (aS(b), C), (a, C)b, C) = (aS(b)w, 1).
(14

Thus, the way of extending N by F depends on the
choice of S and w.

We are now in a position to define an isoparity of
general form by using an extension E of N by F,
where N is taken to be the representing group [meaning
that N = D(G), where G is the internal symmetry
group and D is the referring irreducible representation
of G] of an internal symmetry group by the referring
irreducible representation. The automorphism corre-
sponding to charge conjugation, S, is defined as

1

S%(a) = waw™ for

S(@)=a for YaeN,

(15)
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where @ means the complex conjugate of a. [Needless
to say, the definition of the operation of charge con-
jugation is not unique, because the right-hand side of
Eq. (15) may include a phase factor. But this is not
essential for the following discussions.] It follows
from Eq. (13) that w belongs to the center of N. Then
w is determined as 1 or —1 from Eq. (12). By an
isoparity we understand an element G, of E satisfying
the equation

aG,a'=G, for YaeN. (16)

Expressing G, as (R, C), 3Re N, we see that the
equation above is equivalent to

R%R = S(a) for YaeN, an

because (g, )R, C)a, 1) = (aRS(aY), C). There-
fore, a necessary and sufficient condition for the
existence of the isoparity is that the automorphism
corresponding to charge conjugation is expressed in
terms of an inner automorphism of V.

Thus, we have constructed the most general frame-
work to treat the isoparity within and derived a
necessary and sufficient condition for its being well
defined.

3. SIMPLE LIE ALGEBRAS FOR WHICH
ISOPARITY IS ADAPTED

In this section, our consideration is restricted to the
case when the internal symmetry group G is a simple
Lie group, and what type of G adapts itself for our
isoparity is investigated, In the previous section, we
derived a necessary and sufficient condition for
existence of the isoparity. The theory of Lie algebra
helps us to reduce the condition to a more available
one.

The Lie algebras of G and N are denoted by g and
n, respectively. Then the differential p,

p(X) = lim [D{exp (tX)} — E]/t for YX eg,
t—=0

of the referring irreducible representation D of G is
also an irreducible representation of g, and n is the
image of g by p[n= p(g)]. Then the condition
mentic.ed above, i.e., the condition (17) can be
reduced to

R7p(X)R = —[p(X)]* for "X eg.  (18)

Here, it is to be noticed that the regular matrix R
satisfying Eq. (18) is either symmetric or antisymmetric
if it exists. This is proved as follows. It can be easily
verified from Eq. (18) that R(R)™! commutes with
p(X) for all X belonging to g. Since p is irreducible,
it follows from Schur’s lemma that R(R¥)"! = ¢E, i.e.,
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R = cR* for some complex number ¢. Hence,
Rt= 4R (19)

Returning to the main course, we examine the relation
between n and g. It is easily proved that p is faithful,
since g is simple. Hence, 1 is isomorphic to g. There-
fore, 1 can be identified with g [p(X) = X]. In what
follows we make such an identification. Then Eq.
(18) can be rewritten as

R'XR = —X' for "X eg. (20)
It is easily seen that the mapping X — —X* is an
automorphism of g. Thus, we can state that a necessary
and sufficient condition of the isoparity being adapted
for g is that the automorphism X — —X* of g is
reduced to an inner automorphism of g.

Let us now turn our attention to the relation between
the automorphism group'® of g and the corresponding
inner automorphism group. Since the latter denoted
by I(g) is a normal subgroup of the former denoted by
A(g), it is important for our problem to disclose the
character of the factor group A(g)/I(g). Fortunately,
the group has already been investigated by mathe-
maticians. It can be determined from the group of the
automorphisms of the Dynkin diagram associated with
g. An automorphism of the Dynkin diagram means a
one-to-one mapping «; ~ a, in the diagram such that
(o ;) = (o;, ¢;) and for any i, j the number of
lines connecting «; to «; is equal to that connecting
o and a; . It can be easily verified that all the auto-
morphisms of each Dynkin diagram in Fig. 1 are
reduced to the identity mapping o; o, G = 1, -, )
only. Hence it follows that A(g)/I(g) = 1, i.e., A(g) =
I(g) in this case. In other words, the automorphisms
of g are all inner ones. Thus, we arrive at the con-
clusion that our isoparity can be defined for the
simple Lie algebras of types 4,, Bl > 2), C(l > 2),
G,, Fy, E;, and Eg.

On the other hand, another automorphism exists
for the Dynkin diagrams of types 4,(/ > 2), DI > 5),
and Eg. As is easily seen, the mapping

(l = 1’ s, I)

is an automorphism for 4,(/ > 2), the one
(<I-2),

a, ,— o, o, — a;_4 for D(I > 5) and the one
i<9),

g — ag for E; . Hence we see that A(g)/I(g) is a cyclic
group of order two. There remains untouched the
Dynkin diagram of type D, . This diagram has auto-
morphisms which permute «;, ®3, «, and leave o,

O > Xpp1—4
o — oy

o; —> Hg4

19 N, Jacobson, Ref. 8, Chap. IX.
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fixed. Consequently, it can be inferred that A4(g)//(g)
is isomorphic to the symmetric group of degree three.
Thus, not all the automorphisms of g are reduced to
inner ones of g in case g is the simple Lie algebra of
type A(/ > 2), D! > 4), or E,. Therefore, it becomes
necessary to investigate directly whether the auto-
morphism X — — X" belongs to I(g) or not.

We first examine the case when g is of type 4,(/ > 1).
Then g may be regarded as the Lie algebra of all the
traceless matrices of degree (/ + 1), and the dimension
of g is equal to /(/ 4+ 2). We here rewrite Eq. (20) as

RX'R= —-X. @1
The set of all X satisfying this equation becomes an
orthogonal or a symplectic Lie algebra according as
R is symmetric or antisymmetric. The dimension of the
Lie algebra is equal to $(/ + 1)/ 4+ 2) or ¥( + 1).
Since g is of dimension /{7 + 2), we must have either
W+2)=3+ DI+ 2or Il +2) =311+ 1)
Then we get the only solution / = 1. Hence the auto-
morphism X — — X* does not belong to I(g) if / > 2.
Thus, we reach the conclusion that our isoparity can-
not be defined for the simple Lie algebra of type
Al 2 2).

The simple Lie algebra of type D,(I > 4) is com-
posed of matrices X which satisfy the equation
X = —X¢ so that the matrix R satisfying Eq. (20)
can be taken as the unit matrix. Therefore, our iso-
parity can be defined for this Lie algebra.

The simple Lie algebra which is not covered by the
above considerations is that of type Eg only. There
remains unsolved the problem whether or not our
isoparity is adapted for this Lie algebra.

4. EXPLICIT DETERMINATION OF ISOPARITY

This section is devoted to construct the reflection
operator R defined by Eq. (20). An available formula
to evaluate R by is given on the basis of the Weyl
group* of g.

As seen later, the inner automorphism associated
with R (which is nothing but the mapping X — — X?)
maps the Cartan subalgebra b of g into b itself. We
examine beforehand the relationship between that
subgroup Zy(g) of I(g) which makes § invariant and the
Weyl group W of g. For an element o of I(g), let o*
denote the dual transformation in §* of the restriction
of o onto h. Namely, o* is defined by

{e*(D}H) = A{o(H)} for YAebh* and YHeb.
(22)

Then the mapping ¢ — (0*)~! is a homomorphism of
I(g) onto W. To see this, it is intended to investigate

11'N. Jacobson, Ref. 8, Chap. VIIIL
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what element of Iy(g) corresponds to a given Weyl
reflection S, of W, where S, is defined by

SR =4 — 24, w)f(x, ) for YAep*

For this purpose, use is made of Weyl’s standard basis'?
{H,, -+, H,, E,; € A} of g, where / is the rank of g,
Ais the set of all the nonzero roots of g, H, is a basis
of b, and E, is an element of the eigensubspace of g
corresponding to a root « such that B(E,, E_)) = —1,
where B( , ) is the Killing form®?® of g, which is defined
by

B(X,Y) = Tr [ad(X)ad(Y)] for *X, YYegq.
This basis has the following properties.
[H;, H;] =0, (23)
[E,.E_]= —H,, (24)
[H,E,]=«(H)E, for YHeb. (25)
Here H, is the element of D defined by
B(H,,H)=o(H) for YHel. (26)

By the use of this basis, the inner automorphism

o= exp [adl T B B 0D

is introduced for every positive root «. This mapping
makes b invariant and corresponds to S, through the
homomorphism mentioned above, as can be seen
below. It is easily checked with the help of the mathe-
matical induction with respect to p that

[ad(X)]z'H'lH (— 1)”‘” 2041 “(H) (E —E),

2@ o %)
[ad(X)]”“H - (_1)13-{-17729—}-29&_1}_)_ H, for VH & [),
(@« (29)

where X = {n/[2(a, ©)]}WE, + E_,). It follows from
the straightforward calculation that
1

2941
o (H)=H +,,2_: (—————~2 T [ad(X)*"°H
2042
+ago Qp + 2)! [adQOTH
_ _HH)
= H — . )]% (sin 7} (E, — E_)
?i’ )) (cos = — 1)H,
=H-— 29‘-@1}14 for YHeb. (30)
(o, o)

It is immediately seen that o, makes b invariant and

that
(X WYH) = A(H) — 2 ? “; a(H)
for V}.e’b* and YHe). (31)

12 N. Jacobson, Ref. 8, Chap. IV.
13 N. Jacobson, Ref, 8, Chap. IiL

661

[Notice that A(H,) = (4, «).] It follows from Eq. (31)
that

or(A) = A — 2 &D o Yiep*

o, &

(32
Hence, we obtain

= ()" =, (33)
In conclusion, there exists in Iy(g) the subgroup
{o,; « € A} which is isomorphic to W. This group
plays an important role in constructing the reflection
operator R.

We have now come to the place to determine R
explicitly. In what follows the internal symmetry group
G is restricted to a compact simple Lie group.
Then q is a real simple Lie algebra whose Killing form
is negative definite, and Weyl’s standard basis
{H,,"--, H,, E,; « € A} can be adjusted such that

(E))=—E_,, (H)=H (34)
[Strictly speaking, this equation should be expressed
as p(E)' = —p(E_,), p(H))' = p(H,).] Consequently,
condition (20) can be rewritten as
RER=E,, R'HR= —H,. (35
This means that the inner automorphism I associated
with R maps an eigenvector corresponding to a root
o to the one corresponding to —a, and that I not only
makes b invariant but also changes the sign of every
element of §. Thus, we arrive at the conclusion that the
inner automorphism I should be determined as the
element of /y(g) corresponding to the negative identity
—1 of W. If —1 can be expressed as

~1= H Sa (36)
aEd

with the help of some ordered set d, then the inner
automorphism 7 is represented as

I= E 0,
= gexp [ad{{z( o (E, + E_a)ﬂ (37

In order to evaluate R from this 7, we consider below
the reduction of an operator of the form exp {ad(Z)}.
The transformation ad(Z) can be expressed as

Zy —Zp(Zy: X~ 2ZX, 25 X~ XZ).
Since [Z;, Zg] = 0, it follows that

exp {ad(Z)} = exp Z exp (—Zg)
= (exp Z)(exp Z)R

= {exp (=2)Jz{exp (=D)}r. (38)
This equation enables us to derive
R=gexp{ o ai € E+E 69

where § has the inverse order against J.
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So far we have identified n with g. It is admitted as
long as the referring representation p is fixed. Explicit
description of the representation used leads us to the
following expression:

Ry =TT oxp | — = {p(E) + HED}]. 40)
T [2(a, o}t
This is the very equation that has been searched for.
It is illustrated in the examples below.
(i) Compact Simple Lie Group SU(2)(A4, type)
Since the corresponding Lie algebra g is of rank one,
the nonzero roots of g consist of « and —a only. Then

E,, E_,, and H, are abbreviated to E,, E_, and
H, respectively. It follows that
[E,,E]= —H, (41)
[H,E,]= +E,. 42)

The quantities E,, E_ correspond to the charge-
raising operation and the charge-lowering one, respec-
tively. Since « is so normalized that («, «) = 1, the
Weyl reflection S, is equal to —1. Therefore, the
reflection operator R is determined as

s
J2
Since p(£.) and p(H) are connected with the isotopic

spin operators I;, I, I, satisfying the commutation

relation [I;, I;} = ie,;, I, such that

R, = exp |:"‘ {p(E}) + P(E—)}} (43)

PED) = F(h + N2 pH) =L, (44
we obtain the usual expression
R = exp (inl,). 45)

In this case, R is antisymmetric.

(ii) Compact Simple Lie Group Sp(6)(C; type)
The fundamental root system* («;, a,, o) is such
that

(1, ) = (o2, ) = 1, (o3, %3) = 2,
(21, %) = —3, (%, %3) = —1,
and
(05 ag) = 0. (46)

Since —1 = (5,S5,9,)%, we obtain
R, = [exp (- e + p(E_z)]}
X exp {— f [p(Es) + P(E—s)]}

x exp |~ o lblE) + ) BT

1* M. Konuma, K. Shima, and M. Wada, Progr. Theoret. Phys,
(Kyoto) Suppl. 28, 1 (1963).
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Especially, if we take p to be the six-dimensional
representation, we get

0 0
O 0 1 0
1 0
Re=| o o _i (48)
0 -1 0 o
-1 0 o0 |

In this case also, R is antisymmetric.

(iii) Compact Simple Lie Group SO(7)(B; type)
In this case, the fundamental root system
(o, o5, g) is as follows:
(0(1, 0(1) = (0(2, a2) = 2’ (0‘3, %) = 1’

(als a2)= _%a (“m “s)= _1’
and
(al’ 0(3) = O

Since —1 = (§.5,5,)% in this case also, we obtain

(49)

R, = | exp {—4nlp(E) + B}

x exp |~ Z [p(E) + p(E_p)]

7
x exp (—brlp(B) + pE}| - (50

In the eight-dimensional representation, we get

0o 0 0 1
0 0 -1 0
0]
0o 1 0 0
Rs=000_11000,
0 1
o _ O
(1 0 0 ]
(1)

seeing that R is symmetric in this case.
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It is proved that an average number of particles can be defined only in those representations of the
canonical commutation (or anticommutation) relations which are multiples of the Fock-Cook

representation,

ITH £ a real separable pre-Hilbert space, let ¢

be arepresentation of the canonical commutation
relations (CCR) or of the canonical anticommutation
relations (CAR) on £ by operators on a Hilbert space
Xy. In the case of CCR, we mean by this a Weyl
system on £,!i.e., a map f— {U(f), V(f)} from £ to
unitary operators U(f), V(f) on X such that, for
every f,ge £,

@ U(NUE) = URQU(), V(HV(E) = VRV,
V(f)V(g) = e 9V(g)U(f), where (f,g) is the
natural scalar product on £.

(b) With ¢ a real variable U(ff) and V(tf) are
weakly continuous in ¢ at the origin for all fe L.

For fe £, a,(f) denotes the corresponding closed
“destruction operator” and N,(f) the number
operator. One has?

N,(f) ~ Ng)
a,(fIN(f) = (N(f) + Da,(f) ¢))

for all £, g € £, since ¢ is equivalent to a direct sum
of Schrodinger representations when restricted to a
finite-dimensional subspace of £.1

The Fock-Cook representation [i.c., the one for
which there exists a cyclic vector Q € ¥ such that
a,(f)Q = 0, Vfe L] is denoted by ¢,.

In 'this note we want to prove some statements
which are slight generalizations of results by Garding
and Wightman (see Ref. 3, where a characterization
is given of all representations of CCR and CAR; also
Ref. 4 for a direct proof in the irreducible case). These
authors show that the Fock-Cook representation is

* On leave from the Istituto di Fisica Teorica, Universita di
Napoli.

t Sponsored by the Sloan Foundation Program.

1J. Von Neumann, Math. Ann. 104, 570 (1932).

* 4 — B means that the spectral projections of the two operators
commute; A < B means that B is defined, and coincides with 4,
on D4, the domain of A.

3 L. Garding and A. Wightman, Proc. Natl. Acad. Sci. U.S. 40,
622 (1954).

4 A. S. Wightman and S. Schweber, Phys. Rev. 98, 812 (1955).

the only one for which there exists a positive self-
adjoint operator N, with integer eigenvalues such
that its spectral projections E,(N,) are given by

EVp) =3 3 8,50 TTElNo(f)]

i=1n;=

with {f;} an arbitrary orthonormal complete set in £.
We state the main proposition as follows:

Theorem®: Let L be the linear span of vectors
{fiok=1,2,---} on which a scalar product is
defined by (f;, f;) = J,; (that gives to £ a pre-Hilbert
space structure). The following conditions are
equivalent:

(a) There exists a cardinal number » such that
@ = ng,.°

(b) The linear variety D° < I, defined by?

D = ‘¢’ e r’) DN;(I;‘) ’k§1<¢N¢(fk)¢.> < oo} Q)

is dense in J€,.5°

Proof: (a) = (b) is well known.* To prove (b) = (a)
we need first a self-adjoint “number operator.” It is

5 After completion of this work; we have been informed by J.
Chaiken (private communication and Cornell University preprint)
that he has obtained a similar result for the CCR, and in fact given
several other characterizations of the Fock-Cook representation,
using the Weyl form of the CCR (and avoiding therefore the use of
unbounded ‘‘destruction operators”).

¢ @ = np, means that there exist Hilbert spaces ¥, and i,,
Je, of dimension #, such that & = X, ® ¥, and ay(fi) = a(f) ® 1.

7 Dy is the domain of the operator T. Here and in the following,
whenever ¢, y € Dy}, we write (pT¢) for (Thy, Ti).

8 One could equivalently require z:=1 {¢Ny(fm)$) < oo forone
vector ¢ € e Dykisy» cyclic in J€ relative to the algebra generated
by the partially isometric operators Uy,Uf where U, is the ex-
tension 1o ¥ of the operators [Ny(fi) + 117% ao(f) defined on
Dy isp-

9 In the case of CAR there are obvious simplifications in the
statement of the theorem (and in its proof), since for all f € L,
Ny(f) is a bounded operator.
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helpful to introduce the following:

Definitions: N = Friedrichs extension® of the posi-

tive bilinear form
[@,¥] = 3 @N,(f)D) + (@, ).

J, is the completion of D° in the norm defined by
[.,.]. One has D° < X, < X,. N, is Friedrichs
extension of the positive bilinear closable form
[@, ] = [D,F] — (PN,(f)T).

We now want to prove a weak form of the com-
mutation relation

Na(f) < a,(f)N — 1). (**)
Observe that with &, = N,(f;)

D, (fo) 2 Dyt; Dyt 2 Dyt 3)

® € Dyt = (PNOD) = (DN, D) + (PN;®) (4)

are easy consequences of the definition of Friedrichs
extension (see Appendix B) and of the inequalities
N20,k=1,2,"""

Remark next that, for @, € D°, and real 1

> (e*¥D, N, eV = 3 (DN, V)
from which follows (see Appendix C)
N, —~ N. )
Let E(%), E,(3), E(A) be the spectral projections of
N, N,, N,, respectively. Combining (4) and (5) one
obtains
E4) 2 E(), E(3) 2 E(A). (6)
Define

D = | E(R)¥, < Dy.
A

From (6) one concludes D < Dy , D = Dy . The
domain D has the following properties:

Lemma 1:

a,(f)D S Dyi;

We give the proof of the first relation. The second is
proved along similar lines.

Let @ € D. Then E(A)® = @ for some real positive
A and, in view of (6), E()® = ®, E(H)D = O.
Since D < J,, there exists a sequence V', € E(A)D°
such that

NiD < D

1P —Falll ==

where
P = [, ¥).

10 K. O. Friedrichs, Math. Ann. 109, 465 (1934).
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With ¥, ,, =¥, —¥,.,
“laqa(fk)\lj‘n,ml”2 = (Tn,mean,m>

+§1'<a¢(fk)‘Fn,m L] Nnatp(fk)lyn,m>

= 2 <1Fn,m s NJJNkIFn,m> S A l”an,m“lz'
=1

Use has been made of the commutation relations
between a,(f,) and N,. There exists therefore a
Y e X, such that a,(f)¥,—Y. Since a,(f;) is
closed, this implies V' = a,(f)®, i.e.,

a, (¥, — a,(f)P. @)

J, is closed and J, = Dyt (see Appendix B).
Therefore

a,(f)® < Dyt. 8)
Q.E.D.

We are now in position to prove the following weak
form of (**):

Lemma 2: If ® €D, then

(a,(f)®, Na(f)®@) = (N, D, (N — 1)D).
Proof: From Lemma 1 and Eq. (4)
<a¢(fk)q)’ N a¢(fk)(D>

= (a,(f)D; Niao(f)®) + (a,(f)P, Nia,(f)P)
= (N®, (N — 1)D).

Proof of the theorem. Let 1 > 0 be the greatest
lower bound of the spectrum of N. Let ¥y e X, be
such that E(A + H¥, =¥,, ||Vl = 1. Then
Mla(f¥ol? < (a,(f0¥0, Nay(f)¥o)

< @A =Y la,(f%l? (9

where the first inequality follows from the spectral
decomposition

NE= f " BdE@M),
i

and the second from Lemma 2. Inequality (9) implies
a(f)¥e=0, k=1,2,--- (10)

Let Ey be the orthogonal projection on the cyclic
subspace generated by application of the operators
a,(fi) to the vector ¥y. From Eq. (10) one sees that
the subrepresentation 9w, = E§, o @ is equivalent to
the Fock—-Cook representatlon in the subspace Eg X, .
The subrepresentation (p‘p =(1—-E§)oeg has the
same propertles as @, relative to the subspace
(1 — E§)¥,. One can therefore repeat for ‘P‘l’o the
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arguments which were given above for ¢ and prove
the existence of a vector ¥, € (1 — E¥,) ¥, such that
E\Fl""i’o o (p\'yo is equivalent to the Fock—Cook repre-
sentation in the subspace Ey ®¥u(l — E )3, . The
proof of the theorem is now achieved by complete
induction. To this theorem we add.

Corollary I: Let £ be a real separable pre-Hilbert
space, f— a,(f) a representation of the canonical
anticommutation relations on £ by operators on the
Hilbert space J€,. The following conditions are
equivalent:

(a) There exists a cardinal number »# such that
¢ = n@qy.

(b) There exists in £ an orthonormal basis f,
k=1, 2,--- such that the linear variety D°¢e ¥,
defined by Eq. (2) is dense in J,.

Proof: From the relations

a,(f)ag(g) + ay(@af) = (f, )
it follows

lagOI = 11l (11)

for all nonzero representation ¢. We may therefore
assume that £ is complete.

The implication (a) => (b) is again well known.

To prove (b) = (a) notice first that, if £ is the
linear span of {fi,}, k=1,2,-*+, ¢ IE is a multiple
of the Fock-Cook representation.

Let Q be a vector in J€ which is a “vacuum” for

<p|E; we have a,(f)Q =0, k=1,2, --- and, from
(1)

a,()Q=0V fef. (12)
Therefore Q is a “vacuum” for ¢. Q.E.D.

Corollary II: Let £ be a real separable topological
vector space which is a pre-Hilbert space for a weaker
topology. Let £ 3 f— a(f) be a representation of the
canonical commutation relations on £ by operators
on the Hilbert space ¥,, such that there exists in
J¢, a linear dense set D on which all the operators
a,(f), ay(f), feL are defined. Assume moreover
that

D) a(f) [p = a,(f); a5(N) |p = a3(f)-

(2) y € D implies that the maps

f=a,(Dv, f—>a(f)y

are continuous from £ to J,. Then the following
conditions are equivalent:
(a) There exists a cardinal number n such that

P = ngy.
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(b) The positive form
¢— 4, 4] = g (PN (fd) + (b, $)

is densely defined in J€ and its closure does not
depend on the orthonormal complete basis {f,}.

(c) There exists in £ a total set {f;} which is
orthonormal for the pre-Hilbert structure of £, such
that the linear variety defined in Eq. (2) is dense in J, .

Proof: a=-b is obvious, and b =-a follows im-
mediately from the proof of the theorem and the
remark that N is independent of the basis chosen for
its definition.

a=-c is again well known. To be more precise
(and in order that a =- ¢ be not “logically trivial”), if
@ = n@, there exists a dense set D with the properties
required in the statement of the corollary. One can
choose for D the set D% obtained by applying to all
vacua in J,, arbitrary polynomials in the creation
operator a:q',o(il), VfeL. Property (2) can be verified
by computing the norm of ay, (f)y with fef and
y € D70, Property (1) is true for D}%o if it is true for
D?%e; for the latter case see, e.g., (Ref. 11, p. 48). We
have now to prove ¢ =>a. With the notations used in
Corollary I, the theorem states that ¢ IE is a multiple

of the Fock-Cook representation. If Q is a vacuum
for ¢p|5, we have

@, ()0, Q) =0 (13)

for all ® € D, fef. The continuity condition (2)
implies that (13) holds for all f € £. Therefore

ag(NIp)* Q2 =0, vfet

and condition (1) gives

Qe D, (f), a,()Q=0, Vfel.

This proves the corollary.

In conclusion, we mention that a situation of
interest in physics and to which Corollary II applies
is, e.g., L = 5% the space of infinitely many times
differentiable functions on R, decreasing at infinity
faster than any inverse polynomial, provided with the
Schwartz topology.

(14)
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APPENDIX A
We want to show that the bilinear form

@,F) + 3 (@, N,¥)

m=1

[@,¥] =
is closable. Notation is
(V] =73, (%) =

We must prove that, if [[|®,— @
n, m — oo, there exists an element ® € ¥, such that
l|®, — @||| — O for n — co.
Since J€, if complete and |||¥||| > II'F'[l, there exist
® € X, and n, such that |®, ~ @ < 1 for n > n,.
Since |||®, — @,||| — O, there exist »n’, m’ such
that if n > »', and m > m' one has, for all M,

(R 4l

M
S(NI@, — @,), N(@, = @,)) < 1. (AD)

The operators N,% ,k=1,2,---, Mareclosed, and
®,— ® in J,; we then have, for n > n’,

NY®, - 0,) —> N} @, - D), k=1,2,---,M.

m—> o

This shows that ® e Dyt k=1,2,"-+, M.
We also have

M
S (NK@, — ©), N} @, — D) <1 for n>n'.
k=1

This holds for all M and each term in the sum is
positive. Therefore

®, — | <1 (A2)
From the linearity of X, it follows @ € J,. More-

over, since (A2) holds for sequences of vectors @,
not necessarily normalized to 1, we have

|®, — D||| -0 when n— oco.

for n>n'.

(A3)
QE.D.

APPENDIX B. A CHARACTERIZATION OF
THE FRIEDRICHS EXTENSION

Let JC be a Hilbert space and D, a linear manifold
dense in J, on which a bilinear closable form [, Y]
is defined with the property [@, ®] > ||

mlll =0 when-

G. F. DELL’ANTONIO AND S. DOPLICHER

We denote by S any self-adjoint operator, bounded
below by 1, which induces the form [®, V]

<(D’ S\F> = [(D:\F]’ DS'} = DO'

S, is the Friedrichs extension of [., .] and J¢, denotes
the closure of D, in the norm [||®||| = [®, P]}. We
have Ds < Jeoc 5, D,g&D DS

Define Rg = S‘*/D0 Evidently Dg1+ = X,.

Theorem: The symmetric transformation Rg is
essentially self-adjoint if and only if § = S,.

Proof: (a) RE* is self-adjoint. In fact, we have
Dpsr = I, 2 Ds , therefore RE* = Si/DS , and,
takmg closures, R** = S§. Q E.D.

(b) Let Ry be essentlally self-adjoint. This implies,
by closure, R%* = St Therefore Dgi = X, and
Dgc Ky = Df!;. Among the operators S, only S,
satisfies this inequality. Q.E.D.

Corollary: Dgt = X, if and only if S = §,.

APPENDIX C

Let [®,¥] be a positive bilinear closable form
defined for vectors from a linear dense subspace D of
a Hilbert space J. Let B be a unitary operator on ¥
such that

(a) VD = D.

) VO, VY] = [®,¥] for all D, ¥ € D,

Then, if S is the Friedrichs extension of [@,¥], one
has V'S = SV on Dg.

Proof: Let B be defined on X, (the closure of D in
the norm [®, ®)}) by (®,¥) = [®, BY), O,V € %,.

Our assumptions (a), (b) lead to

(1) (@,¥) = (VO, VYY) = [V, BV Y],

) ,¥) = [®, BY] = [V®, VBY].

Comparing (1) and (2) we conclude BV = VB on
X, . Since B and ¥V are bounded, it follows BV = VB
on X, by continuity. Therefore, making use of
VDg< Dy, BS|Dg=1/Dg, SB=1, 0 = S(BY —
VB)S = VS — SV on Dyg. Q.E.D.



	JMP, Volume 08, Issue 03, Page 0367
	JMP, Volume 08, Issue 03, Page 0373
	JMP, Volume 08, Issue 03, Page 0387
	JMP, Volume 08, Issue 03, Page 0389
	JMP, Volume 08, Issue 03, Page 0399
	JMP, Volume 08, Issue 03, Page 0406
	JMP, Volume 08, Issue 03, Page 0409
	JMP, Volume 08, Issue 03, Page 0417
	JMP, Volume 08, Issue 03, Page 0423
	JMP, Volume 08, Issue 03, Page 0434
	JMP, Volume 08, Issue 03, Page 0443
	JMP, Volume 08, Issue 03, Page 0450
	JMP, Volume 08, Issue 03, Page 0451
	JMP, Volume 08, Issue 03, Page 0454
	JMP, Volume 08, Issue 03, Page 0460
	JMP, Volume 08, Issue 03, Page 0466
	JMP, Volume 08, Issue 03, Page 0473
	JMP, Volume 08, Issue 03, Page 0475
	JMP, Volume 08, Issue 03, Page 0478
	JMP, Volume 08, Issue 03, Page 0484
	JMP, Volume 08, Issue 03, Page 0489
	JMP, Volume 08, Issue 03, Page 0494
	JMP, Volume 08, Issue 03, Page 0507
	JMP, Volume 08, Issue 03, Page 0512
	JMP, Volume 08, Issue 03, Page 0514
	JMP, Volume 08, Issue 03, Page 0518
	JMP, Volume 08, Issue 03, Page 0523
	JMP, Volume 08, Issue 03, Page 0532
	JMP, Volume 08, Issue 03, Page 0536
	JMP, Volume 08, Issue 03, Page 0547
	JMP, Volume 08, Issue 03, Page 0553
	JMP, Volume 08, Issue 03, Page 0561
	JMP, Volume 08, Issue 03, Page 0573
	JMP, Volume 08, Issue 03, Page 0576
	JMP, Volume 08, Issue 03, Page 0581
	JMP, Volume 08, Issue 03, Page 0582
	JMP, Volume 08, Issue 03, Page 0589
	JMP, Volume 08, Issue 03, Page 0611
	JMP, Volume 08, Issue 03, Page 0614
	JMP, Volume 08, Issue 03, Page 0642
	JMP, Volume 08, Issue 03, Page 0646
	JMP, Volume 08, Issue 03, Page 0648
	JMP, Volume 08, Issue 03, Page 0651
	JMP, Volume 08, Issue 03, Page 0657
	JMP, Volume 08, Issue 03, Page 0663

